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Evidence for renoxification in the tropical marine boundary 1 

layer: Supplementary material 2 

 3 

Cape Verde Atmospheric Observatory (CVO) 4 

 5 

Figure S1. Location of CVO on the globe, and within the Cape Verde archipelago. Also 6 

shown is the wind rose data (centred on the site) for the data used in the analysis of NOx data. 7 

Box model description 8 

The Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC) 9 

atmospheric chemistry box model (Emmerson and Evans, 2009) is used to interpret the NOx 10 

observations. It use the Kinetic PreProcessor (KPP-2.1, Damian et al., 2002) to solve ordinary 11 

differential equations generated from the reactions and their kinetic information (Sandu and 12 

Sander, 2006). 13 

Rate information is assimilated from; Master Chemical Mechanism for near explicit organic 14 

reactions (MCMv3.3.1, Bloss et al., 2005; Jenkin et al., 1997, 2003, 2015; Saunders et al., 15 

2003); inorganic rates at taken from IUPAC (Atkinson et al., 2004, 2007) and JPL 16 

(Burkholder et al., 2015) evaluated databases and are detailed in tables below;  clear sky 17 
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photolysis rates are calculated by the Tropospheric Ultraviolet and Visible model (TUV, 1 

www2.acom.ucar.edu/modeling/tuv-download; Madronich, 1993). 2 

Table ST1. Rates of Ox reactions used in DSMACC model.  3 

 4 

Table TS2. Rates of HOx reactions used in DSMACC model. 5 

OX reactions 

# Reaction Rate Reference 

1 O + O2 → O3 

(6.00 × 10-34 [O2][O2](TEMP/300)-2.6)) + 

(5.60 × 10-34 [O2][N2](TEMP/300)-2.6)) (Burkholder et al., 2015) 

2 O + O3 → 2O2 8.00 × 10-12 e(-2060/TEMP) (Burkholder et al., 2015) 

2 O1D + M → O + M 

(3.30 × 10-11 [O2]e
(55/TEMP)) + 

(2.15 × 10-11 [N2] e
(110/TEMP)) (Burkholder et al., 2015) 

2 O1D + H2O → 2OH 1.63 × 10-10 [H2O] e(60/TEMP) (Burkholder et al., 2015) 

5 O1D + O3 → O 2.40 × 10-10 [O3](0/TEMP) (Burkholder et al., 2015) 
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 1 

