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Abstract. Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon

Basin and central parts of Brazil during the dry/biomass-burning season between August and October. Over a large portion of

South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season while the background value

during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar

radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near surface5

air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the

energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact

of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of

the global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results

indicate that the biomass burning aerosols led to increases of about 27% of gross primary productivity of Amazônia, 10% of10

plant respiration and a decline in soil respiration of 3%. Consequently, in our model Amazônia became a net carbon sink; net

ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly
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due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect

on CO2 fluxes, reaching a balance of 50% – 50% between the diffuse and direct aerosol effects for high aerosol loads. For C3

grasses and Savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with

the increase of aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence

of high biomass burning aerosol loads, changing from being a source to being a sink of CO2 to the atmosphere.5

1 Introduction

The austral winter in most of South America is typically dry with extensive vegetation fires, mostly human induced, in areas

of deforestation and agricultural/pasture land management. The fire activity, especially in Amazônia and cerrado areas (a

savanna-like biome), usually last for at least 3 months, from August to October every year, and has been typically called

“biomass burning season”. Fire emissions can be a significant source of carbon dioxide (CO2) to the atmosphere [e.g., Gatti,10

2014], and a major source of several other trace gases to the atmosphere (Andreae et al., 2002). In addition to trace gases,

vegetation fires also produce a large amount of aerosol particles, in particular in the fine mode, which, on average, contribute

to at least 90% of the total AOD in the visible spectrum in the case of the South America regional smoke (Reid et al., 2005;

Rosário, 2011). The resulting smoke haze typically covers areas of several millions of km2 over South America (Prins et al.,

1998). Outside the biomass burning season, mean AOD in the visible spectrum varies from 0.10 to 0.15 across the Amazon15

rainforest, and from 0.12 to 0.20 in the cerrado areas (Schafer et al., 2008; Rosario, 2011). At the peak of the burning season,

during September, monthly mean AOD can reach values up to 10 and 5 times higher than the clean wet season values in the

southern and the northern areas, respectively (Schafer et al., 2008; Rosário, 2011). The Ångström exponent (AE), an optical

property used to characterize aerosol particle size based on the spectral dependence of AOD, increases from 0.60, during the

clean period, to 2.0 during the peak of the burning season (Schafer et al., 2008). Such high value of AE is representative of air20

masses dominated by fine mode particles, a major feature of the South American regional plume. Low values of AE indicate

dominance of coarse mode particles, a characteristic of the pristine region of the Amazon dominated by biogenic particles.

The absorption characteristics of the particles, expressed by the optical property Single Scattering Albedo (SSA), ranges in

the southern portion of Amazon forest during burning season from 0.92-0.93 at 550 nm and reveals a dominance of moderate

absorbing particles (Schafer et al., 2008), unlike those from cerrado, which are highly absorbing and present low value of SSA25

( 0.89±0.04). The cerrado has substantially lower SSA than the mean values in the southern Amazon forest due to the higher

fraction of flaming phase combustion, typical of savanna-like vegetation (Schafer et al., 2008).

In Amazônia under heavy smoke conditions, the surface cooling can reach 3◦ C, restraining the turbulent flows and conse-

quently the evapotranspiration of water and sensible heat flux. Thus, the result is a drier and shallower boundary layer, inhibiting

formation/development of convective clouds and hence decreasing precipitation (Yu et al., 2002). In particular, biomass burning30

aerosols reduces the net direct solar radiation reaching the surface while it increases the diffuse fraction of solar radiation. The

diffuse fraction of the photosynthetically active radiation (PAR) can increase from about 19%, which is the typical value for

a clean atmosphere scenario, up to 80% under biomass burning conditions (Yamasoe, et al., 2006). Biomass burning aerosols
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also act as cloud condensation nuclei affecting cloud microphysical properties and therefore change the radiation budget and

hydrological cycle over disturbed areas (Kaufman, 1995; Rosenfeld, 1999; Andreae, et al., 2004; Koren et al., 2004).

Changes in the total downward solar irradiance at the surface usually does not impact the photosynthetic activity of the

leaves on the top of the forest canopy because those are usually light saturated around midday, closing the plants’ stomata. On

the other hand, sub-canopy leaves remain typically under light-deficit conditions and do not fully achieve their photosynthetic5

potential. Thus, increasing the diffuse light, which penetrates deeper into the canopy, increases PAR availability to the sub-

canopy leaves and the rate of photosynthesis, and consequently atmospheric carbon assimilation (Baldocchi, 1997; Misson

et al., 2005; Oliveira et al., 2007; Knohl and Baldocchi, 2008; Mercado et al., 2009; Doughty et al., 2010; Kanniah et al.,

2012; Rap et al., 2015). However, the increase of the diffuse radiation is also accompanied by a decrease in the total radiation,

therefore defining an optimal diffuse to total radiation fraction that allows a maximum of carbon assimilation. Under heavy10

pollution or cloudy skies, plant productivity increases with the diffuse radiation, though it is still insufficient to compensate

the reduction of the total irradiance reaching the surface. Additionally, other authors suggest that the contribution of biomass

burning aerosols on CO2 assimilation can also be due to the cooling of the air (Min, 2005; Doughty et al., 2010; Steiner and

Chameides, 2011), causing an increase of relative humidity (Collatz et al., 1991) near the earth’s surface, which reduces plant

respiration and thermal stress of the leaves. Indeed, field observations indicate that tropical forest productivity is highly sensitive15

to temperature variations (Feeley et al., 2007), with CO2 assimilation decreasing sharply during warmer periods. Doughty et al.

(2010) estimated that under dense, biomass burning conditions in Amazônia, 80% of the increase of CO2 absorption is due

to the increase of sub-canopy light (diffuse radiation) and only 20% is due to the reduction of the canopy temperature. The

Gross Primary Production (GPP ) is the total carbon uptake resulting from photosynthesis by plants, especially leaves, in

an ecosystem over a land area. GPP responds to the amount of photosynthetically active radiation portion of solar energy20

reaching the plants, given limitations of soil moisture and nutrients. A modeling study at the global scale exploring the aerosol

impact on GPP concluded that the positive effect of the diffuse radiation increase was indeed larger than the negative effect of

the irradiance reduction (Mercado et al., 2009). JULES simulations forced with aerosol fields from the Hadley Centre Global

Environment Model version 2 (HadGEM2) made by these authors pointed to an increase in the diffuse fraction of irradiance,

and a consequent increase in the global carbon uptake of 23.7% from 1960 to 1999. Rap et al. (2015) also using JULES, but with25

a different off-line aerosol model – 3-D GLObal Model of Aerosol Processes (GLOMAP, Mann et al., 2010), estimated that the

biomass burning aerosols affected the diffuse radiation by 3.4 to 6.8% and increased the net primary production (NPP ) of 1.4

to 2.8% in Amazônia during the period between 1998 and 2007. Besides, the biomass burning aerosol indirect effect will also

impact the CO2 fluxes by changing the amount of rain (and soil moisture), and solar radiation availability and diffuse fraction.

Lastly, vegetation fires also emit ozone precursors and promote tropospheric ozone production, and surface deposition. Ozone30

is highly phytotoxic, damaging plants stomata and reducing CO2 uptake (Sitch et al., 2007).

Motivated by all these previously cited recent observational and theoretical studies that have demonstrated the impacts of

aerosols on the CO2 fluxes, we applied an integrated in-line numerical atmospheric modeling system to explore the following

scientific questions: what is the relative role of the main processes between soil/vegetation and the atmosphere controlling

the carbon cycle in Amazônia? What are the effects of biomass burning aerosols for each of these processes? What is the net35
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aerosol effect on the CO2 fluxes? What is the relative effect of the direct interaction of aerosol radiation against the aerosol

impact on the diffuse fraction? What is the regional dimension of the aerosol impact on CO2 fluxes? Finally, how well can

a state-of-the-art Chemical Transport Model (CTM) reproduce CO2 fluxes and mixing ratio observations over the Amazon

Basin?

The structure of this paper is as follows. In Sect. 2.1, we present a description of the most relevant aspects of the integrated5

atmospheric modeling system for this application. The adopted model configuration and the input data sets, including emis-

sions and boundary conditions, are described in Sect. 2.2. The observational datasets, both from direct and remote sensing

observation, used for model evaluation and analyses are described in Sect. 2.3. Model results are presented and discussed in

Sect. 3. Sect 3.1 provides an overview of the meteorology and fire activity in Amazônia during the study period, including both

model results and observations. We then follow up in Sect. 3.2 with the model results for the regional biomass burning plume.10

Finally, in Sect. 3.3 we examine the model results for energy and CO2 fluxes, related to several surface/atmosphere interaction

processes, as well as the aerosol biomass burning impacts on them. The main results are summarized in Sect. 4.

2 Methods and data sets

2.1 Description of the relevant parts of the modeling system

In this work, we employed the integrated atmospheric-chemistry model BRAMS version 5.0 (Brazilian developments on the15

Regional Atmospheric Modeling System, Freitas et al., 2005, 2009, and 2016), which has been coupled in a two-way mode

with the Joint UK Land Environment Simulator v3.0 (JULES), the land surface scheme of the UK Hadley Centre Earth Sys-

tem model, as described in Moreira et al. (2013). The coupling is two-way in the sense that, for each model time step, the

atmospheric component provides to JULES the current near-surface wind speed, air temperature, pressure, condensed water

and downward radiation fluxes, as well as water vapor and carbon dioxide mixing ratios. After its processing, JULES advances20

its state variables over the time step and feeds back the atmospheric component with sensible and latent heat and momentum

surface fluxes, upward shortwave and longwave radiation fluxes, and a set of trace gas fluxes.

Biosphere model: The Joint UK land simulator (JULES)

JULES simulates the exchange of carbon, momentum, and energy between the land surface and the atmosphere. Additionally,

it represents subsurface hydrological processes, plants photosynthesis and respiration, and vegetation and soil dynamics (Best25

et al., 2011; Clark et al., 2011).

