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Abstract. Sensors on satellites provide unprecedented understanding of the Earth’s climate system by measuring 19 
incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial 20 
and temporal coverage that would be currently impossible without satellite technology. A common challenge with 21 
satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the 22 
parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and 23 
internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and 24 
developing long-term records from satellites is the examination of data from overlapping satellites. Prior papers 25 
have used overlap periods to identify the offset between data from two satellites and estimate the added uncertainty 26 
to long-term records. This paper addresses the length of overlap needed to identify an offset or a drift in the offsets 27 
of data between two sensors. The results are presented for the general case of sensor overlap by using the case of 28 
overlap of the SORCE SIM and SOLSTICE solar irradiance data as an example. To achieve a 1% uncertainty in 29 
estimating the offset for these two instruments’ measurement of the Mg II core (280 nm) requires approximately 5 30 
months of overlap. For relative drift to be identified within 0.1% yr-1 uncertainty, the overlap for these two satellites 31 
would need to be 2.6 years. Additional overlap of satellite measurements is needed if, as is the case for solar 32 
monitoring, unexpected jumps may occur because these jumps add to the uncertainty of both offsets and drifts; the 33 
additional length of time needed to account for a single jump in the overlap data may be as large as 50% of the 34 
original overlap period in order to achieve the same desired confidence in the stability of the merged dataset. 35 
Extension of the results presented here are directly applicable to satellite Earth observations. Approaches for Earth 36 
observations may be challenged by the complexity of those observations but may also benefit from ancillary 37 
observations taken from ground-based and in situ sources. Difficult choices need to be made when monitoring 38 
approaches are considered; we outline some attempts at optimizing networks based on economic principles. The 39 
careful evaluation of monitoring overlap is important to the appropriate application of observational resources and to 40 
the usefulness of current and future observations. 41 
 42 
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1. Introduction 1 

One of the fundamental requirements for construction of long-duration climate records is the ability to analytically 2 
assess the stability of over-lapping observational records so that the time series of different sensors can be combined 3 
into a single reliable record. This need is particularly valuable for satellite-borne sensors that are susceptible to a 4 
wide variety of sensitivity degradation mechanisms influenced by the space environment as well as by spacecraft, 5 
instrument, and operational considerations. Many of these influences can contribute in unexpected ways to the 6 
overall instrument stability thereby adding non-geophysical trending or structure to the combined data records 7 
compiled from multiple missions. These problems can also be exacerbated when comparing instruments with 8 
different time histories, i.e. the comparison of two sensors – one during its early-orbit phase with one that has been 9 
in space for an extended length of time. For overlapping spaced-based observations, even with reliable on-board 10 
calibration and instrument sensitivity degradation correction schemes, time-limited intercomparison campaigns are 11 
still required to objectively identify potential systematic errors in one or both instruments. A variety of techniques 12 
exist for merging datasets from different sources – including two different satellites – using statistical models, 13 
physical models, and efforts at in situ calibration (Chander et al., 2013b; Peterson et al., 1998). Each technique has 14 
great strengths and can offer not just adjustments for merging of datasets, but estimates of uncertainty in long-term 15 
stability. Some techniques focus on tying data to absolute reference standards with the intent of developing 16 
traceability to reference standards (Wielicki et al., 2013; Fox et al., 2013). The development and use of these high 17 
accuracy climate benchmark instruments has been advocated for since the early 2000’s and described in the NISTIR 18 
7047 (2004) and ASIC3 (2007) workshop reports. These high accuracy instrument systems will provide two 19 
fundamental products of great value to the climate science community: 1) reliable long-term records of basic climate 20 
forcings, response, and feedback for analysis and climate model verification, and 2) in-flight calibration standards 21 
for environmental operational satellite sensors including weather satellites that do not have a rigorous pre-flight 22 
radiometric calibration requirement or the ability to perform degradation corrections on-orbit. Weber et al. (2016) 23 
addressed the issue of requirements on stability for detecting a desired long-term trend from a multiple instrument 24 
timeseries by accounting for variations in instrumental lifetime and merging biases in a Monte Carlo simulation. In 25 
both of these cases where inter-satellite calibration transfer can occur and in the concatenation of multiple 26 
generations of the benchmark satellite instruments, verification of merging different observation systems is 27 
important for validation of expected agreement. Should an offset or drift be detected, the use of that information is 28 
for the instrument scientists to determine based on all available information; without sufficient overlap there is a 29 
limit to the magnitude of offset or drift that can be detected. This paper will address techniques that can address the 30 
goal of verifying the stability of merged data records using observations from overlapping independent satellite 31 
instruments. 32 
A particular challenge in the design of climate observing systems is how to preserve data quality and facilitate valid 33 
comparisons of observations that extend over a series of missions measuring the same geophysical quantity. A 34 
number of in-depth techniques are used by instrument scientists to understand the fundamental (Level 1) 35 
observations, including wavelength scale corrections, detector responsivity evaluation, and field-of-view sensitivity 36 
monitoring. With the regular insertion of new technology driven by interest in reducing costs and/or improving 37 
performance also comes the need to separate the effects of changes in the Earth system from effects ascribable to 38 
changes and gaps in the observing system. Credible, ongoing programs of sensor calibration and validation, sensor 39 
characterization, data continuity, and strategies for ensuring overlap across successive sensors are thus essential 40 
(NRC, 2000a). Multiple efforts describing key challenges and/or requirements have been published (Chander et al., 41 
2013a; Frӧhlich, 2009; Willson and Hudson, 1991; Willson and Mordvinov, 2003). Adams et al. (2014) revealed up 42 
to a 6% relative drift per decade between different ozone observing satellites, confounding some attempts to detect 43 
signs of ozone recovery. Rahpoe et al. (2015) show that both drifts and biases in current satellite observing systems 44 
are often large compared to the signals of interest. Developing a stable record requires a rigorous calibration and 45 
sensor characterization program and an observation approach that ensures sufficient temporal overlap to achieve 46 
accurate cross-calibration between successive sensors. The approaches presented in this paper focus on developing 47 
useful checks on the final data products (Level 2) from multiple instruments. Measuring the small changes 48 
associated with long-term global climate change from space is particularly challenging. For example, the satellite 49 
instruments must be capable of observing atmospheric and surface temperature trends as small as 0.1°C dec.-1, ozone 50 
changes as little as 1% dec.-1, and variations in the Sun’s output as tiny as 0.1% dec..1 (Ohring et al., 2005). 51 
There is a long and valuable history of efforts to attempt in-flight calibration, particularly on multi-spectral sensors 52 
(Slater et al., 1996). The Global Space-based Inter-Calibration System (GSICS) coordinates the development of 53 
tools to intercompare different Earth observing systems. Through careful analysis of spectral signals, relative 54 
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stability can be assessed and small problems with individual sensors can be identified. However, long-term stability 1 
and absolute calibration still present a challenge to these internal consistency methods, leading many to look to other 2 
approaches for absolute calibration, traceability, and the ability to verify stability. 3 
NRC (2000a) highlighted the need for precise inter-satellite calibration, recommending that there should be a 1-year 4 
overlap between successive Ozone Monitoring Profiler Suite launches to allow sensor intercomparison and 5 
guarantee long-term traceability. Analogously, a 1-year overlap in observations of both solar irradiance and spectral 6 
solar irradiance is part of the summary recommendations of Ohring et al. (2005). Randel and Thompson (2011) went 7 
a step further by exploring the utility of combining the SAGE II ozone observations with tropical measurements 8 
from the SHADOZ ozonesonde network, to study interannual variability and trends. There is a long overlap period 9 
between the two datasets (1998–2005), and comparisons show excellent agreement. Not all satellite records have the 10 
benefit of such a long-term in situ dataset for intercomparison. For ground-based ozone measurements a change 11 
from one instrument type to another, tandem operations of both instruments at a given station for at least three years 12 
are recommended in order to assess that both instruments capture reasonably well the seasonal as well as interannual 13 
variability (Staehelin et al., 2003). 14 
To improve the precision and usefulness of multi-instrument time series for identifying drifts, it is necessary to 15 
remove biases between data sources, including those resulting from (a) calibration differences; (b) spatial and 16 
temporal sampling or resolution differences; (c) changes in data processing versions; (d) inherently different spectral 17 
sensitivities; (e) different instrument types with varying inherent vertical coordinates; and (f) changes in instrument 18 
orientation or orbital characteristics. Sufficient overlap in the measurement obtained with a different generation of a 19 
given instrument can be used to determine the magnitude of measurement differences and thereby to remove biases 20 
in the data (NRC, 2000a). Multiple efforts are ongoing internationally to assure that emerging ground-based, in situ 21 
and satellite records can be useful to climate analyses, most notably the Global Space-based Inter-Calibration 22 
System (GSICS) which is a joint effort by WMO and the Coordination Group for Meteorological Satellites (CGMS) 23 
to monitor and harmonize data quality from operational weather and environmental satellites. Harmonized datasets 24 
often require adjusting for offsets, spurious drifts and instrument or location-specific problems (Salby and 25 
Callaghan, 1997; Araujo-Pradere et al., 2011; Dudok de Wit, 2011). 26 
In this paper, we estimate the direct impact of length of overlap between satellites to the continuity of data from two 27 
overlapping satellites. We examine three separate factors that are of direct importance to the users of merged 28 
satellite datasets: the quantified offset of the two datasets, the drift between the two datasets, and the impact of 29 
sudden jumps in the data during periods of overlap. We also examine the impacts of drifts in individual records on 30 
the long-term stability of the merged satellite records. Intercomparison of satellite records cannot, in isolation, 31 
determine which of two systems is more accurate or stable. Indeed, agreement of two observing systems can occur 32 
when both are similarly inaccurate, or similarly drifting. However, intercomparisons offer valuable, independent 33 
assessment useful for developing a long-term record. For illustrative purposes, we will use the potential overlap of 34 
two instruments observing solar radiation to address these three factors. We will discuss some factors relevant to 35 
extension of these techniques to Earth observations. In the final section of this paper, we outline methods for 36 
optimizing the set of choices which are needed to create a long-term and stable climate record under a variety of 37 
constraints. 38 

