

- 1 Direct comparisons of ice cloud macro- and microphysical properties
- 2 simulated by the Community Atmosphere Model version 5 with
- 3 HIPPO aircraft observations
- 4 Chenglai Wu^{1,2}, Xiaohong Liu^{1,*}, Minghui Diao³, Kai Zhang⁴, Andrew Gettelman⁵,
- 5 Zheng Lu¹, Joyce E. Penner⁶, and Zhaohui Lin²
- ¹Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming,
 USA
- 8 ²International Center for Climate and Environment Sciences, Institute of Atmospheric
- 9 Physics, Chinese Academy of Sciences, Beijing, China
- ³Department of Meteorology and Climate Science, San Jose State University, San
 Jose, California, USA
- 12 ⁴Pacifit Northwest National Laboratory, Richland, Washington, USA
- 13 ⁵National Center for Atmospheric Research, Boulder, Colorado, USA
- ⁶Department of Climate and Space Sciences and Engineering, University of Michigan,
- 15 Ann Arbor, Michigan, USA
- 16
- 17 *Corresponding to:
- 18
- 19 Xiaohong Liu
- 20 Department of Atmospheric Science
- 21 University of Wyoming
- 22 Dept. 3038, 1000 East University Avenue
- 23 Laramie, WY 82071
- 24 Email: <u>xliu6@uwyo.edu</u>.
- 25
- 26
- 27

28 Abstract

29	In this study we evaluate cloud properties simulated by the Community

- 30 Atmosphere Model Version 5 (CAM5) using in-situ measurements from the HIAPER
- Pole-to-Pole Observations (HIPPO) for the period of 2009 to 2011. The modeled
- 32 wind and temperature are nudged towards reanalysis. Model results collocated with
- HIPPO flight tracks are directly compared with the observations, and model

34 sensitivities to the representations of ice nucleation and growth are also examined.

35 Generally, CAM5 is able to capture specific cloud systems in terms of vertical

36 configuration and horizontal extension. In total, the model reproduces 79.8% of

observed cloud occurrences inside model grid boxes, and even higher (94.3%) for ice

clouds (T \leq -40°C). The missing cloud occurrences in the model are primarily ascribed

39 to the fact that the model cannot account for the high spatial variability of observed

40 relative humidity (RH). Furthermore, model RH biases are mostly attributed to the

41 discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds,

- 42 the model captures the observed increase of ice crystal mean sizes with temperature,
- 43 albeit with smaller sizes than the observations. The model underestimates the

44 observed ice number concentration (N_i) and ice water content (IWC) for ice crystals

- 45 larger than 75 μ m in diameter. Modeled IWC and N_i are more sensitive to the
- threshold diameter for autoconversion of cloud ice to snow (D_{cs}) , while simulated ice

47 crystal mean size is more sensitive to ice nucleation parameterizations than to D_{cs} .

48 Our results highlight the need for further improvements to the sub-grid RH variability

49 and ice nucleation and growth in the model.

50 1 Introduction

51	Cirrus clouds, the type of clouds composed of ice crystals, are one of the key
52	components in the climate system. Cirrus clouds cover about 30% of the globe (Wang
53	et al., 1996; Wylie and Menzel, 1999). They have a significant impact on the earth's
54	radiation balance via two different effects: scattering and reflecting the incoming
55	short wave solar radiation back to space, which leads to a cooling effect on the planet;
56	and absorbing and re-emitting terrestrial longwave radiation, leading to a warming
57	effect (Liou, 1986; Ramanathan and Collins, 1991; Corti et al., 2005). The net
58	radiative effect is thus a balance of these two effects and mainly depends on the
59	amount, microphysical and optical properties of cirrus clouds (Kay et al., 2006;
60	Fusina et al., 2007; Gettelman et al., 2012; Tan et al., 2016). Furthermore, as the
61	efficiency of dehydration at the tropical tropopause layer is strongly influenced by the
62	microphysical processes within cirrus clouds, cirrus clouds can also regulate the
63	humidity of air entering the stratosphere and are recognized as an important
64	modulator for water vapor in the upper troposphere and the lower stratosphere
65	(Gettelman et al., 2002; Wang and Penner, 2010; Jensen et al., 2013; Dinh et al.,
66	2014).
67	Despite their important role in the climate system, there are still large
68	uncertainties in the representation of cirrus clouds in global climate models (GCMs)
69	(Boucher et al., 2013). The uncertainties are the result of several different aspects.
70	First, our understanding of processes initiating the cirrus cloud formation is still
71	limited (DeMott et al., 2003; Kärcher and Spitchtinger, 2009; Hoose and Möhler,

