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Abstract)15 

Measurements of primary biological aerosol particles (PBAP), especially at altitudes relevant 16 

to cloud formation, are scarce. Single particle mass spectrometry (SPMS) has been used to 17 

probe aerosol chemical composition from ground and aircraft for over 20 years. Here we 18 

develop a method for identifying bioaerosols (PBAP and particles containing fragments of 19 

PBAP as part of an internal mixture) using SPMS. We show that identification of bioaerosol 20 

using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich 21 

combustion by-products such as fly ash produce mass spectra with peaks similar to those 22 

typically used as markers for bioaerosol. We have developed a methodology to differentiate 23 

and identify bioaerosol using machine learning statistical techniques applied to mass spectra 24 

of known particle types. This improved method provides far fewer false positives compared to 25 

approaches reported in the literature. The new method was then applied to two sets of ambient 26 

data collected at Storm Peak Laboratory and a forested site in Central Valley, California to 27 

show that 0.04-2% of particles in the 200 – 3000 nm aerodynamic diameter range were 28 

identified as bioaerosol. In addition, 36% - 56% of particles identified as biological also 29 
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contained spectral features consistent with mineral dust, suggesting internal dust/biological 1 

mixtures. 2 

 3 

1) Introduction)4 

Biological atmospheric aerosol (or bioaerosol) has recently garnered interest because certain 5 

species of bacteria and plant material might impact climate via the nucleation of ice in clouds 6 

(Hiranuma et al., 2015; Möhler et al., 2008). However, many field-based measurements of ice 7 

nuclei and ice residuals do not indicate that bioaerosol is a major class of ice active particles 8 

(Cziczo et al., 2013; DeMott et al., 2003; Ebert et al., 2011). While modeling efforts suggest 9 

that biological material is not significant in ice cloud formation on a global scale, 10 

uncertainties continue to exist because field measurements of ice nucleating particles are 11 

currently sparse (Hoose et al., 2010; Sesartic et al., 2012). 12 

In this paper, “bioaerosol” is defined as primary biological aerosol particles (PBAP) (i.e. 13 

airborne whole and fragmentary bacteria, pollen and spores) and particles that contain 14 

fragments of PBAP as a part of an internal mixture. Measurement techniques specific to 15 

bioaerosol include collection of aerosol on filters followed by analysis with microscopy 16 

techniques, either electron microscopy (EM) or optical microscopy coupled with fluorescent 17 

staining of the samples (Amato et al., 2005; Bauer et al., 2002, 2008; Bowers et al., 2009, 18 

2011; Griffin et al., 2001; Matthias-Maser and Jaenicke, 1994; Pósfai et al., 2003; Sattler et 19 

al., 2001; Wiedinmyer et al., 2009; Xia et al., 2013). Aerosol samples collected in the 20 

atmosphere have been cultured for identification of the microbial strains present (Amato et 21 

al., 2005, 2007; Fahlgren et al., 2010; Fang et al., 2007; Griffin et al., 2001, 2006; Prospero et 22 

al., 2005). 23 

In-situ techniques specific to biological samples are typically based on fluorescence of 24 

biological material following UV excitation. Examples include the wide-band integrated 25 

bioaerosol sensor (WIBS) which is available commercially (Kaye et al., 2000, 2005). WIBS 26 

has been successfully deployed in several locations (Gabey et al., 2010; O’Connor et al., 27 

2014; Toprak and Schnaiter, 2013). Using fluorescence to detect biological aerosol can have 28 

interferences, however. For example, polycyclic aromatic compounds or humic acids can 29 

have similar fluorescent properties (Gabey et al., 2010; Pan et al., 1999). Cigarette smoke has 30 

similar fluorescent properties to bacteria (Hill et al., 1999). In an attempt to address 31 

interferences, WIBS collects fluorescence information using several channels with different 32 



 

 3 

wavelengths while also measuring the size and shape of the particles. Table 1 summarizes 1 

some recent measurements of bioaerosol. More information can be found in recent reviews 2 

focused on bioaerosols in the atmosphere, such as Després et al., (2012). 3 

Measurements of bioaerosol in the free and upper troposphere, where they could be relevant 4 

to cloud formation, remain scarce. Four of the recent studies reported in Table 1 used an 5 

aircraft to access altitudes higher than 4,000 m (DeLeon-Rodriguez et al., 2013; Pósfai et al., 6 

2003; Twohy et al., 2016; Ziemba et al., 2016). Two of these used the WIBS sensor to report 7 

vertical profiles of fluorescent particles (Twohy et al., 2016; Ziemba et al., 2016). In the 8 

remaining two cases, aerosols were collected on filters and analyzed off-line. There can exist 9 

significant uncertainty in these measurements. A recent aircraft-based study by DeLeon-10 

Rodriguez et al. (2013) reports analysis of high altitude (8-15 km) samples taken before, after 11 

and during two major tropical hurricanes. The abundances of microbes, mostly bacteria, were 12 

reported between 3.6×104 and 3.0×105 particles m-3 in the 0.25 – 1 µm size range. The 13 

methods and conclusions of this study were re-evaluated by Smith and Griffin (2013), who 14 

argued that in some instances the reported concentration of bioaerosol were not possible 15 

because they exceeded the total aerosol by several factors. The samples were also taken over 16 

periods of hours, possibly including sampling in clouds when the high-speed impaction of 17 

droplets and ice can dislodge particles from the inlet (Cziczo and Froyd, 2014; Froyd et al., 18 

2010; Murphy et al., 2004). 19 

Although difficult, measurements of bioaerosol in the upper troposphere are necessary in 20 

order to constrain their influence on atmospheric properties and cloud formation processes. 21 

All of the techniques discussed above, except for WIBS, are off-line and require expertise in 22 

sample processing and decontamination. WIBS is a possible in situ detection technique for 23 

bioaerosols, but it is relatively new and, as a result, has a short deployment history. There has 24 

been considerable interest in using aerosol mass spectrometry techniques to measure 25 

bioaerosol. Single particle mass spectrometry (SPMS) has been successfully used since the 26 

mid-1990s to characterize chemical composition of atmospheric aerosol particles in situ and 27 

in real time (Murphy, 2007). The ability of SPMS to simultaneously characterize volatile and 28 

refractory aerosol components makes it an attractive tool for investigating the mechanisms of 29 

cloud formation (Cziczo et al., 2013; Friedman et al., 2013). The general principle behind 30 

SPMS, and in particular the instrument discussed in this paper, the Particle Analysis by Laser 31 

Mass Spectrometry (PALMS), is the use of a pulsed UV laser for the ablation and ionization 32 
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of single aerosol particles. Ions are then accelerated into a time-of-flight mass spectrometer. 1 

Laser ablation/ionization used with SPMS produces ion fragments and clusters and is 2 

susceptible to matrix effects such that quantitative results are possible only with careful 3 

calibration and consistent composition (Cziczo et al., 2001). 4 

Biological aerosols have been studied with SPMS, in particular the Aerosol Time of Flight 5 

Mass Spectrometer (ATOFMS; Cahill et al., 2015; Creamean et al., 2013; Fergenson et al., 6 