1.1 Offsets 39 

Since 1978, there have been near-continuous space-based observations of ozone columns and stratospheric ozone 40 
profiles from a combination of missions. Temporal overlaps between these instruments have allowed detailed 41 
intercomparisons to play a key role in assessing the precision, accuracy, and long-term drift of the instruments 42 
(WMO, 1989, 2011a, 2011b; Bodeker, 2001). However, these overlaps have been somewhat serendipitous; little 43 
commitment has been made to ensure the continuity and long-term traceability of the full ground-based, in situ and 44 
satellite ozone measurements. Gaps in the satellite record are problematic for detecting long-term trends in ozone, 45 
because satellites offer the only means for global monitoring of the ozone distribution. Ground-based observations 46 
from spectrophotometers, sondes, or lidars offer only sparse spatial coverage, although they play a pivotal role in 47 
validating satellite measurements and helping verify their accuracy. However, they are inadequate for observing, for 48 
example, the evolution of polar ozone loss in the Arctic, an issue that is emerging as a major environmental concern 49 
for the decades ahead. Continuity of space-based observations of ozone, involving planned overlap between 50 
successive instruments, is essential for detecting and interpreting long-term trends. 51 
As it was concluded in NRC (2000b), it takes a special effort to preserve the quality of data acquired with different 52 
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satellite systems and sensors, so that valid comparisons can be made over an entire set of observations. There are 1 
few examples of continuous data records based on satellite measurements where data quality is consistent across 2 
changes in sensors, even when copies of the sensor design are used. Stolarski and Frith (2006) argue the need for the 3 
evaluation of uncertainties, concluding that a longer overlap period leads to more confidence in the calculated bias, 4 
and a reduced offset uncertainty. Bourassa et al. (2014) attempted to quantify interannual variability and decadal 5 
trends by combining stratospheric ozone profile measurements from different satellite systems including using the 6 
Stratospheric Aerosol and Gas Experiment (SAGE) II satellite instrument (1984–2005) with measurements from the 7 
Optical Spectrograph and InfraRed Imager System (OSIRIS) instrument on the Odin satellite (2001–present). Sensor 8 
characterization and an effective, ongoing program of sensor calibration and validation are essential in order to 9 
separate the effects of changes in the Earth system from effects owing to changes in the observing system. 10 
Efforts at merging satellite data in the past have focused on deriving offsets to limit relative differences before 11 
combining data from different sensors into a continuous record (e.g. Wentz and Schabel, 1998; Santer et al., 2003; 12 
Smith et al., 2008; Dudok de Wit et al., 2008; Chander et al., 2013b). Bourassa et al. (2014) showed that the 13 
uncertainty in drift from a continuous record from multiple satellites is critical to long-term monitoring of the Earth. 14 
The uncertainty of merging satellite data records is a continual challenge with a variety of approaches employed 15 
including comparison to ground-based records, statistical intercomparison of satellites by latitude, time of day and 16 
season, as well as use of physical models to look for appropriate consistencies with available data. 17 
One of the most studied issues underscoring the importance of proper treatment of multiple satellite records involves 18 
the merging of Microwave Sounding Unit temperature records. Christy et al. (1995, 1998, 2000) accurately pointed 19 
out that trends from satellite temperature records were not in agreement with other temperature records and showed 20 
a cooling of the troposphere rather than a warming. Additional work showed that a number of corrections to the 21 
satellite record could make a direct and notable difference on the trend derived from the resulting data (NRC, 2000a, 22 
2000b; Zou and Qian, 2016). Some of the most salient lessons from this effort were summarized by Thorne et al. 23 
(2005), who concluded, among other points that, “individual adjustments will a priori retain a non-climatic signal of 24 
unknown sign and magnitude regardless of how reasonable and physically plausible the chosen homogenization 25 
approach.” In this paper, we fully respect this sentiment and look to see, to what extent, some confinement of the 26 
problem may be achieved through proper overlap of independent instruments. 27 

1.2 Drifts 28 

There are several fundamental factors that can contribute to a drift in satellite observations including decay of 29 
instrumentation and changes in satellite orbit. Efforts are ongoing to minimize the impact of these factors, but all 30 
corrections involve assumptions and each satellite may invoke different approaches to monitor and address stability. 31 
Future plans may well involve traceable calibration to reference standards, but this will not fully address the 32 
challenge of merging two different types of derived satellite products. The merging of satellite records, at a 33 
minimum, needs to test for potential drift between the overlapping satellite records. The physical origins of 34 
instrument drift are rooted in the inability to correct changes in the components of a spacecraft observation system. 35 
Degradation of detectors, optics and vital spacecraft subsystems such as attitude and temperature control can all 36 
combine in different ways to produce long-term drifts in the instrument. Rahpoe et al. (2015) find intercomparisons 37 
of six different ozone limb measurements to drift relative to each other at a statistically significant rate, sometimes 38 
as high as 5% per decade or more. However, most drifts were statistically insignificant due to the limited length of 39 
data records generally less than 10 years. In the case of solar viewing instruments, BenMoussa et al. (2013) discuss 40 
in detail causes and effects of degradation in a variety of different instruments that span nearly two decades and 41 
cover a broad wavelength range. They conclude that there is no single best method to correct and monitor 42 
degradation and the correction schemes for overlapping missions are likely to be very different depending on the 43 
instrument hardware selection. Earth-observing instruments are not immune to the same problems apparent in Sun-44 
viewing instruments. An important example of this is well documented in the efforts to correct drift in the CIRES 45 
instrument (Cloud and Earth’s Radiant Energy System, see Loeb et al., 2016 and references therein). In this report, 46 
long-term stability was linked to loss of optical transmission due to UV exposure and molecular contamination, very 47 
similar to the mechanisms discussed in BenMoussa et al. (2013). Fruit et al. (2002) have addressed the effects of 48 
energetic particle on glass transmission, but inhibiting and characterizing carbonization of optical surfaces remains a 49 
steadfast and unsolved problem. 50 
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1.3 Jumps 1 

The effect of sudden jumps can be large and can be directly improved by an increase in planned overlap of satellites, 2 
when possible; three satellites can make the ability to identify and understand a sudden jump significantly easier, but 3 
is often beyond current monitoring approaches. Hurrell and Trenberth (1997) point to the importance of two small, 4 
discrete, downward shifts in merged satellite records that dominated the trend results for tropospheric temperature 5 
records. A careful intercomparison of sudden shifts in temperature and humidity profiles from sonde records (Free et 6 
al., 2002) show that these efforts can disagree profoundly with each other, resulting in changes to observed trends by 7 
between 35% and 80%. Jumps can occur for a variety of reasons related to instrument changes. Depending on the 8 
physical source of the jumps, the effects can last from less than a few hours to multiple years. We focus on the 9 
ability to detect and understand the jumps that last more than a few months, as they may be the interruptions that can 10 
cause the most serious damage to long-term records, particularly those used in the context of climate research. 11 

1.4 Planning for needed homogeneity 12 

The user communities, including the climate community, continue to be clear about their requirements for useful 13 
satellite observations (WMO, 2011a; Wulfmeyer et al., 2015; Ohring et al., 2005). The requirement for a long-term, 14 
stable record is challenging to formulate and justify. A variety of advances have been offered to allow for more 15 
accurate satellite observations: on-board calibration, independent verification, and in-depth modeling of instrument 16 
performance can all assist in characterizing the accuracy, biases, and stability of the satellite measurements, many 17 
based on the fundamental measurement equations and availability of internal instrument monitoring. The challenge 18 
will still remain to understand and merge records from different satellites – each potentially using its own calibration 19 
and collection approaches – to provide a single observational record. One of the key factors that we can control is 20 
the length of overlap between existing and future satellites. Analysis of an overlap record can only give us an 21 
estimate of relative drift, but in the absence of traceable in-flight calibration, it is often one of our best checks on 22 
long-term stability of the final data products. Understanding that decisions on overlap will directly affect both the 23 
cost of monitoring and the value of the final dataset for evaluating long-term changes in climate, we propose one 24 
approach to objectively evaluate the length of overlap needed to achieve a specific stability in the merged data 25 
record. 26 

2. Approach 27 

The statistical analysis techniques developed by Weatherhead and collaborators (see for example, Weatherhead et 28 
al., 1998; 2000) provide a basis for addressing the length of time needed for adequate overlap based on the 29 
magnitude of the signal variance as well as residual noise autocorrelation. Space-based observations are frequently 30 
interrupted by spacecraft or instrument faults that can significantly increase the length of time required to detect a 31 
data trend. In this manuscript, we perform a case study by applying these techniques to existing SORCE SIM and 32 
SOLSTICE instrument data thereby illustrating the use of statistical methodology to estimate the length of overlap 33 
needed to achieve records of specified stability. This study serves as an example of possible analyses that would 34 
ensure adequate overlap between two sensors measuring the same climate record. The techniques discussed herein 35 
are applicable to instrument scientists pursuing improvements in on-board instrument corrections, but also for 36 
mission planning by program managers to ensure the best overlap characteristics of adjoining missions. 37 
The detailed in-flight circumstances that produce instrument instabilities are highly specific to individual sensors so 38 
the best practice is to employ instrument telemetry and on-orbit calibration methods traceable to international 39 
standards. Such approaches can be used to develop detailed measurement equations that can account for the 40 
occurrence of degradation and correct the measured signal to produce high quality Level 1 data. The measurement 41 
equation carries its own uncertainties and, in principal, allows for the estimation of time-dependent uncertainties as a 42 
function of mission day. This measurement equation approach is advocated in the “Guide to the expression of 43 
uncertainty in measurements” (JCGM, 2008) by the Joint Committee for the Guides in Metrology (JCGM) and relies 44 
only on the known and measurable properties of the subsystems that compose the full instrument used for the 45 
observation. Instrument teams apply these corrections to produce the final Level 2 data in an effort to provide the 46 
most accurate measurements independent of outside data sources. 47 
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2.1 Introduction of SORCE SIM and SOLSTICE instruments: 1 