72	2012). Ice o	crystals can	form via the	homogeneous	nucleation o	f soluble aerosol
----	--------------	--------------	--------------	-------------	--------------	-------------------

- 73 particles and the heterogeneous nucleation associated with insoluble or partly
- ⁷⁴ insoluble aerosol particles (e.g., Hagg et al., 2003; Liu and Penner, 2005; Wang and
- Liu, 2014). Homogeneous nucleation generally requires higher ice supersaturation
- and occurs at temperatures colder than about -37°C. It can be fairly well represented
- by nucleation theory based on laboratory results (Koop et al., 2000). Heterogeneous
- nucleation is initiated by certain types of aerosols (e.g., mineral dust and biological
- aerosols) that act as ice nucleating particles (INP), which can nucleate ice particles at
- significantly lower ice supersaturations in the environment. Currently there are still
- 81 large unknowns about the types of aerosol, modes of action (e.g.,
- 82 immersion/condensation, deposition, contact), and the efficiencies of heterogeneous
- nucleation in the atmosphere (Hoose and Möhler, 2012). Other ice microphysics (e.g.,
- 84 ice aggregation, deposition/sublimation, and sedimentation), as well as interactions
- among cirrus microphysical properties, macroscopic properties (e.g., spatial extent),
- and meteorological fields could further render the interpretation of observed ice cloud
- properties challenging (Diao et al., 2013; Krämer et al., 2016).

88 In addition to our limited understanding of ice microphysical processes, it is

- 89 difficult for GCMs with coarse spatial resolution (e.g., tens to hundreds of kilometers
- 90 in the horizontal direction, and a kilometer in the vertical) to capture the sub-grid
- 91 variability of dynamical and microphysical processes that are vital for ice cloud
- 92 formation and evolution. The observed microphysical properties of cirrus clouds vary
- significantly in time and space (e.g., Hoyle et al., 2005; Diao et al., 2013; Jensen et al.,

94	2013; Diao et al., 2014a), associated with variability in relative humidity, temperature,
95	and vertical wind speed. The spatial extent of clouds is represented in GCMs by
96	diagnosing the cloud fraction in individual model grid boxes using a parameterization.
97	Such a cloud fraction representation needs to be validated with observations in order
98	to identify model biases and to elucidate the reasons behind these biases for future
99	model improvement.
100	Two types of observational data are currently available for validating modeled
101	cirrus cloud properties: in-situ aircraft measurements (e.g., Krämer et al., 2009;
102	Lawson et al., 2011; Diao et al., 2013), and remote-sensing data from space-borne or
103	ground-based instruments (Mace et al., 2005; Deng et al., 2006, 2008; Li et al., 2012).
104	Remote-sensing data may not be directly comparable to model simulations due to the
105	sampling and algorithmic differences between GCM results and remote-sensing
106	retrievals unless a proper simulator, i.e. a so called "satellite simulator", is adopted
107	(Bodas-Salcedo et al., 2011; Kay et al., 2012). In-situ aircraft observations can
108	provide direct measurements of ice crystal properties such as ice crystal number
109	concentration and size distribution. In particular, these observations are a good source
110	of accurate and fast measurements, and thus provide a unique tool for constraining
111	GCM cirrus parameterizations (e.g., Zhang et al., 2013; Eidhammer et al., 2014).
112	However, the grid scales of GCMs are much larger than those sampled by in-situ
113	observations. Thus direct comparisons at model grid scales are often hindered unless
114	in-situ observations are adequately distributed within the grid boxes and can be scaled
115	up. At the micro-scale level of cirrus clouds (sub-grid scale), statistical comparisons

