Supplementary Materials

Simultaneous measurements of new particle formation in 1-second

time resolution at a street site and a rooftop site

Yujiao Zhu^{1#}, Caiqing Yan^{2#}, Renyi Zhang^{2,3}, Zifa Wang⁴, Mei Zheng², Huiwang Gao¹, Yang Gao¹,

5 Xiaohong Yao^{1,5*}

¹Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China

²State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

³Departments of Atmospheric Sciences and Chemistry, Center for the Atmospheric Chemistry and the Environment, Texas A&M University, College Station, TX 77843, USA

⁴ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

⁵Qiangdao Collaborative Center of Marine Science and Technology, Qingdao 266100, China

[#] both have the same contribution, * *Correspondence to*: Xiaohong Yao, Phone: (86) 532-66782565; Fax: 86-532-66782810;
 Email address: xhyao@ouc.edu.cn

To calculate 25% minimum coefficient of variation

20 Coefficient of variation (CV) is the ratio of standard deviation to mean for particle number concentration in every 60s. 25% minimum CV values reflect small changes of particle number concentration. Large CV values reflect dramatic changes of particle number concentration and are usually caused by turbulence or short-term source emissions (Meng et al., 2015). In this study, 25% minimum CV was used as an indicator to eliminate the vehicle-caused spikes inside street canyon. For example, in Fig. 5c, all data points on the black solid lines represent the one-minute average number concentration of

25 particles and their CV values in every minute was subject to 25% minimum CV.

To deduct the contribution of vehicle spikes

30

The measured number concentrations and size distributions of vehicle particles vary a lot at the street site. Here we considered that particles with the total number concentration larger than 5×10^4 particle cm⁻³ were mainly from the vehicle emissions. During the winter sampling period, we thereby selected eighteen vehicle spikes covering total 20 minutes and plot the averaged vehicle particle size distributions (following figure). In this particle size distribution, N_{dp}/N_{16.5nm} is shown in the following table. Thus we do the calculation as the following equation:

$$N_{dp,deduct} = N_{dp,original} - \frac{N_{dp}}{N_{16,5nm}} \times N_{16,5nm,original}$$

where the $N_{dp,deduct}$ is the number concentration of Dp(nm) particles deducted the vehicle particles, $N_{dp,original}$ is the original 35 number concentration of Dp(nm) particles, $N_{16.5nm,original}$ is the original number concentration of 16.5 nm particles.

Dp(nm)	N _{dp} /N _{16.5nm}	Dp(nm)	$N_{dp}/N_{16.5nm}$
6.04	0.156186	25.5	0.613456
6.98	0.167354	29.4	0.432448
8.06	0.506914	34	0.318763
9.31	0.609134	39.2	0.238996
10.8	0.734096	45.3	0.165393
12.4	0.90152	52.3	0.134049
14.3	0.995841	60.4	0.097849
16.5	1	69.8	0.07806
19.1	0.925529	92.5	0.071186
22.1	0.789295	114.1	0.056596

References:

Meng, H., Zhu, Y., Evans, G, J., and Yao, X.: An approach to investigate new particle formation in the vertical direction on
the basis of high time-resolution measurements at ground level and sea level. Atmos. Environ., 102, 366-375, 2015

Support figures

Fig. S1 Variations of Temperature during sampling days.

Fig. S2 NPF events in Class I at the rooftop site. (a: 12 April 2012, b: 13 April 2012, c: 14 April 2012, d: 16 April

45 2012. Black dots were the fitted geometric median diameter of new particles (D_{pg}), yellow dots were the mixing ratio of NO₂+O₃, magenta dots were the mixing ratio of SO₂)
Fig. S3 Meteorological conditions on 27 April 2012
Fig. S4 Meteorological conditions on 25 April 2012.

- 15. 5 - Meteorological conditions on 25 April 2012.

