Decoupling peroxyacetyl nitrate from ozone in Chinese outflows observed at Gosan Climate Observatory

Jihyun Han1*, Meehye Lee1, Gangwoong Lee2, Louisa K. Emmons3

1Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
2Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, Republic of Korea
3Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO, USA
*now at: Korea Environment Institute, Sejong, Republic of Korea

Correspondence to: M. Lee (meehye@korea.ac.kr)

Submitted to Atmospheric Chemistry and Physics

December 2016
Abstract

We measured peroxyacetyl nitrate (PAN) and other reactive species such as O$_3$, NO$_2$, CO, and SO$_2$ with aerosols including mass, organic carbon (OC), and elemental carbon (EC) in PM$_{2.5}$ and $K^+$ in PM$_{1.0}$ at Gosan Climate Observatory in Korea (33.17°N, 126.10°E) during October 10 to November 6, 2010. PAN was determined through fast gas chromatography with luminol chemiluminescence detection at 425 nm every 2 min. The PAN concentrations ranged from 0.1 (detection limit) to 2.4 ppbv with a mean of 0.6 ppbv. For all measurements, PAN was unusually better correlated with PM$_{2.5}$ (Pearson correlation coefficient, $\gamma = 0.79$) than with O$_3$ ($\gamma = 0.67$). In particular, the O$_3$ level was highly elevated with SO$_2$ at midnight, along with a typical midday peak when air was transported rapidly from the Beijing areas. The PAN enhancement was most noticeable during the occurrence of haze under stagnant conditions. In Chinese outflows slowly transported over the Yellow Sea, PAN gradually increased up to 2.4 ppbv at night, in excellent correlation with a concentration increase of PM$_{2.5}$ OC and EC, PM$_{2.5}$ mass, and PM$_{1.0}$ $K^+$. The high $K^+$ concentration and OC/EC ratio indicated that the air mass was impacted by biomass combustion. This study highlights PAN decoupling with O$_3$ in Chinese outflows and suggests PAN as a useful indicator for diagnosing continental outflows and assessing their perturbation on regional air quality in northeast Asia.

Key words: PAN, O$_3$, PM$_{2.5}$, Chinese outflow, Haze, Biomass combustion
1. **Introduction**

At the surface, ozone is primarily photochemically produced, and the contribution from the stratosphere is generally small. Ozone is formed through reactions of various precursors such as CO, CH₄, volatile organic compounds (VOCs), and NOₓ (e.g., Brasseur et al., 1999; Jacob, 2000; Nielsen et al., 1981). Likewise, peroxyacetyl nitrate (PAN) is a secondary product of urban air pollution and a significant oxidant in the atmosphere (e.g., Hansel and Wisthaler, 2000; La Franchi et al., 2009; Lee et al., 2012; Liu et al., 2010; Roberts et al., 2007). PAN is solely produced by the photochemical reaction between the peroxyacetyl radical and nitrogen dioxide, and the peroxyacetyl radical is derived from the OH oxidation or photolysis of VOCs such as acetaldehyde, methylglyoxal, and acetone (e.g., Fischer et al., 2014; La Franchi et al., 2009; Lee et al., 2012). For this reason, PAN is a very useful indicator of photochemical air pollution. As thermal decomposition is a major PAN sink in the troposphere (Beine et al., 1997; Jacob, 2000; Kenley and Hendry, 1982; Talukdar et al., 1995), the lifetime of PAN depends on temperature. For example, the PAN lifetime is ~5 years at ~26°C and 1 h at 20°C (Fischer et al., 2010; Zhang et al., 2011). At high altitudes above ~7 km, photolysis becomes the most important loss process for PAN (Talukdar, et al., 1995).

Besides, PAN is less soluble compared to nitric acid and is more easily transported to the free troposphere after it is released from scavenging in lower temperature (e.g., Zhu et al., 2017). Thus, PAN can be an indicator of NOₓ concentration in the free troposphere and a guide for the long-range transport of NOₓ in remote regions (Jacob, 1999).

