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Dear Sir,

Please find attached our responses to your comments and the reviewer’s comments regarding the above paper.
We have updated the manuscript accordingly and marked the changes in blue.

The main changes consist of the addition of a new section in the paper (Section 6, including new Figures 10
and 11). This section compares the mixing state metric x to other measures of heterogeneity in hygroscopicity,
as suggested by Reviewer 2.

Yours sincerely,

Joseph Ching



1 Response to Reviewer #1’s comments

We greatly appreciate the reviewer’s comments. We revised the manuscript accordingly with changes marked
in blue. Our responses are as follows:

(1.1) Figure 1 and Table 1 and 2 are 100% identical to figures and tables in Riemer et. al. 2013. Even
with the authors and the Journal being the same I would consider this a questionable practice. The least the
authors can do is to add a note to the captions saying “Taken from Riemer et. al. 2013”.

We updated the captions to Figure 1 and Tables 1 and 2 accordingly.

We also added text to emphasize that we summarize the important key points from Riemer and
West (2013) for the convenience of the reader:

e page 3, line 4: “The salient points are summarized as follows.”

e page 3, lines 7-8: “From this quantity, all other mass-related quantities can be defined, as
detailed in Riemer and West (2013) and here listed in Table 1, and the diversity metrics can
be constructed as shown in Table 2.”

(1.2) Most presented findings are statistical observations. I am convinced it would add great value to
the manuscript if the authors discussed potential physical origins of their findings. E.g. why do different
populations experience different amounts of error cancellations (page 12, line 9)? What physical characteristic
might explain the dependence of the relative error on supersaturation threshold (page 12&13)?

We have made a number of changes and clarifications to the paper in an attempt to explain
the physical origins of our findings. We renamed Section 5 to “Relationship of error in CCN
concentration and mixing state index x” to highlight that this is where we will discuss this
relationship. In this section we discuss Figure 5, which clarifies that “Error is caused only by the
difference in the number of particles that activate in the reference case, but do not activate after
composition averaging [...], and the cases that activate after composition averaging, but did not
activate in the reference case.”

In this section we also explain the physical basis of zero error for internally mixed populations as
the fact that “For populations with y = 100%, the particles’ composition is the same across the
entire population, and hence [...] the number concentrations in quadrants B and D are zero.”
Correspondingly, we explain the physical basis of the error for partially-internally mixed popula-
tions as depending on “both the extent of distortion of the critical supersaturation distribution
and the supersaturation threshold.”

To explain the dependence of the relative error on the supersaturation threshold, we clarified
that “for a given supersaturation threshold and a given x value, different populations experience
different amounts of the error cancellations” described above. A detailed investigation of this is
provided by Figure 8, which together with Figure 5 provides physical understanding of the cancel-
lation phenomenon. We explained in the paper that “the change in particle number concentration
per supersaturation interval is smaller for s, of 0.1% compared to 0.3 < s, < 1.5%” due to the
shape of the population P in Figure 5.

(1.3) Figure 7: the x-axis looks like a ratio rather then %. Also, the caption mentions insets which do not
seem to be there.

Thanks for pointing this out. We fixed both of these issues.



2 Response to Reviewer #2’s comments

We thank the reviewer for their comments and suggestions. We revised the manuscript accordingly with
changes marked in blue. Our responses are as follows:

(2.1) Importance of the mixing state metrics: My major concern is how the new metrics () will help to
quantify the mixing state effect? In this study, the determination of mixing state effect was done by comparing
CCN predictions of cases with and without composition averaging. If I understand correct, it means that
the mixing state effect is determined without the metric x. So, why would we need such a parameter if it is
not even used?

The reviewer is correct—since we have all the per-particle information we can determine the error,
and if this was all we wanted to do then the metric x (or any other mixing state metric) is not
needed.

However, our goal is to relate the error in CCN concentration due to the internal mixture as-
sumption to a quantitative measure of mixing state. The paragraph in the introduction, p. 2,
line 13 states this goal, and we added text to clarify this further, p. 2, lines 18-20: “The central
question that we address is: For aerosol populations of a given mixing state, what magnitude of
errors can we expect for estimating CCN concentrations when assuming that the population is
internally mixed?”

(2.2) Performance of the mixing state metrics: One of my questions during my reading is that if a single x
corresponds to a unique error in CCN predictions and if it can be used in the CCN prediction or even better
than existing parameters. The authors answered my first question, and showed that the relationship of x
and the error in CCN predictions is not unique. According to the size-resolved hygroscopicity distribution
in Fig. 4, there are two kappa modes and my feeling is that the fraction of the low hygroscopic mode (Fru)
is a critical parameter for the errors when neglecting the mixing state information. Could you make similar
plots as in Fig. 6 and Fig. 7 but using Fpy instead of x7 If the error shows more converged dependence on
Frm, x may not be a better parameter for the CCN prediction. Besides, x is hard to determine in practice
by available measurement techniques.

Thanks for this suggestion, which together with reviewer’s point 2.3 inspired us to add another
section to the paper. We think that including Fyp and the geometric standard deviation of the
k-distribution in the discussion will answer the questions that many readers might have.

The new section (Section 6) is titled “Relationship of x and CCN error to other metrics of
hygroscopic mixing state”, and we added two figures.

Figure 10 shows the relationship of (a) size-restricted mixing state parameter s and mixing
state parameter, x, (b) size-restricted mixing state parameter y.s and number fraction of particles
with low hygroscopicity, Fru, and (c¢) size-restricted mixing state parameter yyes and geometric
standard deviation of the k-distribution, o, for all 384 aerosol populations in P.

Figure 11 is analogous to Figure 6 and shows (a) Relative error €(Seny, Xres), (b) relative er-
ror €(Senv, FLu), and (c) Relative error €(Senv, o) for each individual aerosol population in P,
evaluated for 20 supersaturation values between 0.05% and 1%.

We also added text in the conclusions, p. 18, lines 19-23: “We also explored the relationship of
CCN error other measures of mixing state, specifically a size-restricted y, the fraction of particles
with low hygroscopicity, and the geometric standard deviation of the s-distribution. These other
measures also capture aspects of the heterogeneity of the particle population and the dependence
of CCN error on these quantities are qualitatively similar to the one when using y. However, x
has advantages as a mixing state metric due to its defined range (0 to 100%) and well-defined
extremes (0% is fully internally mixed and 100% is full externally mixed).”



(2.3) Comparison of y to existing parameters: x is a single parameter containing more intensive information.
The authors have nicely presented its general concept by a nice illustration of Fig. 1. But it is still hard
to fully understand it. Can you plot the series of y and compared it to other well-established parameters,
e.g., FLu, or the (geometric) standard deviation of kappa distribution, etc.? Does a higher x correspond to
a larger F1y or a smaller standard deviation? The potential link to other mixing state parameter may help
people to accept the new parameter.

This was addressed in conjunction with the response to comment (2.2), and forms the content of
the new Section 6.

(2.4) Design of experiments and discussion: In this study, the performance of x is evaluated by comparing
the error with kinds of averaged diversity value over the whole size range. I suggest the authors to reconsider
this. The errors in CCN prediction are controlled by multiple parameters, i.e., the evaluated supersaturation,
the size distribution and the kappa distribution. We know that the particle size has a dominant effect on the
CCN activation. But if we want to quantify the effects of particle size on the CCN prediction, can we plot
the error against the averaged particle size as what was done for x7 It is not clear what’s the better solution
but maybe if the authors could try to used size-resolved x and check how to use it in CCN prediction or
parameterization, e.g., maybe there is a compact empirical relation between y and the averaged activation
fraction at each size.