2004; Pratt et al., 2009). A property of SPMS bioaerosol spectra that has been exploited for 7 

their detection is the presence of phosphate (PO-, PO2
-, PO3

-) and organic nitrogen ions (CN-, 8 

CNO-) (Cahill et al., 2015; Fergenson et al., 2004). Those ions have also previously been 9 

shown to be present in non-biological particles with the same instrument, however, such as 10 

vehicular exhaust (Sodeman et al., 2005) and soil dust (Silva et al., 2000). Particles that 11 

contain phosphates, organic nitrates and silicates have historically been classified as mixtures 12 

of bioaerosol and dust (Creamean et al., 2013). This work examines the prevalence of these 13 

ions in the context of spectra collected with PALMS. 14 

Phosphorus was chosen as the focus of this paper because of its abundance in spectra of 15 

bioaerosol, but also because it does not undergo gas-phase partitioning in the atmosphere 16 

(Mahowald et al., 2008). Therefore, the presence of phosphorus on a particle can often 17 

constrain its source, and only the classes of particles that are most likely to contain 18 

phosphorus are examined here. Emission estimates qualitatively agree that mineral dust, 19 

combustion products, and biological particles constitute the principal phosphate emission 20 

sources. The global phosphorus budget has been modeled by Mahowald et al. (2008), 21 

indicating that 82% of the total burden is emitted in the form of mineral dust. Bioaerosol 22 

accounts for 12% and anthropogenic combustion sources, including fossil fuels, biofuels and 23 

biomass burning, account for 5% (Mahowald et al., 2008). Recently, Wang et al. (2014) 24 

provided a higher estimate of phosphorus emissions from anthropogenic combustion sources, 25 

31%. In this estimate, mineral dust was responsible for 27%, bioaerosol 17% and natural 26 

combustion sources 20% of total phosphorus emissions (Wang et al., 2014).  27 

In this work, calcium phosphate-rich minerals (apatite and monazite) and fly ash are chosen to 28 

represent dust and industrial combustion particle classes, respectively. In atmospheric 29 

particles, the composition can be mixed, containing some phosphate from inorganic sources, 30 

such as calcium phosphate, and some phosphate from microbes. For instance, soils can 31 

contain minerals, live microbes, and biogenic matter at all stages of decomposition. 32 
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Therefore, classifying soil-derived particles with a binary biological/non-biological classifier 1 

has uncertainties. These uncertainties are quantified here for soils using soil samples collected 2 

in various locations. 3 

In this work, the presence of phosphorus in a mass spectrum is evaluated as proxy for 4 

bioaerosol. All biological cells contain phosphorus because it is a component of nucleic acids 5 

and cell membranes. Distinguishing the specific mass spectral phosphate signature of 6 

biological cells from other non-biological phosphorus is the topic of the analysis in this paper. 7 

The goal of this paper is to develop a method that can differentiate PALMS bioaerosol spectra 8 

from spectra of dust and combustion by-products. 9 

2) Experimental)10 

The objective of this work is to describe and validate a new SPMS-based data analysis 11 

technique that allows for the selective measurement of bioaerosol. A dataset of bioaerosol, 12 

phosphate-rich mineral and coal fly ash single particle spectra – the three largest sources of 13 

phosphorus in atmospheric aerosols - was used to derive a classification algorithm for 14 

biological and non-biological phosphate-containing material. This classifier was then applied 15 

to an ambient data set collected at the Storm Peak Laboratory during the Fifth Ice Nucleation 16 

workshop—phase 3 (FIN03). 17 

2.1 PALMS 18 

The NOAA PALMS instrument has been discussed in detail elsewhere (Cziczo et al., 2006; 19 

Thomson et al., 2000). Currently, there are two copies of the PALMS instrument, both of 20 

which were used in this work. The laboratory PALMS is a prototype for the flight PALMS, 21 

which is more compact and can be deployed unattended at field sites and on aircraft 22 

(Thomson et al., 2000). Briefly, PALMS uses an aerodynamic lens to sample aerosols and 23 

impart them with a size-dependent velocity (Zhang et al., 2002, 2004). Aerodynamic particle 24 

diameter is measured by timing the particles between two continuous-wave laser beams (532 25 

nm Nd:YAG in laboratory PALMS and 405 nm diode in flight PALMS). The particles are 26 

ablated and ionized in one step by a 193 nm excimer laser. A unipolar reflectron time of flight 27 

mass spectrometer is then used to acquire mass spectra. PALMS acquires spectra in either 28 

positive or negative polarity, but not simultaneously. For field datasets presented in this paper, 29 

sampling polarity was switched every 5 minutes for FIN03 and every 30 minutes for CARES. 30 
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Due to the high laser fluence used for desorption and ionization (~109 W/cm2), PALMS 1 

spectra show both atomic ions and ion clusters, which complicate spectral interpretation. 2 

SPMS is considered a semi-quantitative technique because the ion signal depends on the 3 

abundance and ionization potential of the substance, rather than solely its abundance 4 

(Murphy, 2007). Additionally, the ion signals can depend on the overall chemical 5 

composition of the particle, known as matrix effects (Murphy, 2007). The lower particle size 6 

threshold for PALMS is ~200 nm diameter and is set by the amount of detectable scattered 7 

light. The upper size threshold is set by transmission in the aerodynamic lens at ~3 µm 8 

diameter (Cziczo et al., 2006). In PALMS, Particles toward the larger end of this size range 9 

are transmitted into the laser beam more efficiently than smaller particles. The 193 nm 10 

excimer laser can ionize all atmospherically-relevant particles within this size range with little 11 

detection bias (Murphy, 2007). The ionization region is identical in the laboratory and flight 12 

PALMS instruments. Raw PALMS spectra are processed using a custom IDL software. Mass 13 

peak intensities used in this paper refer to integrated peak areas normalized by the total ion 14 

current. 15 

2.2 Aerosol standards 16 

Table 2 shows numbers of negative spectra for all analyses in this paper. A portion of the data 17 

from each of the bioaerosol and non-biological phosphate samples was used as “training data” 18 

to build the classification algorithm. The remaining test data were classified using the trained 19 

algorithm. 20 

2.2.1 Training dataset 21 

A collection of phosphorus-containing samples of biological and inorganic origin were used 22 

to train the classification algorithm used in this work. Some of the samples were analyzed 23 

with the laboratory PALMS at the Aerosol Interaction and Dynamics in the Atmosphere 24 

(AIDA) facility at Karlsruhe Institute of Technology (KIT) during the Fifth International Ice 25 

Nucleation Workshop—phase 1 (FIN01) with the remainder sampled at MIT. 26 

Biological aerosol sampled at AIDA included two aerosolized cultures of Pseudomonas 27 

syringae bacteria, Snomax (Snomax International, Denver, CO) (irradiated, desiccated and 28 

ground Pseudomonas syringae) and hazelnut pollen wash water. The Snomax and P. syringae 29 

cultures were suspended in water and aerosolized with a Collison-type atomizer. The growth 30 

medium for P. syringae cultures was Pseudomonas Agar Base (CM0559, Oxoid 31 

Microbiology Products, Hampshire, UK). 32 
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Biological aerosol sampled at MIT included giant ragweed (Ambrosia trifida) pollen, oak 1 

(Quercus rubra) pollen, European white birch (Betula pendula) pollen, Fusarium solani 2 

spores and yeast. Samples of dried pollens and F. solani spores were purchased from Greer 3 