Fig. S5 Number concentrations and size distributions of atmospheric particles at two sampling sites on 23 Decemebr

50 2011 (a and b: Contour plots of particle number concentration at street site and at rooftop site (# cm⁻³); c: time series of nucleation mode particles and SO₂ mixing ratios; black solid line represents those data for which the coefficient of variation in every 60s was subject to the minimum 25%. c: net increase of particles size distributions at street site (t_{s1} - t_{s0}) and at the rooftop site (t_{r1} - t_{r0}).)

Fig. S6 Meteorological conditions on 22 December 2011.

55 Table S1 Correction factors for one FMPS

Table S2 Characteristics of NPF events at two sites in April 2012 and December 2011.

Fig. S1 Variations of Temperature during sampling days.

Fig. S2 NPF events in Class I at the rooftop site. (a: 12 April 2012, b: 13 April 2012, c: 14 April 2012, d: 16 April
2012. Black dots were the fitted geometric median diameter of new particles (D_{pg}), yellow dots were the mixing ratio of NO₂+O₃, magenta dots were the mixing ratio of SO₂)

70 Fig. S3 Meteorological conditions on 27 April 2012

Fig. S4 Meteorological conditions on 25 April 2012.

Fig. S5 Number concentrations and size distributions of atmospheric particles at two sampling sites on 23 Decemebr 2011 (a and b: Contour plots of particle number concentration at street site and at rooftop site (# cm⁻³); c: time series of nucleation mode particles and SO₂ mixing ratios; black solid line represents those data for which the coefficient of variation in every 60s was subject to the minimum 25%. c: net increase of particles size distributions at street site (t_{s1} -

80

 t_{s0}) and at the rooftop site $(t_{r1}-t_{r0})$.)

Fig. S6 Meteorological conditions on 22 December 2011.

D _p	r	D_p	r
8.06	1.294	34	1.222
9.31	1.178	39.2	1.237
10.8	1.134	45.3	1.261
12.4	1.100	52.3	1.292
14.3	1.067	60.4	1.284
16.5	1.051	69.8	1.230
19.1	1.069	80.6	1.200
22.1	1.134	93.1	1.194
25.5	1.189	107.5	1.244
29.4	1.207		

Table S1 Correction factors for one FMPS

Date	Location	J ₈	GR	CS
		(particle cm ⁻³ s ⁻¹)	$(nm h^{-1})$	$(10^{-2} \text{ s}^{-1})^a$
12 April	Poofton Site	5	2.2	0.27+0.07
2012	Roonop Site	5	2.2	$0.2/\pm0.07$
13 April	Rooftop Site	12.2	6	1.4±0.65
2012				
14 April	Roofton Site	9.7	9.3	1.7±0.59
2012	Roonop She			
15 April	Rooftop Site	8.4	_	1 3+0 25
2012		0.4	-	1.5±0.25
16 April	Rooftop Site	8.5	7.9	0.44±0.11
2012		0.5		
25 April	Rooftop Site	14/49/36/34/1.9*	-	0.16±0.02
2012	Street Site	13/38/19/17/1.9*	-	0.65±0.23
27 April	Rooftop Site	10.2	-	0.75±0.21
2012	Street Site	8.1	-	1.2±0.37
10 December	Street Site	5.7	-	2.3±0.51
2011				
11 December	Street Site	11	-	8.9±2.5
2011	Street Site			
14 December	Street Site	10.7	_	1 6+0 25
2011		10.7	-	1.0-0.20
15 December	Street Site	5	_	1 5+0 46
2011	Street Site	5	-	1.0-0.70
21 December	Rooftop Site	0.9	-	0.45±0.04
2011	Street Site	4	-	1.3±0.23
22 December	Rooftop Site	1.9	-	0.78±0.17
2011	Street Site	7.9	-	1.3±0.33
23 December	Rooftop Site	0.8	-	0.98±0.12

Table S2 Characteristics of NPF events at two sites in April 2012 and December 2011.

2011	Street Site	4.4	-	1.3±0.23

^a: Condensation sink was averaged 1-h prior to the NPF event.

-: NPF in Class II.

100 *: J_8 of four short-term NPF events and one long-term NPF event.