Table TS3. Rates of NOx reactions used in DSMACC model. 2 

NOx reactions 

# Reaction Rate Reference 

1 O + NO → NO2 5.00 × 10-11 (TEMP/300)-0.3 (Atkinson et al., 2004) 

2 O + NO2 → NO3 1.30 × 10-31 (TEMP/300)-1.5 [N2]  (Atkinson et al., 2004) 

3 O + NO3 → NO2
 + O2 1.00 × 10-11 e(0/TEMP) (Burkholder et al., 2015) 

4 O + NO2 → NO + O2 5.10 × 10-12 e(210/TEMP) (Burkholder et al., 2015) 

5 H + NO2 → OH + NO 4.00 × 10-10 e(-3400/TEMP) (Burkholder et al., 2015) 

6 OH + HONO → NO2 + H2O 2.50 × 10-12 e(260/TEMP) (Atkinson et al., 2004) 

HOx reactions 

# Reaction Rate Reference 

1 O + OH → H + O2 1.80 × 10-11 e(180/TEMP) (Burkholder et al., 2015) 

2 O + HO2 → OH + O2 3.00 × 10-11 e(200/TEMP) (Burkholder et al., 2015) 

3 O + H2O2 → OH + HO2 1.40 × 10-10 e(-2000/TEMP) (Burkholder et al., 2015) 

4 H + O3 → OH + O2 1.40 × 10-10 e(-470/TEMP) (Burkholder et al., 2015) 

5 H + HO2 → 2OH 7.20 × 10-11 e(0/TEMP) (Burkholder et al., 2015) 

6 OH + O3 → HO2
 + O2 1.70 × 10-12 e(-940/TEMP) (Burkholder et al., 2015) 

7 OH + OH → O + H2O 1.80 × 10-12 e(0/TEMP) (Burkholder et al., 2015) 

8 OH + HO2 → H2O + O2 4.80 × 10-11 e(250/TEMP) (Burkholder et al., 2015) 

9 OH + H2O2 → HO2 2.90 × 10-12 e(-160/TEMP) (Atkinson et al., 2004) 

10 OH + H2 → H2O + H 2.80 × 10-12 e(-1800/TEMP) (Burkholder et al., 2015) 

11 OH + CO → HO2 1.44×10-13 × (1+([M]/4.2×1019)) (Atkinson et al., 2004) 

12 HO2 + O3 → OH + O2 1.00 × 10-14 e(-490/TEMP) (Burkholder et al., 2015) 

13 2HO2 → H2O2 

(2.20 × 10-13 × ( 1 + (1.40 × 10-21 

e(2200/TEMP) × [H2O])  × e(600/TEMP)) + 

(1.90 × 10-33 [M] × ( 1 + (1.40 × 10-21 

e(2200/TEMP) × [H2O]) × e(980/TEMP)) 

(Atkinson et al., 2004) 
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7 HO2 + NO → OH + NO2 3.30 × 10-12 e(270/TEMP) (Burkholder et al., 2015) 

8 HO2 + NO2 → HO2NO2 1.40 × 10-31 (TEMP/300)-3.1 [N2] (Atkinson et al., 2004) 

9 HO2 + NO3 → OH + NO2 4.00 × 10-12  e(0/TEMP) (Atkinson et al., 2004) 

10 NO + O3 → NO2
 + O2 3.00 × 10-12 e(-1500/TEMP) (Burkholder et al., 2015) 

11 NO + NO3 → NO2 + NO2 1.50 × 10-11 e(170/TEMP) (Burkholder et al., 2015) 

12 NO2 + O3 → NO + 2O2 1.20 × 10-13 e(-2450/TEMP) (Burkholder et al., 2015) 

13 NO2 + NO3 → NO + NO2 + O2 4.50 × 10-14 e(1260/TEMP) (Burkholder et al., 2015) 

14 2NO3 → 2NO2 + O2 8.50 × 10-13 e(-2450/TEMP) (Burkholder et al., 2015) 

15 NO2 + NO3 → N2O5 3.60 × 10-30 (TEMP/300)-4.1 [N2] (Atkinson et al., 2004) 

16 N2O5 →NO3 + NO2 1.30 × 10-3 (TEMP/300)-3.5 e(-11000/TEMP) [N2] (Atkinson et al., 2004) 

17 OH + NO → HONO 7.40 × 10-31 (TEMP/300)-2.4 [N2] (Atkinson et al., 2004) 

18 OH + NO2 → HNO3 3.20 × 10-30 (TEMP/300)-4.5 [N2] (Atkinson et al., 2004) 

19 OH + NO3 → HO2 + NO2 2.00 × 10-11 e(0/TEMP) (Atkinson et al., 2004) 

20 HO2NO2 →  NO2 + HO2 4.10 × 10-5 e(-10650/TEMP) [N2] (Atkinson et al., 2004) 

21 OH + HNO3 → NO3 +H2O 1.50 × 10-13 (Atkinson et al., 2004) 

22 OH + HO2NO2 → NO2 + prods 3.20 × 10-12 e(690/TEMP) (Atkinson et al., 2004) 

 1 

Table TS4. Rates of Bromine reactions used in DSMACC model. 2 

Bromine reactions 

# Reaction Rate Reference 

1 Br + O3 → BrO + O2 1.70 × 10-11 e(-800/TEMP) (Atkinson et al., 2007) 

2 BrO + NO2 → BrNO3 5.20 × 10-31 ((TEMP/300.)-3.2)[M] (Burkholder et al., 2015) 

3 BrNO3 → BrO + NO2 2.80 × 1013 e(-12360/TEMP) (Orlando and Tyndall, 2002) 

4 BrO + HO2 → HOBr + O2 4.50 × 10-12 e(500/TEMP) (Atkinson et al., 2007) 

5 Br + HO2 → HBr + O2 4.80 × 10-12 e(-310/TEMP) (Burkholder et al., 2015) 

6 HBr + OH → Br + H2O 1.10 × 10-11 (Atkinson et al., 2007) 
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7 BrO + NO → Br + NO2 8.70 × 10-12 e(260/TEMP) (Atkinson et al., 2007) 