We did explore what the error distribution would look like if size-resolved composition information
was retained. This is described on p. 14, lines 17-26. We did not include a figure for these results
because they are qualitatively similar to Figure 6.

In the new Section 6, we now also added some material to show what happens if y is calculated
based on a size restricted population (Figure 10a and 1la, see response to comment (2.2) for
details). Again, the error distribution looks qualitatively very similar to Figure 6.

(2.5) Abstract “However, it has been difficult to rigorously investigate this assumption because appropriate
metrics for mixing state were lacking”

I think the kappa distribution and the corresponding parameters (mean kappa, mode kappa, and standard
deviation) in Su et al. (2010) may be as good as x in representing the CCN-relevant mixing state.

We agree with the reviewer and removed this sentence.

(2.6) Page 8 In 10, Can the authors specify which kappa values were used for the two surrogate groups and
how to calculate kappa for internally mixed particle?

We added the specifics about this on p. 8, lines 11/12— p. 9, lines 1-4:

“Since we track the composition evolution of each individual particle throughout the simulation,
we can calculate the critical supersaturation s. for each particle as described in Riemer et al.
(2010), using the concept of the dimensionless hygroscopicity parameter x (Petters and Kreiden-
weis, 2007). The overall x for a particle is the volume-weighted average of the x values of the
constituent species. Based on Petters and Kreidenweis (2007) we assume x = 0.65 for all salts
formed from the NH} —SO3~ —NOj system. For all MOSAIC model species that represent SOA
we assume k = 0.1, and for POA and BC we assume x = 0.001 and s = 0, respectively.”

Note that we do not assign kappa values for the surrogate species as such, but calculate the overall
k for a particle as the volume-weighted average of the k values of the constituent species, and
assign k values of the constituent species as specified above.
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Abstract. It is commonly assumed that models are more prone to errors in predicted CCN concentrations when the aerosol

populations are externally mixed.

were-anavailable: In this work we investigate this assumption by using the mixing state index () proposed by Riemer and

West (ACP, 13, 11423-11439, 2013) to quantify the degree of external and internal mixing of aerosol populations. We combine
this metric with particle-resolved model simulations to quantify error in CCN predictions when mixing state information is
neglected, exploring a range of scenarios that cover different conditions of aerosol aging. We show that mixing state information
does indeed become unimportant for more internally-mixed populations, more precisely for populations with y larger than 60%.
For more externally-mixed populations (y below 20%) the relationship of x and the error in CCN predictions is not unique,
and ranges from lower than —40% to about 150%, depending on the underlying aerosol population and the environmental

supersaturation. We explain the reasons for this behavior with detailed process analyses.

1 Introduction

The mixing state of an aerosol population depends on the distribution of chemical compounds across the population (Riemer
and West, 2013). Field observations reveal that ambient aerosol mixing states can be complex (e.g. Healy et al., 2013; Moffet
and Prather, 2009). Even freshly emitted particles can contain multiple chemical species depending on the source characteristics
(Ault et al., 2010; Toner et al., 2006), and the initial particle composition is further modified in the atmosphere as a result of
aging processes such as coagulation, condensation of secondary aerosol species, and heterogeneous reactions (Weingartner
et al., 1997). This profoundly impacts the aerosol optical properties (Jacobson, 2001), their CCN activity (Wang et al., 2010)
and the particle lifetime (Koch et al., 2009).

In this study we focus on CCN activity, and indeed, many CCN closure studies show that the quality of the closure depends
crucially on the assumptions about aerosol mixing state (McFiggans et al., 2006; Wang et al., 2010; Bhattu and Tripathi, 2015;
Ervens et al., 2010). Based on these observational findings, it is commonly assumed that the “internal mixture assumption”

works well for regions that are not directly influenced by fresh emission sources. By “internal mixture assumption” we mean
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the assumption that the composition of individual aerosol particles equals the composition of the bulk, at least within a certain
size range. In contrast, closure studies show that, in areas close to emission sources, a certain degree of external mixing needs
to be assumed to obtain good closure. This is confirmed by modeling studies showing that, without introducing fresh emissions,
aging processes transform the mixing state of aerosol populations so that the CCN properties can be deduced from the bulk
aerosol composition, and mixing state details become negligible (Zaveri et al., 2010; Ching et al., 2012; Fierce et al., 2013).
However, the timescale for this transformation depends on the local conditions, such as total number concentration of existing
CCN and the amount of condensable aerosol material (Fierce et al., 2015). Introducing fresh emissions additionally complicates
the picture.

The importance of aerosol mixing state to CCN concentration is also demonstrated by studies that experimentally determine
the hygroscopicity of organic species. For example, Mei et al. (2013) showed for the CalNex field campaign that the uncertainty
in the derived organic hygroscopicity depended on the uncertainties in the derived CCN hygroscopicity and the volume fraction
of chemical species contained in the CCN, which are related to the aerosol mixing state.

Our aim for this study is to quantitatively explain how mixing state and error in CCN concentrations are related. Previous
work has approached this question from a Lagrangian point of view, considering the aging history of the particle population
(Zaveri et al., 2010; Ching et al., 2012, 2016a) as a plume of aerosol particles is evolving. While this approach yields valuable
process-level understanding, it is difficult to apply to field observations, because following a particle population in the real
atmosphere is inherently challenging. In this study, we therefore will not focus on the temporal evolution of the particle
population, but instead individually sample populations from a set of simulations. The central question that we address is: For
aerosol populations of a given mixing state, what magnitude of errors can we expect for estimating CCN concentrations when
assuming that the population is internally mixed?

Our study combines a recently developed metric for aerosol mixing state with particle-resolved modeling and a strategy
for error quantification. We use the mixing state index () proposed by Riemer and West (2013) to rigorously quantify the
degree of external/internal mixing of aerosol populations. This mixing state index is a scalar quantity, and varies between 0%
(for completely external mixtures) and 100% (for completely internal mixtures) for any given aerosol population. The metric
has been applied to field observations in Paris during the MEGAPOLI campaign (Healy et al., 2014), in Northern California
during CARES (O’Brien et al., 2015), and in central London (Giorio et al., 2015). It has proven useful to gain insight into the
processes that govern diurnal changes in mixing state and mixing state changes related to air mass origin. For example, Healy
et al. (2014) were able to determine a characteristic diurnal cycle of x for Paris with low values during the day when daytime
primary emissions dominated, compared to the night when formation of ammonium nitrate moved the population towards a
more internal mixture, indicated by increasing  values.

Sections 2 and 3 give a brief background on the definition of the mixing state index and on the particle-resolved model
PartMC-MOSAIC. Section 4 describes the model simulations that are the basis of this work and our framework for error

quantification, followed by the results in Section 4 and 4. Section 7 summarizes our findings.
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2 Mixing state metrics

Riemer and West (2013) put forward a framework to quantify aerosol mixing state, which was inspired by diversity metrics
used in other disciplines such as ecology (Whittaker, 1972), economics (Drucker, 2013), neuroscience (Strong et al., 1998),
and genetics (Falush et al., 2007). The salient points are summarized as follows. Given a population of N aerosol particles,
each consisting of some amounts of A distinct aerosol species, this concept is based on the knowledge of mass of species a in
particle 4, denoted pff, fori=1,...,N,and a = 1,..., A. From this quantity, all other mass-related quantities can be defined,
as detailed in Riemer and West (2013) and here listed in Table 1, and the diversity metrics can be constructed as shown in
Table 2.

