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Evidence for renoxification in the tropical marine boundary

layer: Supplementary material

Cape Verde Atmospheric Observatory (CVO)
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Figure S1. Location of CVO on the globe, and within the Cape Verde archipelago. Also
shown is the wind rose data (centred on the site) for the data used in the analysis of NOy data.

Box model description

The Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC)
atmospheric chemistry box model (Emmerson and Evans, 2009) is used to interpret the NOy
observations. It use the Kinetic PreProcessor (KPP-2.1, Damian et al., 2002) to solve ordinary
differential equations generated from the reactions and their kinetic information (Sandu and
Sander, 2006).

Rate information is assimilated from; Master Chemical Mechanism for near explicit organic
reactions (MCMv3.3.1, Bloss et al., 2005; Jenkin et al., 1997, 2003, 2015; Saunders et al.,
2003); inorganic rates at taken from IUPAC (Atkinson et al., 2004, 2007) and JPL

(Burkholder et al., 2015) evaluated databases and are detailed in tables below; clear sky



photolysis rates are calculated by the Tropospheric Ultraviolet and Visible model (TUV,

www?2.acom.ucar.edu/modeling/tuv-download; Madronich, 1993).

Table ST1. Rates of Oy reactions used in DSMACC model.

Ox reactions

# Reaction Rate Reference
(6.00 x 10°* [O,][0,](TEMP/300)2°)) +
1 O0+0,— 04 (5.60 x 10" [0,][N2](TEMP/300)2%)) (Burkholder et al., 2015)
2 0 + 03 — 20, 8.00 x 10712 g(-2060TEMP) (Burkholder et al., 2015)
(330 X 10—11 [Oz]e(SSITEMP)) +
2 O'D+M—-0+M (2.15 x 107 [N,] e@OTEMP) (Burkholder et al., 2015)
2 0'D + H,0 — 20H 1.63 x 10™°[H,0] e®¥TEMP) (Burkholder et al., 2015)
5 O'D+0;—> 0 2.40 x 10™°[O5](0/TEMP) (Burkholder et al., 2015)

Table TS2. Rates of HO, reactions used in DSMACC model.



HOy reactions

# Reaction Rate Reference

1 0+O0H—-H+0;, 1.80 x 107t g(1E0TEMP) (Burkholder et al., 2015)
2 0 + HO, — OH + 0, 3.00 x 107 g(@0/TEMP) (Burkholder et al., 2015)
3 0 + H,0; — OH + HO, 1.40 x 10710 g(-2000TEMP) (Burkholder et al., 2015)
4 H+0;— OH+O, 1.40 x 10710 g(#70TEMP) (Burkholder et al., 2015)
5 H + HO; — 20H 7.20 x 107 g@TEMP) (Burkholder et al., 2015)
6 OH + 03 — HO,+ O, 1.70 x 10712 g(S40TEMP) (Burkholder et al., 2015)
7 OH + OH — O + H,0 1.80 x 10712 g@TEMP) (Burkholder et al., 2015)
8 OH + HO; — H,0 + O, 4,80 x 107 g@0TEMP) (Burkholder et al., 2015)
9 OH + H,0, — HO, 2.90 x 10712 g(1EUTEMP) (Atkinson et al., 2004)
10 OH +H, —» H,0+H 2.80 x 10712 g(1E00TEMP) (Burkholder et al., 2015)
11 OH + CO — HO; 1.44x10™" x (1+([M]/4.2x10"9)) (Atkinson et al., 2004)
12 HO, + O3 — OH + O, 1.00 x 10714 g(#%0TEMP) (Burkholder et al., 2015)

(220 x 10 x (1 + (1.40 x 10*
13 2HO, — H,0, Q@ROTENP) » [L.O])  x gOTEMP) 4 (Atkinson et al., 2004)

(1.90 x 10 [M] x (1 + (1.40 x 10%*

2200TEMP) o [H.0]) x e(QBO/TEMP))

Table TS3. Rates of NO, reactions used in DSMACC model.