(Lenoir, NC). Information supplied by the manufacturer indicates that F. solani fungus was 4 

grown on enriched trypticase growth medium and killed with acetone prior to harvesting the 5 

spores. Ragweed and oak pollen originated from wild plants, while the birch pollen originated 6 

from a cultivated plant. Pollen was collected, mechanically sieved and dried. The yeast used 7 

in this experiment was commercial active dry yeast (Star Market brand). The yeast powder 8 

was sampled by PALMS from a vial subjected to slight manual agitation. Pollen grains were 9 

too large (18.9 – 37.9 µm according to manufacturer’s specification) to sample with PALMS. 10 

They were suspended in ultrapure water (18.2 MΩ cm, Millipore, Bedford, MA) and the 11 

suspensions were sonicated in ultrasonic bath for ~30 minutes to break up the grains. Large 12 

material was allowed to settle to the bottom and a few drops of the clear solution from the top 13 

of the suspensions were further dissolved in ultrapure water, and the resulting solutions were 14 

aerosolized with a disposable medical nebulizer (Briggs Healthcare, Waukegan, IL). A 15 

diffusion dryer was used to remove condensed phase water prior to sampling with PALMS. F. 16 

solani spores were sampled in two different ways: (1) dry and unprocessed, in the same way 17 

as the yeast and (2) fragmented in ultrasonic bath and wet-generated, in the same way as 18 

pollen samples. Examination of PALMS spectra revealed no changes in chemistry resulting 19 

from different processing methods. 20 

Samples of fly ash from four coal-fired U.S. power plants were used as proxy for combustion 21 

aerosol: J. Robert Welsh Power Plant (Mount Pleasant, TX), Joppa Power Station (Joppa, IL), 22 

Clifty Creek Power Plant (Madison, IN) and Miami Fort Generating Station (Miami Fort, 23 

OH). The samples were obtained from a commercial fly ash supplier, Fly Ash Direct 24 

(Cincinnati, OH). Fly ash was dry-generated with the shaker.  25 

Apatite and Monazite-Ce mineral samples were generated from ~3” pieces of rock. The rocks 26 

were ground and the samples aerosolized with the shaker.  Both apatite and monazite were 27 

sampled and processed at MIT. The apatite rock was contributed by Adam Sarafian (Woods 28 

Hole Oceanographic Institution, Woods Hole, MA).  29 

Two samples of German soil were used as an example of agricultural soil that was known to 30 

be fertilized with inorganic phosphate. These were also sampled at the AIDA facility during 31 

FIN01. Note that while all other soil samples are used as test aerosols for a completed 32 



 

 8 

classifier, those two in particular are used in the training set to account for the presence of 1 

inorganic fertilizer. 2 

Samples of apatite and J. Robert Welsh Power Plant fly ash were also subjected to processing 3 

with nitric acid to approximate atmospheric aging. Powdered sample was aerosolized from 4 

the shaker to fill a 9 L glass mixing volume. A hot plate below the volume was used to heat 5 

the air inside to 31°C measured in the center of the volume with a thermocouple. PALMS 6 

sampled at a flow rate of 0.44 slpm (STP: 0°C, 1 atm) from the 9 L volume. This constituted 7 

unprocessed aerosol. 80% HNO3 was then placed with a Pasteur pipette at the heated bottom 8 

of the mixing volume. Two experiments were conducted: for experiments using 0.1 mL of 9 

nitric acid, the entire volume of HNO3 evaporated, producing an estimated partial pressure of 10 

about 0.005 atm in a static situation. In 1 mL experiments some liquid HNO3 remained at the 11 

bottom of the volume with an estimated partial pressure of HNO3 of 0.04 atm. The aerosol 12 

and gas-phase HNO3 were allowed to interact for 2 minutes at which point PALMS began 13 

sampling from the volume. 14 

2.2.2. Test dataset 15 

Samples of natural soil dust were collected from various locations listed in Table 3. Five 16 

sampled were investigated at the AIDA facility during FIN01 (Bächli soil, Argentina soil, 17 

Ethiopian soil, Moroccan soil and Chinese soil) with the remaining analysis at MIT (Storm 18 

Peak and Saudi Arabian soil).  19 

Internally mixed biological/mineral particles were also analyzed at MIT. Illite NX (Clay 20 

Mineral Society) without bioaerosol was sampled dry, using a shaker (Garimella et al., 2014), 21 

and wet-generated, using a medical nebulizer containing ultrapure water. A second disposable 22 

medical nebulizer was then used to aerosolize a suspension of illite NX and F. solani spore 23 

fragments. This wet generated aerosol was also dried with a diffusion dryer prior to PALMS 24 

sampling.  25 

2.3 Statistical analysis 26 

A support vector machine (SVM), a supervised machine learning algorithm (Cortes and 27 

Vapnik, 1995), was used as the statistical analysis method for analysis of these data. In this 28 

case a non-linear binary classifier was constructed, using non-linear kernel functions (Ben-29 

Hur et al., 2001; Cortes and Vapnik, 1995). A Gaussian radial basis function kernel was 30 

empirically determined to provide the best performance in this case. For this work, the SVM 31 
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algorithm was implemented in MATLAB 2016a (MathWorks, Natick, MA) using the 1 

Statistics and Machine Learning toolbox. 2 

2.4 Field data 3 

The method was employed on two ambient data sets, one acquired at the Desert Research 4 

Institute’s (DRI’s) Storm Peak Laboratory located in Steamboat Springs, CO and the other 5 

acquired in Cool, CA site during Carbonaceous Aerosol and Radiative Effects Study 6 

(CARES). Storm Peak Laboratory is located on Mt. Werner at 3220 m elevation at 106.74 W, 7 

40.45 N. This high altitude site is often in free tropospheric air, mainly during overnight 8 

hours, with minimal local sources (Borys and Wetzel, 1997). Ambient air was sampled using 9 

the Storm Peak facility inlet with the flight PALMS instrument in September, 2015. 10 

Measurements were made during Fifth International Ice Nucleation Workshop—phase 3 11 

(FIN03). The measurements were carried out between September 14, 2015 and September 27, 12 

2015. 13 

The CARES study was carried out in the Summer, 2010 and included deployment of 14 

instruments at two different ground sites, one urban (Sacramento, CA) and another in the 15 

Sierra Nevada foothills area rich in biogenic emissions (Cool, CA site) (Zaveri et al., 2012). 16 

Thermally-driven winds tend to transport the urban plume into the Sierra Nevada foothills and 17 

sometimes back again into the Sacramento area (Zaveri et al., 2012).  The laboratory PALMS 18 

instrument was deployed at the Cool, CA site at 450 m elevation at 121.02 W, 38.87 N in a 19 

trailer throughout the campaign. It sampled ambient air between June 4, 2010 and June 24, 20 

2010. 21 

3) Results)22 

Figure 1 shows the spectra of biological species: P. syringae bacteria, Snomax and hazelnut 23 

pollen wash water particles. These particles contain both organic and inorganic compounds. 24 

Because they are easy to ionize, the inorganic ions sodium and potassium stand out in the 25 

positive spectra despite their minor fraction by mass. Sulfates, phosphates and nitrates are 26 

present, and visible in their associations with potassium. Negative spectra are dominated by 27 

CN-, CNO-, phosphate (PO2
- and PO3

-) and sulfate (HSO4
-). Higher mass associations of 28 

potassium and sulfates, phosphates and nitrates occur (K3H2SO3
-, K2H3NO4

-, K3H2PO2
- and 29 

K3H3SO3
-). Chlorine is present on some particles. Chlorine is a known contaminant from the 30 