For illustrative purposes, we will use two sets of data from the Solar Radiation and Climate Experiment (SORCE) 2 
satellite: concurrent data from the Solar Stellar Irradiance Comparison Experiment (SOLSTICE) and the Spectral 3 
Irradiance Monitor (SIM). SORCE was launched on 25 January 2003 and has conducted daily measurements of the 4 
spectral and total irradiance with only a few gaps in the time series; the longest gap being a 209-day period starting 5 
on 31 July 2013. This gap was caused by a reduction in charging capacity of the spacecraft batteries, and has been 6 
successfully mitigated by operating the instruments in a day-only operation mode that does not rely on keeping 7 
spacecraft subsystems operational on the nighttime portion of the orbit. The SORCE mission and instrument 8 
performance, design, operation, and calibration are described in a series of papers published in Solar Physics related 9 
to the design, operation, calibration, and performance of the SORCE instruments. Harder et al. (2005a) describes the 10 
scientific requirements, design, and operation modes for the instrument. Harder et al. (2005b) discusses the 11 
fundamental measurement equations and the pre-flight calibration methodology for the instrument. A third paper 12 
(Harder et al., 2010) continues the discussion of the absolute calibration of the instrument describing additional post-13 
launch characterizations using flight spare components and comparisons with the SORCE and UARS SOLSTICE 14 
instruments and the ATLAS 3 composite (Thuillier et al., 2004). Additional in-flight comparisons with the ESA 15 
ENVISAT SCIAMACHY instrument (European Space Agency, Environmental Satellite, SCanning Imaging 16 
Absorption spectroMeter for Atmospheric CHartographY) are discussed in Pagaran et al. (2011). Similarly, 17 
McClintock et al. (2005a, 2005b) describe the SOLSTICE instrument design and calibration. Snow et al. (2005) 18 
describe the important solar-stellar calibration process that forms the basis of the on-orbit degradation corrections. 19 

2.2 Set up for SIM/SOLSTICE comparison: 20 

A crucial question for solar irradiance studies, as is true for most long-term satellite monitoring efforts, arises from 21 
the requirement to understand the length of time needed for the overlap of the ongoing SORCE mission with the 22 
next generation Total and Spectral Irradiance Sensor (TSIS) scheduled for launch in August of 2017 and deployed 23 
on the International Space Station. While Earth observations often require a minimum of a one year overlap to cover 24 
the full range of expected observations, such criteria is impractical for covering a full 11-year solar cycle in a 25 
planned overlap period. Here we are applying analytical techniques to understand the length of time needed to 26 
quantify the offset between two satellite observing systems and to understand the drift between two satellite records 27 
(Weatherhead et al., 1998). While it is unclear whether the TSIS/SORCE overlap will mimic the findings from the 28 
comparison of the two SORCE instruments, this effort will examine how potential instrument anomalies and 29 
systematic errors in the degradation corrections affect the ability to determine the length of time needed to determine 30 
a trend difference in the two sensors. For this study, we are using a subset of three years of data from 18 November 31 
2005 to 31 December 2008 (1140 days), characterizing the time period corresponding to the descent into the solar 32 
minimum condition of Solar Cycle 23 with the minimum value apparently in the January-February period of 2009. 33 
This time period was selected to approximate what would be expected from an overlap comparison campaign 34 
conducted during the descending phase of Cycle 24 projected to be in the 2019 time frame. However, the Solar 35 
Cycle 23 minimum is the longest and quietest time period of the space age (Schrijver et al., 2011; Araujo-Pradere et 36 
al., 2011; Araujo-Pradere et al., 2012), but our analysis does not rely on this situation persisting into the Solar Cycle 37 
minimum. This paper targets common observations of the irradiance in the 280 nm spectral region which includes 38 
the highly variable core of the Magnesium II lines. This region was selected because the variability of the Mg II 39 
lines is an important indicator of solar chromospheric variability and is frequently used for space weather 40 
applications (Viereck et al., 2004; Marchenko and Deland, 2014) and as a proxy for solar influence on stratospheric 41 
ozone and temperature (Hood and Zhou, 1998). It should be noted that the SIM (version 22) and SOLSTICE 42 
(version 15) used in this study are used as-reported on the publically available SORCE web page 43 
(http://lasp.colorado.edu/home/sorce/data/ssi-data/). SIM and SOLSTICE corrections are made independently of one 44 
another, but the higher resolution 0.1 nm resolution SOLSTICE data is integrated into a fixed 1-nm bin centered at 45 
280 nm. The SIM instrument has a FWHM resolution of 1.1 nm with 6 samples per resolution element. While some 46 
offset in irradiance is expected due to spectral sampling used to generate the data products, the difference is fixed 47 
and does not drift as a function time due to the well-defined wavelength scale and spectroscopic properties of the 48 
two instruments (Harder et al., 2010). 49 
 50 
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 1 
 2 
Figure 1: A 1140-day segment of concurrent SORCE SOLSTICE (version 15) and SIM (version 22) data during the 3 
descending phase of Solar Cycle 23. The 27-day variations seen in this plot are caused by solar rotational modulation of 4 
active regions dispersed on the Sun and are not due to instrument noise; note that this modulation is apparent in both 5 
datasets. This data segment contains all three of the sources of the uncertainties identified in this study: 1) Drift, as seen in 6 
the time-dependent dispersion in the data time series between SOLSTICE and SIM. 2) Offset is caused by differences in 7 
the absolute calibration between the instruments. 3) Jumps are identified in the time record and are the result of 8 
documented instruments faults. These three sources of uncertainties combine and contribute to the length of overlap 9 
needed to derive a robust climate record from satellite records. 10 

Figure 1 shows the time series comparison of SOLSTICE version 15 and SIM version 22 used in this study. These 11 
overlapping datasets illustrate three types of inconsistencies that occur in geophysical records. 12 
 13 

1. There is an offset of about 0.5% in the absolute calibration between the SOLSTICE and SIM. The pre-14 
flight absolute calibration is on the order of 1-2% so within the ability to absolutely calibrate the 15 
spectrometer. However, in an overlap experiment as we are conducting here this offset could be significant. 16 

2. There is an apparent drift in the data between the two instruments. The advancement in SOLSTICE version 17 
15 contains a new correction that removes an annual oscillation in the data induced by a change in the size 18 
of the degradation spot ‘burned-in’ to the collimator mirror – see McClintock et al. (2005a) for more detail 19 
on the optical configuration. As the Earth-satellite system moves around the elliptical orbit of the Sun a 20 
different illumination occurs on the first optic thereby modulating the intensity of light that propagates 21 
through the rest of the optical system. This same effect occurs in the SIM data but has been a part of the 22 
standard degradation correction for the last versions. SOLSTICE version 15 tends to flatten the apparent 23 
long-term magnitude of the 280 nm variability relative to earlier SOLSTICE versions. 24 

3. There are jumps in the time series related to spacecraft and instrument anomalies. Significant events are 25 
apparent in the record, such as when SOLSTICE experienced a failure of the mechanism that changes the 26 
entrance slit from the solar to the stellar mode on 27 January 2006. The slit was moved back into position 27 
for continuous solar observations but did not return to the exact same position so the optical path through 28 
the instrument changed and therefore disrupted the degradation corrections and the wavelength scale. 29 
Similarly, a spacecraft safe-hold event on 14 May 2007 caused the instruments to become very cold and 30 
significantly changed the SIM wavelength scale and perhaps the transmission properties of the instrument. 31 
This safe-hold event had little effect on the performance of the SOLSTICE. 32 
 33 

The next sections of this paper will address the effects of these three anomalies (offsets, drifts, and jumps) in the 34 
SORCE datasets and discuss their impacts on dataset uncertainty and on the length of measurement overlap required 35 
to achieve a specific level of stability in the final dataset. 36 
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3. Offsets 1 