- between model simulations and in-situ observations, especially in terms of
- 117 relationships among cloud microphysical and meteorological variables, are desirable
- to provide a reliable evaluation of model microphysics (e.g., Zhang et al., 2013;
- 119 Eidhammer et al., 2014). In addition, aircraft measurements are often limited in their
- spatial and temporal coverage, which in some sense limits the scope of
- 121 model-observation comparisons that can be conducted.

122 Previous studies have focused on the evaluation of cirrus clouds from

- 123 free-running GCM simulations against in-situ observations (e.g., Wang and Penner,
- 124 2010; Zhang et al., 2013; Eidhammer et al., 2014). However, since the model
- 125 meteorology was not constrained by conditions that were representative of the time of
- the observations, the model biases could not be exclusively ascribed to errors in the
- 127 cirrus parameterizations. Recently, a nudging technique has been developed to allow
- the simulated meteorology to be more representative of global reanalysis/analysis
- 129 fields, and thus the comparison between model simulations and observations is more
- 130 straightforward for the interpretation and attribution of model biases (Kooperman et
- al., 2012; Zhang et al., 2014). In such simulations, as the meteorology (winds and
- temperatures) in the GCM are synchronized with observed meteorology, direct
- 133 comparisons can be achieved by selecting model results that are collocated with
- observations in space and time, and thus the model outputs can be evaluated in a more
- 135 rigorous manner.
- In this study, we use the in-situ aircraft measurements from the NSF HIAPERPole-to-Pole Observations (HIPPO) campaign (Wofsy et al., 2011) to evaluate the

138	cloud properties simulated by the Community Atmosphere Model version 5 (CAM5).
139	During the HIPPO campaign, high-resolution (~230 m, 1Hz) and comprehensive
140	measurements of ambient environmental conditions (such as air temperature, pressure
141	and wind speed), cloud ice crystals and droplets were obtained. HIPPO also provides
142	a nearly pole-to-pole spatial coverage and relatively long flight hours (~400 hours in
143	total) in various seasons, making it a valuable dataset for GCM evaluations. To
144	facilitate the evaluation, CAM5 is run with specified dynamics where the model
145	meteorological fields (horizontal winds (U, V) and temperature (T)) are nudged
146	towards the NASA GEOS-5 analysis, while water vapor, cloud hydrometeors and
147	aerosols are calculated interactively by the model (Larmarque et al., 2012). Moreover,
148	we select collocated CAM5 output along the HIPPO aircraft flight tracks, and
149	compare the model simulations and observations directly. Our comparisons focus on
150	cloud occurrence, and cloud microphysical properties (e.g., ice water content, number
151	concentration and size distribution of ice particles) with a specific focus on cirrus
152	clouds. We also investigate the sensitivities of model simulated cirrus cloud properties
153	to the ice microphysics parameterizations as well as to the large scale forcing
154	associated with the nudging strategy.
155	The remainder of the paper is organized as follows. In section 2, we introduce the
156	HIPPO observational dataset and instrumentations. The model simulations and
157	experimental design are described in section 3. In section 4, we examine the model
158	performance in simulating cirrus cloud occurrence and microphysical properties and
159	investigate the reasons behind the model biases. Sensitivities of model results to