8 2BrO → 2Br  + O2 2.36 × 10-12 e(40/TEMP)  

9 2BrO → Br2 + O2 2.79 × 10-14 e(860/TEMP)  

10 Br + HCHO → HBr + HO2 1.70 × 10-11 e(-800/TEMP) (Burkholder et al., 2015) 

11 Br + NO3 → BrO + NO2 1.60 × 10-11 (Burkholder et al., 2015) 

12 HOBr + NO3 → BRO + HNO3 2.7 × 10-12 e(300/TEMP)^2.66 This work 

 1 

Table TS5. Rates of Iodine reactions used in DSMACC model. 2 

Iodine reactions 

# Reaction Rate Reference 

1 I + HO2 → HI 1.50 × 10-11 e(-1090/TEMP) (Atkinson et al., 2007) 

2 IO + NO2 → INO3 7.70 × 10-31 ((TEMP/300)-5.)[M] (Atkinson et al., 2007) 

3 INO3 → IO + NO2 1.10 × 1015 e(-12060/TEMP) (Atkinson et al., 2007) 

4 OH + HI → I 3.00 × 10-11 (Burkholder et al., 2015) 

5 IO + NO → NO2 + I 7.15 × 10-12 e(300/TEMP) (Atkinson et al., 2007) 

6 I + O3 → IO + O2 2.30 × 10-11 e(-870/TEMP) (Burkholder et al., 2015) 

7 IO + HO2 → HOI + O2 1.40 × 10-11 e(540/TEMP) (Atkinson et al., 2007) 

8 HOI + OH → IO 2.00 × 10-13 (Mössinger and Cox, 2001) 

9 2IO → I + OIO (5.40 × 10-11 e(180/TEMP)) ×0.38 (Atkinson et al., 2007; Bloss et 

al., 2001) 

10 2IO → 2I + O2 (5.40 × 10-11 e(180/TEMP)) × 0.11 (Atkinson et al., 2007; Bloss et 

al., 2001) 

11 OIO + NO → IO + NO2 1.10 × 10-12 e(542/TEMP) (Plane et al., 2006) 

12 I2 + NO3 → INO3 + I 1.50 × 10-12 (Atkinson et al., 2007) 

13 I + NO3 → IO + NO2 1.00 × 10-10 (Atkinson et al., 2007) 

14 HOI + NO3 → IO + HNO3 2.70 × 10-12 e(300/TEMP)^2.66 (Saiz-Lopez et al., 2016) 

Table TS6. Rates of mixed halogen reactions used in DSMACC model. 3 
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Mixed halogen reactions 

# Reaction Rate Reference 

1 BrO + IO → Br + 0.8 OIO + 0.2 I 1.50 × 10-11 e(510/TEMP) (Atkinson et al., 2007) 

2 I + BrO → IO + Br 1.20 × 10-11 (Burkholder et al., 2015) 

3 Br + IO → BrO + I 2.70 × 10-11  

 1 

Table TS7. Aerosol reactive uptake coefficients (γ) used in DSMACC model. UPTAKE(γ, Temp, Surface Area, 2 

Mass). 3 

Aerosol reactions 

# Reaction γ Reference 

1 N2O5 → 2 × p-NO3 0.02 (Crowley et al., 2010)a 

2 HNO3 → p-NO3 0.15 (Crowley et al., 2010)a 

3 NO3 → p-NO3 0.012 (Crowley et al., 2010)a 

4 HOBr → 0.5 Br2 0.02-0.80 (Saiz-Lopez et al., 2008)b 

5 BrNO3 → HOBr + p-NO3 0.02-0.80 (Burkholder et al., 2015; Saiz-Lopez et al., 2008)b 

6 HBr → 0.5 Br2 0.02-0.80 (Saiz-Lopez et al., 2008)b 

7 HOI →0.5 I2 0.02-0.80 (Saiz-Lopez et al., 2008)b 

8 HI → 0.5 I2 0.02-0.80 (Saiz-Lopez et al., 2008)b 

9 INO3 → HOI + p-NO3 0.02-0.80 (Burkholder et al., 2015; Saiz-Lopez et al., 2008)b 

a
 Data from IUPAC datasheets of uptake coefficients on Saharan dust.  4 

b
 sensitivity analysis performed on uptake coefficients. 5 
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