Offsets in the values measured by two different satellite observing systems are now a well-documented issue across 2 
many satellite monitoring systems. Making corrections to sequential satellites is standard practice to allow for a 3 
continuous data record that can be used in scientific studies. Details of the merging process directly influence the 4 
resultant trends and add to the level of uncertainty in the final datasets (Karl et al., 1986). In this section we consider 5 
the case where overlap is non-existent and for the case where overlap exists, we consider the length of time required 6 
to achieve a specific uncertainty in an overlapping set of data. These cases illustrate not only the need for overlap 7 
periods, but for overlap periods of sufficient duration to make a quantifiable improvement in the long-term record. 8 
Free et al. (2002) carried out a comparison of seven different groups examining radiosonde records with the intent of 9 
identifying, quantifying and correcting observed discontinuities. The different groups identified a widely different 10 
number of discontinuities using a range of techniques. They further differed significantly on the magnitude of 11 
corrections and even, at times, the sign of the needed correction. Thus, even identified and corrected discontinuities 12 
introduce some uncertainty in the long-term stability of the record. Weatherhead et al. (1998) showed that these 13 
corrections can be quantified with advanced statistical techniques. The resulting uncertainty in long-term stability 14 
increases the number of years necessary to detect trends, independent of how large the correction is. 15 
As an example of one of the potential problems, consider the straight-forward method for merging two sequential 16 
(non-overlapping) data records by forcing the mean level of the three years of data prior to the discontinuity be equal 17 
to the mean level of the three years of data after the discontinuity. In such a situation, those six years of data are 18 
being forced, by the algorithm, to have very little trend. Imagine a situation where there are two such discontinuities 19 
in a twenty year record; more than half of the data has been coerced to have virtually no trend, making the resultant 20 
data unreliable for many long-term monitoring uses. The case of no overlap can occur due to a variety of reasons, 21 
including the sudden loss of a satellite, or in the case of ground-based observations, when an expensive instrument 22 
needs to be moved and no duplicate instrument can be employed to allow for overlap. The end result of any offset 23 
correction will have a direct impact on the magnitude of the resulting trends. 24 
Planning satellite operations for overlaps in monitoring missions allows for a quantification and minimization of the 25 
uncertainty in the merged dataset. To estimate the time needed for overlap requires an estimate of what the overlap 26 
time series would look like. We use monthly averages, as is a common standard in many climate-related research 27 
efforts for several reasons: monthly averages avoid the match-up issues and potential non-linearity of short-term 28 
features, such as storms, and offer enough resolution to observe long-term behavior of the match-up.1 If, as is the 29 
case of the SOLSTICE-SIM overlap, the data and the difference between the two datasets look like Fig. 2, the paired 30 
data can be used to estimate offsets and uncertainties in the derived offsets. 31 

                                                 
1 While it could be argued that there is nothing unique about the time-step of one month, it is a common practice in 
climate analyses. However, the example datasets used in this paper measure extra-terrestrial solar radiation. With the 
Sun’s rotation of 27.2753 days, we have a natural timeframe close to a monthly average. In Appendix A we carry 
out the calculations in this paper with monthly averages and with averages based on the solar rotation schedule; we 
see no notable change in the basic conclusions adopting the more natural solar rotation schedule instead of monthly 
averages. 
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 1 
Figure 2: Monthly averaged SOLSTICE data, SIM data and SOLSTICE-SIM (watts m-2 nm-1) as a time series for the 2 
period October 2004 through December 2008. The data show that the observed difference are small, but do not appear to 3 
be stable, thus a simple level shift to bring the two datasets in line may not fully address the match-up and stability issues 4 
of the dataset. 5 

The overlap data depicted in Fig. 2 show a mean difference between the two datasets of 6.8*10-4 watts m-2 nm-1, 6 
with a standard error on this mean of 2.7*10-5 watts m-2 nm-1 when the classic standard error calculation ignores 7 
autocorrelation. However, this figure does not support the assumption that the observed difference between 8 
SOLSTICE and SIM are stable and would continue beyond the observed end of the analysis period of December 9 
2008 because of the apparent drift in the differences. For cases when a drift is not involved, we can make use of the 10 
standard formula for the standard error on the mean of the observed time series of differences when simple 11 
autocorrelation is present: 12 
 13 
𝑆𝑆𝑚𝑚𝑚𝑚 ≅ 𝜎

√𝑛�   �1+𝜑
�1−𝜑

          (1) 14 
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Where σ is the observed magnitude of variability of the observed differences in monthly averages; φ is the observed 1 
autocorrelation in those differences, and n is the number of months of observed overlap. This estimate of Standard 2 
Error of the mean is dependent on the data behaving as an autoregressive with time-lag of one month, AR(1), with 3 
the underlying interventions behaving approximately as a Gaussian distribution. This more appropriate formula 4 
gives a standard error on the mean of 5.2*10-5 watts m-2 nm-1, notably larger than if autocorrelation is ignored. These 5 
constraints for the formula are some of the reasons that monthly averages are used as often as they are: monthly 6 
averaged data is often better behaved and match-up problems from different instruments are minimized. We show 7 
the behavior of the underlying interventions as Gaussian and our tests for AR(1) in Appendix B. 8 
We can invert the formula for the Standard Error on the mean in Eq. (1), and solve for n resulting in the number of 9 
years to estimate the mean offset between two satellites for a given accuracy as: 10 
 11 
𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑀𝑜𝑛𝑀ℎ𝑠 𝑀𝑜 𝑆𝑠𝑀𝐸𝑁𝐸𝑀𝑁 𝐸𝑛 𝑂𝑜𝑜𝑠𝑁𝑀 ≅ 1.962  𝜎

2

𝑂𝑜𝑜𝑠𝑁𝑀 𝐿𝐸𝑁𝐸𝑀2� 1+𝜑
1−𝜑

    (2) 12 

The above formula shows that for a given magnitude of variability and autocorrelation in satellite overlap data (σ 13 
and φ respectively), the length of overlap needed is inversely proportional to the square of the accuracy desired for 14 
the offset estimate. Thus, if we can identify the level of uncertainty we can accept in a merged record due to the 15 
overlap offset (SEmean), and if we have some understanding of the behavior of overlap differences (σ and φ), either 16 
from advance estimates or from early analysis of offset data, we can appropriately identify the length of overlap 17 
needed in a manner that is respectful of the inherent cost of added months of satellite overlap. If a higher level of 18 
certainty than 95% is required, the 1.96 factor is adjusted appropriately according to normal distribution tables. For 19 
small number of months, the 1.96 will need to be adjusted for the student-t distribution which allows a larger 20 
uncertainty when a small number of points are used. With the example used in this paper and shown in Fig. 2, we 21 
observe a magnitude of variability, σ, of 1.7*10-4 watts m-2 nm-1 and autocorrelation, φ of 0.89. If we want an Offset 22 
Limit of 0.0008 watts m-2 nm-1 (which is one percent of the mean of SOLSTICE during the overlap period), then the 23 
number of months would need to be 5 months using the student-t distribution which offers 2.8 as the appropriate 24 
factor in place of 1.96. Note that to achieve the 95% confidence limit, we must use the appropriate student-t 25 
distribution, or approximately 1.96 multiplier in the large number limit, to assure we have the desired confidence on 26 
our overlap adjustment. While this is a recursive effort because the answer, number of months, is a function of the 27 
multiplier, which is itself a function of the number of months, this exercise is not overly onerous, because high 28 
precision is not appropriate and after roughly two years of data, the large number limit of 1.96, may be considered 29 
appropriate. 30 
The impact of the offset on the use of the data is critically important to the final analysis. While a “best” merged 31 
dataset may be produced from multiple satellites, users should never ignore the added uncertainty due to merged 32 
data sources. The magnitude of the impact of the offset correction is dependent on the use of the data. Two cases are 33 
considered here for illustrative purposes. If the merged dataset will be used to estimate the impact of storms on a 34 
stable electrical grid, and the impacts have been estimated from the effects observed using the first satellite record, 35 
an uncertainty of 0.2 (%) means that the new solar storms may well be off by ±0.2% and the uncertainty in impacts 36 
need to be appropriately calculated and conveyed. If the merged datasets will be used to estimate long-term trends, 37 
then the impact of an uncertainty of ±0.2 (%) means that any trends derived will be affected by that level of 38 
uncertainty carried out through the length of dataset used for analysis, and may affect the significance of the 39 
expected trend, if care is not taken to reduce the uncertainty in the overlap adjustments. 40 

4. Drifts 41 

If we can quantify the level of drift we would like to be able to detect, and if we can estimate the level of variability 42 
in the overlapping data, using approaches from Weatherhead et al. (1998), we can estimate the number of months 43 
necessary to observe a drift of that magnitude in an overlapping dataset. Weatherhead et al. (1998, 2000) have 44 
shown that one can estimate the length of time to detect trends in environmental observations. This approach is 45 
applied to estimate the time to measure a differential drift with a specified uncertainty in the observations taken by 46 
two different systems. When detection is considered at the 95% confidence level as: 47 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑀𝑜𝑛𝑀ℎ𝑠 𝑀𝑜 𝑆𝑠𝑀𝐸𝑁𝐸𝑀𝑁 𝐸 𝐷𝑁𝐸𝑜𝑀 ≅   12 ∗ �1.96 𝜎
|𝑑𝑑𝑑𝑑𝑑|

∗  �1 + 𝜑 
1− 𝜑

�
2
3�

       (3) 48 
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Where |drift| is the absolute value of the magnitude of the differential drift, σ and φ are the magnitude of variability 1 
and autocorrelation of the overlapping monthly data, respectively. We can estimate the drift we would like to have 2 
the capability of detecting; and estimate both σ and φ from existing data – either from observations or modeled 3 
experiments. It may be noted that the natural world has variability (σ) and autocorrelation (φ) that are inherent, and 4 
may change slightly over time. A distinct advantage of satellite observations can be the frequency of the 5 
observations. MacDonald (2005) has shown that the monitoring approach can have a direct impact on these values, 6 
as well: monitoring less frequently – perhaps only once or twice a month – results in higher variability and slightly 7 
lower autocorrelation in our dataset. Thus, we can increase our measurements per month to improve our 8 
detectability (shorten our number of years to detect a given trend), only up to the limit which is the natural 9 
variability of the system. 10 
 11 

 12 
Figure 3: The ability to constrain a detectable drift is a direct function of the number of years of overlap. Using the 13 
SOLSTICE-SIM data as an example, tremendous accuracy gains are achieved for each year of monitoring for the first 14 
few years of overlap, with diminished returns after that. Respecting the cost of overlap, and making appropriate 15 
calculations with emerging overlap data, an appropriate overlap plan can be estimated to allow for scientific standards to 16 
be met. A detailed set of comments on appropriate interpretation of the time estimates along with an estimation of vertical 17 
and horizontal error bars is offered in Appendix C. 18 