The particle diversity D; represents the number of “effective species” of particle . For a particle ¢ that consists of A species,
the highest possible value for D; is A, and this occurs when all A species are present in equal mass fractions. Knowing the
D; values for all particles, the population-level quantities D, and D, can be calculated, with D, being the average effective
number of species in each particle, and D, being the effective number of species in the bulk. Finally, the mixing state index x
is defined as
Dy —1

D,—-1

X (D

The mixing state index x varies from 0% (a fully externally mixed population) to 100% (a fully internally mixed population.
To fully quantify mixing state, two of the three metrics (D,,D.,,X) are needed, and the third can be derived. As shown in
Riemer and West (2013) and Healy et al. (2014), it is instructive to map the mixing state metrics of aerosol populations into a
mixing state diagram (D,,, D.,), as shown in Figure 1. Particle populations with single-species particles, i.e., “externally mixed”
populations, have D, =1 and D., between 1 and A, and are therefore mapped onto the vertical axis (y = 0%). Populations
consisting of particles with identical mass fractions map onto the diagonal xy = 100%. Since  has the intuitive interpretation
of the “degree of internal mixing”, we use it here as a metric for error quantification as shown in Section 4.

Note that the definition of “species” for calculating the mass fractions depends on the application. It can refer to chemical
species, as in Riemer and West (2013), Healy et al. (2014), O’Brien et al. (2015), and Giorio et al. (2015), or it can refer to
species groups, as in Dickau et al. (2016) who quantified mixing state with respect to volatile and non-volatile components.
Since we are concerned with CCN properties in this paper, we will group the chemical model species according to hygroscop-
icity, defining two surrogate species. Black carbon (BC) and primary organic aerosol (POA) are combined into one surrogate
species, since their hygroscopicity is very low. All other model species (inorganic and secondary organic aerosol species) are

combined into a second surrogate species and  is calculated from these two surrogate species.

3 Particle-resolved modeling with PartMC-MOSAIC

A detailed description of the numerical methods used in PartMC-MOSAIC is given in Riemer et al. (2009). In brief, PartMC
(Particle-resolved Monte Carlo) is a 0-D, or box, model which explicitly resolves the composition of many individual particles

within a well-mixed computational volume representing a much larger air parcel. During the evolution of the air parcel moving
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Figure 1. Mixing state diagram to illustrate the relationship between average particle diversity D, , bulk population diversity D, and mixing
state index ) for seven example populations (II; to II7). Each population consists of six particles, and the colors represent different chemical

species (A = 3). This figure is taken from Riemer and West (2013).

Quantity Meaning
i mass of species a in particle %
A
wi =Y pi  total mass of particle 4
a=1
N
ut = wui  total mass of species a in population

N
w= Z i total mass of population

1=1
a
pi = Bi mass fraction of species a in particle ¢

i

pi = Bi mass fraction of particle 7 in population
//l/ll

pt = Ll mass fraction of species a in population
I

Table 1. Aerosol mass and mass fraction definitions and notation. The number of particles in the population is /N, and the number of species

is A. This table is taken from Riemer and West (2013).



Quantity Name Units Range Meaning
A
H;,= Z —p§ Inp§ mixing entropy of — OtolnA Shannon entropy of species
o=t particle ¢ distribution within particle 4
N
H, = Z piH; average particle — OtolnA average Shannon entropy per
=t mixing entropy particle
A
H, = Z —p“Inp® population bulk — OtolnA Shannon entropy of species
o=t mixing entropy distribution within population
A
D; =¢"i = H (pi) P particle diversity effective  1to A effective number of species in
o=t of particle ¢ species particle ¢
N
D, =¢fe = H(DZ)P ¢ average particle effective 1to A average effective number of
i=1 . . Lo .
(alpha) species species species in each particle
diversity
A
D, = e = H (") * bulk population effective  1to A effective number of species in
o=t (gamma) species species the bulk
diversity
D . . . .
Dg = D—” inter-particle — 1to A amount of population species
(beta) diversity diversity due to inter-particle
diversity
D, —1 .. . . Lo
X=75 7 mixing state index —— 0% to 100%  degree to which population is
-

externally mixed (x = 0%)
versus internally mixed

(x = 100%)

Table 2. Definitions of aerosol mixing entropies, particle diversities, and mixing state index. In these definitions we take 0ln0 = 0 and

0% = 1. This table is taken from Riemer and West (2013).
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along a specific trajectory, the mass of each constituent species within each particle is tracked. Emission, dilution, nucleation
and Brownian coagulation are simulated with a stochastic Monte Carlo approach. The relative positions of particles within the
computational volume are not tracked. To improve efficiency of the method we use weighted particles in the sense of DeVille
et al. (2011) and efficient stochastic sampling methods (Michelotti et al., 2013).

PartMC is coupled with the aerosol chemistry model MOSAIC (Model for Simulating Aerosol Interactions and Chemistry)
(Zaveri et al., 2008) which includes the gas phase photochemical mechanism CBM-Z (Zaveri and Peters, 1999), the Multicom-
ponent Taylor Expansion Method (MTEM) for estimating activity coefficients of electrolytes and ions in aqueous solutions
(Zaveri et al., 2005a), the multi-component equilibrium solver for aerosols (MESA) for intraparticle solid-liquid partitioning
(Zaveri et al., 2005b) and the adaptive step time-split Euler method (ASTEM) for dynamic gas-particle partitioning over size-
and composition-resolved aerosol (Zaveri et al., 2008), as well as a treatment for SOA (secondary organic aerosol) based on the
SORGAM scheme (Schell et al., 2001). The CBM-Z gas phase mechanism treats a total of 77 gas species. MOSAIC treats key
aerosol species including sulfate (SO,), nitrate (NOg3), ammonium (NH,), chloride (Cl), carbonate (CO3), methanesulfonic
acid (MSA), sodium (Na), calcium (Ca), other inorganic mass (OIN), BC, POA, and SOA. The model species OIN represents
species such as SiO,, metal oxides, and other unmeasured or unknown inorganic species present in aerosols. SOA includes
reaction products of aromatic precursors, higher alkenes, a-pinene and limonene.

PartMC-MOSAIC has been used in the past for process studies of mixing state impacts on aerosol properties in various
environments. For example, Ching et al. (2012) quantified the impact of aerosol mixing state on cloud droplet formation, and
Fierce et al. (2013) investigated the sensitivity of CCN activity to mixing state characteristics at emission. The model was also
used to explain the observed diurnal variations of aerosol hygroscopicity in the North China Plain (Liu et al., 2011) and to

characterize the evolution of aerosol mixing state in a ship plume (Tian et al., 2014).

4 Framework for error quantification

The basis for the error quantification framework is the library of eight urban plume scenarios described in Ching et al. (2016a),
Sections 3.2.1 and 4.1. These scenarios were designed to simulate the aging process of black carbon-containing particles from
combustion sources. With “aging” we refer here to the transition from CCN-inactive to CCN-active at a given supersaturation
threshold due to coagulation with other aerosol particles or due to condensation of secondary aerosol material (Riemer et al.,
2010). We consider the formation of ammonium nitrate and ammonium sulfate as well as secondary organic aerosol from
biogenic or anthropogenic gaseous precursors as represented in the SORGAM module.