NOy reactions

# Reaction Rate Reference

1 0+ NO — NO, 5.00 x 10™* (TEMP/300%% (Atkinson et al., 2004)

2 0+ NO; — NO; 1.30 x 10" (TEMP/300)**[N,] (Atkinson et al., 2004)

3 0+ NO3; — NO, + 0, 1.00 x 1071t g(©TEMP) (Burkholder et al., 2015)
4 0+ NO, — NO + 0, 5.10 x 10712 gRL0TEMP) (Burkholder et al., 2015)
5 H + NO, — OH + NO 4,00 x 10710 g(3400TEMP) (Burkholder et al., 2015)
6 OH + HONO — NO; + H,0 2.50 x 10712 g(@60TEMP) (Atkinson et al., 2004)
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HO; + NO — OH + NO,

HOZ + NOZ nd HOzNOZ

HO; + NO3; — OH + NO;

NO+O3—>N02+ Oz

NO + NO3 — NO; + NO,

NOZ + 03 — NO + 20,

NO; + NO; — NO + NO, + O,

2NO3 i 2N02 + 02

NO; + NO; — N,Os

N205 —>NO3+ NOZ

OH + NO — HONO

OH + NOZ i HNO3

OH + NO3; — HO, + NO,

HOzNOZ g NOZ + H02

OH + HNO3; — NO3 +H,0

OH + HO,NO, — NO, + prods

3.30 x 10712 g@70TEMP)
1.40 x 10% (TEMP/300)** [N?]

4.00 x 1012 @(@TEMP)

3.00 x 10712 g(-1500/TEMP)

1.50 x 1071 g(70TEMP)

1.20 x 1013 (2450 TEMP)

4.50 x 10714 g(L260TEMP)

8.50 x 10713 g(-2450/TEMP)

3.60 x 10 (TEMP/300)** [N;]

1.30 x 10° (TEMP/300) %5 g H1000TEVP) [ |
7.40 x 10° (TEMP/300)** [N;]

3.20 x 10%° (TEMP/300)** [N;]

2.00 x 1071 g(/TEMP)

4.10 x 1075 g(1065TEMP) [N 1

1.50 x 102

3.20 x 10712 g(6ITEMP)

(Burkholder et al., 2015)

(Atkinson et al., 2004)

(Atkinson et al., 2004)

(Burkholder et al., 2015)

(Burkholder et al., 2015)

(Burkholder et al., 2015)

(Burkholder et al., 2015)

(Burkholder et al., 2015)

(Atkinson et al., 2004)

(Atkinson et al., 2004)

(Atkinson et al., 2004)

(Atkinson et al., 2004)

(Atkinson et al., 2004)

(Atkinson et al., 2004)

(Atkinson et al., 2004)

(Atkinson et al., 2004)

Table TS4. Rates of Bromine reactions used in DSMACC model.

Bromine reactions

# Reaction Rate Reference

1 Br+0; — BrOo+0; 1.70 x 107 g(B00TEMP) (Atkinson et al., 2007)

2 BrO + NO, — BrNO; 5.20 x 10°%* ((TEMP/300.)32)[M] (Burkholder et al., 2015)

3 BrNO; — BrO + NO, 2.80 x 1013 g12360TEMP) (Orlando and Tyndall, 2002)
4 BrO + HO, — HOBr + O, 4,50 x 1012 g@00TEMP) (Atkinson et al., 2007)

5 Br+ HO, — HBr + O, 4.80 x 1072 g(SI0TEMP) (Burkholder et al., 2015)

6 HBr + OH — Br + H,0 1.10 x 10™ (Atkinson et al., 2007)




7 BrO + NO — Br + NO, 8.70 x 10712 g2E0TEMP) (Atkinson et al., 2007)

8 2BrO — 2Br + 0, 2.36 x 1072 g@0TEMP)