Atmospheric aerosols influence ecosystem functioning via effects on GPP from changes in quality and quantity of radiation

but also indirectly via temperature effects on GPP but also on plant and heterotrophic respiration. The photosynthesis-radiation

scheme, in JULES, accounts for the effects of diffuse radiation on canopy photosynthesis, by splitting direct and diffuse

radiation and sunlit and shaded leaves at each canopy layer. Specifically, the multilayer radiation scheme includes an explicit30

calculation of absorption and scattering of the direct beam and the diffuse radiation fluxes in both visible and near-infrared
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wavebands, at each canopy layer, using the two-stream approach from Sellers (1985). Additionally, the attenuation of non-

scattered incident direct beam radiation (sun flecks) is calculated using the approach by Dai et al. (2004). At each canopy layer,

JULES estimates the fraction of absorbed direct and diffuse photosynthetic active radiation (PAR) thus providing a vertical

profile of intercepted radiation fields which allows calculation of photosynthesis at each canopy level. At each canopy layer,

the fraction of sunlit and shaded leaves is estimated as a function of the canopy beam radiation extinction coefficient (as5

explained in Clark et al 2011), and it is assumed that shaded leaves absorb only diffuse radiation and sunlit leaves absorb all

types of radiation. Photosynthesis at each canopy layer is then estimated as the sum of sunlit and shaded leaf photosynthesis

weighed by their respective fraction. Total canopy photosynthesis is estimated as the sum of the leaf –level fluxes in each layer

scaled by leaf area of each canopy layer.

Temperature effects on photosynthesis are simulated in JULESs via biochemistry, leaf respiration and effects on vapor pres-10

sure deficit (VPD) on stomatal conductance in response to the temperature (see details in Clark et al. 2011). The temperature

response of leaf respiration is linked to the temperature response of maximum carboxylation activity of Rubisco (Vcmax) in

JULES, which is described by a peaked response function. The temperature response of remaining maintenance respiration

components is simulated also using the leaf respiration temperature function. Growth respiration is estimated as a proportion

of net primary productivity (NPP). Heterotrophic respiration is simulated either using a Q10 temperature function or a RothC15

temperature function (Jenkinson 1990 as described in Clark et al. 2011).

Evaluation of the skill of JULES in simulating GPP under high direct and high diffuse radiation conditions has been tested

against flux sites in the Amazon and in temperate forest sites where direct and diffuse radiation measurements are available.

This is shown in Figure 2 of Rap et al. (2015) at Tapajos and French Guyana in the Amazon and at two temperate forest sites

in Mercado et al. (2009) (Figure 1). Investigation of the response of photosynthesis to changes in direct and diffuse radiation20

across relevant plant functional types for the Amazon region is carried out within this study.

Atmospheric model: Brazilian developments on the Regional Atmospheric Modeling System (BRAMS)

BRAMS is in-line coupled with a Eulerian transport model (CCATT) suitable to emission, simulate transport, dispersion,

chemical transformation and removal processes associated with trace gases and aerosols (Longo et al., 2013). In CCATT,

aerosol and trace gas transport runs consistently in-line with the atmospheric state evolution using the BRAMS dynamic and25

physical parameterizations. The tracer mass mixing ratio, which is a prognostic variable, includes the effects of sub-grid scale

turbulence in the planetary boundary layer (PBL), convective transport by shallow and deep moist convection in addition

to grid scale advection transport. For gaseous species, CCATT-BRAMS in principle can employ several gaseous chemical

mechanisms. However, for this study, only carbon monoxide (CO), CO2 and aerosol particles (biomass burning type) were

emitted and transported. The physical removal processes (dry and wet deposition) were applied to all the three tracers, and30

effective lifetimes were applied to CO and aerosol particles. As the modeling of aerosol biomass burning particles is the focus

of the present study, only biomass burning emission sources were considered.

The BRAMS model parameterizations chosen for the simulations performed in this work are described as follows. The

parameterization for the unresolved turbulence in the PBL was based on the Mellor and Yamada (1982) formulation, which
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predicts turbulent kinetic energy (TKE). For the microphysics, we used the single-moment bulk microphysics parameterization,

which includes cloud water, rain, pristine ice, snow, aggregates, graupel and hail (Walko et al., 1995). It includes prognostic

equations for the mixing ratios of rain and each ice category of total water and the concentration of pristine ice. Water vapor

and cloud liquid mixing ratios are diagnosed from the prognostic variables using the saturation mixing ratio of liquid water.

The deep and shallow cumulus convection schemes are based on the mass-flux approach and described in Grell and Freitas5

(2014).

The radiation scheme is a modified version of the Community Aerosol and Radiation Model for Atmosphere (CARMA,

Toon et al., 1988), which includes the aerosol-radiation interaction with feedback to the model heating rates (Longo et al.,

2013, Rosário et al., 2013). In addition, we included in CARMA a parameterization to calculate the diffuse fraction of solar

irradiance specific for biomass burning aerosols in Amazônia. This parameterization was based on measurements of broad and10

narrowband solar global and diffuse irradiance components performed with a Multi-filter Rotating Shadow-band Radiometer

(MFRSR – Harrison et al, 1994). With the narrowband measurements, centered at 415, 670, 870 and 1036 nm, AOD was

estimated following the methodology of Harrison and Michalsky (1994) and Rosário et al. (2008). The measurements were

performed at Reserva Biológica do Jaru, RO (-10.145◦, -61.908◦) during the dry/biomass burning season of 2007. The diffuse

fraction of broadband irradiance reaching the surface as a function of AOD at 670 nm wavelength for distinct optical air mass15

intervals (m), expressed as a ratio of the optical path length relative to the path length at zenith, (Figure 1) was analyzed, and a

three-degree polynomial fit was proposed as follows:

D = aAOD3
670 + bAOD2

670 + cAOD670 + d (1)

D represents the diffuse fraction and the values of the fitting parameters a, b, c, and d, of the function in Equation 1 are

described in Table 1. These fittings were achieved after filtering the data for clouds, which can be present even during the20

dry season, especially during days with low AOD values. When clouds are present, the diffuse fraction of radiation increases

significantly with values as high as a very polluted atmosphere. However, as discussed below, the analysis presented here

focuses only on areas, and during hours, without cloud cover, i.e. the results were obtained by filtering out the points with

cloudiness, considering only the model gridboxes where the total column integrated condensed water was equal to zero. The

aim of this work is only to compute the aerosol effect; therefore this filter was essentially used to exclude the effects of the25

clouds in the CO2 fluxes.

2.2 Model configuration and input data sets

BRAMS model simulations were conducted for a domain covering the northern part of South America (southwest corner: 18◦

S, 90◦ W, northeast corner: 15◦ N, 30◦ W) using a regular grid with 20 km resolution, as illustrated in Figure 2. JULES was

configured with 10 canopy layers. The chosen model domain encompasses the Legal Brazilian Amazon region (LBAR, depicted30

by the red line in Figure 2), which is a region of 5,016,136.3 km2 (59% of the Brazilian territory). It hosts approximately 24

million inhabitants, which is only around 12% of the Brazilian population. The Brazilian Federal Law Nº 5.173 (Art. 2)

established LBAR in 1966 as an administrative unit to promote sustainable development in one of the most, if not the most,
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resource rich regions in Brazil. The main tropical biomes in South America, the Amazon rainforest, Cerrado and Pantanal

(wetlands), are all found in LBAR. Despite government protection, deforestation activities, followed by vegetation fires, have

led to extensive land use change to pasture and agricultural fields, and changes in atmospheric aerosol load and characteristics.

This study aims to analyze the effect of these changes on the atmospheric environment, radiation budget, and forest productivity

in this important region.5

The NCEP Global Forecast System analysis (http://rda.ucar.edu/datasets/ds083.2/), with 6-hourly time resolution and 1◦

× 1◦ spatial resolution, provided initial and boundary conditions for the time integration of the meteorological fields. Sea

surface temperature (SST) was taken from NOAA Optimum Interpolation (OI) SST product, version 2, with 1◦ × 1◦ spatial

resolution (available at http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html, Reynolds et al., 2002). Data from

the RADAMBRASIL project (Rossato et al., 1998) was used for the soil type in Brazil and data from FAO (Zobler, 1999)10

was used outside Brazil. The model was run with seven soil levels: 0.10, 0.35, 1.0, 2.25, 4.25, 7.25 and 12.25 m below

the surface. Soil moisture was initialized with the soil moisture estimation operational product developed by Gevaerd and

Freitas (2006) and available at CPTEC/INPE, and the soil temperature was initialized assuming a vertically homogeneous field

defined by the air temperature closest to the surface from the initial atmospheric data. The carbon data assimilation system,

Carbon Tracker 2015, (Krol et al., 2005; Peters et al., 2007), with 3◦ × 2◦ spatial resolution and 34 vertical levels, (available15

at http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/), provided CO2 initial and boundary conditions. Initial and boundary

conditions for carbon monoxide (CO) were based on optimized fluxes, with 1◦ × 1◦ spatial resolution, as calculated by the

4D-var system using the Infrared Atmospheric Sounding Interferometer (IASI) data taken onboard the Eumetsat Polar System

(EPS) Metop-A Satellite (Krol et al., 2013).

Biomass burning emissions of trace gases and aerosols were provided by the Brazilian Biomass Burning Emission Model20

(3BEM, Longo et al., 2010). The 3BEM emissions are based on a database of fire pixel counts and burned area derived from

the combination of remote-sensing fire products from Geostationary Operational Environmental Satellite-Wildfire Automated

Biomass Burning Algorithm (GOES WF-ABBA product; Prins et al., 1998), the Brazilian National Institute for Space Research

(INPE) burning points observed, which is based on the Advanced Very High Resolution Radiometer (AVHRR) aboard the

NOAA polar orbiting satellites series (Setzer and Pereira, 1991), and the Moderate Resolution Imaging Spectroradiometer25

(MODIS) fire product (Giglio et al., 2003). Fire emissions were split into smoldering and flaming emission contributions,

releasing trace gases and aerosol particles in the lowest model layer and in the injection layer, respectively, as determined by

the in-line plume rise model (Freitas et al., 2007, 2010).