Agar growth medium since spectra of aerosolized Agar devoid of bacteria contain large 31 

amounts of chlorine (not shown here). 32 
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Figure 2 shows spectra of apatite. In positive polarity, apatite spectra are dominated by 1 

calcium, its oxides, and in associations with phosphate (CaPO+, CaPO2
+, CaPO3

+, Ca2PO3
+ 2 

and Ca2PO4
+) and fluorine (CaF+, Ca2OF+ and Ca3OF+). Negative spectra are dominated by 3 

phosphates (PO-, PO2
- and PO3

-) and fluorine is often present. Lab-generated apatite spectra 4 

analyzed in this study contain little organic. This may be a result of post-processing of the 5 

apatite sample, in particular the use of ethanol as a grinding lubricant. In contrast, ethanol was 6 

not used in grinding the monazite sample here and its spectra exhibit peaks associated with 7 

organic matter (C2H-). 8 

Figure 3 shows spectra of coal fly ash from the J. Robert Welsh Power Plant. The positive 9 

spectra contain sodium, aluminum, calcium, iron, strontium, barium and lead. As in apatite, 10 

calcium/oxygen, calcium/phosphate and calcium/fluorine fragments are present. Fly ash 11 

particles also contain sulfate (H3SO3
+). The negative spectra contain phosphates (PO2

-, PO3
-), 12 

sulfates (HSO4
-) and silicate fragments, such as (SiO2)2

-, (SiO2)2O-, (SiO2)2Si- and (SiO2)3
-. 13 

The results of HNO3 processing experiments are also shown in Figures 2 and 3. Processing 14 

with nitric acid had an effect on both apatite and fly ash: the calcium/fluorine positive 15 

markers (CaF+, Ca2OF+ and Ca3OF+) and the negative fluorine marker (F-) are either reduced 16 

in intensity or completely absent after processing. Additionally, CN- and CNO- appear and/or 17 

intensify after processing.  18 

A classifier was designed to use the ratios of phosphate (PO2
-, PO3

-) and organic nitrogen 19 

(CN-, CNO-) spectral peaks. Those spectral peaks were used for several reasons: (1) they are 20 

clearly visible in all biological spectra that were acquired as a part of this study (Figure 1), (2) 21 

they were used to distinguish bioaerosol from other species in previous studies (Creamean et 22 

al., 2013; Pratt et al., 2009b) and (3) sources of phosphorus on aerosol particles are well-23 

defined and documented in the literature (Mahowald et al., 2008). The only requirement for 24 

this analysis was that each spectrum used in the training set contains both phosphate and 25 

organic nitrogen (otherwise the ratios used here become undefined). This was ensured by 26 

selecting spectra, where PO2
- > 0.001 and CNO- > 0.001. Nearly all biological spectra in the 27 

training set satisfied this criterion (Table 2). Figure 4A shows normalized histograms of the 28 

PO3
-/PO2

- ratio for the laboratory aerosol. The aerosols that contain only inorganic 29 

phosphorus, such as apatite, monazite and fly ash cluster at PO3
-/PO2

- less than 4 and often 30 

less than 2. The bioaerosols cluster at PO3
-/PO2

-  greater than 2 and often greater than 4. 31 

Ragweed pollen is an exception, with a wide cluster in PO3
-/PO2

- from 1 to 5. Processing of 32 
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apatite with nitric acid tends to shift the PO3
-/PO2

- ratio to larger values, decreasing the 1 

disparity from the bioaerosols. Soil dusts are shown in Figure 4, even though they are not 2 

used as training aerosol; their histogram shows a broad distribution with a tail extending into 3 

PO3
-/PO2

-  > 2 region, indicating a mixed inorganic/biological composition. In comparison, 4 

fertilized soil dusts show a similar distribution to apatite (PO3
-/PO2

- < 4) due to presence of 5 

inorganic fertilizer, which is calcium phosphate. 6 

The SVM algorithm was used here to optimize boundaries between clusters. To do this, the 7 

algorithm needs a training dataset, where the classes are known a priori. In this paper, the 8 

training dataset is defined in Table 2. Once an optimized boundary is drawn, some of the 9 

training data can still fall on the incorrect side of the boundary, when the clusters are not 10 

perfectly separable. Accuracy here is defined as percentage of correctly classified particles in 11 

the training set once the optimized boundary is found. A simple 1D classifier can be made 12 

based only on the ratio of phosphate peaks PO3
-/PO2

-  greater or less than 3. The accuracy of 13 

this simple filter is 70 - 80% for the materials considered here, with ragweed pollen and fly 14 

ash as the greatest sources of confusion between the bioaerosol and non-biological classes. A 15 

higher accuracy for differentiation of the bioaerosol and non-biological classes can be 16 

achieved if the ratio of organic nitrogen peaks is also taken into account. Figure 4B shows 17 

normalized histograms of CN-/CNO- ratios for the test aerosol. In contrast to PO3
-/PO2

- ratios, 18 

CN-/CNO- ratios do not, by themselves, exhibit a clear difference between the classes. A 19 

superior separation is achieved when data are plotted in a CN-/CNO- vs. PO3
-/PO2

- space, as 20 

shown in Figure 5. In this case, two clusters appear. The soil dust class was left out from the 21 

training set because it is not known a priori if and how much biological material it contains 22 

(classification of soil dusts with the SVM algorithm is discussed later). The boundary between 23 

the classes in CN-/CNO- vs. PO3
-/PO2

- space is non-linear, as shown in Figure 5. The accuracy 24 

in this 2D classification is 97%. As before, ragweed pollen is the cause of most errors; if it is 25 

removed from training dataset, the accuracy increases to 99%. Processed mineral dust had a 26 

smaller impact on the accuracy: removing it from the training dataset increased the accuracy 27 

to 97.5%. 28 

For every observation, a distance from the SVM boundary can be calculated (otherwise 29 

known as score). Those distances can then be converted to probability of correct 30 

identification. An optimized function to convert scores to probabilities was found by 10-fold 31 

cross-validation (Platt, 1999). Because in this experiment the classes are not perfectly 32 
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separable, the conversion function is a sigmoid. Posterior probabilities near 0 and 1 indicate 1 

high-confidence identification. An uncertainty boundary was defined between 0.2 and 0.8. 2 

This boundary is shown in Figure 5. Points that lie in this boundary are marked as low 3 

confidence assignments. Those correspond to shaded areas in Figures 6 and 7. 4 

Once trained with the training set, the SVM algorithm was used to analyze the FIN03 and 5 

CARES field datasets collected at Cool, CA and Storm Peak. As a first step, “phosphorus-6 

containing” particles were identified in both datasets. The criterion for phosphorus-containing 7 

used for this work is the presence of both PO2
- and PO3

- ions at fractional peak area (area of 8 

peak of interest/total spectral signal area) greater than 0.01. This threshold was set by 9 

examination of the ambient mass spectra to determine when the phosphate peaks are distinct. 10 

Ambient particles commonly have numerous small peaks at masses below ~200 due to a 11 

diversity of organic components. The height of this background is ~0.01 and data below this 12 

level are considered uncertain. Phosphorus-containing ambient spectra were then classified by 13 

the SVM algorithm as bioaerosol or inorganic phosphorus if the CNO- ion was also present at 14 

fractional peak area greater than 0.001. If CNO- fractional area was less than 0.001, the 15 

spectrum was also classified as inorganic phosphorus. 16 

During the FIN03 campaign, phosphorus-containing particles represented from 0.2 to 0.5% by 17 

number of the total detected particles in negative ion mode depending on the sampling day 18 

and a 0.4% average for the entire dataset. As shown in Figure 6A when the binary classifier 19 

described in this work was applied to the phosphorus-containing particles, bioaerosol 20 

represented a 29% subset by number (i.e., 0.1% of total analyzed particles). During the 21 