Figure 3 shows that for a given magnitude of variation and autocorrelation observed in overlap differences, we 19 
calculate the number of years of overlap needed to detect a specific level of drift. In this case, using the SOLSTICE-20 
SIM data as an example, the magnitude of detectable linear drift drops from 1.2*10-4 to 0.6*10-4 watts m-2 nm-1  21 
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year-1 by allowing the overlap to be three years, instead of two years. It is important to note that trends in overlap 1 
data, as trends in nature, can be best approximated as linear, logarithmic, or a variety of other representations, as the 2 
data and the physics of the situation imply; for Fig. 3, we assume a linear drift over the time period of the overlap. 3 
For satellite observations, a variety of changes are expected over the lifecycle of the instruments; all known and 4 
expected changes are approximated and adjusted based on current best understanding. However, particularly with 5 
new technologies, these assumptions must be checked by careful evaluation of the data, thus emphasizing the 6 
importance of an adequate overlap period to help confine potential drifts to a specified level. While pre-launch 7 
calibration may indicate drift will be less than a specific level, the ability to verify this will depend on independent 8 
intercomparisons of observations. 9 
Although no error bars are offered in Fig. 3, it is important to remark that when estimating how long it will take to 10 
detect a drift, two statistical levels must be considered: one that identifies the meaning of “detecting a drift” and a 11 
second that identifies the likelihood of detection of that drift in the specified period of time, if that level of drift is 12 
the true, long-term drift in the overlap. Of course, it is possible to detect smaller drifts than the value obtained from 13 
any particular point (drift-overlap pair) of this figure, as it is also possible to determine a given drift a few months 14 
earlier or later than the value obtained from the point in the figure. Comments on the appropriate interpretation of 15 
the likelihood of drift detection are discussed in detail in Appendix C, where two non-standard, dimensional error 16 
bars are introduced in the figure to help the reader to understand this uncertainty. 17 

5. Jumps 18 

Sudden offsets or jumps in environmental observations occur for a variety of reasons (e.g. Brown, 2013). In some 19 
cases, true jumps occur in the parameter being observed. In many other situations, the observing system or 20 
assumptions used in the algorithms are responsible for the jumps and there is a desire to identify and remove these 21 
spurious jumps. A variety of approaches are used to both identify jumps (Jaxk et al., 2007; Vincent et al., 1998, 22 
2002; Ducre’-Robitaille et al., 2003) and correct for these jumps in satellite and non-satellite observing systems 23 
(Karl and Williams, 1987; Mitchell and Jones, 2005). When information is available to identify the timing of a 24 
jump, there is considerably more confidence in the correction for the jump because physical interpretation is easier 25 
and therefore corrections can be physically based rather than statistically based. If there is no external information 26 
on timing, then one has to consider that there could be other jumps below the threshold for detection and estimates 27 
for how the instrument is behaving are more uncertain. For jumps in overlapping datasets, the correction brings into 28 
question the magnitude of any derived offset as well as the magnitude of any drift in the overlap period. For jumps 29 
in observing systems when there is no overlap, the challenge of appropriately identifying and correcting jumps is 30 
notably more difficult, again pointing to the value of redundant observing systems when possible. 31 
The statistical removal of a spurious jump involves two steps: identifying a jump in the overlap differenced data and 32 
estimating the magnitude of the needed correction. The uncertainty associated with these sudden jump corrections 33 
adds uncertainty to the derived offsets and drifts in the overlap data, requiring additional years of overlap to achieve 34 
the same level of confidence in the offset and drift estimates. As mentioned earlier, Free et al. (2002) showed that 35 
different intelligent approaches can produce varied results in both the number and magnitude of recognized jumps in 36 
a time series. The range of estimates for the magnitude of jumps in this paper underscores the added uncertainty to 37 
the long-term stability of the dataset when any jump is identified and corrected. We consider the two cases 38 
separately of how a jump affects the offset estimate and how a jump affects the drift estimate. 39 
While ancillary data about the instrument or the observed parameter may be used to identify the existence and 40 
timing of a jump, deriving the magnitude of correction by examining the data is dependent on the amount of 41 
variability (both magnitude and autocorrelation) in the overlap difference data. For the case of an otherwise stable 42 
offset between the two sets of satellite data, the added uncertainty on the true offset is enhanced based on the 43 
uncertainty of the jump. The impact of the jump on offset estimates is a minimum when the offset occurs in the 44 
middle of the overlap period, because maximum information is available to identify the size of the jump. For the 45 
case of a drifting offset between the two sets of satellite data, the added uncertainty on the true drift is also enhanced 46 
based on the timing of the jump. Because the impact of the jump is co-linear with the derived drift, estimating the 47 
overall drift in instrument offset is more difficult in the presence of jumps. Weatherhead et al. (1998) show that the 48 
impact of a jump on deriving an accurate estimate of drift is dependent on the timing of the jump. Thus, a longer 49 
time of overlap is required for accurately confining a drift in overlap data: 50 
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𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑀𝑜𝑛𝑀ℎ𝑠 𝑀𝑜 𝑆𝑠𝑀𝐸𝑁𝐸𝑀𝑁 𝐸 𝐷𝑁𝐸𝑜𝑀 ≅   12 ∗ �1.96 𝜎
|𝑑𝑑𝑑𝑑𝑑|

∗  �1 + 𝜑 
1− 𝜑

�
2
3�

    1

[1−3𝜏(1−𝜏)]1 3�
  (4) 1 

Where τ is the fraction of the data before the identified jump occurs. As opposed to the impact of jumps on 2 
estimating offsets, the impact of jumps on derived drifts is largest when the jump occurs in the middle of the overlap 3 
period (τ=0.5), where the amount of time is increased by a factor of 1.59. This increase is in length of time needed to 4 
estimate a drift is due to the similar temporal signature of both drifts and jumps on a long-term record as illustrated 5 
in Fig. 4. Equation 4 assumes that the drift and offset are fitted to the data simultaneously. If data are fitted 6 
sequentially to an offset and then the a drift, the derived drift will be considerably smaller than if the data were fitted 7 
to a drift and then to an offset because the two functions (drift and offset) are not orthogonal and thus the derived 8 
results for magnitude of offset and magnitude of drift are not commutative. To be explicitly clear, correction of 9 
offsets in advance of deriving drifts can artificially minimize the amount of observed drift, while ignoring offsets 10 
(perhaps because they are not easily detectable) can either add to or diminish the derived drift. 11 

 12 
Figure 4: This dataset was created to visually show the potential impact of a spurious jump on the estimate of offsets and 13 
drifts. In all three plots, the same data are shown, with the second plot showing how the data could be modeled as an 14 
offset. The data were actually created by adding a linear trend to simulated autoregressive data, as shown in the third 15 
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plot. The confounding nature of jumps and trends cannot easily be separated; although ancillary data can be extremely 1 
helpful. Note these are synthetic data with arbitrary units. 2 

 3 
In the case of the SORCE instruments, these jumps are mostly prompted by changes in the performance of hardware 4 
subsystems of the spectrometers. For example, a significant jump occurred in the SIM on 14 May 2007 related to the 5 
instrument becoming very cold during a safe-hold event, and upon recovery, the instrument did not return to the 6 
same state as before the safe-hold. This event produced a significant change in the hardware that controls the 7 
wavelength drive (see Harder et al., 2005a for a description of the wavelength drive mechanism). Even after the 8 
wavelength correction a residual jump in irradiance level was still observed; the most likely cause of this jump is 9 
due to a change in light transmission caused by a change in optical path through the instrument that is different than 10 
before the safe-hold event. 11 
For the particular case of Fig. 1, the jump appears to be adequately corrected, but other wavelengths show a 12 
discernable discontinuity. A similar observation can be made about the SOLSTICE slit anomaly in 2006 (see Fig. 1). 13 
Most disconcerting about these events is the possibility that the jumps can be disguised as a change in stability and 14 
produces results similar to what appears in the discussion on Fig. 4. 15 

6. Impacts of Uncertainty in Drifts 16 

The primary purpose of overlap in instruments is to understand how two different instruments are responding to the 17 
parameter each is intended to measure. Uncertainty in the long-term stability of data products directly affects the 18 
level of confidence one can have in the long-term, merged datasets. The impact of drifts on the long-term records 19 
can be illustrated with a simple Monte Carlo experiment illustrated in Fig. 5. Consider two satellites launched with 20 
seven year lifetimes. The second satellite (blue trace) overlaps the first satellite (green trace) by either one or two 21 
years. Each new satellite launches with an uncertainty estimate on the pre-flight absolute calibration of its 22 
measurements and some level of unidentified drift in the instrumental record, acknowledging that all identified 23 
drifting factors have already been corrected to the best abilities of the instrument team. 24 
The overlap period can be a valuable check on the potential drift of satellite measurements, with the longer the 25 
overlap period, the more constraint that can be identified as unexplained relative drift. If the information on relative 26 
drift obtained from overlap, together with valuable instrument analyses, can help constrain the absolute drift on 27 
long-term data, then we can perform a Monte Carlo simulation of two situations using the example data from the 28 
SOLSTICE-SIM analysis presented earlier in this paper. The first simulated satellite might launch with an estimated 29 
uncertainty of the solar Mg-II data of 1%represented in Fig. 5a as the spread observed in year 0. Because only one 30 
year of overlap was used, the drift may be as large as 0.000328 watts m-2 nm-1 year-1 (one standard deviation), 31 
roughly 48% year-1; for illustrative purposes 100 simulations were randomly generated to allow for that size drift 32 
(one sigma in a normal distribution). The green lines indicate the uncertainty in the long-term (seven year) lifespan 33 
of this first simulated satellite. After six years, a second satellite is put into orbit; but because of improvements in 34 
pre-launch calibration, the initial uncertainty on this second satellite is estimated to be 0.33%, as represented in the 35 
top plot of Fig. 5 by the spread observed in the start of the second satellite in blue. This second satellite, because it 36 
also had an overlap period of one year, may have a drift as large as 0.00328 watts m-2 nm-1 year-1, as estimated by 37 
the uncertainty on the match-up of the two satellites. The blue lines indicate the drift that could take place during the 38 
six years of flight for this satellite. Figure 5b shows the same information as the first plot, but assumes that the drift 39 
for the two satellites may only be as large as 0.000116 watts m-2 nm-1 year-1 (one standard deviation), roughly 17% 40 
year-1, because the satellite overlap was for a longer (two year) period. 41 
 42 
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 1 
Figure 5: Two overlapping satellite observations (shown in green and blue) simulating 280 nm Mg II irradiance (watts m-2 2 
nm-1) with an expectation for some absolute pre-flight calibration uncertainty and some unidentified on-orbit drift. The 3 
amount of unidentified drift can be estimated in the overlap period, resulting in the possibility of a correction to the data. 4 
The uncertainty in the estimate of the drift is notably smaller with a two year overlap period in satellites compared to a 5 
one year overlap. 6 