The land use dataset from the United States Geological Survey (USGS) at 1-km resolution was merged with a land cover

map for the Brazilian legal Amazon region (PROVEG) (Sestini et al., 2003). PROVEG is based on the Landsat Thematic30

Mapper (TM) images with spatial resolution of 90 m × 90 m from the year 2000 and deforestation data from the Amazon

Deforestation Monitoring Program (PRODES) for the year 1997. At the 20-km resolution, each grid-box has 400 specifications

of vegetation, which were reduced to 9 patches of different land cover categories (broadleaf trees, needle leaf trees, C3 and

C4 grasses, shrubs, urban, inland water, soil and ice), each with its respective occupation fraction. JULES treats each category

separately and returns to BRAMS average fluxes weighted by the occupation fraction. The model results are then discussed for35
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the land cover categories present in the considered model domain: broadleaf trees (tropical forest), shrubs (cerrado), and C3

and C4 grasses (pasture). The land use map in the model domain is illustrated in Figure 2.

The model simulations were initialized on 15 August 2010 00:00 UTC and conducted for 45 days. We discarded the first 15

days as spin-up, and restricted our analysis to the month of September to avoid model artifacts related to the initial conditions.

A set of three experiments was performed. In the first one (hereafter named NO-AER), the aerosol-radiation interaction was5

neglected. The direct aerosol effect was taken into account in both the second (hereafter named DIR-AER) and third (hereafter

named DIR+DIF) experiments, but only in the latter the diffuse fraction of radiation was passed to JULES. Otherwise it was

set zero. Additionally, a long-term model run (2 years, from January 2010 to December 2011) was carried out only for the

DIR+DIF model configuration.

2.3 Method of analysis of the model results10

Comparing the carbon fluxes from the three model simulations should allow us to assess the aerosol effect on CO2 uptake in

Amazônia and the relative roles of surface temperature, the direct aerosol effect and the increase in the diffuse fraction of PAR

due to aerosol scattering. The CO2 fluxes from the model were analyzed as the variation related to the total aerosol effect (both

on diffuse radiation and direct radiation):

∆Fluxtot = FluxDIR+DIF −FluxNO−AER (2)15

Only with the direct radiation aerosol effect:

∆Fluxdir = FluxDIR−AER −FluxNO−AER (3)

And, only with the diffuse radiation aerosol effect:

∆Fluxdiff = FluxDIR+DIF −FluxDIR−AER (4)

We examined the spatial distribution and diurnal cycles of CO2 fluxes, related to several surface/atmosphere interaction20

processes. In addition GPP , we also looked at the CO2 fluxes associated with plant respiration (RP ), soil heterotrophic

respiration ( RP ,), and the net ecosystem exchange (NEE = RP +RH −GPP ), which is a measurement of the quantity of

carbon entering and leaving the ecosystem (negative when the ecosystem is a CO2 sink, and positive when is a CO2 source).

The spatial distributions of CO2 fluxes are presented as monthly mean in µmolC m−2 s−1 for September 2010 at 1600 UTC,

which is around noon local time for most of Amazônia. The diurnal cycles of CO2 fluxes are presented as hourly monthly25

means in units of µmolC m−2 s−1 for September 2010, considering the model grid-cells circumscribed in the LBAR region

delimited in Figure 2. The monthly net values of CO2 fluxes in the LBAR are calculated as the integral of the mean diurnal

cycles, and presented in TgCmonth−1, considering the LBAR area of ∼ 5.2 1012 m2, which is the total area of the model cells

circumscribed in the LBAR region delimited in the Figure 2, multiplied by 30 to get the monthly total.

Because each biome has its own characteristics and responds differently to changes occurring at or under the surface and in30

the atmosphere, we first examined how each biome responds to the presence of biomass burning aerosol, both in terms of total
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irradiance attenuation near surface and increase of the diffuse fraction of PAR. We also evaluated the relative contribution of

the diffuse to the total (diffuse + direct) aerosol effect on the CO2 fluxes for each the biome type. After assessing the specific

behavior of each biome, model results for CO2 and energy fluxes from each biome were then averaged, weighting by the biome

fraction of each grid, to address the heterogeneity of the Amazon region in terms of land cover and local climates.

2.4 Data sets for model evaluation5

The model results for precipitation and near-surface temperature were contrasted with direct observations and products derived

from satellite observations. The aerosol biomass burning spatial distribution from the model was validated with remote sensing

products. Additionally, model performance on simulating CO and CO2 mixing ratios was assessed using measurements of

carbon monoxide (CO) and CO2 concentration in air samples collected over the Amazon during 2010 and 2011. The CO

concentration varies as a function of fire source, horizontal and vertical transport and deposition. It was not coupled with the10

biosphere model. Therefore, the DIR-AER and DIR+DIF scenarios have similar concentration distributions.

Biomass burning mainly releases water vapor and CO2 to the atmosphere but is also a major source of other tracers, such as

CO, volatile organic compounds, nitrogen oxides, and organic halogen compounds (Andreae and Merlet, 2001). An enhance-

ment of CO has been historically observed in Amazônia during the dry season, which is mostly attributed to fire emissions,

because volatile organic compounds (VOC) oxidation is expected to have little seasonality in Amazônia (Holloway et al., 2000;15

Duncan and Logan, 2008, Andreae et al., 2012). Therefore, the evaluation of CO mixing ratios from the model against obser-

vations provides an assessment of model skill to simulate fire emissions, its transport, and removal. We also looked into fire

activity and used the soil moisture and meteorological variables from the model as indicators of spatial scale of locations where

fires were more likely to occur. The datasets used for model evaluation are described below.

Precipitation: Monthly mean precipitation over the Amazon region was obtained from the algorithm 3B42 of the Tropical20

Rainfall Measuring Mission (TRMM) merged high quality (HQ)/infrared (IR) precipitation product at a spatial resolution of

0.25◦ × 0.25◦ (http://trmm.gsfc.nasa.gov/3b42.html; Kummerow et al., 1998; Kawanishi et al., 2000). TRMM 3B42 is derived

from retrievals of 3-hourly precipitation amount from the precipitation radar (PR), TRMM microwave imager (TMI), and

visible and infrared scanner (VIRS) aboard the TRMM satellite, merged with rain gauge data from the Climate Anomaly

Monitoring System (CAMS) and the Global Precipitation Climatology Project (GPCP). Satellite estimates of precipitation25

were used for model evaluation due to their more complete spatial and temporal coverage compared to rain gauge data. The

latter was also complementarily used to evaluate modelled precipitation and temperature, though not ignoring the low density

and heterogeneous distribution of the observational network in the geographical model domain: 72 PCDs (automatic stations

installed and maintained by the Brazilian National Institute of Meteorology - INMET) in 5,016,136.3 km2.

Temperature: We evaluated the mean diurnal cycle of 2-meter temperature from the model with data from 72 near-surface30

measurement ground stations in the LBAR, locations depicted in Figure 3.a.

Fire activity: We checked the coherence of soil moisture results from the model with the burning points observed from

Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA polar orbiting satellites series. The fire detection
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used is based on the AVHRR retrieval algorithm from the Brazilian National Institute for Space Research (www.cptec.inpe.br/

queimadas).

Biomass burning CO and CO2: Model performance in simulating CO and CO2 mixing ratios was assessed using measure-

ments of carbon monoxide (CO) and CO2 mole fraction (“concentration”) in air samples collected over the Amazon during

2010 and 2011. The air samples were collected with portable sampling systems consisting of separate compressor and flask5

units (Tans et al., 1996) onboard a Cessna 206 aircraft in descending spirals from 4,300 to 300 m over four Amazon locations

indicated in Figure 2: Santarém, PA (2.43◦ S, 54.72◦ W), Rio Branco, AC (9.97◦ S, 67.81◦ W), Alta Floresta, MT (12.54◦ S,

55.71◦ W), and Tabatinga, AM (4.25◦ S, 69.94◦ W). The air samples collected in Santarém, Rio Branco and Alta Floresta are

characteristic of the moist tropical forest, both primary and secondary, surrounding them. During the dry season, both local

(forest), and remote cerrado and pasture fire emissions affect these three sites. The samples collected in Tabatinga, which10

is further west, in a more pristine area of the Amazon forest, respond to the influence of the intact forest landscape upwind.

During the dry season, fire emissions influence the atmospheric chemistry in all sites, although the biomass burning impact

in Tabatinga is more related to episodic long-range transport events, and so not as persistent as the others. The air sampling

was always between 12:00 and 14:00 local time and analyzed at the laboratory of the Instituto de Pesquisas Energéticas e

Nucleares (IPEN) in São Paulo, Brazil. Measurements precision of CO2 and CO is estimated to be around 0.04 ppmv and 0.515

ppbv, respectively. For further details, regarding air sampling and analytical methods, see Gatti et al. (2010).

We also used CO2 measurements in the Tapajós National Forest near km 67 (02.85◦S, 55.04◦W) of the Santarém – Cuiabá

highway, just south of Santarém, for model evaluation. The Tapajós measurements are based on eddy covariance methods, using

the profile mixing ratio data to estimate the change in vertical average mixing ratio between the ground and flux measurement

height to calculate the column average storage of CO2 (Saleska et al., 2003). CO2 mole fractions were measured at 8 levels20

along the tower (62.2, 50, 39.4, 28.7, 19.6, 10.4, and 0.91 m). Sample air was drawn and analyzed with an infrared gas analyzer

(IRGA, LI-6262, Licor, Lincoln, NE). Pressure and temperature of the Licor cells are controlled. The IRGA was automatically

zeroed every 2 hours and the Licor profile, every 20 minutes. All Licors are automatically calibrated with span gases every 6

hours.

Biomass burning aerosol: The AOD (Aerosol Optical Depth) product derived from MODIS sensors onboard of the Aqua25

satellite is used to evaluate the simulated biomass burning aerosol plume. In this work, we used the MODIS Level 2.0 Collection

5.1 (051) data and Level 3 Atmospheric product denominated MYD08_D3 (Mean Aerosol Optical Thickness at 550 nm).

3 Model results and discussion

3.1 Meteorology, fire activity and regional biomass burning plume

Temperature: The simulated 2-meter temperature in the central portion of the Amazon Basin during September 2010 peaked30

around 32 ◦C at 1600 UTC, while the northwest region was slightly cooler, typically ranging from 30 to 28 ◦C (Figure 3.a).