In the past decades, PAN was measured not only in urban areas (Aneja et al., 1999; Gaffney et al., 1999; Grosjean et al., 2002; Lee et al., 2008; Tanimoto et al., 1999; Zhang et al., 2014) but also in background regions (Fischer et al., 2011; Kanaya et al., 2007; Lee et al., 2012; Tanimoto et al., 2002), onboard aircraft (Tereshchuk et al., 2013), and ships (Roberts et
al., 2007). PAN concentrations were in the range of a few ppbv in urban areas close to VOCs and NO₃ sources (Lee et al., 2008; Zhang et al., 2011). In the most remote regions, PAN concentrations were generally in the range of a few pptv (Gallagher et al., 1990; Mills et al., 2007; Muller and Rudolph, 1992; Staudt et al., 2003).

Although NOₓ concentration has recently declined in China (Gu et al., 2013; Liu et al., 2016a; Krotkov et al., 2016), NOₓ and VOCs have gradually increased in East Asia, particularly China during the last couple of decades (Akimoto, 2003; Liu et al., 2010; Ohara et al., 2007; Zhao et al., 2013). It led to an increase in the concentrations of photochemical byproducts such as PAN and O₃ not only in East Asia (Liu et al., 2010; Wang et al., 2010; Zhang et al., 2009; Zhang et al., 2011; Zhang et al., 2014) but also in North America (Fischer et al., 2010; Fischer et al., 2011; Jaffe et al., 2007; Zhang et al., 2008). These results were also demonstrated by the GEOS-Chem model (Zhang et al., 2008). In addition to urban plumes, PAN was reported to be enhanced by biomass combustion (Alvarado et al., 2010; Coheur et al., 2007; Zhu et al., 2015; Zhu et al., 2017), such as open burning and use of biofuel, which is used to take place often in China after crop harvesting (Cao et al., 2006; Duan et al., 2004). Recent satellite studies have also observed the increased PAN in plumes associated with anthropogenic emissions in eastern China and boreal fires in Siberia (Zhu et al., 2015; Zhu et al., 2017). In this context, PAN is a useful indicator for diagnosing Chinese outflows and assessing their perturbation on regional air quality in the northwestern Pacific region.

Gosan Climate Observatory (GCO) is an ideal place to monitor Asian outflows and their transformation and to estimate their impact on air quality over the northern Pacific region (Lee et al., 2007; Lim et al., 2012). In the present study, PAN was first measured continuously at GCO to characterize its variation and source in relation to O₃ and to
understand the influence of Chinese outflows on the regional air quality.

2. Experiments

PAN measurements were conducted at GCO (33.17°N, E126.10°E) on Jeju Island from October 19 to November 6, 2010. GCO is located on a cliff at the western edge of Jeju Island. PAN was determined through fast gas chromatography (GC) with luminol chemiluminescence detection, which is described in detail elsewhere (Gaffney et al., 1998; Lee et al., 2008; Marley et al., 2004). Here, we briefly describe the measurement method.

Ambient air was pumped through a 1.6-m PFA tubing (1/4 inch outer diameter) from the roof of the two-story container into a six-port two-position switching injection valve (Cheminert C22, Valco Instruments (Houston, TX, USA)) at 100 ml/min controlled by Mass flow controller (Lee et al., 2012; Lee et al., 2008). The residence time of the inlet was less than 2 seconds. PAN and NO$_2$ (and peroxynitrate nitrate (PPN) if present) were separated along a 10-m capillary GC column (DB-1, J&W Scientific, Folsom, CA, USA), whose end was connected to a luminol cell where the column effluent reacted with luminol, giving off luminescent light (Lee et al., 2008; Lee et al., 2012). The concentrations of PAN and other species were determined from the chemiluminescence signals detected by a gated photon counter (HC135-01, Hamamatsu, Bridgewater, NJ, USA) at 425 nm, which was set at 800 V and operated at room temperature (Gaffney et al., 1998; Lee et al., 2012; Lee et al., 2008).