- 160 different nudging strategies are presented in section 5, and discussions and
- 161 conclusions in section 6.
- 162
- 163 2 HIPPO aircraft observations
- 164 The NSF HIPPO Global campaign provided comprehensive observations of
- clouds and aerosols from 87°N to 67°S over the Pacific region during 2009 to 2011
- 166 (Wofsy et al., 2011). Observations were acquired using the National Science
- 167 Foundation's Gulfstream V (GV) research aircraft operated by the National Center for
- 168 Atmospheric Research (NCAR). During this three-year period, five HIPPO
- deployments were carried out, with each deployment lasting from 23 days to about
- one month. In total, the HIPPO campaign included 64 flights, 787 vertical profiles
- 171 (from the surface to up to 14 km), and 434 hours of high-rate measurements
- 172 (http://hippo.ucar.edu). In this study, we use the 1-Hz in-situ measurements of water
- 173 vapor, temperature, number concentration and size distribution of ice crystals as well
- as the number concentration of cloud liquid droplets from HIPPO#2-5. HIPPO#1 did
- 175 not have ice probes onboard.
- 176 Water vapor was measured by the 25 Hz, open-path Vertical Cavity Surface
- 177 Emitting Laser (VCSEL) hygrometer (Zondlo et al., 2010). The accuracy and
- precision of water vapor measurements was ~6% and \leq 1%, respectively.
- 179 Temperature (T) was recorded by the Rosemount temperature probe. The accuracy
- and precision of T measurements was 0.5 K and 0.01 K, respectively. Here saturation
- vapor pressure is calculated following Murphy and Koop (2005), who stated that all

- the commonly used expressions for the saturation vapor pressure over ice are within 1%
- in the range between 170 and 273 K. Then we calculate relative humidity (RH) using
- the saturation vapor pressure with respect to water $(T>0^{\circ}C)$ or with respect to ice
- 185 (T≤0°C). Unless explicitly stated otherwise, we refer to RH with respect to water
- 186 when T>0°C and RH with respect to ice when T \leq 0°C.
- 187 Ice crystal concentrations were measured by the two-dimensional cloud particle
- imaging (2DC) ice probe (Korolev et al., 2011). The 2DC measures ice crystals with a
- 189 64-diode laser array at 25 μ m resolution and the corresponding size range of 25 –
- 190 1600 μ m. Outside this range, ice crystals between 1600 μ m and 3200 μ m are
- 191 mathematically reconstructed. A quality control was further applied to filter out the
- 192 particles with sizes below 75 μm in order to minimize the shattering effect and optical
- uncertainties associated with 2DC data. Thus the number concentration (N_i) of ice
- 194 crystals with diameter from 75 μ m to 3200 μ m (binned by 25 μ m) was derived and is
- used here for model comparisons. The ice water content (IWC) is derived by

integrating the ice crystal mass at each size bin. Mass is calculated from diameter and N_i using the mass-dimension (*m-D*) relationship of Brown and Francis (1995). For the ice crystal size distribution, a gamma function is assumed as in CAM5 (Morrison and Gettelman, 2008):

$$\phi(D) = N_0 D^{\mu} \exp(-\lambda D) \tag{1}$$

where D is diameter, N_0 is the intercept parameter, μ is the shape parameter which is

- set to 0 currently, and λ is the slope parameter. The slope and intercept for the
- 203 observed ice crystal size distributions are obtained by fitting Eq. (1) using the least

204	squares method as described in Heymsfield et a	l. (2008).	Observed size distributions
-----	--	------------	-----------------------------

- that provided less than five bins of non-zero concentrations are not considered in
- 206 order to maintain a reasonable fit, which is similar to what was done in Eidhammer et
- al. (2014). This removes about 8% of the total 1-Hz observations of ice clouds
- 208 (T \leq -40°C). Furthermore, we only retain those fitted size distributions that are well
- correlated with the measured ones, i.e., with a correlation coefficient larger than 0.6,

which leads to a further removal of 10% of the total 1-Hz ice crystal measurements.

211 Note that these screenings are applied only for the derivation of the slope and

212 intercept parameters for the ice crystal size distribution.