CARES campaign, phosphorus-containing particles were 1.1% to 4.2% by number of the total 22 

particles detected in negative ion mode, with 2.4% average for the dataset (Figure 7A). 23 

Bioaerosol particles represented 63% subset by number (i.e., 1.2% of total analyzed particles). 24 

This range (0.1% – 1.2%) is within, and towards the lower end, of previous estimates with 25 

biological-specific techniques (Table 1). This lower end estimate may, in part, be due to 26 

PALMS sampling particles in the 200-500 nm diameter range as well as larger sizes. Previous 27 

estimates tend to show increased bioaerosol in the super-micrometer range and data are often 28 

unavailable for the numerous particles smaller than 500 nm diameter. 29 

The origin of the non-biological phosphate particles is likely phosphate-bearing mineral dust 30 

or fly ash. The CARES site experienced influences of aged marine, urban and local biogenic 31 

sources. Within the urban plumes, a likely source of inorganic phosphate is industrial 32 
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combustion aerosol. At Storm Peak a likely source is mining of phosphate rock and nearby 1 

monazite deposits. Figure 6B shows HYSPLIT back trajectories for the ten days of the FIN03 2 

campaign; the air masses sampled cross deposits of either phosphate rock (apatite) or rare 3 

earth elements (monazite or carbonatite). As examples, on 09/27 the back trajectory intersects 4 

the vicinity of an active rare earth element (REE) mine in Mountain Pass, CA and on 09/18 5 

and 09/20 the airmass intersected active phosphate mines in Idaho. Although negative spectra 6 

of apatite and monazite cannot be definitively differentiated from fly ash or soil dust spectra, 7 

positive spectra acquired during FIN03 additionally suggest that monazite-type material was 8 

present. In Figure 2, panels G and H show non-biological phosphate-rich ambient spectra 9 

from FIN03. Figure 2 panels E and F (monazite) contains similar features and matching rare 10 

earth elements.  11 

In total, 56% and 36% of phosphate-containing particles analyzed in FIN03 and CARES 12 

respectively categorized as biological also contained silicate features. Considered in more 13 

detail in the next section, a subset of these may represent internal mixtures of biological and 14 

mineral components.  15 

4) Discussion)16 

The method of identification of bioaerosol described here is based on ratios of phosphate and 17 

organic nitrogen peaks. This work is specific to PALMS but can be considered a starting point 18 

from which identification and differentiation can be made with similar instruments. Previous 19 

work with PALMS shows this ratio approach can be used to identify differences in chemistry, 20 

for example among mineral dusts (Gallavardin et al., 2008). In this case the classes are 21 

bioaerosol and non-biological phosphorus; Figure 4A shows that phosphorus ionizes 22 

differently in these classes. In apatite and monazite, phosphorus occurs as calcium phosphate. 23 

In biological particles, phosphorus occurs mostly in phospholipid bilayers and nucleic acids. 24 

In these experiments, the PO3
-/PO2

- ratio of those two forms is different (Figure 4A). The 25 

agricultural soils considered here cluster with the minerals and fly ash and we assume the 26 

phosphorus is due to the use of inorganic fertilizer, which is derived from calcium phosphate 27 

(Koppelaar and Weikard, 2013). Fly ash aerosol clusters similarly to apatite and monazite but 28 

with a wider distribution; this is likely because the chemical from of phosphorus in fly ash is 29 

different than in the minerals. Phosphorus present in coal is volatilized and then condenses 30 

into different forms during the combustion process (Wang et al., 2014).  31 
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During the FIN03 campaign at Storm Peak, 0.2-0.5% of particles by number detected in 1 

negative polarity contained measureable phosphorus (Figure 6A). On most days, the majority 2 

of phosphorus-rich particles were inorganic. Particles with positive spectra showing the 3 

characteristics of monazite coupled to back trajectories over source areas suggests the origin 4 

of the inorganic phosphate particles. Although apatite/monazite particles make up a small 5 

portion of ambient particles at Storm Peak they are potentially interesting not only due to their 6 

possible confusion with biological phosphate but also as a tracer for industrial mining and 7 

processing activities. Currently, such activities are taking place in Idaho and until very 8 

recently at Mountain Pass, CA (U.S. Geological Survey, 2016a, 2016b). Smaller exploration 9 

activities are also taking place at the Bear Lodge, WY and the REE-rich areas in Colorado, 10 

Idaho and Montana are of interest (U.S. Geological Survey, 2016a). 11 

During the CARES campaign more particles contained phosphorus (1.1% - 4.2%) and a 12 

higher percentage of phosphate-rich particles were identified as biological (63% vs. 29% in 13 

FIN03). Because the site contains strong local biogenic and urban influences, the sources of 14 

biological particles are probably local. As shown in Figure 7B, aged marine particles were 15 

also present on many days; however, only 4% of particles identified as biological also 16 

contained markers associated with sea salts. 17 

4.1)Comparison)with)existing)literature)18 

Previous studies have attempted to identify bioaerosol with SPMS based on the presence of 19 

phosphate and organic nitrate components. Creamean et al. (2013) and Pratt et al. (2009b) 20 

suggested a “Boolean criterion” where the existence of CN-, CNO- and PO3
- in a particle 21 

resulted in its classification as biological. If silicate components were additionally present, the 22 

particle was classified as an internal mixture of mineral dust and biological components 23 

(Creamean et al., 2013; 2014). Such “Boolean” criteria for particle identification, can be 24 

helpful in distinguishing aerosol types when the signatures are unique to one particle type. 25 

The selectivity of this simple three-component filter (presence or absence of CN-, CNO- and 26 

PO3
-) for biological particles was investigated for PALMS using the test aerosol database with 27 

results shown in Figure 8. Note that previous literature does not provide information on the 28 

thresholds used to determine presence or absence of ions in analysis of ATOFMS spectra. 29 

Furthermore, because of hardware differences, detection limits of PALMS and ATOFMS are 30 

known to be different (Murphy, 2007). This analysis focuses on PALMS and the threshold for 31 

“presence” was chosen as 0.001, which was observed to be the detection limit for CN-, CNO- 32 
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and PO3
- in the laboratory aerosol database used here. The simple filter successfully picks 1 

biological material. However, it also has a high rate of false positives. For the material that 2 

contains inorganic phosphorus (i.e., samples known to be devoid of biological material) the 3 

three-component filter selects 56% of fly ash, 56% of agricultural dust and 32% of apatite and 4 

monazite. Soil dust is identified as biological 78% of the time.  5 

The effect of misidentification of inorganic phosphate as biological can be considered in the 6 

context of the atmospheric abundance of the three major phosphate bearing aerosols: mineral 7 

dust, fly ash and bioaerosol (estimates given in Table 4). Because the emissions estimates 8 

vary, the highest fraction of bioaerosol is the case of the highest estimate of bioaerosol 9 

coupled to the lowest estimate of fly ash and mineral dust (Table 4 and Figure 9A). 10 

Conversely, the lowest fraction of bioaerosol is the case of the lowest estimate of bioaerosol 11 

coupled to the highest estimate of fly ash and mineral dust (Table 4 and Figure 9B).  12 