Going southeast, towards the cerrado region, the mean 2-meter temperature reached 35 ◦C at 1600 UTC. The temperature

gradient is mostly associated with the gradient of soil moisture and land cover in the region. The evaluation of the mean diurnal
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cycle of 2-meter temperature from the model against observations using 72 near-surface measurement ground stations in the

LBAR during the same period shows that the model results are consistent with observations (Figure 3.b), though the model

mean temperature was typically cooler (∼2.5 ◦C) during the night period and late afternoon hours, and was not far from the

standard deviation of the observed mean temperature. In addition, the model temperature has a diurnal cycle with a gap of one

hour more early than the observation.5

Precipitation: The monthly mean rainfall data from the ground stations monitoring network, interpolated to the model grid

points (Figure 4.a), and the TRMM rainfall product (Figure 4.b), both reveal a well-defined spatial distribution of the precip-

itation in the northern region of South America during September 2010. First, in the southeast Amazon, accumulated rainfall

was low, with values typically lower than 50 mm for this month; the northwestern region was wetter, with accumulated val-

ues around 200 mm. In addition, there were few areas of high rainfall in the northern part of South America, mainly in the10

Guiana Highlands, associated with the topographic forcing. The general spatial distribution of model accumulated precipitation

(Figure 4.c) compares well with ground observations (Figure 4.a), with an indication that the model overestimated the total

precipitation. However, one must take into account that the measurement stations are very scarce in this region, making de-

tailed comparisons difficult. Interpolation in the presence of limited information usually reduces the intensity of precipitation,

spreading the value observed around the neighboring grid points without data available. Indeed, the precipitation estimated by15

TRMM (Figure 4.b) agrees much better with the model results (Figure 4.c).

Soil moisture and fire activity: As a result of the precipitation distribution, the soils are predominantly wetter in the north-

western part of South America, with simulated volumetric moist content ranging from 0.35 to 0.45 m3m−3 for all soil layers

(Figure 5). The high soil moisture of the northwestern Amazônia contrasts with the rest of the region’s dryness, where the

moisture in the top soil layer of the model is below 0.2 m3m−3 (Figure 5.a), and only deeper soil layers remain fairly moist20

( 0.3 m3m−3 , below 4 m) (Figure 5.c). Comparing soil moisture in two forest areas with different rainfall regimes (red rect-

angle, 148 mm in average) and blue rectangle (34 mm in average), the area receiving a higher volume of rainfall is about 55%

wetter than the other in the shallow layers, but only 12% in the deeper soil layer. By contrast, comparing areas of forest (blue

rectangle) and cerrado (gray rectangle) with similar rainfall regime (34 mm), the forest region remains considerably wetter

( 15% both in shallow and deeper layers). According to Köchy & Wilson (2000), high rates of water uptake per unit mass25

may reflect the high root density of the vegetation. In fact, James et al. (2003) found at a site 20 km east of Regina (58◦28’N,

104◦22’W), Canada, that the ability of grass to reduce soil moisture is nearly five times higher than that of woody vegetation,

expressed on a per-gram basis. For the forest region, the soil moisture values from the model are consistent with the mean

value of 0.39 m3m−3 measured at 0.2 m at Tapajós site (near Santarém, location indicated in Figure 2) during the dry season

(Doughty et al., 2010). Previous measurements at the same site, reported soil moisture only slightly higher at the same site30

( 0.44 m3m−3 , from 0.15 to 0.30 m), and also confirmed the model results for a higher moisture of the deeper soil layers ( 0.42

m3m−3 at 4 m) (Bruno et al., 2006).

The period chosen for this study coincided with the peak of the biomass burning season when a total of 439,297 fires were

detected in the area of the model domain by AVHRR-NOAA, which is 42% of the total number of fires detected by the same

sensor during the entire burning season. The spatial distribution of the fires resembles the pattern of precipitation and soil35
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moisture simulated by the model (Figure 5). Nonetheless, most of the fires were ignited by human activities (Nepstad et al.,

1999; Cochrane & Laurance, 2008). Fires occurred mostly in the Cerrado, C3, and C4 type grass-covered areas, but forest

fires, with much higher biomass density, are typically responsible for the highest amount of biomass burning aerosols and trace

gases released into the atmosphere. Figure 6 depicts the spatial distribution of vegetation fires detected by remote sensing over

the Amazon and Central Brazil during September 2010.5

Smoke regional plume, CO and CO2 mixing ratios: Model results for CO mixing ratio as simulated by the DIR+DIF

experiment, which are expected to be the most realistic, were compared with CO vertical profile measurements from four

different sites in Amazônia. The time series of CO mixing ratio, derived from observations, and model results around 2 km

above ground level in four different locations in Amazônia (Alta Floresta, Santarém, Rio Branco, and Tabatinga) are shown in

Figure 7 (top - left). There was an enhancement of CO from July to October for both years in all the four locations. In 2010,10

the CO mixing ratio values in the PBL during the dry season increased from 100 - 150 ppb, typical wet season values (Andreae

et al., 2012), to up to 500 ppb, both in the simulations and observations. The dry season of 2010 had CO mixing ratios about

twice higher than the same period in 2011, which is consistent with the total number of fires detected by remote sensing during

the dry season of these two years which approximately doubled (http://www.inpe.br/queimadas/estatisticas.php). Scatterplots

of the CO mixing ratio values from observation and model results for the same four locations, separated into several vertical15

layers, are depicted in Figure 7 (top – right). The CO background mixing ratio values for the Tabatinga site are close to the 1:1

line, while the biomass burning affected values are more scattered. Model results show good agreement with observations but

tend to underestimate CO and CO2 observations, especially at low levels, in locations mainly affected by fire emissions both

locally (Alta Floresta, Rio Branco and Santarém) and by long range transport (Tabatinga). The black line on each scatter plot

in Figure 7, shows the linear fit and the correspondent R-Squared values. The largest underestimation of CO occurred in Alta20

Floresta, with a slope of 0.58, but the biggest dispersion occurred in Santarém, with R2 = 0.58. This pattern is probably related

both to the 20-km model resolution not picking up individual biomass burning plumes and fire emissions underestimation

(Pereira et al., 2016). Previous studies indicated that biomass burning emissions contribute more than 95% to the variability

of CO over the Amazon and that the emissions used in this study (3BEM, Longo et al., 2010) are about 20% underestimated

(Andreae et al., 2012).25

On the other hand, the airborne vertical profiles analyzed in this study and our modeling results indicated a lesser enhancement

of CO2 related to fire activity compared to CO. These results are in agreement with previous measurements of fire biomass

burning plumes that showed relatively small enhancements of CO2 relative to the background in Amazônia (Andreae et al.,

2012). Figure 7 (bottom – left) shows the observed –airborne air sampling at around 2 km above ground level –and simulated

time series of CO2 mixing ratios. The major uncertainty of the CO2 mixing ratios is probably most strongly related to the30

vertical transport and fresh smoke plumes and uncertainty in the forest NEE. For example, the misplacement of convective

systems of few grid cells, very acceptable for a low-resolution atmospheric model, can produce huge variations in the CO2

values near the surface. In addition, the timing of the convection in tropical region is a well known limitation of atmospheric

models in general. Nonetheless, the CO2 scatter plots (Figure 7, bottom - right) evidenced a much higher variability of both

observed and modeled values compared to CO, as well as a poorer model representation values close to the ground compared35
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to the upper levels. The low-level behavior is likely to be associated with local convective processes but could also have a

minor contribution from fresh biomass burning plumes, both venting CO2 and changing locally the diffuse fraction of solar

radiation. By contrast, the model tends to better represent the upper levels in terms of observed CO2, which is due to the

fact that air circulation is more intense and mainly controlled by the Carbon Tracker boundary conditions, and fire emissions

contribution becomes even less significant. However, the model is not sensitive to the CO2 concentration within the given5

range, and therefore the model problems reproducing point observations should not have a major effect on the final results.

biomass burning regional plume – AOD: In Figure 8, we show the mean regional biomass burning plume for September

2010 through the monthly mean of AOD at 550 nm wavelength both from MODIS-Aqua retrieval (Figure 8.a) and from the

DIR+DIF model simulation (Figure 8.b). A substantial portion of central Brazil and neighboring countries and the southern

Amazon Basin were covered by smoke with a resulting monthly mean AOD higher than 0.5, which is 3 to 5 times larger10

than the typical values of clean conditions. Moreover, there were also large sub-areas with monthly mean AOD higher than 1,

indicating a persistent and high loading of smoke particles. The model results fairly reproduced the spatial distribution of the

regional smoke plume from MODIS retrievals. A scatter plot of AOD values from the model and MODIS retrieval (Figure S.5

in supplementary material) presents a slope of 0.71 (with R2 = 0.73). Conversely, MODIS retrievals tend to overestimate AOD

in relation to the AERONET retrievals in Amazônia, especially for high aerosol loadings (Hoelzemann et al., 2009). Analysis15

of model results versus AERONET retrieval in some sites in the southern Amazônia (not shown), confirmed that the order of

magnitude of the model underestimation is about the same 20% previously estimated.

Site level –plant atmosphere CO2 exchange: Figure 9.a shows the mean diurnal cycle of CO2 mixing ratio in the first model

layer of the three experiments together with the mean diurnal cycle of CO2 mixing ratio just above the canopy of the Tapajós

forest (near Santarém, location indicated in Figure 2) from measurements during September 2010. In Tapajós, both observation20

and model results present a nighttime increase of CO2 due to plant respiration, peaking shortly after sunrise, and a daytime

decrease due to photosynthetic processes, with the lowest values before sunset. Despite the model difficulties in simulating

the CO2 mixing ratio near surface, on average, the discrepancies with observation were only about 0.9% and 1.4% for the

maximum and minimum values, respectively, with the model values lower than the observation during the peak hour and vice-

versa when the photosynthetic process dominates. The model amplitude of the CO2 cycle is lower than that observed, though25

the model cycle is still within the standard deviation of the mean observed diurnal cycle. Model results without including

aerosol effects (NO-AER) and with the inclusion of the direct aerosol effect only (DIR-AER) produce a very similar CO2

diurnal cycle. However, the inclusion of the diffuse radiation effects due to biomass burning aerosols reduces the values of

CO2 mixing ratio and brings model results much closer to observation, especially during the day, even though the mean AOD

modeled in Tapajós was very low compared to the area mostly affected by biomass burning and even underestimated by the30

model. A curious fact is that at night the difference between NO-AER and DIR+DIF is greater than in the daytime period.

One possible explanation for this is the influence of the neighborhood. Note in Figure S.6 of the supplementary material that

the average wind at 00 UTC is from east, a forest region, and has differences between aerosol and non-aerosol simulations.