 7 
This method of showing the impacts of absolute uncertainty and drift, modeled after Frith et al. (2014) can be 8 
helpful in identifying the magnitude of impact of potential drift as well as how best to merge data based on the 9 
particular circumstances. These two “Frith plots” show that the long-term record will be directly impacted by the 10 
pre-flight calibration of each new satellite and our ability to constrain the range of unexplained drift in each satellite. 11 
For the long-term use of the record, the constraint on the drift can be critical to stability that may be needed for the 12 
long-term analysis of geophysical phenomena. As with any instrument intercomparison, satellite overlap by itself 13 
cannot replace calibration, but it does offer valuable information to allow instrument scientists to make judgments 14 
on stability and reliability. Frith et al. (2014) use Monte Carlo techniques to make adjustments to satellite data based 15 
on both overlap information and additional verification techniques. Ongoing studies are looking into the value of on-16 
flight calibration (Wielicki et al., 2013; Tobin et al., 2016) as well as redundancy in observing systems (Weber et al. 17 
2016) and the value of continued replacement of satellites to minimize the extent of unchecked drift (Frith et al., 18 
2014 and Weber et al., 2016). 19 
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7. Application to Earth Observations 1 

Extending these approaches to assure appropriate satellite overlap of Earth observations involves some challenges 2 
and advantages that are not apparent in the example of the solar observations used in Sections 3, 4, and 5. One large 3 
challenge is that Earth observations often involve spatial and temporal variations (e.g. Araujo-Pradere et al., 2004) 4 
that total solar output does not have. Two satellites making Earth observations likely provide data with differences 5 
in spectral resolution and sensitivity, spatial resolution and sampling, as well as temporal period (e.g. Chander et al., 6 
2013b, Toohey et al., 2013). These corrections, combined with the spatial and temporal variations of Earth’s 7 
parameters introduce a large set of challenges that are not easily overcome. A distinct advantage for satellite Earth 8 
observations is that a variety of in situ and ground-based observations may exist to help bridge the gap between two 9 
sets of satellite measurements, even if the overlap is of insufficient duration and coverage to provide the needed 10 
continuity. 11 
A number of efforts have worked to define the requirements for Earth observations, including the recently 12 
completed effort by WMO (2011b), which addresses the stability needed for various parameters. The value of 13 
satellites to understanding the Earth system with a global perspective is unparalleled. To understand long-term 14 
changes, stable data records are needed but are not easily evaluated without comparisons to other observations to 15 
assess offsets and drifts. In the absence of explicit requirements for limits on drift, we suggest that the standard error 16 
of the drift, at the one sigma level, be limited to half of the trend that one is seeking to detect. For example, if a 17 
monitoring system is designed to detect a trend of 0.2 degrees per decade, the unchecked drift of the system should 18 
be less than 0.1 degrees per decade at the one sigma level. While for Earth Sciences, the projected trend is dependent 19 
on the model and assumptions used to estimate future trends – as well as the location and time of projected trends, 20 
this estimate can be used as a starting point for discussions on how well the drift should be confined. When the 21 
verification of drift cannot be held to the level of projected trends – when using all available information – there can 22 
be serious questions as to the usefulness of the monitoring system for trend identification. 23 
The general principles outlined in this paper and illustrated using the example of solar observational satellite overlap 24 
are directly applicable to Earth observations, but require careful application to avoid oversimplification of the 25 
problems. Coordination efforts to bring the highest level of calibration and homogenization of data are ongoing 26 
internationally through GSICS (Hewison et al., 2013; Wu et al., 2009) and merged datasets are coordinated 27 
internationally by efforts including those led by the Centre National D’Etudes Spatiales. One of the most intriguing 28 
concepts which will need to make use of careful comparison analytics is the potential for traceable absolute 29 
calibration from satellite intercomparison. These ideas have been formulated in the vision of CLARREO and 30 
TRUTHS, but may be tested in other reconfigurations (Wielicki et al., 2013; Best et al., 2008; Fox et al., 2013; 31 
Tobin et al., 2016). Efforts are already underway to estimate uncertainties due to the matching of independent 32 
satellites with these reference sources (Feldman et al., 2011; Lukashin et al., 2013). Even with perfect calibration of 33 
the reference radiometers, challenges with matching of observations and instrument characterization will require 34 
comparisons over a long period of time to assure accurate transfer capabilities. In this case, the techniques outlined 35 
in this paper could be applied, so long as underlying assumptions are met and that the transfer of standards is in line 36 
with GUM standards. (JCGM, 2008). 37 

8. Optimization and economic benefit 38 

Decisions to improve a single observing system can rarely be made without consideration of the potential impact on 39 
the support of other approaches to improve monitoring. Figure 3 shows that the accuracy for detection of drift 40 
improves as a function of the number of years overlap. Marginal improvements in detection of drift decrease as the 41 
number of years increase, making the optimal choice of overlap years difficult to identify. If a specific stability 42 
criterion is the objective, the minimum required overlap can be directly determined to meet that criterion. Assuming 43 
that the total costs increase as overlap time increases (this value can often be in excess of $1-2M per year), from an 44 
economic perspective the minimum required overlap time should also be chosen as the most cost-effective. 45 
In addition to overlap time, a number of choices may be proposed to improve observational climate records 46 
including, as already mentioned, improved pre-calibration of satellite systems, intra-satellite calibration 47 
mechanisms, redundancy in observing systems, and campaign verification of observations. In considering any such 48 
broader set of approaches to achieve a specific stability criterion, the least cost option or combination of options 49 
should be chosen. However stability criteria are often not available or substantiated. Under the constraint of fixed 50 
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budgets, and without specific criteria, the maximum overlap period affordable would be optimal. If there are 1 
multiple approaches being considered, the combination of improvement approaches to achieve the greatest stability 2 
in the data within the exogenously determined budget would be optimal. Given the complementary information in 3 
various approaches to improve both absolute and relative calibration, linear optimization approaches may need to be 4 
developed to identify the best mix to achieve optimal calibration. 5 
Without specific stability criteria or budget constraints, economic criteria suggest choosing the overlap period or 6 
combination of approaches to achieving data stability that provides the maximum net societal benefit (i.e., total 7 
benefits minus total costs).2 Identifying the societally optimal choice implies choosing the overlap (or possible mix 8 
of calibration methods) where marginal cost equals marginal benefits. Marginal costs are the change in program 9 
costs to achieve one unit of improvement (e.g. watts m-2 nm-1 year-1 in detectable drift as per Fig. 3). From an 10 
economic perspective, the marginal benefits of one unit of improvement in the data quality should be measured in 11 
terms of potential changes in societal outcomes from the use of improved information (a value of information or 12 
VOI approach (Laxminarayan R. and M.K. Macauley, eds. 2012)). While there has been some work on the value of 13 
information from satellites (Donaldson and Storeygard, 2016; Cooke et al., 2014; Macauley, 2006), there have not 14 
been many applications of economic analysis to determine optimal observational systems. Morss et al. (2005) 15 
provide a nice simplified summary of relevant economic theory and a case study based on primarily hypothetical 16 
valuation estimates. 17 
Given the limited number of applied studies on societal benefits of satellite data standard approaches would need to 18 
be adapted to further understand the value of stable records and develop the decision making tools to optimize 19 
observation systems. Weatherhead et al. (2015) have gathered community input to help identify key science 20 
questions that need to be addressed, while Feldman et al. (2015) have outlined some tools for assuring observing 21 
systems can meet these approaches. The general field of climate observing system simulation experiments C-OSSEs 22 
is gaining serious attention from both scientists and science managers internationally. 23 

8.1. Application of statistical approaches 24 

This paper provides guidelines for what may be considered idealized situations. Approximations have been made 25 
about the linear nature of drifts, and timescales of jumps that are likely approximations to considerably more 26 
complicated instrumental response. Individual judgment is needed to apply the results from this paper as instrument 27 
characteristics often change over time and PIs will often have additional information that will guide their decisions 28 
about the quality and stability of instruments. Ground-based instruments would likely add further information to 29 
help evaluate stability. Notably, the beginning and end of most satellite missions are the periods where most 30 
challenges occur in the instruments and may alter the guidelines presented here. As an example, instruments 31 
behaving very badly, perhaps are not of sufficient quality to contribute useful information and less overlap would be 32 
needed. Much of this uncertainty points to the value of redundancy of sensors and the value of complementary 33 
observing approaches, despite their potentially high cost. 34 