The misidentification rates noted above are then propagated onto the high and low estimates. 13 

As an example, the fraction of aerosol phosphate due to fly ash (1% in the high and 5% in the 14 

low bioaerosol estimate) is multiplied by .56 to indicate the fraction of fly ash that would be 15 

misidentified as biological phosphate with the simple three-component filter. This 16 

misidentification effect is repeated for the mineral dust emission rate and misidentification 17 

fraction. For simplicity, we considered the mineral dust fraction to be desert soils, termed 18 

aridsols and entisols, which are predominantly present in dust-productive regions, such as the 19 

Sahara or the dust bowl (Yang et al., 2013). According to Yang and Post (2011), the organic 20 

phosphate content of those soils is 5-15% but this is a second order effect when compared to 21 

misclassification. In the high bioaerosol scenario 17% of the phosphate aerosol is biological 22 

(Figure 9A) but when misidentification is considered 81% of particles are identified as such 23 

(Figure 9C). In the low bioaerosol scenario 2% of the phosphate aerosol is biological (Figure 24 

9B) but when misidentification is considered 77% of the particles are identified as such 25 

(Figure 9D). This illustrates that simplistic identification can lead to large misclassification 26 

errors of aerosol sources.  27 

Misidentification can also lead to misattribution. Pratt et al. (2009b) analyzed ice residuals 28 

sampled in an orographic cloud and suggested a biological source using the simple three-29 

component filter applied to spectra containing calcium, sodium, organic carbon, organic 30 

nitrogen and phosphate. The processed apatite spectrum in Figure 2, devoid of biological 31 

material, contains all of these markers. Similar to the Storm Peak dataset, the Pratt et al. 32 
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(2009b) wave cloud occurred in west-central Wyoming which is near the Idaho phosphate 1 

rock deposits (Figure 6) and four U.S. states with active mining of phosphate rock for use as 2 

inorganic fertilizer in agriculture (U.S. Geological Survey, 2016b). 3 

As noted above, the Pratt et al. (2009b) and Creamean et al. (2013, 2014) studies were 4 

performed with a different SPMS, the ATOFMS (Gard et al., 1997; Pratt et al., 2009a). 5 

Because the ATOFMS uses a desorption/ionization laser of a different wavelength (266 nm) 6 

the SVM algorithm used here may not directly translate to that instrument (Murphy, 2007). 7 

Instead, the calculation above assumes only that the misidentification rates between the 8 

simple three-component filter and the SVM algorithm applies.  9 

4.2)Soil)dust)and)internal)dust/biological)mixtures)10 

Soil dust is an important but complicated category of phosphate-containing atmospheric 11 

particles. Modeling studies, such as Mahowald et al. (2008), treat all phosphorus in soil dust 12 

aerosol as inorganic. However, the phosphorus in soil investigated here took both organic and 13 

inorganic forms. Walker and Syers (1976) proposed a conceptual model of transformations of 14 

phosphorus depending on the age of the soil. At the beginning of its development, all soil 15 

phosphorus is bound in its primary mineral form, matching that of the parent material, which 16 

is primarily apatite (Walker and Syers, 1976; Yang and Post, 2011). As the soil ages, the 17 

primary phosphorus is released. Some of it enters the organic reservoir and is utilized by 18 

vegetation, some is adsorbed onto the surface of secondary soil minerals (non-occluded 19 

phosphorus) and then gradually encapsulated by secondary minerals (Fe and Al oxides) into 20 

an occluded form. The total phosphorus content of the soil decreases as the soil ages, due to 21 

leaching. The organic fraction can encompass microorganisms, their metabolic by-products 22 

and other biological matter at various stages of decomposition. Soil microorganisms are the 23 

key players in converting organic phosphorus back into the mineral form (Brookes et al., 24 

1984). Yang and Post (2011) estimated organic and inorganic phosphorus content of various 25 

soils based on available data. Spodosols (moist forest soils) have the highest fraction of 26 

organic phosphorus (~45%) and aridsols (sandy desert soils) have the lowest (~5%) (Yang 27 

and Post, 2011). Yang et al. (2013) compiled a global map of soil phosphorus distribution and 28 

its forms and found that 20%, on average, of total phosphorus is organic. Wang et al. (2010) 29 

arrive at 34% of soil phosphorus as organic globally.  30 

The biological PALMS filter was applied to several soil dust samples (Table 3). As would be 31 

expected, soils collected in areas with less vegetation exhibit smaller biological contributions. 32 
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We note that organic phosphorus content is not necessarily a direct indicator of microbes 1 

since it also encompasses decomposed biogenic and organic matter. At this time, we are not 2 

able to delineate between primary biological, biogenic or simply complex organic (such as 3 

humic acids) material. 4 

In the FIN03 field dataset, 56% of particles identified as biological also contained silicate 5 

markers normally associated with mineral dust. In the CARES dataset the percentage of such 6 

particles was 36%. This represents an upper limit of particles that are an internal mixture of 7 

dust and biological material. As stated in the last paragraph, this biological material probably 8 

does not consist of whole cells sitting on mineral particles; such internally mixed mineral dust 9 

particle with surface whole or fragments of biological material are not supported by EM 10 

(Peter Buseck, personal communication). It currently remains unclear if such internally mixed 11 

particles would be counted as biological with an optical microscope after fluorescent staining.  12 

Internal mixtures of biological and mineral components were generated in the laboratory in 13 

order to investigate this; an exemplary spectrum of such particle is shown in Figure 10. The 14 

spectrum contains alumino-silicate markers consistent with mineral dust together with 15 

phosphate markers that, in this case, come from the biological material. In spectra of pure 16 

illite, no phosphate markers are present. Using the classifier developed in this paper on the 17 

laboratory-generated internally mixed particles correctly identifies the phosphate signatures to 18 

be biological. 19 

4.3)Uncertainty)in)bioaerosol)identification)in)PALMS)spectra)20 

Phosphorus peak ratios in biological particles cluster differently than in inorganic phosphorus 21 

particles with ragweed pollen an exception (Figure 4A). No satisfactory explanation for this 22 

observation has been found although contamination with phosphate fertilizer cannot be ruled 23 

out. The accuracy of the biological filter using PO3
-/PO2

- and CN-/CNO- ratios is 97% with 24 

ragweed alone the source of most of the error. This unexplained behavior is a cause for 25 

concern, as the list of biological samples used as a training set is extensive, but not exhaustive 26 

and other exceptions could exist. 27 

The basic classifier presented in this paper is binary: all phosphate- and organic nitrogen-28 

containing particles are classified either as biological or inorganic. However, spectra whose 29 

PO3
-/PO2

- and CN-/CNO- ratios are very close to the SVM boundary have more uncertain 30 

assignments than those whose PO3
-/PO2

- and CN-/CNO- ratios fall far away from the 31 

boundary. In order to provide an additional measure of classification uncertainty, a probability 32 
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bound was defined as shown in Figure 5. According to this definition, 96% of particles in the 1 

training dataset were classified with high-confidence (Figure 5). In the FIN03 and CARES 2 

field datasets, 79% of phosphate-containing particles were classified with high confidence. 3 