However, the wind at 10 UTC is coming from northeast, crossing the river, where the influence of the aerosol in the carbon

fluxes is low. Considering the whole LBAR area, which includes the region with the highest aerosol load, the inclusion of the35
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aerosol effect on CO2, especially the effect of the diffuse radiation, reduced the CO2 mixing ratio of about 10 ppmv in the

CO2 mixing ratio all day long (Figure 9.b). The shift of the diurnal cycle of CO2 mixing ratio from the model relative to the

observation in Tapajós is likely to be related to the AOD underestimation.

In the next section, we will present the model results for energy and carbon fluxes and explore the role played by the biomass

burning aerosol in the carbon cycle in Amazônia.5

3.2 JULES sensitivity test

We performed sensitivity tests to assess JULES response to several atmospheric variables. We ran JULES offline (version 3.0)

for September 2010 using as input BRAMS results for the NO-AER experiment considering the nearest gridbox to the Tower

km-67. Figure S.1 (in the supplementary material) shows monthly variation of downwelling shortwave (Rshort) and longwave

irradiance (Rlong), air temperature near surface and specific humidity near surface, all used as input for the sensitivity test. The10

soil carbon in this gridcell is 10 kgCm−2 during the all month. Besides using the BRAMS model results for each parameter,

we also varied each parameter, reducing and increasing its original value to cover the standard deviation of the monthly mean.

In addition, we varied the diffuse fraction of the shortwave radiation, which was originally zero (NO-AER scenery), from 0

to 0.8 of the total radiation. Therefore, we ran 567 simulations for the month of September 2010. For each simulation, we

calculated the monthly mean fluxes. Figures S.2, S.3 and S.4 show the results for these sensitivity tests. JULES results for15

soil respiration, and consequently NEE, are quite sensitive to the prescribed soil carbon content (Figure S.2). In addition, the

GPP increases with the increase of soil moisture for all biomes (Figure S.3). However, RH and RP also increases with the

soil moisture (Figure S.3a and S.3m). Therefore, for the forest and cerrado biomes, the NEE decreases until a certain value,

after then increases again with the increasing of soil moisture (Figure S.3s). In summary, the sensitivity analyses show that i)

for a 7% decrease in shortwave radiation there are minimal changes in GPP (Figure S.4a); ii) a change in temperature of one20

degree Celsius (from current midday conditions) also did not imply in major changes in the simulated GPP (Figure S.4b); and

iii) a 40% increase in the diffuse fraction of shortwave radiation increased the GPP by 39% , 71%, 4%, and 72% in forest,

C3, C4 grasses, and cerrado (shrubs) vegetation , respectively (Fig S.4c).

3.3 Impacts of biomass burning aerosol on energy and carbon fluxes

Incoming Radiation: The modeled mean downwelling shortwave irradiance at surface (RSHORT) at 1600 UTC during25

September 2010 from DIR-AER experiment ranged from 900 Wm−2, in the southwestern Amazon, to 1000 Wm−2 in the

northeastern portion (Figure 10.a), with the biomass burning aerosol direct impact (∆RSHORT = RSHORTDIR−AER−
RSHORTNO−AER) reaching -100 Wm−2 in biomass burning areas (AOD > 0.5) (Figure 10.b). As a consequence of the

biomass burning aerosol direct effect, the 2-meter temperature decreased by 1.2 ◦C in average in the biomass burning areas

around midday (∆Temp = TempDIR−AER −TempNO−AER, Figure 10.c). The noise in the northwestern region for both30

RSHORT and temperature differences within the two simulations is related to expected nonlinear aerosol perturbations on

cloud distribution. These results are consistent with previous modeling studies (Rosário et al., 2013) and with estimations

based on AERONET measurements (Procópio et al., 2004). Additionally, observations in Tapajós during the dry season indi-
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cate an average reduction of 80 and 123 Wm−2,for AOD > 0.5 and AOD > 0.7, which corresponded to a decrease of the

mean temperature of 0.26 and 0.41◦C, respectively.

The presence of biomass burning aerosol in the atmosphere also impacts the flux of PAR in Amazônia during the dry season.

Monthly mean PAR (µmol m−2 s−1) at 1600 UTC, which is around midday in most of Amazônia, as simulated by the DIR+DIF

model experiment for September 2010 is depicted in Figure 11.a. The modeled PAR monthly mean values at 1600 UTC5

ranged between 900 - 1000 µmol m−2 s−1 from southwest to northeast in the LBAR. The presence of biomass burning aerosol

increases the diffuse fraction of radiation by up to 40% in the biomass burning areas (Figure 11.b). Figure 12.a shows the

diffuse PAR as a function of AOD.

Decreases in surface temperature due to the direct effect of aerosol are also influenced by the balance between latent and

sensible heat fluxes, or ultimately, on soil moisture. The difference in 2-meter temperature (∆Temp) and shortwave irradiance10

(∆RSHORT ) is, as expected, highly correlated, though with a large band of ∆Temp for the same value of ∆RSHORT

(Figure 12.b). The ∆Temp bandwidth increases almost linearly with the ∆RSHORT , with the values correspondent to higher

soil moisture populating the lower part of the curve (Figure 12.b), meaning that for regions with the same AOD, the ones with

drier soil will suffer higher surface cooling.

Carbon fluxes for the vegetation types in Amazônia: Spatial fields for simulated GPP across the northern part of South15

America are presented in Figure 13.a for September 2010 at 1600 UTC for forest, C3G, C4G, and shrub in rows 1 -4, re-

spectively. Over forest, simulated GPP ranges from 20 to 25 µmolC m−2 s−1; while over the regions occupied by cerrado,

pastures, and tinges of forest there was a much higher variability, with GPP widely varying from below 5 to above 20

µmolC m−2 s−1. In Column b of the Figure 13 we show the difference between monthly mean GPP as simulated for the

DIR+DIF and NO-AER experiments, i.e. the relative impact of the total effect of aerosols on simulated GPP for the 4 studied20

biome types: forest (b.1), C3G (b.2), C4G (b.3) and cerrado(b.4). In column c, we show the difference between monthly mean

GPP of the simulation without the aerosol effect on the diffuse radiation (DIR-AER) and the simulation without any aerosol

effects (NO-AER), i.e. we evaluate the relative impact on the direct solar radiation effect.

In Figure 14.a, one can note that the mean solar irradiance that reaches the Amazon region during September promotes a

high GPP for the C4 plants even into the local afternoon when C3 plants close their stomata to reduce water loss. Thus,25

typically, the GPP of the C4 type plants are highly correlated with the amount of irradiance received. Therefore their GPP

resembles the same diurnal cycle shape of the irradiance. By contrast, the other vegetation types suffer, in a less or more extent,

a decrease in the carbon assimilation during the period of maximum irradiance, therefore reshaping their GPP diurnal cycle.

Still in Figure 14.a, the net increase in GPP due to biomass burning aerosol over forest (∆GPPtot, difference between the

curves in red and green filled squares) is 3.8 µmolC m−2 s−1, with the majority (%Fluxdiff
∼= 94%) of the impact related30

to the increase in the diffuse fraction of solar radiation. The reduction of direct solar radiation by biomass burning aerosols

increases forest GPP only up to 0.2 µmolC m−2 s−1 (∆GPPdir), which is associated with the cooling of the leaves. Over

cerrado areas, the increase on GPP was up to 0.9 and 0.1 µmolC m−2 s−1 due to the aerosol effect on the diffuse fraction

radiation (∆GPPdiff ), and the direct radiation (∆GPPdir), respectively, with the aerosol direct radiative effect much lower

than the diffuse radiation effect because the GPP of the cerrado is also severely limited by the excess of irradiance. In the35
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case of the C4 grass type, which was not limited by irradiance, the direct radiative aerosol effect induced a reduction of the

GPP (-0.7 µmolC m−2 s−1), but the increase in the diffuse fraction of radiation more than compensate the reduction of GPP

due the irradiance attenuation of the direct effect, and, when including both direct and diffuse radiation effects, the GPP

increases from 43 µmolC m−2 s−1 to 47 µmolC m−2 s−1. Table 2 summarizes the integrated values of GPP for each biome

in the LBAR during September 2010, as well as the variation related to the total aerosol effect (both on diffuse radiation5

and direct radiation, ∆GPPtot), and only with the direct aerosol effect (∆GPPdir). According to the model results, the net

GPP of the forest biome in the LBAR was of 1,206 Tg C during September 2010. The presence of biomass burning aerosol

was responsible for an increase of about 32% of the GPP over the forest, mainly associated with the impact of the aerosol

on the diffuse radiation. For the cerrado and C3 grass, the net GPP was 359 and 850 Tg C in the same region, during the

same period, with the biomass burning aerosol acting to increase the GPP of about 20% and 30%, respectively. We estimated10

an average increase of 27% in GPP for September 2010 in the LBAR region, associated to the aerosol effect in Amazônia

(Table 4). However, Rap et al. (2015), using JULES model forced with aerosol field from another model, estimated an average

increase in GPP of only 2.8% for August, considering the period of 1998-2007. Also, our estimate of net primary production

(NPP = GPP −RP ) for the DIR+DIF simulation was 553 TgC/month (1,113 - 560) and 363 TgC/month ((1,113-240)-(560-

50)) for NO-AER. Therefore, we estimate an increase of 52% in NPP for September 2010, due the aerosol in LBAR region,15

while Rap et al. (2015) estimated a increase in NPP of only 5.4% for August. Our results for the aerosol impact over the

Amazônia is higher than the Rap et al. (2015) estimation. However, one must keep in mind that Rap et al. estimation was

based on 9 years (1998 – 2007) and for a month (August) that typically has much lower aerosol loading than September,

while our work was based on September, the peak for the biomass burning season, and for 2010, a drier and smokier year.