The cloud droplet number concentration (N_d) was measured by the Cloud Droplet

214 Probe (CDP) during the HIPPO campaign. The CDP measurement range of cloud

droplet diameter is 2-50 µm. Because 2DC and CDP probes may report both ice

216 crystals and liquid droplets, we adopted a rigorous criteria for the detection of clouds

in different temperature ranges. 99% of the observed N_i are greater than 0.1 L⁻¹, thus a

threshold of 0.1 L⁻¹ is used to define in-cloud conditions. For T \leq -40°C, we use the

criterion of $N \ge 0.1 \text{ L}^{-1}$ to detect the occurrence of ice clouds; For T>-40°C, the

220 occurrence of clouds including mixed-phase clouds (-40°C<T \leq 0°C) and warm

221 clouds (T>0°C) are defined by the conditions of either $N_i > 0.1 \text{ L}^{-1}$ or $N_d > 1 \text{ cm}^{-3}$. Here,

we only analyze CDP measurements with $N_d > 1$ cm⁻³ to avoid measurement noise as

223 determined by the sensitivity of the instrument.

The HIPPO dataset has been previously used for statistical analyses of ice cloud

225 formation conditions and microphysical properties, such as the conditions of the

- birthplaces of ice clouds the ice supersaturated regions, the evolutionary trend of
- 227 RH and N_i inside cirrus clouds, and hemispheric differences in these cloud properties
- (Diao et al., 2013; 2014a, b). In this study, we will use these observations to evaluate
- 229 CAM5 simulation of ice clouds. We use 10-second averaged measurements (~2.3 km
- horizontal resolution) which are derived from 1 Hz (~230 m horizontal resolution)
- 231 observations. Although variations are found (mostly within a factor of 2 and
- sometimes up to 2-3 for N_i , IWC and λ) within 10-second intervals, the 10-second
- averaged observations shown in this study are similar to those based on 1-second
- 234 measurements.
- 235

236 3 Model and experiment design

237 **3.1 Model**

This study uses version 5.3 of CAM5 (Neale et al., 2012), the atmospheric

239 component of NCAR Community Earth System Model (CESM). The cloud

240 macrophysics scheme in CAM5 provides an integrated framework for treatment of

241 cloud processes and imposes full consistency between cloud fraction and cloud

condensates (Park et al., 2014). Deep cumulus, shallow cumulus, and stratus clouds

- are assumed to be horizontally distributed in each grid layer without overlapping with
- each other. Liquid stratus and ice stratus are assumed to have a maximum horizontal
- 245 overlap with each other. Stratiform microphysical processes are represented by a
- two-moment cloud microphysics scheme (Morrison and Gettelman et al., 2008;
- 247 hereafter as version 1 of MG scheme (MG1)). MG1 was improved by Gettleman et al.

248	(2010) to allow the ice supersaturation. It is coupled with a modal aerosol model
249	(MAM, Liu et al. (2012a)) for aerosol-cloud interactions. Cloud droplets can form via
250	the activation of aerosols (Abdul-Razzak and Ghan, 2000). Ice crystals can form via
251	the homogeneous nucleation of sulfate aerosol, and/or heterogeneous nucleation of
252	dust aerosol (Liu and Penner, 2005; Liu et al., 2007). The moist turbulence scheme is
253	based on Bretherton and Park (2009). Shallow convection is parameterized following
254	Park and Bretherton (2009), and deep convection is treated following Zhang and
255	McFarlane (1995) with further modifications by Richter and Rasch (2008).
256	Compared to the default version 5.3, the CAM5.3 version we use includes version
257	2 of the MG scheme (MG2) as described by Gettelman and Morrison (2015) and
258	Gettelman et al. (2015). MG2 added prognostic precipitation (i.e., rain and snow) as
259	compared with the diagnostic precipitation in MG1. Note that current version of MG
260	scheme treats cloud ice and snow as different categories with their number and mass
261	predicted, respectively (Morrison and Gettelman, 2008). To be consistent with the
262	observations, here the number and mass concentrations of cloud ice and snow are
263	combined together to get the slope parameter λ following Eidhammer et al. (2014).
264	3.2 Experimental design for model-observation comparisons
265	Model experiments are performed using specified dynamics, that is, online
266	calculated meteorological fields (U, V, and T) are nudged towards the GEOS-5
267	analysis (the control experiment, referred to as CTL hereafter), while water vapor,
268	hydrometeors and aerosols are calculated online by the model itself (Larmarque et al.,
269	2012). We also conduct two experiments where only U and V are nudged (referred to