PAN was calibrated against standards synthesized by the nitration of peracetic acid in n-tridecane (Gaffney et al., 1984; Gregory, 1990; Lee et al., 2008). A few microliter aliquots of standard solution were injected through an injection valve and then mixed with zero air (99.999 %) in a 5 L Tedlar bag. After being left for a few minutes for equilibrium, it was injected into GC-luminol instrument and NOx chemiluminescence instrument with a
molybdenum converter (42C, Thermo Electron Corporation, Franklin, MA, USA). The calibration was completed within 5 minutes to prevent thermal decomposition of the PAN (Kourtidis et al., 1993; Lee et al., 2008). These calibration procedures were carried out on the assumption that the PAN was completely converted to NO in the molybdenum converter. The detection limit of PAN defined by 3σ of the lowest standard was no greater than 100 pptv (Lee et al., 2008). The overall measurement uncertainty and precision was estimated to be 16% and 5%, respectively (Lee et al., 2012). NOx instrument was calibrated with NO standard gas.

Gaseous species including O₃, NO, NO₂, CO, and SO₂ were measured by UV absorption, chemiluminescence with a molybdenum converter, non-dispersive infrared, and pulse UV fluorescence method, respectively (NIER, 2016a). The measurements were made in compliance with guidelines for installation and operation of air pollution monitoring network (NIER, 2016b). Calibration was conducted before and after the experiment, following the regular checkup procedure. Detection limits of O₃, NOₓ, CO, and SO₂ are 2 ppb, 0.1 ppb, 0.05 ppm, 0.1 ppb, respectively (NIER, 2016b).

Aerosol species, including PM₂.₅ mass and PM₂.₅ OC and EC were measured and recorded along with meteorological parameters (relative humidity, temperature, and wind speed). Water-soluble ions of PM₁.₀ were collected by a particle-into-liquid sampler and analyzed by ion chromatography. The detailed results of the aerosol measurements can be found in Shang et al. (2017).

For the air parcel at 850 m a.s.l., the three-day backward trajectories were calculated every hour using NOAA Air Resources Laboratory (ARL) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (version 4) (Draxler and Rolph, 2012; Rolph, 2012, http://www.arl.noaa.gov/ready/hysplit4.html). In addition, O₃ and PAN concentrations were calculated using a global chemistry model, the Community Atmosphere Model with.
Chemistry (CAM-Chem), a component of the Community Earth System Model (CESM) (Lamarque et al., 2012; Tilmes et al., 2015). The CAM-chem results shown here follow the configuration used for the HTAP2 (Hemispheric Transport of Air Pollution, Phase 2) intercomparison (e.g., Stjern et al., 2016). CAM-chem is nudged to observed meteorology (GEOS-5) to reproduce the actual period of the observations (Oct 2010). The emissions used in the model are the HTAP2 inventory (Janssens-Maenhout, et al., 2015), which include the “MIX” Asian emissions inventory. Biomass burning emissions are from the Global Fire Emissions Database (GFED3) (Randerson et al., 2013).