9 2BrO — Bry+ O, 2.79 x 107 g®EUTEMP)

10 Br+ HCHO — HBr + HO, 1.70 x 1071 g(B00TEMP) (Burkholder et al., 2015)

11 Br + NO; — BrO + NO, 1.60 x 10™ (Burkholder et al., 2015)

12 HOBr + NO; — BRO + HNO; 2.7 x 10712 gl300TEMPY'266 This work

Table TS5. Rates of lodine reactions used in DSMACC model.

lodine reactions

# Reaction Rate Reference

1 | + HO; — HI 1.50 x 107t gl-L00/TEMP) (Atkinson et al., 2007)

2 10 + NO, — INO; 7.70 x 103" ((TEMP/300)*)[M] (Atkinson et al., 2007)

3 INO; — 10 + NO;, 1.10 x 101 g(12060TEMP) (Atkinson et al., 2007)

4 OH+HI— I 3.00 x 10 (Burkholder et al., 2015)

5 10 +NO — NO, + | 7.15 x 10712 gBOTEMP) (Atkinson et al., 2007)

6 I+0;—10+0;, 2.30 x 10 g(B7OTEMP) (Burkholder et al., 2015)

7 10 + HO, — HOI + O, 1.40 x 107 B40TEMP) (Atkinson et al., 2007)

8 HOI+ OH — IO 2.00x 10" (Méssinger and Cox, 2001)

9 210 — I+ 0IO (5.40 x 1071 gUBUTEMP)) x(.38 (Atkinson et al., 2007; Bloss et
al., 2001)

10 210 — 21+ 0, (5.40 x 107 gU8UTEMP)) 0,11 (Atkinson et al., 2007; Bloss et
al., 2001)

11 0IO + NO — 10 + NO, 1.10 x 10712 gG42/TEMP) (Plane et al., 2006)

12 I, + NO; — INO; + | 1.50 x 10" (Atkinson et al., 2007)

13 I+ NO; — 10 + NO; 1.00 x 10 (Atkinson et al., 2007)

14 HOI + NO3; — 10 + HNO; 2.70 x 10712 gB0OTEMP)'2.66 (Saiz-Lopez et al., 2016)

Table TS6. Rates of mixed halogen reactions used in DSMACC model.



Mixed halogen reactions

# Reaction Rate Reference

1 BrO+10 —» Br+0.80I0+0.21 1.50 x 107 B10TEMP) (Atkinson et al., 2007)

2 I+ BrO — IO + Br 1.20 x 10™* (Burkholder et al., 2015)
3 Br+10 — BrO+1 270 x 10

Table TS7. Aerosol reactive uptake coefficients (y) used in DSMACC model. UPTAKE(y, Temp, Surface Area,
Mass).

Aerosol reactions

# Reaction Y Reference

1 N20s — 2 x p-NO; 0.02 (Crowley et al., 2010)*

2 HNO;3; — p-NO3 0.15 (Crowley et al., 2010)*

3 NO; — p-NOs 0.012 (Crowley et al., 2010)*

4 HOBr — 0.5 Br; 0.02-0.80 (Saiz-Lopez et al., 2008)"

5 BrNO; — HOBr + p-NO3 0.02-0.80 (Burkholder et al., 2015; Saiz-Lopez et al., 2008)"
6 HBr — 0.5 Br, 0.02-0.80 (Saiz-Lopez et al., 2008)"

7 HOI —0.51, 0.02-0.80 (Saiz-Lopez et al., 2008)"

8 HI—- 051 0.02-0.80 (Saiz-Lopez et al., 2008)"

9 INO; — HOI + p-NOs 0.02-0.80 (Burkholder et al., 2015; Saiz-Lopez et al., 2008)"

? Data from IUPAC datasheets of uptake coefficients on Saharan dust.

® sensitivity analysis performed on uptake coefficients.
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