- as NUG UV) and with nudging U, V, T and water vapor (Q) (referred to as
- 271 NUG_UVTQ). These results will be discussed in section 5. The model horizontal and
- vertical resolutions are $1.9^{\circ} \times 2.5^{\circ}$ and 56 vertical levels, respectively. The time step
- is 30 min. The critical threshold diameter for autoconversion of cloud ice to snow (D_{cs})
- was found to be an important parameter affecting ice cloud microphysics (e.g., Zhang
- et al., 2013; Eidhammer et al., 2014). D_{cs} is set to 150 μ m in MG2. We also conduct
- two sensitive experiments using a value of 75 μ m (referred to as DCS75) and 300 μ m
- (referred to as DCS300) for D_{cs} (Table 1).
- 278 In the standard CAM5 model, homogeneous nucleation takes place on sulfate
- aerosol in the Aitken mode with diameter greater than 0.1 μ m (Gettelman et al., 2010).
- 280 We conduct a sensitivity experiment (referred to as SUL) by removing this size limit
- 281 (i.e., using all sulfate aerosol particles in the Aitken mode for homogeneous
- nucleation). Recently, Shi et al. (2015) incorporated the effects of pre-existing ice
- 283 crystals on ice nucleation in CAM5, simultaneously removing the lower limit of
- sulfate aerosol size and the upper limit of the sub-grid updraft velocity used for the ice
- 285 nucleation parameterization. Here a sensitivity experiment (referred to as PRE-ICE)
- with the Shi et al. (2015) modifications is conducted (Table 1).
- We run the model from June 2008 to December 2011 (i.e., 43 months) with the
- 288 first seven months as the model spin-up. For direct comparisons between model
- results and observations, only model output collocated with HIPPO aircraft flights are
- 290 recorded. That is, we locate the model grid boxes in which the HIPPO aircraft was
- transecting through, and then output the model results of these grid boxes at the

292	closest time stamps with respect to the flight time. In total, we have 130,577 in-situ
293	observation samples at 10-second resolution (~363 hours) for HIPPO#2-5. We note
294	that because the current CAM5 model cannot explicitly resolve the spatio-temporal
295	variability of dynamic fields and cloud properties inside a model grid box, there are
296	inevitably certain caveats in its comparison with in-situ observations. For example, as
297	the model time step is 30 min and horizontal grid spacing is \sim 200 km, there may be
298	cases where tens to hundreds of flight samples are located within one grid box at a
299	specific time stamp. In this study, we find that there are 1 to 170 observation samples
300	within a model grid box. Therefore, we may over-sample the model results within a
301	model grid box with multiple aircraft samples. However, we note that because of the
302	specific flight plan of the HIPPO campaign, most of the HIPPO flights were designed
303	to follow a nearly constant direction when flying from one location to the next, and
304	one vertical profile was generally achieved by about every 3 latitudinal degrees. This
305	unique flight pattern combined with the comparatively long flight hours helps to
306	provide a large amount of observation samples transecting through various climate
307	model grid boxes. In total, 635 model grid boxes are used in the direct comparisons
308	with observations. Considering that the actual horizontal area fraction of a model grid
309	box that the aircraft transected through is relatively small, derivations of grid-scale
310	mean observations which can represent the realistic characteristics for the whole grid
311	box are not possible. Nevertheless, we also derive the mean of observations within a
312	model grid box and compare them with model simulations, and the comparison results
313	are similar to those shown in Section 4. Note that vertical interpolation is taken to

- 314 account for the altitude variation of model variables for the direct comparison with
- 315 aircraft observations.
- 316
- 317 4 Results
- 318 4.1 Cloud occurrence
- In this section, we will first demonstrate the model performance in simulating the

spatial distributions of clouds with a case study. Then we will show the overall

321 features of cloud occurrence for all comparison samples. To identify the reasons for