3. Results

In the present experiments, PAN concentrations range from 0.1 to 2.4 ppbv, with an average of 0.6 ppbv. This mean value is lower than those observed in other Asian megacities: Beijing (1.41 ppb in the summer), Pearl River Delta region (1.32 ppb in the summer), and Seoul (0.8 ppb in the early summer); similar to those of suburban areas in China, e.g., Lanzhou (0.76 ppb in the summer); and higher than those of urban and rural sites in Japan, e.g., Tokyo (up to 0.6 ppb in the fall), Rishiri Island (~0.5 ppb in spring) or in the western coast of the US, e.g., Sacramento (0.45 ppb in the summer), Mt. Bachelor (0.144 ppb in the spring and early summer), off the western coast of the US (0.65 ppb in the spring), and over the remote North Pacific (total PAN < 0.3 ppb in spring) (Bertram et al., 2013; Fischer et al., 2011; La Franchi et al., 2009; Lee et al., 2008; Roberts et al., 2004; Tanimoto et al., 1999; Tanimoto et al., 2002; Wang et al., 2010; Zhang et al., 2009; Zhang et al., 2011). Because the PAN lifetime is greatly dependent on temperature, its concentration decreases with increasing distance from the source regions. The PAN concentrations calculated in this study thus lie in-between the levels for the East Asian megacities and the northern Pacific. The distributions of
all measured species, including PAN and O$_3$, are presented in Fig. 1. In particular, there are several periods characterized by high concentrations of PAN, O$_3$, and PM$_{2.5}$. In terms of PAN, four periods are particularly interesting (Fig. 1). High O$_3$ concentrations were observed during October 31–November 2 [episode 1] but did not coincide with high PAN concentrations. During October 28–29 [episode 2], NO$_2$ was noticeably increased. On the other hand, PAN and O$_3$ concentrations were both high during October 20–21 [episode 3] and November 4–5 [episode 4]. Episodes 3 and 4 are characterized by haze, while episodes 1 and 2 are characterized by urban influence in the Korean and Beijing outflows, respectively. Haze is reported by Korea Meteorological Administration (KMA) as a meteorological phenomenon when visibility is 1~10 km and relative humidity is less than 75%.

In the present study, PAN correlates reasonably well with O$_3$ ($\gamma = 0.67$) and even better with PM$_{2.5}$ ($\gamma = 0.79$). In general, O$_3$ and PAN exhibit typical diurnal variation with a maximum recorded in the afternoon, which results in a good correlation between the two (Brasseur et al., 1999; Gaffney et al., 1999; Ridley et al., 1990; Schrimpf et al., 1995; Wang et al., 2010). In this study, however, the O$_3$ peak was often found in the early morning and late afternoon for several days (Fig. 1). Observing the diurnal variations in the entire PAN concentration measurement set (Fig. 2), the maximum was clearly recorded in the morning with the highest outliers, which is rather similar to that of PM$_{2.5}$. The diurnal pattern of NO$_2$ shows little variation, even though its concentrations were increased in the morning along with PAN. This first measurement of PAN at GCO reveals that PAN is not always coupled with O$_3$, which was not typically observed at remote sites in previous studies (e.g., Fischer et al., 2010; Lee et al., 2012).

4. Discussion
4.1. Decoupling of PAN from O₃

To examine the detailed mechanism of the decoupling of PAN from O₃, the daily maximum concentrations of PAN and O₃ were further explored. The recorded daily PAN maxima were generally in good correlation with O₃, albeit the relationship did not seem to hold at high concentrations of PAN and O₃ (Fig. 3). The daily maxima were then categorized into four groups according to the time when each O₃ and PAN maximum was recorded: “O₃ day-PAN day,” “O₃ day-PAN night,” “O₃ night-PAN day,” and “O₃ night-PAN night.” The day interval started from 08:00 and ended at 18:00 (local time), based on the times of sunrise and sunset during the experiment period. While the high PAN concentrations were associated with the “O₃ day-PAN day” group (cross symbols in Fig. 3), the enhanced O₃ concentration was recorded in the “O₃ night-PAN night” group (star symbols in Fig. 3). The “O₃ night-PAN night” group unexpectedly held more data points than the “O₃ day-PAN day” group, even though the “O₃ night-PAN night” group concentrations were lower (Fig. 3). In addition, there were several days classified in the “O₃ night-PAN day” (marked by diamond) and “O₃ day-PAN night” groups, but with less frequency and lower concentrations. These results indicate that the decoupling of PAN from O₃ was primarily due to the elevated concentrations of O₃ and PAN at night. While PAN reached the maximum during the day on Oct 20 and Nov 5, their concentrations were increased from the previous day through the night. The four high PAN and O₃ episodes identified in this study fall under the category of “O₃ night-PAN night” or “O₃ day-PAN day”. These two cases will be further examined to identify the chemical and physical processes responsible for PAN being decoupled from O₃, instead of being coupled with PM₂.₅. The overall characteristics of the four episodes are summarized in Table 1.