The diurnal cycle of plant respiration for each biome is shown in Figure 14.b for the three model runs. As expected, higher20

GPP leads to higher plant respiration. Plant respiration peaks 7.5, 2, 4.6, and 14 µmolC m−2 s−1 for forest, cerrado, C3, and

C4 grass types, respectively, with the aerosol impact more pronounced for forest and C4 biomes. The mean soil respiration

found in the LBAR is 2.78 µmolC m−2 s−1, with a relatively mild diurnal cycle that basically depends on soil temperature,

hence with lower values in the morning and a tendency to increase slightly in the afternoon. However, soil respiration is highly

variable in the LBAR, depending on the amount of carbon in the soil, being as low as 0.13 µmolC m−2 s−1 in the cerrado25

and grass-plot areas, and ranging between 2 and 8 µmolC m−2 s−1 in forest areas. Regarding NEE, model results show that

the forest biome released around +5 µmolC m−2 s−1 during the night and early morning, and then, when GPP compensates

the respiration, the net uptake goes as low as -11 µmolC m−2 s−1. The net effect is an uptake of approximately 0.015, 0.565,

and 0.060 molC m−2 day−1 for the C3, C4 grass, and forest biomes, respectively, and a release of 0.126 molC m−2 day−1

for the cerrado. Grace et al., (1995), with measurements of CO2 fluxes at Jaru Reserve, Rondônia, Brazil (10◦,4.84’S, 61◦,30

56.60’W) in September 1992, estimated an accumulation of 0.09 molC m−2 day−1 for forest during the dry season. So, the

forest uptake estimation based on our modeling results is approximately 30% lower than the estimations based on Grace et al.

(1995) measurements. However, several measurements in the Amazon indicated both high yearly and regional variabilities

around the Amazon Basin due to several factors, which include hydric stress, aerosol loads, topography, differences in soil

carbon and forest physiology. Also, previous studies indicated that there are high uncertainties in the magnitude of nocturnal35
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NEE measurements because of the lack of turbulence in and above the forest (Araujo et al., 2002; Araujo et al., 2010). In

Table 3 we collected from the literature some estimates of NEE (daily total, nighttime and daytime peak), based on CO2 fluxes

measurements in different sites in Amazônia during the dry season in different years. For the same sites, we also presented in

Table 3, the NEE from DIR+DIF experiment for September 2010. For example, measurements taken at the Jaru reserve (the

same site used by Grace et al., 1995) and at a grass-plot (Fazenda Nossa Senhora - FNS, at 10◦45’44”S, 62◦21’27”W), during5

the dry season from 1999 to 2002, revealed an uptake of around 0.12 and 0.069 molC m−2 day−1 for the pasture and forest site,

respectively, with the diurnal values of NEE reaching -13.2 and -17.5 µmolC m−2 s−1 for the pasture and forest, respectively

(von Randow, 2004). And, more recently, Cirino et al. (2014) reported 10 years of CO2 fluxes measurements carried out in

central Amazon’s Cuieiras Biological Reserve – K34 LBA (Large Scale Biosphere-Atmosphere Experiment in Amazônia)

tower flux (2◦36’33” S, 6◦12’33” W) from 1999 to 2009, and also in the Jaru reserve from 1999 to 2002. The measured diurnal10

cycle of NEE at both sites was, as expected, positive during the night time and negative during the daytime. During the dry

season, the mean values of NEE measured during the night were approximately +5.2(±0.8) and +6.8 (±1.0) µmolC m−2 s−1 at

the Jaru (Von Randow et al., 2004) and Cuieras (Cirino et al., 2015) reserves, respectively, due to differences in the physiology

of the forest, and possibly topography in the two sites. There were even more significant differences between the maximum

values of carbon uptake between the two sites, which were around -17.5 and -20 µmolC m−2 s−1 under biomass burning and15

cloudy sky condition, at the Jaru and Cuieras reserve, respectively, and -18 µmolC m−2 s−1, under clean-sky in both sites. The

differences between the peak values of carbon absorption are likely related to the presence of biomass burning, variability of

cloudiness and rainfall, and soil characteristics, like water content, nutrients (N, P), etc.. Measurements at the Tapajós National

Forest (2◦51’S,54◦58’W) from 2002 to 2005 (during September) led to estimations of NEE varying from +0.017 to –0,069

molC m−2 day−1 (Hutyra et al., 2007). The mean value of NEE from the model at Tapajós was -0.032 molC m−2 day−120

for September 2010. The Jaru reserve is systematically, intensely affected by both local and long range transported biomass

burning aerosols, with monthly means for AOD (550 nm) during the dry season typically above 0.5, but often above 1.0; in

contrast, the biomass burning affects the northern part of the Basin, where Cuieras and Tapajós are located, more episodically

(Longo et al., 2009). In addition, the northern part has more variability in terms of rainfall during the dry season compared

to the southern part, due mainly to the position of the Inter-Tropical Convergence Zone (ITCZ). So, a strong variability in the25

terms of carbon fluxes in the northern part of the Amazon is indeed expected and is really challenging for a low-resolution

model to match point measurements. Nevertheless, our modeled monthly mean diurnal cycles of NEE for forest and pasture

biomes (Figure 14.c) are remarkably close to the diurnal cycle reported for the Jaru reserve and FNS, respectively, by von

Randow et al., (2004), with the total daily total, nighttime, and daytime peak values (Table 3) of similar order of magnitude

within the variability observed.30

Figure 15 depicts the model results of DIR+DIF simulation for GPP (µmolC m−2 s−1) in response to the available PAR

(µmol m−2 s−1) for the main four different biome types in the domain of study and in a range of 0.2 to 0.6 of the fraction of

the diffuse irradiance. The analysis is also limited to the condition where the soil wetness is above 0.9. The maximum values

of GPP for Forest and C3 type grass are reached with PAR around 1,600 mol m−2 s−1 and 1,300 mol m−2 s−1, respectively,

indicating that these are the saturation point for these biomes relative to the amount of energy reaching the surface. For cerrado35
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(shrub), the saturation point is much lower, around 600 mol m−2 s−1, but the plants maintain its carbon assimilation rate up

to PAR around 1,600 mol m−2 s−1, only then decreasing with further increase of PAR. For the C4 type grass, GPP increases

almost linearly with PAR, not showing any evidence of saturation with the amount of energy received. In general, the results

in Figure 15 indicate that, for a given biome and amount of PAR, higher amount of the diffuse radiation implies higher GPP .

However, the cerrado (shrub) biome is an exception since it saturates with relatively lower values of PAR.5

The mean spatial distribution of the relative impact of aerosol effects on modeled fluxes at 1600 UTC is shown in Figure 16

considering the changes both on direct and diffuse radiation, and only on direct solar radiation. In the LBAR region, where

the forest biome dominates, there is an increase of GPP (Figure 16.b.1) ranging from 0.1 to 5.0 µmolC m−2 s−1, related

to the aerosol effect, the lower values being associated with lower AOD values (Figure 8) and drier soil (Figure 5). In the

remaining regions, the aerosol impact on GPP is still positive but much lower (0.1 – 0.5 µmolC m−2 s−1). In all domains,10

the majority of the aerosol impact is related to the increase in the diffuse fraction of solar radiation due to the presence of

aerosols (%GPPdiff > 95%). As a general rule, our model results indicate that the increase of GPP leads to an increase

ranging between 0.2 to 1.6 µmolC m−2 s−1 on plant respiration (RP ) for the forest and does not affect the other biomes

significantly. On the other hand, soil respiration (RH , line 3 of Figure 16) varies from 1 to 8 µmolC m−2 s−1, with the higher

values in the forest area with higher soil moisture (Figure 5). The aerosol impact on RH is somewhat noisy, varying from -115

to +1 µmolC m−2 s−1 over the forest, negative otherwise ( -0.1 µmolC m−2 s−1). The noise of RH is associated with the

non-linear effects of aerosol on cloudiness (and thus temperature) and precipitation. The total impact of aerosol in NEE (line

4 of Figure 16) ranged from -0.1 to -5 µmolC m−2 s−1, with the lower values found in the forest region with intense/persistent

biomass burning, mainly related to the diffuse radiation effect, meaning that our modeling suggests that the aerosol biomass

burning effect creates a CO2 sink in Amazônia.20

Total carbon fluxes in the Amazônia, weighted for the vegetation types: Figure 17 depicts the monthly mean diurnal cycle

of the CO2 fluxes in the LBAR for September 2010, again related to GPP , RP , RH , and NEE, averaged over the 4 types

of vegetation present in each atmospheric model grid box. The presence of the biomass burning aerosol affects the CO2

flux associated with GPP , and consequently Rp. Responding to the increasing diffuse radiation, both GPP and RP rise,

being the GPP enhancement about 4 times higher than the RP . On contrast, RS has an opposite response as the presence25

of aerosol implies in a cooler soil (Figure 10) and, consequently, lower microbial activity. The net effect is a higher CO2

daytime uptake, with a negligible night-time variation. Moreover, the biomass burning aerosol strongly impacts the NEE

(Figure 17.b). Around noon, the NEE decreases from -7 to -10 µmolC m−2 s−1 in the presence of biomass burning, mainly

due to the diffuse radiation effect. Nevertheless, it is interesting to note that the impact of the aerosol influence on the relative

contribution of the diffuse to the total (diffuse + direct) on the NEE (Equation 4) has a different behavior depending on plant30

functional type, decaying exponentially as the AOD increases for all biomes, except for the C4 grass type. The contribution

of the diffuse radiation effect to NEE (∆NEEdiff/∆NEEtot) versus AOD, for each biome, is depicted in Figure 18 along

with its fitting functions. Over forest, the percentage of the diffuse radiation effect on CO2 uptake decreases exponentially

([∆NEEdiff/∆NEEtot]forest ≈ e−0.9AOD,R2 = 0.7) from 100% to 50% with the increase of aerosol loading, reaching

a balance of 50% - 50% between the diffuse and direct effect, for AOD above 0.5. For C3 grass and cerrado, as expected,35
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the contribution of the diffuse radiation effects tends to zero with the increase of AOD ([∆NEEdiff/∆NEEtot]cerrado,C3 ≈
0.7e−4AOD,R2 = 0.7). While for C4 grass type, the contribution of the diffuse radiation to NEE exponentially increases

with AOD ([∆NEEdiff/∆NEEtot]C4 ≈ eAOD,R2 = 0.9), the C4 photosynthetic pathway does not rapidly saturate with

the amount of light received. Considering the AOD underestimation of about 20% and the exponential behavior of the relative

contribution of the diffuse fraction to NEE, it is reasonable to say that the contribution of the diffuse radiation effect on CO25

uptake can reach 40% over the forest, and 10% over cerrado and C3 grass type, for high aerosol loads.