The low-confidence assignments are shown on Figures 6A and 7A with shaded areas. The 4 

low-confidence assignments in field datasets can be related to chemical processing of 5 

particles (either at the source like in soils or during transport) or to internal mixing of 6 

biological and inorganic phosphate. 7 

Because soil dusts are a special category, where lines between biological and inorganic 8 

phosphorus sources can be blurry because of ongoing chemical transformations, they have 9 

higher classification uncertainties than other types of phosphate-containing aerosols. In the 10 

field data, dust/biological mixtures (defined as particles classified as biological with silicate 11 

features) are overrepresented in the low-confidence assignments. Dust/biological mixtures 12 

constitute 26% (CARES) - 46% (FIN03) of high-confidence assignments and 64% (CARES) - 13 

68% (FIN03) of low-confidence assignments. Moreover, only 75% of phosphate-containing 14 

soil dust particles were classified with high confidence. However, in simple two-component 15 

internal mixtures of dust and biological fragments (Figure 10) phosphate features can be 16 

identified as biological with high confidence (98%). 17 

Because the field studies were performed during different time periods, it was difficult to 18 

control for a constant excimer laser fluence. However, laser fluence was similar for all 19 

laboratory samples acquired (3-5 mJ pulse energy). This is a possible source of uncertainty, as 20 

fragmentation patterns can differ depending on pulse energy. 21 

5) Conclusion)22 

This paper examines criteria that can be used with SPMS instruments to identify bioaerosol. 23 

We propose a new technique of bioaerosol detection and validate it using a database of 24 

phosphorus-bearing spectra. A simple binary classification scheme was optimized using a 25 

SVM algorithm, with 97% accuracy. Ambient data collected during FIN03 and CARES 26 

campaigns are then analyzed with this binary classifier. Particles with phosphorus were up to 27 

0.5% for FIN03 and 4.2% for CARES by number of all ambient particles in the 200 – 3000 28 

nm size range. On average, 29% (FIN03) and 63% (CARES) of these particles were identified 29 

as biological. 30 

Our work expands on previous SPMS sampling that used a more simple Boolean three marker 31 

criterion (CN-, CNO- and PO3
-) to classify particles as primary biological or not (Creamean et 32 
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al., 2013; 2014). We show that the presence of these markers is necessary but not sufficient. 1 

We show a false positive rate of the Boolean filter between 64% and 75% for a realistic 2 

atmospheric mixture of soil dust, fly ash and primary biological particles. 3 

The trained SVM algorithm was also used to measure the biological content of soil dusts. 4 

Different soil dust samples can have different content of biological material with a range from 5 

2 – 32% observed here. Consistent with the literature, samples taken from areas with 6 

vegetation exhibit a higher biological content. 7 
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Table 1. Measurements of biological aerosol in the atmosphere (NR – not reported, FBAP – fluorescent particles, attributed to bioaerosol). 1 

*Comment in response to DeLeon-Rodriguez et al., 2013 by Smith and Griffin (2013). 2 

Site Elevation (m) Technique Concentration of bioaerosol 
detected (particles m-3) 

% of total particles (size 
range) 

Type of 
bioaerosol 

Reference 

Ground'sites'
Jungfraujoch 3,450 Fluorescent 

microscopy 
3.4×104 (free troposphere) 
7.5×104 (over surface) 

NR Bacteria Xia et al., 2013 

Storm Peak Lab 3,220 Fluorescent 
microscopy 

9.6×105 – 6.6×106 NR Bacteria 
(51%) 
Fungi (45%) 
Plant material 
(4%) 

Wiedinmyer et al., 
2009 

Storm Peak Lab 3,220 Flow 
cytometry 

3.9×105 (spring) 
4.0×104 (summer) 
1.5×105 (fall) 
2.7×104 (winter) 

22% (0.5-20 µm) Bacteria Bowers et al., 2012 

Mt. Rax (Alps) 1,644 Fluorescent 
microscopy 

1.1×104 (bacteria) 
3.5×102 (fungi) 

NR Bacteria and 
fungi 

Bauer et al., 2002 

Various locations in 
Colorado 

1,485-2,973 Fluorescent 
microscopy 

1.0×105 - 2.6×106 NR Bacteria Bowers et al., 2011 

Vienna 150-550 Fluorescent 
microscopy 

3.6×103 – 2.9×104 NR Fungi Bauer et al., 2008 

U.S. Virgin Islands NR Fluorescent 
microscopy 

3.6×104 – 5.7×105 NR Bacteria and 
possible 
viruses 

Griffin et al., 2001 

Various sites in the 
U.K. 

50-130 Fluorescent 
microscopy 

5.3×103 – 1.7×104 (spring) 
8.3×103 – 1.5×104 (summer) 
6.0×103 – 1.4×104 (fall) 
2.9×103 – 1.0×104 (winter) 

NR Bacteria Harrison et al., 2005 

Danum Valley, 
Malaysian Borneo 

150-1,000 WIBS 2.0×105 (above forest 
canopy) 

NR FBAP Gabey et al., 2010 



 

 30 

1.5×106 (below forest 
canopy) 

Karlsruhe, Germany 112 WIBS 2.9×104 (spring) 
4.6×104 (summer) 
2.9×104 (fall) 
1.9×104 (winter) 

4-11% (0.5-16 µm) FBAP Toprak and 
Schnaiter, 2013 

Aircraft'campaigns'
Cape Grim 30-5,400 TEM NR 1% (>0.2 µm) Bacteria Pósfai et al., 2003 
Flights around the 
Gulf of Mexico, 
California and 
Florida 

3,000-10,000 Fluorescent 
microscopy 

3.6×104 – 3.0×105 3.6-276% (0.25-1 µm)* Mostly 
bacteria 

DeLeon-Rodriguez 
et al., 2013 

Flights over 
southeastern U.S. 
(SEAC4RS) 

Vertical profiles up 
to 12,000 

WIBS 3.4×105 (average, <0.5 km) 
7.0×104 (average, 3 km) 
1.8×104 (average, 6 km) 

5-10% (0.6-5 µm) FBAP Ziemba et al., 2016 

Flights  over 
Colorado, 
Wyoming, 
Nebraska and South 
Dakota 

Vertical profiles up 
to 10,000 

WIBS 1.0×104 – 1.0×105 (<2.5 km) 
0 – 3.0×103 (>2.5 km) 

NR FBAP  Twohy et al., 2016 

 1 
 2 
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Table 2. Summary of particle statistics for samples used to both train and test the classifier.  1 

Category) Total)negative)spectra) Used)for)training)the)
classifier)

Bare%apatite% 338% 135%
Processed%apatite%(~0.1%mL)% 994% 359%
Processed%apatite%(~1%mL)% 987% 203%
Fertilized%soil%dusts% 1953% 1774%
Fly%ash% 3986% 3536%
Processed%fly%ash%(~0.1%mL)% 824% 312%
Monazite% 415% 371%
P.#syringae# 1429% 1429%
Snomax% 497% 497%
F.#solani#(whole)% 1053% 1010%
F.#solani%(fragmented)% 1129% 1127%
Yeast% 778% 757%
Birch%pollen% 1136% 1137%
Hazelnut%pollen% 183% 183%
Oak%pollen% 1193% 1191%
Ragweed%pollen% 1207% 1187%
Bächli%soil%dust% 501% Not%used%
Moroccan%soil%dust% 460% Not%used%
Ethiopian%soil%dust% 502% Not%used%
Storm%Peak%Lab%dust% 464% Not%used%
Argentinian%soil%dust% 507% Not%used%
Chinese%soil%dust% 1002% Not%used%
Saudi%Arabian%soil%dust% 3131% Not%used%
Illite%NX%(dryXgenerated)% 1002% Not%used%
Illite%NX%(wetXgenerated)% 1030% Not%used%
Illite%NX/F.#solani%mixed% 1396% Not%used%
FIN03%ambient%sampling% 26019% Not%used%
CARES%ambient%sampling% 19011% Not%used%
  2 
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Table 3. Soil dust samples used in this work. The last column shows the results of analysis 1 

with the SVM classifier developed here as a percentage of negative spectra acquired. 2 