4.2. Export of O₃ from Asian continents (episodes 1 & 2)

High O₃ concentrations were encountered around midnight on three consecutive days from
October 31 to November 2 (episode 1), during which SO$_2$ reached its maximum concentration (Fig. 1). The backward trajectories of air masses revealed that air passed through the Beijing area during this period (Fig. 4). The wind was strong (13.5 m/s on average) and the recorded O$_3$ maximum (80.6 ppbv) was concurrent with the PAN maximum (0.9 ppbv) around midnight on November 1st (Fig. 1).

All these results indicate that the air was heavily influenced by outflow from the Beijing area, as previously hypothesized (Lim et al., 2012), and that the nighttime enhancement of O$_3$ and PAN resulted from the fast transport of relatively less-aged urban plumes. Because the overall correlation between O$_3$ and PAN was the best with the highest daily $\Delta$O$_3$/ΔPAN among all cases discussed in this study, episode 1 likely represents an event of rapid transport from the Beijing area (Fig. 5a).

In previous studies, the nighttime enhancement of O$_3$ was observed at GCO (e.g., Lee et al., 2007) in association with pollutant-laden air coming from Beijing. Similarly, Banta et al. (1998) pointed out that the evening O$_3$ maximum was due to long-range transport of O$_3$ from nearby urban areas. Wang et al. (2011) reported that the O$_3$ lifetime was about two days in East China during the summer, which is sufficient time for air to travel to GCO. Therefore, the nighttime maximum of O$_3$ can be attributed to the export of O$_3$ from megacities in China. It causes PAN to be decoupled from O$_3$ because PAN levels remained low, even though there was good correlation between the two species. Another night maximum of O$_3$ was recorded on October 29. Note that NO$_x$ was highly elevated during October 28–29 (episode 2) (Fig. 1). However, O$_3$ level was relatively low, leading to the lowest daily $\Delta$O$_3$/ΔPAN among all episodes. In this case, air masses passed through the Korean Peninsula, carrying low O$_3$ being titrated by high NO$_x$ (Brasseur et al., 1999; Jacobson, 2005). These two urban plumes are well contrasted in terms of O$_3$ and NO$_x$ levels (Table 1), depending on the degree of aging.
4.3. PAN enhancement upon occurrence of haze (episodes 3 & 4)

In this study, two haze events were observed in the very beginning (October 20–21; episode 3) and the end of the study period (November 4–5; episode 4). As the nighttime O₃ peak was attributed to the transport from nearby urban areas to Jeju Island, the two haze episodes were also observed in association with continental outflows. The first haze event occurred on October 18th and lingered until October 21st, during which O₃ concentrations were gradually elevated. A second peak was recorded around midnight of October 19th and 20th, and the maximum was reached in the afternoon of October 20th (Figs. 1 and 3). In this episode, the maximum concentrations of O₃ and PAN were 78.9 ppbv and 2.0 ppbv, respectively, on October 29th, when the highest NO₂ concentration (12.7 ppbv) was observed under low wind speed (6.6 m/s daily average). The air mass trajectories suggest the influence of the Korean Peninsula, particularly the Seoul metropolitan area, in addition to East China (Fig. 4).

In the second haze event (episode 4), an air mass was slowly transported from East China, including the Jiangsu province, under stagnant condition which was developed by an anticyclone system (Fig. 4). We measured the highest concentrations of all aerosol species including the PM₂.₅ mass as well as PAN and O₃, which were 156 µg/m³, 2.4 ppbv, and 87.5 ppbv, respectively. Other reactive gases such as CO, SO₂, and NO₂ were also highly elevated. Note that PAN and O₃ gradually increased through the night, leading to a nighttime maximum of both species on November 4th. It is likely that the pre-formed PAN and O₃ were continuously transported into Gosan at night.