The eight scenarios are derived from the base case, which is the scenario presented in Ching et al. (2012). To construct the
scenario library, the BC emission rate was set to 100% (E100), 25% (E25), and 2.5% (E2.5) of the base-case, and the number
concentration of background aerosol particles was set to 100% (B100), and 10% (B10) of the base-case. Combining the
emission cases and the background aerosol concentration cases results in six scenarios, and the gas phase emissions for these
six scenarios were the same as in Ching et al. (2012). For the base case (E100-B100) we performed two additional simulations

by reducing the emission rate of all gaseous components by 50% (G50) and 25% (G25), respectively, of the case presented
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Initial/Background N, /cm™® Dg/pm oy Composition by mass

Aitken mode 1800 0.02 145 49.64% (NH4)2S04 + 49.64% SOA + 0.72% BC
Accumulation mode 1500 0.116 1.65 49.64% (NH4)2SO4 + 49.64% SOA + 0.72% BC
Emission E./m™2s ' Dg/pm o Composition by mass

Meat cooking 9 x 10° 0.086 1.91 100% POA

Diesel Vehicles 1.6 x 10® 0.05 1.74  30% POA + 70% BC

Gasoline Vehicles 5x 107 0.05 1.74  80% POA + 20% BC

Table 3. Number concentration, V,, of the initial/background aerosol population, and area source strength, E,, of the three types of emission.
All aerosol size distributions are assumed to be lognormal and defined by the geometric mean diameter, Dy, and the geometric standard

deviation, 0.

in Ching et al. (2012). The BC mass concentrations of all the plume scenarios ranged from 0.05 pgm=2 to 3.6 ugm—3.
The formation of secondary aerosol material was similar in all G100 cases, since the emissions of gaseous precursors were
the same. On the first simulation day, the total mass concentration was dominated by ammonium nitrate formation, which
evaporated after ammonia emissions ceased (Ching et al., 2012). Secondary production of sulfate and organic mass occurred
on the first and second days of the simulation. The total mass concentration varied by a factor of about two between plume
scenarios G100 and G50 due to differences in secondary aerosol mass formation.

As a result of these changes in input parameters, the aging of BC particles proceeded at different rates, and different mixing
states arose over the course of the simulation, which are further discussed below. The simulation time for each scenario was
48 hours, and during the first 12 hours gas and aerosol emissions entered the air parcel. Background aerosol particles were
introduced over the entire simulation time owing to dilution with background air. Table 3 specifies the details of the initial and
background aerosol distribution as well as the aerosol emissions for the base case run.

Here we are not focused on the process analysis of the temporal evolution of BC-containing particles, but rather on the
aerosol state; we use the hourly aerosol state from the scenarios as a basis for our analysis. We will refer to the set of these
populations as set P, which comprises N;,o, = 48 X 8 = 384 elements. The populations in PP cover a wide range of mixing
states. Figure 2 illustrates how these aerosol populations map to the mixing state diagram. Each symbol represents an aerosol
population from P, colored by the scenario the population is sampled from.

As explained in Section 2, the maximal possible range for both D, and D, is from 1 to 2, however this range is not entirely
accessed with the populations investigated here. The effective number of species in the population (D) is always larger than 1,
i.e., there are no populations that consist solely of hygroscopic or hydrophobic species. It reaches values of almost 2 for some
populations, meaning that for these populations the bulk mass fractions of hydrophobic and hygroscopic material are about
the same. On a per-particle level, the average number of effective species (D,,) is close to 1 for some populations, indicating
that populations exist for which the particles consist of purely hygroscopic or hydrophilic material. The maximum value of

D, is about 1.7. Figure 2 also shows lines of constant mixing state index . The populations cover values of x from 7.5%
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Figure 2. Mixing state diagram for the 384 populations in IP. The colors indicate the Ching et al. (2016a) scenario from which the populations
were sampled: B100-E100-G100 (light blue), B10-E100-G100 (orange), B100-E25-G100 (blue), B10-E25-G100 (grey), B100-E2.5-G100
(red), B10-E2.5-G100 (brown), B100-E100-G50 (green) and B100-E100-G2S5 (pink). The abbreviations of the scenarios follow Ching et al.
(2016a), “B” indicates the level of background particle concentration (100% and 10% of the base case scenario), “E” indicates the level of
the black carbon emission rate (100%, 25%, and 2.5% of the base case scenario) and “G” indicates the level of gas emission rate (100%,

50%, and 25% of the base case scenario).

to 88%. The lack of populations with y between 88% and 100% does not impact the generality of the conclusions. As we
will see later, the error in CCN concentration when neglecting mixing state information vanishes for y > 60%. The pattern
that each scenario forms in this mixing state diagram can be explained by the temporal evolution of D, and D, which is
determined by coagulation, condensation of secondary aerosol material, dilution, and emission (Riemer and West, 2013). All
scenarios start with low average particle species diversity, D, because at the beginning of the simulation the particles consist
mainly of one of the surrogate species, either hydrophobic BC or POA, or hygroscopic background species. As the simulation
proceeds, secondary aerosol species condense and coagulation occurs, moving D,, towards larger values. This process does
not necessarily proceed monotonically, i.e., D,, can also decrease with time. The reason could be either that secondary aerosol
material is evaporating or that so much secondary aerosol material is condensing that it dominates in terms of composition. A
similar argument can be made for the temporal evolution of D.,, but applied to the composition of the bulk population.

For each of the 384 aerosol populations we determine CCN concentrations as follows: Since we track the composition evo-

lution of each individual particle throughout the simulation, we can calculate the critical supersaturation s. for each particle as
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Figure 3. Frequency distribution of CCN/CN fractions for all 384 aerosol populations in PP at four selected environmental supersaturations

Senv. The 384 populations were derived from eight scenarios, each with 48 hourly snapshots.

described in Riemer et al. (2010), using the concept of the dimensionless hygroscopicity parameter ~ (Petters and Kreidenweis,
2007). The overall « for a particle is the volume-weighted average of the x values of the constituent species. Based on Petters
and Kreidenweis (2007) we assume « = 0.65 for all salts formed from the NH; —SO3~ — NO3 system. For all MOSAIC
model species that represent SOA we assume « = 0.1, and for POA and BC we assume x = 0.001 and « = 0, respectively.

We use s, to define a cumulative number distribution Noen (s ), which represents the number of particles per volume with
critical supersaturation less than s.. The CCN concentration at a chosen environmental supersaturation threshold s, for a
population with mixing state index of x is then denoted as Ncon (Senv, X0)-

Figure 3 provides an overview of the CCN activity for the populations. It shows the frequency distribution of the CCN/CN
fraction, evaluated at four different supersaturation thresholds (0.1%, 0.3%, 0.6%, and 1%). These four supersaturation thresh-
olds bound the CCN activity of our populations well. As expected, for the lowest supersaturation threshold of 0.1%, most
populations only have small CCN/CN fractions with the median at CCN/CN = 20%. For the highest supersaturation thresh-
old of 1% the median is at CCN/CN = 90%.

We determine the error that is introduced by neglecting mixing state information as shown schematically in Figure 4. The
starting point is an aerosol population from the particle-resolved simulations as shown in Figure 4(a). This particular population
had a mixing state index of xo = 13%. Figure 4 shows the distribution density function 9N (D, x)/(dlog, D dk) based on
the two-dimensional cumulative number distribution N (D, ) in terms of particle diameter D and hygroscopicity parameter

x (Su et al., 2010; Fierce et al., 2013). We observe that at a particular particle size a distribution of hygroscopicity parameter
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Figure 4. Conceptual framework for error quantification, see Section 4 for details.

values exists. The solid black line indicates the chosen supersaturation threshold (here 0.3% as an example) that separates
CCN-active from CCN-inactive particles.