- the model-observation discrepancies, we will analyze the meteorology conditions (e.g.,
- 323 T, Q and RH) and physics processes associated with the formation of clouds. The
- 324 probability density function (PDF) of ice supersaturation at clear-sky and inside ice
- 325 clouds will be examined.
- 326
- 327 4.1.1 Case study a specific cloud system

328 During HIPPO deployment #4 and research flight 05, the GV aircraft flew from

the Cook Islands to New Zealand over the South Pacific Ocean on June 25–26, 2011

- 330 (Figure 1). Low-level clouds existed along almost all the flight tracks at 700–1000
- hPa, and most of them were warm clouds (T>0°C). Mid-level (at 400–700 hPa) and
- high-level clouds (at 250–400 hPa) were also observed. Generally the model captures
- well the locations of cloud systems along the flight tracks on June 25, 2011. The
- simulated ice clouds are located above liquid clouds and extend for thousands of
- kilometers, which corresponds with the observed mid- to high-level clouds at

- 336 250–600 hPa at UTC 2200–2400 on June 25, 2011. However, the model misses the
- low-level clouds observed on late June 25 and early June 26, and simulates a smaller
- horizontal extent for the mid-level cloud at UTC 0230 on June 26. Overall, the
- observed clouds on June 26 (further South) were more scattered than those on June 25.
- 340 The model is less capable of reproducing these scattered clouds. CAM5 is better able
- 341 to simulate cloud systems with larger spatial extents, since these systems are
- 342 controlled by the nudged large-scale meteorology.
- Figure 2 shows the time series of RH, Q and T during the flight segment shown in
- Figure 1. The observations show large spatial variability in RH even during the
- horizontal flights on June 26. Overall, the simulated RH is within the range of the
- observations but the model is unable to simulate the larger variability, which occurred
- on sub-grid spatial scales. Both observed and simulated RH values are above 100%
- when the model captures the clouds successfully at UTC 2240-2250 and 2310-2330
- on June 25 and at UTC 0000-0010 on June 26 (denoted by green vertical bars),
- although the simulated maximum grid-mean RH value is around 110%, which is
- 351 10-30% less than observed RH values. However, the model cannot capture some of
- the observed clouds with large RH values within the grid boxes. For example, the
- model misses the RH associated with low-level clouds (Figure 1) at UTC 2250-2310
- 354 when simulated grid-mean RH values are around 90% compared to observed values
- of around 100%. Note that since the aircraft sampled only portions of the model grid
- boxes, the "over-production" of cloud occurrences by the model shown in Figure 2
- 357 (blue vertical bars) may not necessarily be the case. Thus we will focus on the cases

358	when the model captures or misses the observed clouds within the model grid boxes.
359	The spatial distributions of RH play an important role in determining whether
360	modeled clouds occur at the same times and locations as those observed. Biases in
361	either Q or T may lead to discrepancies in RH (Figs. 2d and 2f). For example, at
362	around UTC 2150 on June 25, higher RH in the model is caused by the larger
363	simulated Q; at UTC 2250 on June 25, simulated lower RH is mainly caused by the
364	warmer T. To illustrate whether T or Q biases are the main cause for the RH biases,
365	we calculate the offline distribution of RH by replacing the modeled Q or T with the
366	aircraft observations, as shown in Figures 3a and 3b, respectively. After adopting the
367	observed T spatial distributions, the updated RH still misses the RH variability around
368	UTC 0230 – 0400 on June 26, while by adopting the observed Q spatial distribution,
369	the updated RH distribution is very close to the observed one. Thus, in this case study
370	the lack of a large RH spatial variability shown in the observations mainly results
371	from the model's lack of sub-grid scale variability of Q rather than that of T.
372	4.1.2 Synthesized analyses on cloud occurrences and cloud fraction
373	The overall performance of the model in simulating the cloud occurrences for all
374	flights in HIPPO 2–5 is shown in Table 2. In the model, clouds often occupy a
375	fraction of a grid box, and cloud fraction together with in-cloud liquid/ice number
376	concentrations are used to represent the occurrence of stratus clouds (Park et al.,
377	2014). For HIPPO, the occurrence of clouds is derived by combining the observations
378	of both liquid and ice number concentrations as described in section 2. In total, the
379	model captures 79.8% of observed cloud occurrences inside model grid boxes. For