9. Conclusion 35 

We acknowledge, as many colleagues before us (e.g. WMO, 2011a; Wulfmeyer et al., 2015; Ohring et al., 2005; 36 
Wielicki et al., 2013; NAS), the importance of a continuous satellite record to understand solar and planetary 37 
behavior. In this paper we focus on the development of a relatively stable data record, making full use of available 38 
satellite data, as opposed to calibration efforts to allow a traceable record of absolute accuracy. We examine three 39 
cases for the merging of satellite data: identifying and quantifying an offset, estimating drifts between two satellite 40 
records, and understanding the impacts of sudden changes in the data records on both offset and drift estimates. For 41 
studies making direct use of the satellite data, either to develop a continuous record or verify a continuous record, 42 
the most direct control available in an observing strategy is to control the length of overlap in the satellite records. 43 
We identify the impact of length of time of overlap on all three of these cases and illustrate these approaches with 44 
two satellites used to observe solar output. In reality, most satellites carry multiple sensors; final choices on overlap 45 

                                                 
2 Appendix D provides a more technical explanation of the optimal choices under difference decision situations from 
an economic perspective. 
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periods may involve comparing results from each of these sensors. Solutions may include powering down some 1 
observations earlier than others, or prioritizing the results from different sensors. 2 
The uncertainty due to the merging of satellite records, is unavoidable, but quantification of this uncertainty is 3 
possible. In the case of identifying or verifying the offset in two satellite records, the uncertainty is inversely 4 
proportional to the square root of the number of months of overlap. For a given tolerance of uncertainty in long-term 5 
relative stability, the number of months of overlap can be implemented to achieve that tolerance if a reasonable 6 
estimate can be made concerning the variability in the overlap data. If no estimate of overlap variability is available, 7 
the behavior of the first few months of overlap can be evaluated to estimate the length of time needed for identifying 8 
overlap times necessary to achieve the prescribed tolerance. To identify the relative drift between two satellites to a 9 
specified uncertainty, the specified uncertainty in drift can be achieved due to drift inversely proportional to number 10 
of months of overlap to the 2/3 power. The impact of abrupt disruptions in the overlap period on offsets can require 11 
up to 50% more overlap to be able to identify the offset and drift with the same level of tolerance. 12 
These algorithms are appropriate for a direct evaluation of data using only the data. In some cases, particularly with 13 
Earth observations, added challenges and benefits may exist. For instance, with Earth observations, additional in situ 14 
and ground-based observations may be available to reduce uncertainty in satellite overlap. However, an additional 15 
challenge to Earth observations is the need for direct temporal and spatial overlap, which can be challenging or 16 
impossible as satellite observation approaches are considered within challenging budgetary constraints. All of the 17 
techniques outlined here can be applied to identifying the level of overlap needed with reference calibration 18 
satellites, such as proposed by CLARREO. In this case, the level of uncertainty in offsets and drifts will be 19 
determined not by the length of overlap, but in the quality of the match-up between the reference and operational 20 
satellites. Under various constraints, choices of overlap can be optimized to help assure climate records that are 21 
appropriate for advancing our understanding of the Earth system. The value of this paper is the ability to estimate, 22 
either prior to satellite launch or after satellite launch, the amount of time needed to achieve or verify tolerance for a 23 
stable merged satellite record using objective criteria. 24 
 25 
Code availability: Jerry Harder will set up a place for this once the paper has been accepted; Eduardo Araujo-26 
Pradere and Betsy Weatherhead will annotate the code so that it is understandable to R users. 27 
 28 
Data availability: The data are publicly available. 29 
 30 
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Appendix A: Comments on the usefulness of monthly data. 1 

The use of monthly averaged data has been common in climate studies for many years, despite obvious deficiencies 2 
in this somewhat arbitrary choice. One deficiency is in weighting a daily value in February more highly than a daily 3 
value from any other month simply because February has fewer number of days than, for instance, May. A second 4 
deficiency is the lack of match-up from the monthly timeframe to the natural word: the summer solstice is not in the 5 
center of the June, but off-center meaning that the June average would contain more information on pre-solstice 6 
conditions than post. Even non-scientific users of climate data are used to using reports such as “Climatic Normals, 7 
World Weather Records, and Monthly Climatic Data for the World” for useful information. WMO’s Guide to 8 
Climatological Practices even suggests, “Caution is needed when data are in sub-monthly resolution...” and makes 9 
considerable effort to coordinate climate data in a standardized manner (WMO/TD 341, 1989). 10 
These issues are admittedly not likely of great importance, but for the reader who appreciates a great deal of caution 11 
and respect with the use of data we offer this simple examination of the impact of monthly averages in the context of 12 
the algorithms presented in this paper. For the example dataset used in this work, a more natural timescale is the 13 
Carrington rotation rate of 27.2753 days. For the small study presented in this appendix, we examine how the results 14 
of this paper would have differed if we had used the data averaged in 27-day periods as opposed to using the data 15 
averaged by month. 16 
The change in values from monthly values to solar rotation values, the mean, standard deviation, standard error on 17 
the mean and autocorrelation change very little. 18 
 19 

 
Mean 
(watts m-

2 nm-1 ) 

Standard 
Deviation 
(watts m-2 
nm-1) 

Standard 
Error 
(watts m-2 
nm-1 ) 

Auto-
correlation 

Time 
periods 
(months 
or solar 
rotation 
cycles) to 
identify an 
offset of 
0.0008 
watts m-2 
nm-1 

Years to 
identify a 
drift of 
0.0001 
watts m-2 
nm-1 year-1 

Additional 
years to 
accommodate 
a jump 

SIM 
  Monthly 0.078 4.78*10-4 4.37*10-4 0.94 44 14.3 7 
  Solar 0.078 4.70*10-4 4.31*10-4 0.94 47 14.6 7 
SOLSTICE 
  Monthly 0.079 3.54*10-4 2.38*10-4 0.89 13 9.5 5 
  Solar 0.079 3.41*10-4 2.27*10-4 0.90 13 9.5 5 
SOLSTICE-SIM 
  Monthly 6.8*10-4 1.67*10-4 1.12*10-4 0.89 5 5.8 3 
  Solar 6.8*10-4 1.69*10-4 1.14*10-4 0.90 6 6.0 3 
 20 
Table A1. Fundamental descriptive values and calculations of overlap periods were calculated using monthly averaged 21 
data and data that were averaged on a 27-day time period, which is a more natural timeframe for these calculations. We 22 
note that little impact is observed from this small change in averaging period. 23 
 24 
We note that the differences observed are remarkably small. Differences likely would have been larger if we had 25 
used data of a shorter duration (e.g. two years of data instead of six). One note is that when the solar rotation period 26 
is used for averaging, 42 data points are derived, as opposed to the 39 data points derived from monthly averages. 27 
This “larger number” of data points is accompanied by slightly lower standard deviation and nearly constant auto-28 
correlation and directly feeds into the standard error calculation. 29 
  30 
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Appendix B: Comments on the applicability of estimation of number of years of overlap. 1 

For many statistical analyses commonly carried out in climate research, data are assumed to be near-Gaussian and 2 
independent (each value is independent of the others). For environmental data, monthly averaged data are often 3 
assumed to be auto-correlated with lag 1 month in such a manner that an AR(1) model can adequately describe the 4 
behavior of the data once seasonal aspects are removed. As a reminder, the number of years needed to detect an 5 
offset is estimated as: 6 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑀𝑜𝑛𝑀ℎ𝑠 𝑀𝑜 𝑆𝑠𝑀𝐸𝑁𝐸𝑀𝑁 𝐸𝑛 𝑂𝑜𝑜𝑠𝑁𝑀 ≅ 1.962 𝜎
2

𝑂𝑜𝑜𝑠𝑁𝑀 𝐿𝐸𝑁𝐸𝑀2� 1+𝜑
1−𝜑

    (2) 7 

And the number of years to detect a drift is estimated as: 8 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑀𝑜𝑛𝑀ℎ𝑠 𝑀𝑜 𝑆𝑠𝑀𝐸𝑁𝐸𝑀𝑁 𝐸 𝐷𝑁𝐸𝑜𝑀 ≅  12 ∗  �1.96 𝜎
|𝑑𝑑𝑚𝑚𝑑|

∗  �1 + 𝜑 
1− 𝜑

�
2
3�

       (3) 9 

With σ and φ as the monthly standard deviation and autocorrelation as described in the body of the paper. Because 10 
the estimate of the number of years is dependent on these assumptions, we explicitly test the data used as an 11 
example in this paper for illustrative purposes. 12 
The autocorrelation, φ, is the most difficult parameter to estimate accurately in a time series, particularly when φ is 13 
large. In the case of large autocorrelation, the time series can differ from the long-term mean for many months; if the 14 
estimate of phi is made from a small number of points, the sample estimate of phi can be off, but the standard 15 
deviation and mean can also be far from representative: 16 

 17 
Figure B1. Two simulated time series are shown with high autocorrelation (top plot) and low autocorrelation (bottom 18 
plot). In situations of high autocorrelation (0.7 in the top plot), a time series can deviate from the long-term mean (0 in 19 
both of these simulated time series) for many months. If a short time period is used to estimate phi, likely phi will be 20 
under-estimated and the error on the sample mean may be farther from the true population mean compared to a 21 
situation with low autocorrelation (0.2 in the bottom plot). For the data used in this paper, the autocorrelation is 22 
estimated at 0.1 once drifts are accounted for and therefore the overlap period of six years is more than adequate to 23 
derive a good estimate for the long-term value of phi. 24 

To test for AR(1) behavior in the SOLSTICE-SIM monthly overlap data, we calculate a partial autocorrelation 25 
function out to fifteen terms. 26 
 27 
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 1 

 2 
Figure B2. The Autocorrelation Function results and Partial Autocorrelation Function results support the temporal 3 
behavior of an AR(1) statistical model and therefore support the use of both Eq. (2) and Eq. (3) in the body of the paper. 4 