PAN is formed through the reaction of the peroxyacetyl radical and nitrogen dioxide (Eq. 1) and decomposed at high temperature (Eq. 2), returning these radicals. Unless the NO
concentration is high (Eq. 3), the peroxyacetyl radical recombines with NO₂, producing PAN.

Thus, the total lifetime of PAN depends on the NO₂/NO ratio and temperature (Eq. 4) (Brasseur et al., 1999).

\[
CH_3C(O)O_2 + NO_2 + M \rightarrow PAN + M \quad (1)
\]

\[
PAN \rightarrow CH_3C(O)O_2 + NO_2 \quad (2)
\]

\[
CH_3C(O)O_2 + NO \rightarrow CH_3CO_2 + NO_2 \quad (3)
\]

\[
T_{eff} = T_d \left( 1 + \frac{k_1[NO_2]}{k_2[NO]} \right) \quad [sec^{-1}] \quad (4)
\]

where \( T_d \) and \( T_{eff} \) indicate the lifetime against decomposition and the effective lifetime of PAN (Brasseur et al., 1999). The effective lifetime of PAN was estimated through Eq. 4 using the rate constants proposed by Brasseur et al. (1999), Jacobson (2005), and Maricq and Szente (1996).

During the haze event, NO was close to the detection limit, while NO₂ was greatly enhanced. Owing to the high NO₂/NO ratio, the effective lifetime of PAN increased by 57 times; this possibly contributed to the gradual increase in PAN through the night on November 4th. Fischer et al. (2014) also reported that, at night, PAN can be produced from the reaction of acetaldehyde with the nitrate radical.

Besides PM\(_{2.5}\), PAN was also well correlated with PM\(_{2.5}\) OC and EC not only during this haze episode but also during the entire measurement period (Fig. 6a and b). Furthermore, the enhancement of PAN was concurrent with that of OC and K\(^+\), resulting in excellent correlation between them (Fig. 6b and d). In fact, the \( \Delta OC/\Delta EC \) ratio of episode 4 was much higher (7) than those of the other episodes (~2.5) (Fig. 6c). The fraction of PM\(_{2.5}\) against PM\(_{2.5}\) was also the highest in this episode, indicating significant contribution of secondary aerosols. These observations suggest that air masses were affected by biomass combustion (e.g., Ram et al., 2008, 2012; Saarikoski et al., 2008).

According to previous studies, PAN can be produced in plumes through biomass
combustion (Alvarado et al., 2010; Coheur et al., 2007; Liu et al., 2016b; Tereszchuk et al., 2013). In northeast China, open burnings related to agricultural activities frequently occur during the spring and fall (Duan et al., 2004; Yang et al., 2005). Kudo et al. (2014) also reported that, upon burning crop residue in Yangtze region, the levels of oxygenated VOCs were elevated together with NO\(_x\). In addition, biofuel is used for cooking and heating and as an energy source in China’s industry (Cao et al., 2006).

Therefore, PAN is likely to increase when haze occurs and fine aerosols are transformed as air masses carrying combustion emissions are slowly transported from China over the Yellow Sea. Additionally, the results of this study imply that PAN can be used as a robust tracer for continental outflows in northeast Asia, to identify transport- and chemical transformation-dominant regimes. In a transport-dominant regime, O\(_3\) export was distinguished by the highest levels of primary gaseous species such as SO\(_2\) and relatively low levels of PAN. In contrast, fine aerosol species are enhanced in a chemical transformation regime, leading to haze events with relatively more enhanced PAN compared to O\(_3\).