We then perform composition averaging on this particle population as described by Ching et al. (2016a). Composition
averaging preserves the bulk aerosol mass concentrations, the number concentration and the particle diameters, but modifies
the per-particle composition, so that each particle is assigned a composition equal to the average composition of the population.
Figure 4(b) shows the population after composition averaging. Because all particles were assigned the same composition (equal
to the average composition), the spread in « vanishes, and the CCN number concentration was altered as a result.

After composition averaging we re-calculate the CCN concentration, Ncen (Senv ), and define the relative error

Neen(Seny) — Neen (Senvs Xo)
nvs = . 2
e(se XO) NCCN(Senva XO) ( )

Finally, we graph the error €(Scny,x) as a function of the mixing state parameter x for a given value of sep, of the reference

population as shown in Figure 4(c).

5 Relationship of error in CCN concentration and mixing state index x

To aid the interpretation of the resulting error distributions as defined in Equation 2, we first show the effect of composition
averaging on CCN concentrations in Figure 5 for one example population in P. This normalized 2D histogram relates the critical
supersaturation of each particle before composition averaging to its critical supersaturation after composition averaging. Points
above the 1:1 line represent particles for which the critical supersaturation increased after composition averaging, and points
below the 1:1 line represent particles for which the critical supersaturation decreased after composition averaging. Figure 5 also

shows a vertical and horizontal line that marks an assumed environmental supersaturation threshold of 0.3%. The particles to
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the left of the vertical line activate in the reference case, and the particles below the horizontal line activate in the composition-
averaged case.

Based on this we can define four quadrants. Particles in quadrant C activate both in the reference case and in the composition-
averaged case, while in quadrant A they do not activate in either case. Particles in these two quadrants do not incur any error in
CCN concentration even though composition averaging may have changed their critical supersaturation value. Error is caused
only by the difference in the number of particles that activate in the reference case, but do not activate after composition
averaging (quadrant B), and the cases that activate after composition averaging, but did not activate in the reference case
(quadrant D). If the number concentration of particles in quadrants B and D was equal, the overall error in CCN concentration
would be zero even though a large number of particles might have been mis-classified.

The number concentrations in quadrants B and D are determined by the supersaturation threshold and the extent to which
composition averaging simplifies mixing state, i.e., the distribution n(D, k) is distorted (compare Figure 4). This determines
the error in the critical supersaturation distribution for the composition-averaged population compared to its particle-resolved
counterpart. For populations with x = 100%, the particles’ composition is the same across the entire population, and hence all
the particles have the same hygroscopicity values. Composition averaging therefore does not distort n(D, ) and the number

concentrations in quadrants B and D are zero. In constrast, for populations with y < 100%, composition averaging distorts
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each y-bin. The red line is the median of that distribution, and the dashed line extends to the minimum and maximum error.

n(D, ) depending on the distribution of n(D, ). The 2D histogram in Figure 5 therefore varies from population to population,
and the number concentrations in quadrants B and D depend on both the extent of distortion of the critical supersaturation
distribution and the supersaturation threshold (the black horizontal and vertical lines) as shown in Figure 5.

In summary, the dependence of the relative error on supersaturation threshold and mixing state index () is determined by
the number concentrations in quadrants B and D. Whenever the number concentrations in quadrants B and D are of similar
magnitude, the error is small. As we will show in Figures 7 and 8 this can occur for all x values. The situation of number
concentrations in quadrants B and D having different magnitudes tends to occur only for small y values.

Figure 6 shows the relative errors €(Seny,x) for all populations, evaluated for 20 supersaturation values ranging between
0.05% and 1% in steps of 0.05%. The boxes show the 25th and 75th percentiles of the distribution of relative errors in each
x-bin (Ax = 10%). The red line is the median of that distribution, and the dashed line extends to the minimum and maximum.
This figure confirms that the error tends to decrease as x increases, and that for a given x value a range of error values exists,
which narrows as  increases as presented by the boxes in Figure 6. This range is caused by the assumed supersaturation
threshold at which the CCN concentration is evaluated, but also reflects that, even for a given supersaturation threshold and a
given x value, different populations experience different amounts of the error cancellations illustrated in Figure 5.

Further, the relative error €(sepny, X) is positive for most populations, meaning that composition averaging causes the CCN
concentration to be overestimated. However, for some populations the relative error is negative, i.e., composition averaging
results in an underestimation of the CCN concentration. Cases with negative relative error mostly occur at low environmental

supersaturation (Seny < 0.1%) and are most prevalent for x values between 60% and 80%. For most of these cases the error
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Figure 7. Relative error in CCN concentration €(Senv,X) for different environmental supersaturations, see Equation 2 for definition. Fhe

magnitude is less than 10% (i.e., -10% < e < 0%), however some points stand out with negative relative errors of up to —43%.
These originate from the cases with se,y = 0.05%.

To further investigate the dependence of the relative error €(Seny, x) on supersaturation threshold, Figure 7 shows €(Seny, X)
for four selected environmental supersaturation thresholds. For low supersaturation thresholds (sen, = 0.1%, Figure 7(a)), the
error in CCN concentration is independent of the mixing state index and the magnitude is within £18%. We can explain this
fact by consulting Figure 8, which maps the number concentrations in quadrant D and quadrant B. If the concentrations are
the same, the points line up on the 1:1 line and the overall error is small because of the cancellation effect explained above.
Figure 8(a) shows that this is indeed generally the case for s¢p, = 0.1%.

At higher supersaturation thresholds (Figure 7(b), (c), and (d)), the highest errors are observed for the populations with the
lowest x values, however at a given x value a range of errors is possible. The exact outcome depends on to what extent the

mis-classified particles in quadrants B and D cancel out. Errors in the intermediate regime of y between 40% and 80% are up
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to about 50%. The largest errors occur below x = 20% (up to about 150%). We see in Figure 8 that this behavior can again be
explained with the way the quadrants B and D are populated. The points furthest away from the 1:1 line tend to have the lowest
x values. This is consistent with our expectation that accounting for mixing state is important for more “externally mixed”
populations. However, some points are close to the 1:1 line even though their y value is low, which explains why small errors
can still be found for low-x populations.

These results illustrate that the dependence of CCN concentration error on x depends on the chosen supersaturation thresh-
old. The reason for this can be understood from Figure 5, which shows that the change in particle number concentration per
supersaturation interval is smaller for s. of 0.1% compared to 0.3 < s. < 1.5%. Therefore, for the case of sqn, = 0.1%, the
number concentrations in B and D for this population are less sensitive to composition averaging. While this figure shows
one specific population as an example, this is generally the case for our aerosol populations and explains why at low super-
saturation threshold, the CCN error appears to be independent of . As the supersaturation threshold increases, the number
concentrations in B and D vary more significantly as demonstrated in Figure 5, and such variations depend on the distortion of
n(D, k) by composition averaging. This results in a higher sensitivity of CCN error to x at higher supersaturation thresholds.
It is important to keep in mind that while this behavior applies to the aerosol populations in this study, it cannot be expected
that it necessarily applies to any arbitrary aerosol population.