The model results for the CO2 fluxes integrated for the month of September (2010), which is the peak of the burning season

in the LBAR, are summarized in Table 4. Total modeled GPP in the LBAR is 1,113 Tg C, with the aerosol being responsible

for an increase of 240 Tg C, with less than 1% due to the aerosol radiation direct effect. Plant respiration is affected by

approximately 50 Tg C, related only to the increase in the diffuse fraction of radiation. The impact of the aerosol on the10

soil respiration is only 3% but in the opposite direction, i.e. a reduction. Integrating throughout the full month for September

2010, the NEE changed from +101 Tg C to -104 Tg C, when the aerosol effect is considered. The total aerosol effect on

radiation was responsible for about 96% of the NEE change, while the temperature reduction due to the direct aerosol effect

on radiation accounts for only 5%. That is, the aerosol effect, especially the change in the diffuse fraction of radiation, is strong

enough to invert the signal of NEE, changing the ecosystem from being a source to a sink of CO2. Table 3 shows that the15

NEE observed during the dry season at the Amazon forest and pasture biomes exhibit substantial site to site and interannual

variability. Nevertheless, for each site, the 2010 model results are within the observed variability.

4 Conclusions and Final remarks

We conducted a modeling study during the peak of the burning season in Amazônia to assess the ability of a current state-of-the-

art integrated in-line numerical atmospheric modeling system to simulate the CO2 fluxes in Amazônia. A set of three different20

modeling experiments, first totally disregarding aerosol biomass burning effect, then considering only the direct aerosol effect,

and, finally, also adding the aerosol effect on the diffuse fraction of radiation. The model results allowed us to assess and

quantify the impacts of biomass burning aerosols on CO2 fluxes in the Amazon Basin during the dry season. Moreover, the

relative role of the main soil/vegetation and atmosphere interaction processes controlling the carbon cycle in Amazônia was

weighed, and the aerosol effect on each of them was measured separately.25

Consistent with previous studies (Freitas et al., 2005, 2009, and 2016; Longo et al., 2010, 2013; Rosário et al., 2013; Moreira

et al., 2013), BRAMS performed well while modeling the meteorology and aerosol biomass burning emission, transport and

removal processes in Amazônia, which has resulted in accurate simulation of the major features of AOD variability associated

with the regional biomass burning plume over South America. The model results for surface temperature, rainfall and AOD

were once again in agreement with observations for the 2010 dry season case study, representing the main characteristics of30

the spatial distribution and the diurnal cycle of temperature and precipitation. BRAMS was also evaluated on its performance

to simulate CO and CO2 mixing ratios using measurements acquired from air samples collected using light aircraft over the

Amazon during 2010 and 2011 burning seasons. Typically, the model tends to slightly underestimate the CO mixing ratio,
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particularly in the lower levels, in regions affected by fresh biomass burning and haze biomass burning layers. Previous studies

had already indicated an underestimation of the biomass burning emissions database used in this work (3BEM, Longo et al.,

2010) of about 20% (Andreae et al., 2012), mainly related to fire omission and misrepresentation of the vegetation and carbon

maps used (Pereira et al., 2016). For CO2 mixing ratios, the comparison between model and observation is highly scattered,

again especially in the lower levels, though in this case more likely related to convective activity pumping CO2 to the upper5

layers of the atmosphere and inaccurate modeling of surface carbon net fluxes (NEE). In both cases, model inaccuracies are

to be, at least partially, related to the lower model resolution (20 km), suggesting that further sensitivity studies on model

resolution would be helpful. Nevertheless, although the 20-km model resolution was not capable of capturing CO2 point

measurements in Amazônia, the order of magnitude of the CO2 mixing ratio has been in general well represented. Moreover,

the diurnal cycle of CO2 measured above the canopy of the Tapajós forest was represented in the model with differences10

of only about -0.9% and +1.4% between model results and observations during the time of minimum and maximum values,

respectively.

Our modeling results indicate that during the dry season in Amazônia, regions with lower precipitation do not always have

high values of NEE, because the lower soil respiration of a dryer soil can compensate for the deficit of water available for

plants [e.g. Saleska, 2003]. Being an equatorial region, Amazônia receives abundant PAR. Therefore, areas with plenty of15

water availability in the soil have higher GPP compared to dry soil areas. However, after noon local time, when the radiation

excess typically occurs, there is a drop in carbon assimilation for all biomes, except for the C4 grass type that has maximum

assimilation coinciding with the peak of PAR.

The presence of an intense biomass burning aerosol layer during the dry season over Amazônia reduces the solar energy

reaching the surface, consequently reducing near surface temperature. The model results show this cooling effect contributing20

to increasing the GPP in regions covered by forest, grass C3 and cerrado. However, in addition to reducing the surface energy,

the aerosol layer also increases the diffuse fraction of radiation. This is the major effect that contributes to increasing GPP ,

and, in this case, including the C4 grass type biome. These two effects altogether increase GPP of about 32%, 30%, 9% and

20% for forest, C3, and C4 type grasses, and cerrado, respectively.

In the LBAR, the GPP increased about 27%, reaching 1,113 TgC during September 2010, when the aerosol effects were25

included. Plant respiration also increased from 510 to 560 TgC, with the aerosol biomass burning effect as a response to

the increase of GPP . The more CO2 the plant assimilates to produce sugar, the more it needs to increase its respiration for

energy supply. On the other side, soil respiration dropped from 463 to 449 Tg C. Consequently, the NEE in the LBAR during

September 2010 dropped from +101 to -104 TgC when the aerosol effects were considered, mainly due to the diffuse radiation

effect. That is, the LBAR during the dry season, in the presence of high biomass burning aerosol loads, change from being a30

source to be a sink of CO2 to the atmosphere. These results are also consistent with the observations of Yamasoe et al. (2006),

who found no correlation between NEE and aerosol load for low AOD values (< 0.7); however, for AOD > 0.7 NEE values

became negative, and for AOD > 1.5-2 NEE started to increase again. Our model results also indicate that the impact of the

aerosol on the NEE change is mainly related to the aerosol increasing the diffuse fraction of radiation. For AOD higher than

0.5, the forest reaches a balance of 50% – 50% between the diffuse and direct aerosol effects. For C3 grass type and cerrado,35
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as expected, the contribution of the diffuse radiation effect is much lower than for the forest biome and tends to near zero with

the increase of AOD. Direct measurements at the Tapajós site (Doughty et al., 2010) led to an estimation of the relative aerosol

contribution in CO2 uptake, for high values of AOD, of 80% as a result of increased shaded light in the sub-canopy, related

to the effect of aerosol increasing the diffuse fraction of radiation. While only 20% of the aerosol impact on CO2 uptake was

attributed to the decreased of canopy temperature. These same authors, however, do recognize that is “difficult to know whether5

this proportion is applicable to forest biomes worldwide or limited to tropical forest”. So, based on our model results, we go

even further and say that it is difficult to even to affirm that there is a unique rule applicable to the all Amazon forest due to its

high diversity of plant and soil charateristics, and microclimates.

Considering that the fire activity in Amazônia typically last for about 3 months, we can estimate as first approximation that the

net impact of the biomass burning aerosols on the carbon cycle in Amazônia is about -615 TgC per year. However, we must say10

that the fire activity in 2010 was very intense (see Figure S.7 of the Supplementary document), and therefore, this estimation is

not likely to be representative of an average year. According to Espírito-Santo et al. (2014), the impact of the natural disturbance

in the carbon cycle in Amazônia is generally around 1,300 TgC per year. Thus, the aerosol (negative) impact can be of a similar

order of magnitude of the (positive) impact of the natural disturbances in the carbon cycle in Amazônia.

Our model results emphasize the importance of considering the effects of aerosol in numerical models of climate forecasting,15

especially when investigating the intensification of the greenhouse effect due to the atmospheric CO2 concentration. In general,

the numerical results obtained were in good agreement with observational data, including meteorological, aerosol and trace

gases variables, which gives us confidence in the estimation of the carbon fluxes. However, we do recognize that including the

effect of cloudiness on the diffuse fraction of radiation is an essential model capability that will allow us to explore the relative

impact of the biomass burning aerosol and clouds, as well as the seasonality and the annual variability of the carbon cycle in20

Amazon. This is a work on development and we will soon report the inclusion of the cloud effect on the diffuse fraction of

solar radiation in the model, which is certainly a major effect on the CO2 budget in Amazônia during the wet season.

In addition, further model development based on current level of knowledge could still improve the representation of biomass

burning aerosol effects in the carbon cycle. As such, model studies that include the reduction of photosynthesis due to the

oxidation of plant leaves by high levels of ozone secondarily produced in biomass burning plumes, as well as the indirect25

aerosol effect on the CO2 is a work in progress.
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Table 1. Parameters for a third-degree polynomial fit to the diffuse fraction of broadband solar irradiance reaching the surface as function of

AOD at 670 nm for distinct air mass intervals.

Optical air mass a b c d R2

m ≤ 1.10 0.0115 -0.1115 0.4693 0.1258 0.994

1.10 < m ≤ 1.25 0.0129 -0.1235 0.4997 0.1304 0.994

1.25 < m ≤ 1.40 0.0075 -0.1087 0.5035 0.1477 0.989

1.40 < m ≤ 1.70 0.0052 -0.1031 0.5077 0.1795 0.990

1.70 < m ≤ 2.00 0.0144 -0.1634 0.6207 0.1696 0.991

2.00 < m ≤ 2.80 0.0166 -0.2237 0.7458 0.1851 0.981

m > 2.80 0.0736 -0.4631 1.0152 0.2005 0.985
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Table 2. Monthly mean values of net GPP , ∆GPPtot and ∆GPPdir in the LBAR during September 2010 for the three simulations and

different biomes.

Biome
GPPDIR+DIF ∆GPPtot ∆GPPdir

[TgCmonth−1] [TgCmonth−1] [%] [TgCmonth−1] [%]

Forest 1,206 293 32 8 1

C3G 850 195 30 24 3

C4G 2,431 200 9 -69 -3

Cerrado 359 59 20 12 3
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Table 3. NEE measurements during the dry season in several locations in the Amazon region, Brazil. The mean values and standard

deviation of NEE from the modeling results from DIR+DIF experiment (September 2010) are also presented in the last column.