Finally, the measured O\(_3\) and PAN concentrations were compared to results from a global chemistry model CAM-Chem. In the model simulation, O\(_3\) and PAN were highly underestimated during the episodes observed in Chinese outflows, although the variation around average level of O\(_3\) and PAN was well captured (Fig. 7). The elevated PAN concentration was underestimated in the model (Oct 20–21 and Nov 4–5), especially when air was impacted by biomass combustion. The timing of the O\(_3\) diurnal variability was captured by the model, although the magnitude of the variation was underestimated. These results reveal that the current understanding of Chinese outflow is still not sufficient, thereby causing uncertainty in estimating its effect on air quality in the northwestern Pacific Rim.
5. Conclusions

The first measurements of PAN, reactive gases, and aerosol species were conducted at GCO during October 19 to November 6, 2010. The average concentration of PAN was 0.6 ppbv with a maximum of 2.4 ppbv, which was lower than those in major cities in East Asia but much higher than the background concentrations in other regions. In addition, PAN and O₃ concentrations were well correlated ($\gamma = 0.67$). However, the comparison of the daily maxima of PAN and O₃ highlighted that they were not proportionally enhanced. That is, either PAN was relatively more elevated than O₃ or the highest O₃ was associated with low levels of PAN. Unexpectedly, both PAN and O₃ often reached their maxima at night. As a result, PAN was decoupled from O₃ and better correlated with the PM$_{2.5}$ mass ($\gamma = 0.79$) than with O₃. In this study, these high-concentration episodes were all encountered in association with continental outflows, and thus, two high-O₃ and two high-PAN events were recorded and investigated in detail.

During the O₃ episodes, both O₃ and PAN concentrations reached their maximum values at night. In episode 1 (Oct. 31 to Nov. 2), the O₃ concentration was increased to 80.6 ppbv, with a high SO$_2$ concentration under strong wind. It was a typical Beijing plume observed in the study region. In comparison, NO$_2$ was greatly increased in episode 2 (Oct. 28–29) when the air masses were affected by urban emissions from Korean Peninsula. Although the maximum O₃ level was lower during episode 2, these two cases demonstrated well how O₃ was exported from the East Asian continent.

The remaining two episodes were highlighted by enhanced PAN concentrations and characterized by haze occurrence. During episode 3 (Oct. 20–21), PAN and O₃ concentrations increased up to 2.0 ppbv and 78.9 ppbv, respectively, with high NOx levels, probably influenced by emissions from Korea. Episode 4 (Nov. 4–5) was characterized by the highest
concentrations of almost all measured species, including PAN, O$_3$, PM$_{2.5}$ mass, and PM$_{1.0}$ species; the maximum recorded concentrations of PAN, O$_3$, and PM$_{2.5}$ mass during this interval were 2.4 ppbv, 87.5 ppbv, and 156 $\mu$g/m$^3$, respectively. Note that, along with PM$_{2.5}$ and O$_3$, PAN was gradually increased through the night. In this episode, an air mass was slowly transported from eastern China. With depleted NO, the effective lifetime of PAN was greatly extended. In addition, PAN concentration showed good correlation with OC, EC, and K$^+$; in fact, the correlation of PAN with K$^+$ was comparable to that of OC with K$^+$. These results, in conjunction with the high $\Delta$OC/EC (7), imply that the observed haze was mainly caused by the emissions produced by biomass combustion. These results suggest that PAN is a useful tool for distinguishing continental outflows that were typically observed in northeast Asia.

The comparison between the measured and calculated concentrations using the CAM-Chem-HTAP2 model showed that the model underestimated the O$_3$ and PAN levels in Chinese outflows, particularly for haze incidence. These results reveal that Chinese outflows are still poorly understood and not well captured in the model.

Acknowledgments

This study was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-6020. The National Center for Atmospheric Research is funded by the National Science Foundation. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication.
References


Lee, G., Choi, H.-S., Lee, T., Choi, J., Park, J. S., and Ahn, J. Y.: Variations of regional background peroxyacetyl nitrate in marine boundary layer over Baengyeong Island,


NIER, Guidelines for installation and operation of air pollution monitoring network, National Institute of Environmental Research, Incheon, Korea, 427 pp., 2016b (in Korean).


Table 1. Chemical and meteorological characteristics of the four episodes.