It should be noted here that this calculation represents an upper bound for the error, because composition averaging was
performed for the entire population. If size-resolved composition information is retained, the magnitude of error decreases. The
error decrease is more pronounced for higher environmental supersaturations. For example, the range of error for se,, = 0.1%
reduces from (—18%, +18%) to (—12%, +16%) when the particles are sorted into five size bins per decade, and composition
averaging is performed within each size bin. For s.,, = 0.3% the range reduces from (—12%, +90%) to (—2%, +43%), and
for seny = 1% the range reduces from (—6%, +114%) to (—2%, +49%). This finding is consistent with observations by Che
et al. (2016). They analyzed CCN concentration measurements from the Yangtse River Delta area of China and found that
at low supersaturations (< 0.1%) using only aerosol bulk composition information was sufficient to predict CCN, whereas
at higher supersaturations (> 0.2%) using size-resolved chemical composition information improved the prediction of CCN
concentrations.

To produce a summary of the above information, we calculated a normalized root mean square deviation metric as a function
of mixing state index , integrating over all supersaturations as follows:

m Ngs N 2
1 \/ij_lziil (NCCNmL(rSi) - NCCN,m(Si))
Ncen,m (8i)

T 5 \ss ;
Y1242 MssTlly

. 3)

ENRMSD,j = —7

Tss M)

where ngs = 20 is the number of supersaturation values at which we evaluated CCN concentrations, and m; is the number
of aerosol populations in a given x-bin (j = 1,...,10). The green line in Figure 9 shows the relationship of exgmsp and .
Figure 9 emphasizes that composition averaging causes larger errors as x decreases. The average error decreases from about
90% to 30% when  increases from 0% to 30%. For x between 40% and 90%, the average error is less than 20%. The average
value engmsp across the whole range of x is 17.7%. This is comparable to the error of 14.6% found in the size-resolved

simulation by Ching et al. (2016b).
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state index , see Equation 3 for definition.
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geometric standard deviation of the x-distribution, o, for all 384 aerosol populations in P.

6 Relationship of x to other metrics of hygroscopic mixing state

The mixing state index x can be interpreted as a measure of the heterogeity of a particle distribution with respect to its
hygroscopic properties. In Section 4 we showed how Y relates to the error in CCN concentration that is introduced by assuming
that the particle population is internally mixed. To illustrate the concept further, in this section we will show how y relates to
other possible metrics of hygroscopicity heterogenity, and how each of them relates to the error in CCN due to neglecting
mixing state information.

We focus here on three other metrics: (1) A size-restricted version of X, Xres, Only considers particles in the diameter size
range of 30 nm to 150 nm when calculating the mixing state index. The rationale for this is that this constitutes the size range for
which composition matters most because particles smaller than 30 nm are unlikely to activate, and particles larger than 150 nm
are very likely to activate, regardless of their composition. (2) The number fraction of particles with low hygroscopicity, F1 1.
Here we considered particles with £ < 0.1 as having low hygroscopicity. (3) The geometric standard deviation of the aerosol
distribution with respect to the hygroscopicity parameter x, o,. The choice of this parameter was motivated by Su et al. (2010)
who used the concept of hygroscopicity distribution to characterize aerosol particle mixing state with regard to CCN properties.
For consistency, o, and F1,;; were also evaluated using only particles with diameters between 30 and 150 nm.

Figure 10a shows that the mixing state index y for the entire population and the size-restricted mixing state index Xqes
are strongly correlated. The sub-population with particle diameters between 30 and 150 nm is in many cases more internally

mixed than the whole population. From Figure 10b we conclude that, at least for our study, populations with a high fraction
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Figure 11. Relative error of (a) €(Senv, Xres), (D) €(Senv, FLH ), and (¢) €(Senv, 0 ) for each individual aerosol population in P (light purple

dots), evaluated for 20 supersaturation values between 0.05% and 1%, analogous to Figure 6.

of low-hygroscopic particles tend to be associated with low values of x,es, and vice versa. However, the scatter is large, and
populations can be found that do not contain particles in the low-hygroscopicity category, but exhibit a wide range of mixing
state index values. It is also plausible that populations exist that are internally mixed, i.e. have high mixing state index, but
contain mainly non-hygroscopic species, i.e. have a high value of Fy . The fact that we do not show such populations in
our study is due to our set up, where a hygroscopic background population is always present into which we emit fresh, less-
hygroscopic particles. Lastly, Figure 10c shows that more externally mixed populations (small x,s) are associated with large
values of o,..

Figure 11 relates the relative error in CCN concentration to the mixing state metrics Xes, FL11, and o, analogous to Figure 6.
These figures looks qualitatively similar, which is expected given that all these measures are measures of heterogeneity of the
population with respect to hygroscopic properties. However, fundamentally, the mixing state index y is appealing because it
has a defined range (from O to 100%), and the property that when y is 100%, the population is perfectly internally mixed with
a CCN error of zero. It can also be easily generalized to alternate mixing state definition, e.g. based on optical properties, by
defining the surrogate species appropriately.

The measure F1,p; also has a defined range (from 0 to 100%), and a value of O implies that the population is fairly (although
not necessarily totally) homogeneous in the sense that all particles have a hygroscopicity larger than 0.1. However, the reverse
implication does not hold. If the population is homogeneous (perfectly internally mixed), F1g could be 0 or 100%. The
geometric standard deviation o, is 1 for all perfectly internally mixed populations, but does not have a defined upper limit.

7 Conclusions

Our analysis used particle-resolved modeling and a metric for aerosol mixing state to develop a framework for quantifying error
in CCN activity due to simplifying assumptions about mixing state. Mixing state information does indeed become unimportant
for more internally-mixed populations. The NRMSD error decreased to less than 10% when x was larger than 75%. For more

externally-mixed populations (x below 60%), a wide range of error in CCN concentration existed, with errors as large as 150%
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for x lower than 20%. Because the composition averaging was performed for the whole population, without retaining any size-
resolved composition information, the maximum CCN error as a function of x gives an upper bound of CCN error. It should
be noted that even for low x values, results close to the true result may be obtained because of error cancellations. In summary,
the CCN error depends on both x and Seny. As the population becomes more internally-mixed (y approaching 100%), the CCN
error is small regardless of the sy, threshold. For the aerosol populations in this study, we found higher sensitivity to x at high
Senv threshold and lower sensitivity to x at low sep, threshold.

We also explored the relationship of CCN error to other measures of mixing state, specifically a size-restricted X, the
fraction of particles with low hygroscopicity, and the geometric standard deviation of the x-distribution. These other measures
also capture aspects of the heterogeneity of the particle population and the dependence of CCN error on these quantities are
qualitatively similar to the one when using . However, x has advantages as a mixing state metric due to its defined range (0
to 100%) and well-defined extremes (0% is fully internally mixed and 100% is full externally mixed).

Several avenues exist for applying and extending our approach in future work. To confirm the validity of this approach, it
would be useful to perform CCN closure studies on field campaign data with different mixing state assumptions, and to obtain
concurrent aerosol diversity measurements, using for example single-particle mass spectrometry or off-line single-particle
analytical techniques. The same framework, with appropriately defined surrogate species, could also be applied to quantify
how error for aerosol optical properties depends on aerosol mixing state.