NEE from flux measurements NEE from the model (Sept 2010)

Data Daytime Daytime

Biome collection Daily total Nighttime peak Daily total Nighttime peak

Loca type period molCm−2day−1 µmolCm−2s−1 µmolCm−2s−1 molCm−2day−1 µmolCm−2s−1 µmolCm−2s−1

Jarua

Forest

Sept 1992 -0.090 - -

-0.065 ±0.002 +5.2 ±0.8 -11.9 ±2.4
Jarub1

dry season

1999-2002
-0.069 +7.1 -17.5

FNSb2 Pasture
Dry season

1999-2002
-0.12 +3.0 -13.2 -0.14* ±0.1 +3.3 ±0.8 -13.1 ±5.4

Tapajósc Forest

Sept 2002 +0.017 - -

-0.032 ±0.039 +5.6 ±0.9 -11.9 ±0.6
Sept 2003 + 0.026 - -

Sept 2004 -0.017 - -

Sept 2005 -0.069 - -

Sinopd Forest

Dry season

2005–2006
+0.008 ±0.029 +5.2 ±0.4 -

-0.23 ±0.006 +3.0 ±0.3 -14.4 ±1.0
Dry season

2006–2007
-0.013 ±0.024 +5.5 ±0.4 -

Dry season

2007–2008
-0.041 ±0.022 +5.6 ±0.3 -

Cuieirase Forest
Dry season

1999-2009
- ∼+4.0 -20.0 +0.037 ±0.015 +6.8 ±1.0 -11.7 ±1.4

a Jaru reserve (10◦05’S, 61◦57’W), Grace et al., 1995.
b1 Jaru reserve (10◦05’S, 61◦57’W), Von Randow et al., 2004.
b2 Fazenda Nossa Senhora (10◦45’44”S,62◦21’27”W), Von Randow et al., 2004.
c Tapajós National Forest (2◦51’S,54◦58’W), Hutyra et al., 2007.
d 50 km NE of Sinop-MT (11◦25’S, 55◦20’W), Vourlitis et al., 2011.
e Cuieiras Biological Reserve (2◦36’33” S, 60◦12’33” W), Cirino et al., 2015.
* The pasture site was identified as C4 grass type.

30



Table 4. Total CO2 assimilation ratio for the DIR+DIF simulation, ∆Fluxtot and ∆Fluxdir in the LBAR during September 2010 for the

different atmosphere-biosphere exchange processes.

Process
CO2 Flux ∆Fluxtot ∆Fluxdir

[TgCmonth−1] [TgCmonth−1] [%] [TgCmonth−1] [%]

GPP 1,113 240 27 1 0

Rp 560 50 10 0 0

RH 449 -14 -3 -7 -2

NEE -104 -205 -203 -8 8
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Figure 1. Fraction of diffuse broadband solar irradiance reaching the surface as function of AOD at 670 nm and optical air mass intervals

(m).
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Figure 2. Model domain with the map of land cover used in BRAMS, the color scale depicting the dominant biomes. The red contour line

on the map delimits the LBAR and the locations of CO2 and CO airborne measurements: Santarém, PA (2.85◦ S, 54.95◦ W); Rio Branco,

AC (9.99◦ S, 67.80◦ W); Alta Floresta, MT (9.87◦ S, 56.09◦ W); and Tabatinga, AM (4.25◦ S, 69.94◦ W).
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(a) (b) 

Figure 3. (a) Spatial distribution of mean 2-meter temperature and 10-meter wind field from the model during September 2010 at 1600 UTC.

The LBAR and the locations of 72 near-surface measurement ground stations, used to evaluate the model 2-meter temperature, are depicted

in the map with white asterisks. (b) Mean diurnal cycle of 2-meter temperature (◦C) observed in the 72 near-surface ground stations (black

line) and from the model grid-point nearest the respective station (red line). The standard deviation (shaded gray) and the mean observed

temperature values were calculated using measurements at the 72 observational stations. While the model standard deviation (red bars) and

mean temperature were calculated using the model temperatures at the gridboxes corresponding to the locations of the 72 stations.
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(a) (b) (c) 

Figure 4. Accumulated precipitation (mm) during September 2010 from the (a) ground stations observation network interpolated for the

model grid point, (b) TRMM rainfall product, and (c) model results.
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(a) (b) (c) 

Figure 5. Monthly mean soil moisture (m3m−3) during September 2010 at three soil levels: (a) 0.35 m, (b) 1.00 m, and (c) 4.25 m. The

rectangles depict areas with predominance of forest and moist soil (red), forest and dry soil (blue), and cerrado with dry soil (gray).
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Figure 6. Burning points observed by the AVHRR sensor during September 2010. (Source: www.cptec.inpe.br/queimadas).

37

www.cptec.inpe.br/queimadas


   

    
 

   

   

Figure 7. Time series (on the left) and scatter plots (on the right) of CO (ppbv) (on the top) and CO2 (ppbv) (on the bottom) airborne

measured (black dots) and simulated (DIR+DIF experiment, blue dots and line) at Alta Floresta, Santarém, Rio Branco, and Tabatinga

(indicated on each plot), at about 2 km above the ground level from April 2010 to October 2011. On the time series, the red dashed lines on

the time series indicate the fire season of 2010. On the scatter plots, the colors scale depicts the vertical layers: < 900 m (purple), 900-1800

m (blue), 1800-2700 (green), 2700-3600 (orange), and > 3600 m (pink), and the error bars refer to the standard deviation of the mean values.

The locations of the measurement sites are indicated in Figure 2.
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(a) (b) 

Figure 8. Monthly mean AOD at 550 nm wavelength for September 2010 from (a) MODIS Aqua retrieval, and (b) from the model as

simulated on the DIR+DIF experiment.

39



        

(a) (b) 

Figure 9. (a) Mean diurnal cycle of CO2 (ppmv) mixing ratio (black line) during September 2010 in Tapajós forest tower at 39.6 meter

(2.85◦ S, 55.04◦ W, slightly southward Santarém, location indicated in Figure 2). The gray shaded area indicates the standard deviation of

mean values observed. (b) Mean diurnal cycle of CO2 (ppmv) mixing ratio from the model during the same period in the LBAR (red line in

Figure 2). In both plots, model results are at the 39.3 meters’ model level for the three simulations NO-AER (light pink), DIR-AER (pink),

and DIR+DIF (red). The red error bars on the model curves refer to the standard deviation of the mean model values.
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Figure 10. (a) Mean downwelling shortwave irradiance at the surface (Wm−2) at 1600 UTC (which is around midday in most of Amazonia)

for September 2010 from DIR+DIF experiment; (b) the difference in the mean downwelling shortwave irradiance at the surface (Wm−2)

during the same time period as simulated at DIR+DIF and NO-AER; and (c) the difference in the 2-meter temperature (◦C) during the same

time period as simulated at DIR+DIF and NO-AER. The darker black contour line on the maps delimits the LBAR.

41



 

Figure 11. (a) Mean PAR (µmolm−2s−1) at 1600 UTC for September 2010 from DIR+DIF experiment; and (b) the mean diffuse fraction of

solar radiation at 1600 UTC for September 2010 as simulated by DIR+DIF. The darker black contour line on the maps delimits the LBAR.
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Figure 12. (a) The diffuse PAR radiance (µmolm−2s−1) versus AOD at 550 nm as simulated at DIR+DIF experiment at 1600 UTC during

September 2010 (temporal) in the LBAR (spatial). (b) The decrease of 2-meter temperature versus the decrease of downwelling shortwave

irradiance (Wm−2) as simulated at AER-DIR and NO-AER experiments at 1600 UTC during September 2010 in the LBAR. The color scale

refers to soil moisture (m3m−3) at 0.35 meter.
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Figure 13. Mean GPP (µmolCm−2s−1) for September 2010 at 1600 UTC as simulated at DIR+DIF (column a), the difference in the

monthly mean GPP (µmolCm−2s−1) as simulated at DIR+DIF and NO-AER (column b), and DIR-AER and NO-AER (column c). The

lines from the 1st to the 4th present the results for the biomes of forest, C3G, C4G, and shrub, respectively. The darker black contour line on

the maps delimits the LBAR.
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Figure 14. Mean diurnal cycle of (a) GPP (µmolCm−2s−1), (b) RP (µmolCm−2s−1), and (c) NEE (µmolCm−2s−1) during September

2010 for the different biomes in the LBAR. Different symbols indicating the biomes of forest (filled squares), C3G (hollow circles), C4G

(hollow squares), and shrub (filled circles); and different colors indicating the modeling experiments, green for NO-AER, blue for DIR-AER

and red for DIR+DIF.
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Figure 15. Figure 15: Scatter plots of GPP (µmolCm−2s−1) and PAR (µmolm−2s−1) from the DIR+DIFF experiment for forest (filled

squares), shrub (filled circles) biomes, grass types C4 (hollow squares) and C3 (hollow circles) during September 2010 (temporal) in the

LBAR (spatial). The color scale depicted indicates the fraction of diffuse radiation. The data were filtered for soil water factor above 0.9.
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Figure 16. Mean net CO2 fluxes (µmolCm−2s−1), weighted per biome type, for September 2010 at 1600 UTC (column a), and the

differences in the mean CO2 fluxes as simulated at DIR+DIF and NO-AER (column b), and DIR-AER and NO-AER (column c) during the

same time period. The lines from the 1st to the 4th have the results for GPP , RP , RH , and NEE processes, respectively. The darker black

contour line on the maps delimits the LBAR.
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Figure 17. (a) Mean diurnal cycle of CO2 fluxes (µmolCm−2s−1) during September 2010 in the LBAR, with different symbols indicating

the processes of GPP (hollow triangle), RP (plus) and RH (filled triangles). (b) Mean diurnal cycle of CO2 fluxes (µmolCm−2s−1)

associated withNEE during the same period and in the same area. In both plots, different colors indicating the modeling experiments, green

for NO-AER, blue for DIR-AER and red for DIR+DIF.

48



 

Figure 18. The contribution of the diffuse radiation effect to NEE (∆NEEdiff/∆NEEtot) as a function of AOD in the LBAR, but

separated with different colors for different types of vegetation. The model data were filtered for cloudiness and precipitation. Additionally,

only model points with the same soil water factor within all the three experiments, and soil moisture difference below 0.001 m3m−3 were

included. The fitting functions of the ∆NEEdiff/∆NEEtot versus AOD for each biome are also shown in the figure.
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