<table>
<thead>
<tr>
<th>Event</th>
<th>Episode 1</th>
<th>Episode 2</th>
<th>Episode 3</th>
<th>Episode 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Transport dominant</td>
<td>Transport dominant</td>
<td>Chemical transformation</td>
<td>Chemical transformation</td>
</tr>
<tr>
<td>O₃ (ppbv)</td>
<td>60.2 (80.6)</td>
<td>45.6 (62.8)</td>
<td>59.7 (78.9)</td>
<td>61.8 (87.5)</td>
</tr>
<tr>
<td>PAN (ppbv)</td>
<td>0.5 (0.9)</td>
<td>0.5 (0.8)</td>
<td>1.2 (2.0)</td>
<td>1.3 (2.4)</td>
</tr>
<tr>
<td>PM₂.₅ (µg/m³)</td>
<td>34 (62)</td>
<td>23 (36)</td>
<td>50 (76)</td>
<td>77 (156)</td>
</tr>
<tr>
<td>SO₂ (ppbv)</td>
<td>4.3 (12.9)</td>
<td>2.0 (4.4)</td>
<td>2.6 (5.4)</td>
<td>4.4 (9.5)</td>
</tr>
<tr>
<td>NO₂ (ppbv)</td>
<td>3.7 (7.3)</td>
<td>6.2 (12.1)</td>
<td>6.2 (12.7)</td>
<td>6.1 (9.9)</td>
</tr>
<tr>
<td>Wind Speed (m/s)</td>
<td>13.5 (16.0)</td>
<td>9.5 (16.1)</td>
<td>6.6 (10.2)</td>
<td>5.0 (7.7)</td>
</tr>
</tbody>
</table>

*Measurements are given for the average with the maximum in the parenthesis.
Figure Captions

Figure 1. Temporal variations (against local time) of measured species, including PAN, PM$_{2.5}$, O$_3$, NO$_2$, NO, SO$_2$, and, CO, and meteorological parameters, including relative humidity, temperature, and wind speed in fall 2010. Episodes 1–4, described in the main text, are shaded in blue and yellow.

Figure 2. Diurnal variations in the concentrations of O$_3$, NO$_2$, PAN, and PM$_{2.5}$, measured at GCO in the fall of 2010 (5 min data of O$_3$, NO$_2$, 2 min data of PAN, and 1 h data of PM$_{2.5}$).

Figure 3. Comparison of O$_3$ with the PAN daily maxima. The time when the daily maximum appears is classified as daytime (08–18 h) and nighttime (the rest) based on the time of sunrise and sunset. Numerals indicate the days.

Figure 4. The three-day NOAA HYSPLIT backward trajectories of air masses for every one hour observed at GCO during episode 1 (Oct. 31 to Nov. 2), episode 2 (Oct. 28–29), episode 3 (Oct. 20–21), and episode 4 (Nov. 4–5). They are colored according to the level of (a) PAN, (b) O$_3$, (c) NO$_2$, and (d) PM$_{2.5}$ at GCO at the time of the trajectory initialization. The trajectories north of 50°N are not shown. For these horizontal trajectories, (e) vertical heights are given.

Figure 5. Correlations among PAN, PM$_{2.5}$, O$_3$, and NO$_2$: (a) O$_3$ and PAN, (b) NO$_2$ and PAN, and (c) O$_3$ and PAN. The lines in (a) and (b) represent the linear regression for each episode.

Figure 6. Correlations among PAN, K$^+$ ion of PM$_{1.0}$, and carbon components of PM$_{2.5}$ for three cases: (a) PM$_{2.5}$ mass and PAN, (b) PM$_{2.5}$ OC and PAN, (d) PM$_{2.5}$ OC and EC, and (d) PM$_{1.0}$ K$^+$ and PAN. The lines represent the linear regression for each episode.

Figure 7. Comparison between the observed and calculated (a) PAN and (b) O$_3$ concentrations by CAM-chem model. Time is given in local time and four episodes are shaded.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.