Aerosol-cloud interactions continue to be one of the major sources of future climate prediction uncertainties (IPCC, 2013).
One of the reasons for this is the challenge to represent the many microscale aerosol processes in large-scale global climate
models (Seinfeld et al., 2016). Using a high-fidelity aerosol model, our study provides quantitative support that mixing state
is important for determining the aerosol impact on clouds. As a consequence we conclude that the aerosol representation in
global models should account for mixing state. The aerosol microphysics schemes in several current global climate models
have been moving into this direction (Ghan and Schwartz, 2007; Bauer et al., 2008; Jacobson, 2002; Aquila et al., 2011; Kaiser
et al., 2014; Mann et al., 2010; Liu et al., 2016; Stier et al., 2005) by separating the particles into interacting subpopulations,
e.g. freshly emitted BC and aged BC. The central question is whether this degree of resolution of mixing state is sufficient
to accurately predict CCN concentration and aerosol optical properties, and whether this framework allows for an accurate
prediction of the mixing state evolution. In situ measurements of size-resolved aerosol mixing state, as suggested by Seinfeld

et al. (2016), are needed to constrain our models and the estimates of aerosol-cloud forcing in climate models.

Author contributions. J. Ching and N. Riemer designed the particle-resolved model simulations and analyzed the model data. M. West
developed the PartMC model code. M. West and J. Fast contributed to the study design and the interpretation of the results. N. Riemer and J.

Ching prepared the manuscript with contributions from all co-authors.

Acknowledgements. The authors thank Dr. Alla Zelenyuk for constructive comments and Dr. Kai Zhang for internal reviewing. Nicole

Riemer acknowledges NSF AGS CAREER grant 1254428 and EPA grant 83504201. The contents are solely the responsibility of the grantee

19



and do not necessarily represent the official views of the US EPA. Further, US EPA does not endorse the purchase of any commercial

products or services mentioned in the publication. Matthew West acknowledges NSF CMMI CAREER grant 1150490, and DOE ASR

grant DE-SC0011771. Joseph Ching and Jerome Fast were supported by the U.S. Department of Energy (DOE) under the auspices of the

Atmospheric System Research (ASR) program of the Office of Science. Pacific Northwest National Laboratory is operated for DOE by
5 Battelle Memorial Institute under contract DE-ACO05-76RL01830.

20



10

15

20

25

30

35

References

Agquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D., Minikin, A., Petzold, A., Schwarz, J., Spackman, J., et al.:
MADE-in: A new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state, Geosci. Model Dev.,
4,325-355,2011.

Ault, A. P., Gaston, C. J., Wang, Y., Dominguez, G., Thiemens, M. H., and Prather, K. A.: Characterization of the single particle mixing state
of individual ship plume events measured at the port of Los Angeles, Environ. Sci. Tech., 44, 1954-1961, 2010.

Bauer, S., Wright, D., Koch, D., Lewis, E., McGraw, R., Chang, L., Schwartz, S., and Ruedy, R.: MATRIX (Multiconfiguration Aerosol
TRacker of mIXing state): An aerosol microphysical module for global atmospheric models, Atmos. Chem. Phys., 8, 6003-6035, 2008.

Bhattu, D. and Tripathi, S. N.: CCN closure study: Effects of aerosol chemical composition and mixing state, J. Geophys. Res.-Atmos., 120,
766783, 2015.

Che, H., Zhange, X. Y., Wang, Y. Q., Zhang, L., Shen, X. J., Zhang, Y. M., Ma, Q. L., Sun, J. Y., Zhang, Y. W., and Wang, T. T.: Charac-
terization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions, Scientific Reports, 6,
24497, 2016.

Ching, J., Riemer, N., and West, M.: Impacts of black carbon mixing state on black carbon nucleation scavenging: Insights from a particle-
resolved model, J. Geophys. Res.-Atmos., 117, doi:10.1029/2012JD018269, 2012.

Ching, J., Riemer, N., and West, M.: Impacts of black carbon particles mixing state on cloud microphysical properties: sensitivity to envi-
ronmental conditions, J. Geophys. Res.-Atmos., 121, doi:10.1002/2016JD024851, 2016a.

Ching, J., Zaveri, R. A., Easter, R. C., Riemer, N., and Fast, J. D.: A three-dimensional sectional representation of aerosol mixing state for
simulating optical properties and cloud condensation nuclei, J. Geophys. Res.-Atmos., 121, doi:10.1002/2015JD024323, 2016b.

DeVille, R. E. L., Riemer, N., and West, M.: Weighted Flow Algorithms (WFA) for stochastic particle coagulation, Journal of Computational
Physics, 230, 8427-8451, doi:10.1016/j.jcp.2011.07.027, 2011.

Dickau, M., Olfert, J., Stettler, M. E. J., Boies, A., Momenimovahed, A., Thomson, K., Smallwood, G., and Johnson, M.: Methodology for
quantifying the volatile mixing state of an aerosol, Aerosol Sci. Technol., 50, 759-772, doi:10.1080/02786826.2016.1185509, 2016.

Drucker, J.: Industrial Structure and the Sources of Agglomeration Economies: Evidence from Manufacturing Plant Production, Growth
Change, 44, 54-91, doi:10.1111/grow.12002, 2013.

Ervens, B., Cubison, M. J., Andrews, E., Feingold, G., Ogren, J. A., Jimenez, J. L., Quinn, P. K., Bates, T. S., Wang, J., Zhang, Q., Coe, H.,
Flynn, M., and Allan, J. D.: CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis
from six different locations, Atmos. Chem. Phys., 10, 47954807, doi:10.5194/acp-10-4795-2010, http://www.atmos-chem-phys.net/10/
4795/2010/, 2010.

Falush, D., Stephens, M., and Pritchard, J. K.: Inference of population structure using multilocus genotype data: dominant markers and null
alleles, Mol. Ecol. Notes, 7, 574-578, doi:10.1111/j.1471-8286.2007.01758 %, 2007.

Fierce, L., Riemer, N., and Bond, T. C.: When is cloud condensation nuclei activity sensitive to particle characteristics at emission?, J.
Geophys. Res.-Atmos., 118, 13,476-13,488, doi:10.1002/2013JD020608, 2013.

Fierce, L., Riemer, N., and Bond, T. C.: Explaining variance in black carbon’s aging timescale,, Atmos. Chem. Phys., 15, 3173-3191,
doi:10.5194/acp-15-3173-2015, 2015.

Ghan, S.J. and Schwartz, S. E.: Aerosol properties and processes, Bull. American Meteorol. Soc., 88, 1059, 2007.

21



10

15

20

25

30

35

Giorio, C., Tapparo, A., Dall’Osto, M., Beddows, D. C., Esser-Gietl, J. K., Healy, R. M., and Harrison, R. M.: Local and Regional Com-
ponents of Aerosol in a Heavily Trafficked Street Canyon in Central London Derived from PMF and Cluster Analysis of Single-Particle
ATOFMS Spectra, Environ. Sci. Tech., 49, 3330-3340, 2015.

Healy, R., Riemer, N., Wenger, J., Murphy, M., West, M., Poulain, L., Wiedensohler, A., O’Connor, 1., McGillicuddy, E., Sodeau, J., et al.:
Single particle diversity and mixing state measurements, Atmos. Chem. Phys., 14, 6289-6299, 2014.

Healy, R. M., Sciare, J., Poulain, L., Crippa, M., Wiedensohler, A., Prévot, A. S., Baltensperger, U., Sarda-Esteve, R., McGuire, M. L., Jeong,
C.-H., et al.: Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol
mass spectrometer measurements, Atmo. Chem. Phys., 13, 9479-9496, 2013.