Sample) Site)description) Approx.)
collection)
coordinates)

%)biological)

Bächli% Outflow%
sediment%of%a%
glacier%in%a%
feldsparXrich%
granitic%
environment.%No%
vegetation.%

46.6%N,%8.3%E% 6.0$

Morocco% Rock%desert%with%
vegetation.%Close%
proximity%to%a%
road.%

33.2%N,%2.0%W% 20.4$

Ethiopia% Collected%in%Lake%
Shala%National%
Park%from%a%region%
between%two%lakes.%
Area%vegetated%by%
shrubs%and%
acacia%trees.%

7.5%N,%38.7%E% 32.1$

Storm%Peak%Lab% Collected%near%
Storm%Peak%Lab.%
Grass%and%shrubs%
present.%

40.5%N,%106.7%W% 31.3$

Argentina% La%Pampa%
province.%Top%soil%
collected%from%
arable%land%with%
sandy%loam%
(Steinke%et%al.,%
2016).%

37%S,%64%W% 21.3$

China/Inner%
Mongolia%

Xilingele%steppe.%
Top%soil%collected%
from%a%pasture%
with%loam%(Steinke%
et%al.,%2016).%

44%N,%117%E% 2.0$

Saudi%Arabia% Various%samples%
from%several%
locations.%Arid,%
sandy%soils.%

24.6%N%–%26.3%N,%
46.1%E%–%49.6%E%

14.5$

 3 

  4 
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Table 4. Literature estimates of emission rates of primary biological particles, dust and fly 1 

ash.  2 

Particle)
Emissions)(Tg)yr@1))

low#estimate# high#estimate#
Dust% 1490%(Zender,%2003)% 7800%(Jacobson%and%Streets,%

2009)%
Primary%
biological%

186%(Mahowald%et%al.,%2008)% 298%(Jacobson%and%Streets,%
2009)%

Fly%ash% 14.9%(Garimella%et%al.,%2016)% 390%(Garimella%et%al.,%2016)%
 3 

  4 
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 1 

Figure 1. Representative PALMS spectra of bioaerosol. A and B: Snomax. C and D: P. 2 

syringae. E and F: Hazelnut wash water. Right and left columns are positive and negative 3 

polarity, respectively. Red dotted lines are features indicated in the literature as markers for 4 

biological material.  5 
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 1 

Figure 2. Representative PALMS spectra of phosphorus-rich minerals and ambient aerosol. A 2 

and B: Unprocessed apatite. C and D: Apatite processed with HNO3 (see text for details). E 3 

and F: Monazite-Ce. G and H: Ambient particles sampled at Storm Peak matching monazite 4 

chemistry. Right and left columns are positive and negative polarity, respectively. Red dotted 5 

lines are features indicated in the literature as markers for biological material. 6 

  7 
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 1 

Figure 3. Representative PALMS spectra of coal fly ash from the J. Robert Welsh power 2 

plant. A and B: Unprocessed fly ash. C and D: Fly ash processed with HNO3 (see text for 3 

details). Right and left columns are positive and negative polarity, respectively. Red dotted 4 

lines are features indicated in the literature as markers for biological material. 5 

  6 



 

 37 

 1 
 2 

Figure 4. A: Normalized histograms of the PO3
-/PO2

- ratio for the laboratory aerosol. B: 3 

Normalized histograms of the CN-/CNO- ratio for the same laboratory aerosol as in A. 4 
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Delineation between the clusters at a PO3
-/PO2

- ratio of 3 results in a 70-80% classification 1 

accuracy depending on the types of particles considered. Note that soil dusts were not used as 2 

part of the training dataset and that not all training aerosols are shown here for clarity.   3 
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 1 

Figure 5. Inorganic and biological particle clusters in CN-/CNO- vs. PO3
-/PO2

- space. The 2 

SVM algorithm delineates between the clusters with the red dashed line with an overall 97% 3 

classification accuracy. Solid red lines indicate the uncertainty boundary (see text for further 4 

details). 5 

  6 
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 1 
Figure 6. A: The percentage of ambient aerosol particles from FIN03 dataset categorized as 2 

biological and inorganic (phosphate-bearing mineral dust or fly ash) phosphate using the 3 

criteria developed in this work. Hatched regions indicate uncertain assignments per the 4 

boundaries in Figure 5. Note that at this location and time of year inorganic phosphate 5 

dominates biological. B: HYSPLIT back trajectories plotted for ten measurement days at 6 

Storm Peak Laboratory. Locations of REE, phosphate and carobonatite deposits, sourced from 7 

U.S. Geological Survey, are co-plotted (Berger et al., 2009; Chernoff and Orris, 2002; Orris 8 

and Grauch, 2002). 9 
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1 
Figure 7. A: The percentage of ambient aerosol particles from CARES dataset categorized as 2 

biological and inorganic (phosphate-bearing mineral dust or fly ash) phosphate using the 3 

criteria developed in this work. Hatched regions indicate uncertain assignments per the 4 

boundaries in Figure 5. B: HYSPLIT back trajectories plotted for ten measurement days at the 5 

Cool, CA site. Locations of REE, phosphate and carobonatite deposits, sourced from U.S. 6 

Geological Survey, are co-plotted (Berger et al., 2009; Chernoff and Orris, 2002; Orris and 7 

Grauch, 2002) along with locations of major urban centers.  8 
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 1 

 2 
Figure 8. Percentage of particles that include PO3

-, CN- and CNO- markers in five classes of 3 

atmospherically-relevant aerosol spectra acquired with PALMS in this work. Note that the 4 

green bars indicate the percentage of particles of each type identified as biological using 5 

literature criteria. In the case of bioaerosol the identification is correct. In all other aerosol 6 

classes the green bar denotes a typical level of misidentification.  7 
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Figure 9. Abundance of bioaerosol, mineral dust and fly ash in the atmosphere constructed 2 

using emissions estimates in Table 3 A: Highest estimate for bioaerosol coupled to lowest 3 

estimates for dust and fly ash. B: Lowest estimate of bioaerosol in the atmosphere coupled to 4 

highest estimates for dust and fly ash. C and D: Effect of misidentification of phosphate- and 5 

organic nitrogen-containing aerosol as biological using the emissions in A and B, 6 

respectively. The hatched regions correspond to the misidentified fractions of mineral dust 7 

and fly ash. In these estimates the correct emissions (solid green region) in A and B (17 and 8 

2%, respectively) are overestimated (hatched green region of misidentified aerosol plus solid 9 

green region) in C and D (as 81 and 77%, respectively).  10 



 

 44 

 1 
Figure 10. Exemplary PALMS negative polarity spectra of A: dry-dispersed illite NX, B: wet-2 

dispersed illite NX from a distilled, deionized water slurry and C: similarly wet-dispersed 3 

illite NX but from a water slurry that also contained F. solani spores. Note that phosphate 4 

features are absent in A and B but present in C due to addition of biological material to the 5 

mineral dust.  6 