The standard deviation, σ, is assumed to represent the spread of Gaussian or normal distribution. The standard 5 
deviation calculation can be carried out on any distribution and can be both informative and useful for many 6 
distributions. For the “number of years” estimate to be appropriate, the assumption is that the standard deviation 7 
represents the spread in a Gaussian distribution. For the AR(1) case, the test for Gaussian behavior is performed on 8 
the underlying interventions in the AR(1) process, which is similar to, but not identical to the residuals observed in 9 
the overlapped data. To test for Gaussian behavior, we compare our data to a standard Gaussian distribution in a 10 
QQplot (e.g. Hamilton, 1994; Box et al., 2015): 11 

 12 
 13 
Figure B3. These three Q-Q plots compare the monthly averaged SOLSTICE, SIM and SOLSTICE-SIM differences to 14 
theoretical Gaussian distributions. The roughly linear relationship shows that the three datasets do behave in a close to 15 
Gaussian nature and thus the use of Eq. (2) and Eq. (3) are supported for the analyses presented in this paper. 16 

 17 
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Appendix C: Comments on the interpretation of time estimates. 1 

Any estimate of how long it will take to correctly identify a drift must be taken with some level of understanding of 2 
how this estimate is made and what can be expected from using these estimates. Figure 3 offers estimates for a range 3 
of times needed to estimate specific drifts, assuming no jumps occur in the record. As a reminder, this plot was 4 
created assuming the type of overlap seen in the SOLSTICE-SIM overlap period; specifically, the calculations 5 
assume the amount of variability and autocorrelation observed in the differences (shown visually in the third plot of 6 
Fig. 2). However, different observing systems are likely to have different levels of agreement. 7 
When deriving trends on existing data, only a single level of certainty is required: for example, what does it mean to 8 
detect a drift? Often the community has focused on detection at a 95% confidence level or a 99% confidence level. 9 
However, when estimating how long it will take to detect a drift, two statistical levels are required: one that 10 
identifies what is meant by “detecting a drift” and one that identifies the likelihood that a drift will be detected in the 11 
specified period of time, if that level of drift is the true, long-term drift in the overlap. For the first, we consider 12 
detecting a drift to mean identifying a drift that, with 95% likelihood, is not zero, although other levels may be 13 
considered. For the second, we consider the likelihood of detecting the drift (at the 95% confidence level) to be 14 
50%. To be clear, we may detect the drift, if it is real, a few months earlier or a few months later than the estimated 15 
time. 16 
There are no error bars in Fig. 3. We’d like to begin the discussion of appropriate error bars in this section. As stated 17 
in the previous paragraph, the data in Fig. 3 represent estimates of how long it will take to detect a specific level of 18 
drift. If we focus on a single point, for instance the two year point that indicates a drift of 1.2*10-4 watts m-2 nm-1 19 
year-1 could be detected, it is possible that a slightly smaller drift could be detected in that two year of overlap, if the 20 
variability happens to result in the signal-to-noise for the overlap period is slightly more favorable. Similarly, if the 21 
actual, underlying drift is actually five times as large (6*10-4 watts m-2 nm-1 year-1) it is highly likely the drift would 22 
be detectable within the two years. So the “error bars” on this one point would be slightly below the current point 23 
and would extend infinitely upward, indicating that much larger drifts could be detected in the two year period. 24 
Extending our discussion of error bars in Fig. 3, we can similarly think in terms of horizontal error bars. Again, 25 
focusing on the one point in Fig. 3 indicating that a drift of 1.2*10-4 watts m-2 nm-1 year-1 could be detected in two 26 
years, we can imagine that the detection of this drift, if it is the true underlying drift, may be detectable a few months 27 
shy of two years or may take a few months more than two years. As stated above, the two years is a 50% likelihood 28 
of detection. It is highly likely that such a drift could not be detected in a few months of monitoring, but would very 29 
likely be detected in ten years of monitoring. So, again, we have error bars that are non-standard in that they extend 30 
to the left in the plot and continue indefinitely to the right. 31 
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 1 
Figure C1. Estimates of how long it will take to detect a drift can be interpreted as the likely time needed. Depending on 2 
variability present, the even small drifts can be detected (although with less than 50% likelihood of detection), probability 3 
indicated by width of the green area. For a given drift level, there is a chance that the drift can be detected in less than the 4 
number of years indicated, although that likelihood is less than 50% for time less than the time indicated, probability 5 
indicated by the blue area. 6 

If we want to express this uncertainty of likelihood of detection in a visual manner, we could employ two 7 
dimensional error bars, similar to violin plots which are often employed to express variable information. Figure C1 8 
shows the likelihood of detecting a particular drift with two years of overlap. For drifts considerably smaller than 9 
1.2*10-4 watts m-2 nm-1 year-1, the likelihood of detection with a two year overlap is represented by the width of the 10 
green area. Larger drifts can be directed with higher likelihood. Figure C1 shows the likelihood of a true drift of 11 
1.2*10-4 watts m-2 nm-1 year-1 being detected in less than two years. The height of the blue bar indicates the 12 
likelihood, with the likelihood being 50% at two years and considerably higher likelihood of detection as more years 13 
of overlap are presented. There is also a small, but less than 50% likelihood that the true drift might be detected in 14 
less than two years; again, the height of the blue bars indicates the likelihood of detection. 15 
 16 
  17 
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Appendix D: Mathematical structure for optimizing overlap decision choices. 1 

Treating the value of information derived from satellite data as a public good (e.g. weather forecasts and climate 2 
services have non-rival and non-excludable characteristics which define public goods in economic theory), total 3 
societal benefits is the sum of the benefits realized by all users of the information. Net benefits (NB) is the 4 
difference between total benefits (TB) and total costs (TC). 5 

( )[ ]{ } [ ]NB=TB -TCIVC q o o          (D1) 6 

For purposes of the current discussion we take total costs to simply be a function of the temporal overlap in satellite 7 
observations (o). Total costs are an increasing function of o (i.e., the total costs increase the more the overlap 8 
period). On the other hand, total benefits are a more complicated function of the entire process of information 9 
creation, communication, use, and decision making (labeled IVC for the Information Value Chain). The benefits of 10 
the IVC process are considered to be a function of the quality of the information, q, which itself is a function of the 11 
temporal overlap in satellite observations (o). This is a highly non-linear process and not even necessarily increasing 12 
in q(o) as may commonly be assumed. 13 
If the objective of “optimizing” satellite observation overlaps is to achieve a specific quality standard, economists 14 
would approach this as a cost-effectiveness issue. In this case, the objective is to minimize the costs to achieve the 15 
exogenously determined standard. There is no consideration of benefits in this case, o is set to achieve q so 16 

( )[ ]{ }TB IVC q o
. The outcome is not necessarily societally optimal – the standard could be too strict in which 17 

case net benefits could be negative or the standard could be too lax in which case it would be possible to improve 18 
societal outcomes by increasing the observational overlap period and increase net benefits.3 19 

If instead of a fixed standard q , the objective is to maximize net societal benefit then o is chosen to maximize NB. 20 
Maximal societal benefits can be identified as a function of the temporal overlap by taking the first derivative of the 21 
NB formula with respect to o.4 22 

( )[ ]{ }TB TB IVC qNB TC TC= - - MB MCo o

IVC q o
o o o oIVC q o

∂ ∂ ∂
∂ ∂ ∂ = ∂ = -∂ ∂ ∂ ∂∂ ∂ ∂

  (D2) 23 

As the terms on the right indicate, the maximum societal benefits are achieved when the marginal benefits (MBo) of 24 
a change in the overlap period are equal to the marginal costs (MCo) of the overlap.5 The marginal costs of the 25 
overlap period, TC o∂ ∂ , are likely to include additional costs of data collection, assimilation, storage, and 26 
analysis and may be a fairly linear function of the length of the overlap period. The marginal benefits of increasing 27 
the overlap period though are represented as a more complex relationship between the overlap period and quality of 28 
information ( q o∂ ∂ ), how changes in information quality manifest through in the information value chain (29 

IVC q∂ ∂ ), and how changes in the quality of information provided to decision makers may manifest themselves 30 
in potential outcomes ( TB IVC∂ ∂ ). While economists have extensive experience and applications in monetizing 31 
the value of potential changes in societal outcomes (e.g. lives saved, reduced damages, improved crop yields in 32 
agricultures, etc.), it is generally much more difficult to (1) identify all of the potential stakeholders and potential 33 
outcomes and (2) validly and reliably characterize and quantify the information value chain or how it changes. 34 

                                                 
3 Rather than taking the standard as a given, the question could be how to set the standard to achieve a societally 
“optimal” outcome in terms of maximizing societal benefits. This is essentially equivalent to the unconstrained 
optimization of NB. 
4 For now we don’t discuss second order conditions for maximization (see Morss et al., 2005 for further clarification 
on second order conditions for net benefit maximization which relate specifically to the shapes of the cost and 
benefits functions. 
5 In economics notation it is common to use the subscript to indicate the relevant factor under discussion – in this 
case MBo refers to the marginal benefits of o, the observational overlap period. 
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To dependably quantify societal benefits from satellite observations requires understanding the complex relationship 1 
between individual instruments, data streams, modeling, communication, decision making, and potential and actual 2 
societal outcomes. This requires understanding stakeholders and processes of information creation, transformation, 3 
transmission, and use along the entire information value chain through multiple stakeholders with a variety of 4 
objectives, resources, and constraints. Cooke et al. (2014) develop an illustrative example of such an analysis using 5 
the social costs of carbon (SCC) as a measure of societal benefits and a hypothetical decision framework (i.e., a 6 
tipping point that would lead to global climate impact mitigation efforts). 7 
  8 
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