IPCC: Climate Change 2013: The physical science basis summary for policymakers. Contribution of working group I to the fifth assessment
report of the Intergovernmental Panel on Climate Change, World Meteorological Organization, Geneva, Switzerland, 2013.

Jacobson, M. Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695-697, 2001.

Jacobson, M. Z.: Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution,
and reversible chemistry among multiple size distributions, J. Geophys. Res., 107, 4366, 2002.

Kaiser, J., Hendricks, J., Righi, M., Riemer, N., Zaveri, R. A., Metzger, S., and Aquila, V.: The MESSy aerosol submodel MADE3 (v2. Ob):
description and a box model test, Geosci. Model Dev., 7, 1137-1157, 2014.

Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y., Bauer, S., Berntsen, T., Bond, T. C., Boucher, O., Chin,
M., Clarke, A., Luca, N. D., Dentener, F., Diehl, T., Dubovik, O., Easter, R., Fahey, D. W., Feichter, J., Fillmore, D., Freitag, S., Ghan, S.,
Ginoux, P., Gong, S., Horowitz, L., Iversen, T., Kirkevag, A., Klimont, Z., Kondo, Y., Krol, M., Liu, X., Miller, R., Montanaro, V., Moteki,
N., Myhre, G., Penner, J. E., Perlwitz, J., Pitari, G., Reddy, S., Sahu, L., Sakamoto, H., Schuster, G., Schwarz, J. P., Seland, O., Stier,
P., Takegawa, N., Takemura, T., Textor, C., van Aardenne, J. A., and Zhao, Y.: Evaluation of black carbon estimations in global aerosol
models, Atmos. Chem. Phys., 9, 9001-9026, 2009.

Liu, P. F, Zhao, C. S., Gobel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W. Y., Deng, Z. Z., Ma, N., Mildenberger, K., Henning, S., Stratmann,
F., and Wiedensohler, A.: Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North
China Plain, Atmos. Chem. Phys., 11, 3479-3494, doi:10.5194/acp-11-3479-2011, 2011.

Liu, X., Ma, P.-L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., and Rasch, P. J.: Description and evaluation of a new four-mode
version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model, Geosci. Model Dev, 9, 505-522,
2016.

Mann, G., Carslaw, K., Spracklen, D., Ridley, D., Manktelow, P., Chipperfield, M., Pickering, S., and Johnson, C.: Description and evaluation
of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519—
551, 2010.

McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U.,
Mentel, T. F., Murphy, D. M., O’Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties
on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593-2649, 2006.

Mei, F.,, Hayes, P. L., Ortega, A., Taylor, J. W., Allan, J. D., Gilman, J., Kuster, W., de Gouw, J., Jimenez, J. L., and Wang, J.: Droplet
activation properties of organic aerosols observed at an urban site during CalNex-LA, J. Geophys. Res., 118, 2903-2917, 2013.

Michelotti, M. D., Heath, M. T., and West, M.: Binning for efficient stochastic multiscale particle simulations, Multiscale Modeling and
Simulation, 11, 1071-1096, 2013.

22



10

15

20

25

30

35

Moffet, R. and Prather, K.: In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing
estimates, Proc. National Acad. of Sci., 106, 11 872, 2009.

O’Brien, R. E., Wang, B., Laskin, A., Riemer, N., West, M., Zhang, Q., Sun, Y., Yu, X.-Y., Alpert, P., Knopf, D. A., et al.: Chemical imaging
of ambient aerosol particles: Observational constraints on mixing state parameterization, J. Geophys. Res., 120, 9591-9605, 2015.

Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity,
Atmos. Chem. Phys., 7, 1961-1971, 2007.

Riemer, N. and West, M.: Quantifying aerosol mixing state with entropy and diversity measures, Atmos. Chem. Phys., 13, 11423-11439,
2013.

Riemer, N., West, M., Zaveri, R., and Easter, R.: Simulating the evolution of soot mixing state with a particle-resolved aerosol model, J.
Geophys. Res.-Atmos., 114, D09 202, 2009.

Riemer, N., West, M., Zaveri, R., and Easter, R.: Estimating black carbon aging time-scales with a particle-resolved aerosol model, J. Aerosol
Sci., 41, 143, 2010.

Schell, B., Ackermann, I. J., Binkowski, F. S., and Ebel, A.: Modeling the formation of secondary organic aerosol within a comprehensive
air quality model system, J. Geophys. Res., 106, 28 275-28 293, 2001.

Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., et al.:
Improving our fundamental understanding of the role of aerosol- cloud interactions in the climate system, Proc. National Academy Sci.,
113, 5781-5790, 2016.

Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, 1., Werner, M., Balkanski, Y., Schulz, M., Boucher,
0., Minikin, A., and Petzold, A.: The aerosol-climate model ECHAMS-HAM, Atmos. Chem. Phys., 5, 1125-1156, 2005.

Strong, S., Koberle, R., de Ruyter van Steveninck, R., and Bialek, W.: Entropy and Information in Neural Spike Trains, Phys. Rev. Lett., 80,
197-200, doi:10.1103/PhysRevLett.80.197, 1998.

Su, H., Rose, D., Cheng, Y. F.,, Gunthe, S. S., Massling, A., Stock, M., Wiedensohler, A., Andreae, M. O., and Poschl, U.: Hygroscopicity
distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and
CCN activation, Atmos. Chem. and Phys., 10, 7489-7503, 2010.

Tian, J., Riemer, N., West, M., Pfaffenberger, L., Schlager, H., and Petzold, A.: Modeling the evolution of aerosol particles in a ship plume
using PartMC-MOSAIC, Atmos. Chem. Phys., 14, 5327-5347, doi:10.5194/acp-14-5327-2014, 2014.

Toner, S., Sodeman, S., and Prather, K.: Single particle characterization of ultrafine and accumulation mode particles from heavy duty diesel
vehicles using aerosol time-of-flight mass spectrometry, Environ. Sci. Tech., 40, 3912-3921, doi:10.1021/es051455x%, 2006.

Wang, J., Cubison, M., Aiken, A., Jimenez, J., and Collins, D.: The importance of aerosol mixing state and size-resolved composition on
CCN concentration and the variation of the importance with atmospheric aging of aerosols, Atmos. Chem. Phys., 10, 7267-7283, 2010.

Weingartner, E., Burtscher, H., and Baltensperger, H.: Hygroscopic properties of carbon and diesel soot particles, Atmos. Environ., 31,
2311-2327, 1997.

Whittaker, R. H.: Evolution and Measurement of Species Diversity, Taxon, 21, 213-251, 1972.

Zaveri, R., Barnard, J., Easter, R., Riemer, N., and West, M.: Effect of aerosol mixing-state on optical and cloud activation properties, J.
Geophys. Res.-Atmos., 115, D17 210, 2010.

Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, J. Geophys. Res.-Atmos.,

104, 30387-30415, 1999.

23



Zaveri, R. A., Easter, R. C., and Peters, L. K.: A computationally efficient Multicompoent Equilibrium Solver for Aerosols (MESA), J.
Geophys. Res.-Atmos., 110, D24 203, doi:10.1029/2004JD005618, 2005a.
Zaveri, R. A., Easter, R. C., and Wexler, A. S.: A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric
aerosols, J. Geophys. Res.-Atmos., 110, D02 210, doi:10.1029/2004JD004681, 2005b.
5 Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys.
Res.-Atmos., 113, D13 204, doi:10.1029/2007JD008782, 2008.

24