380	different cloud types, the model reproduces the highest fraction (94.3%) of observed
381	ice clouds, and the second highest fraction (86.1%) for mixed-phase clouds. In
382	contrast, the model captures only about half (49.9%) of observed warm clouds. As
383	depicted in the case study in section 4.1.1, the missing of cloud occurrences are
384	mainly due to the insufficient representation of sub-grid variability of RH in the
385	model. Next we will further quantify the contribution of sub-grid water vapor and
386	temperature variations to sub-grid variability of RH.
387	4.1.3 Decomposition of relative humidity biases
388	The formation of liquid droplets/ice crystals depends on dynamical and
389	thermodynamical conditions such as temperature, water vapor and updraft velocity
390	(Abdul-Razzak and Ghan, 2000; Liu et al., 2007, 2012b; Gettelman et al., 2010). The
391	fraction of liquid/ice stratus clouds is calculated empirically from the grid-mean RH
392	(Park et al., 2014). Thus RH is an important factor for both model representations of
393	cloud occurrences and cloud fraction. RH is a function of pressure, temperature and
394	water vapor. Since we only compare observations with the simulation results on the
395	same pressure levels, differences of RH (d RH) between simulations and observations
396	(i.e., model biases in RH) only result from the differences in temperature and water
397	vapor. We calculate the contributions of biases in water vapor and temperature to the
398	biases in RH following the method that was used to analyze RH spatial variability in
399	Diao et al. (2014a). RH_o (observations) and RH_m (model results) are calculated as:

400
$$RH_m = \frac{e_m}{e_{s,m}}, RH_o = \frac{e_o}{e_{s,o}}$$
(2)

401 where e_o and e_m are observed and simulated water vapor partial pressure, respectively,

- and $e_{s,o}$ and $e_{s,m}$ are observed and simulated saturation vapor pressure over ice (T $\leq 0^{\circ}$ C)
- 403 or over water $(T>0^{\circ}C)$ in the observations or the model, respectively.
- 404 Here *d*RH is calculated from the difference of simulated grid-mean RH (with
- 405 vertical variances taken into account by the vertical interpolation) and in-situ
- 406 observations. We define $de = (e_m e_o)$, and $d(\frac{1}{e_s}) = \frac{1}{e_{s,m}} \frac{1}{e_{s,o}}$, therefore dRH is
- 407 $dRH = RH_m RH_o = de \cdot \frac{1}{e_{s,o}} + e_o \cdot d(\frac{1}{e_s}) + de \cdot d(\frac{1}{e_s})$ (3)

408 Thus dRH can be separated into three terms: the first term is the contribution from the water vapor partial pressure (dRH_a) , the second term from temperature (dRH_T) , and 409 the third term for concurrent impact of biases in temperature and water vapor 410 $(dRH_{q,T})$. 411 Figure 4 shows the contributions of these three terms to dRH for different 412 413 temperature ranges. All the three terms as well as dRH are given in percentage. The intercepts and slopes of linear regression lines for dRH_q versus dRH, dRH_T versus 414 dRH, and $dRH_{T,q}$ versus dRH are also presented. As temperature is constrained by 415 416 GEOS-5 analysis, the bias in temperature is reduced (although not eliminated) to mostly within ±7°C. A considerable amount of discrepancy in RH exist between 417 model and observations. The model successfully captures the clouds (green symbols) 418

- 419 when the simulated RH is close to observations in all the three temperature ranges.
- 420 The model tends to miss the clouds (red symbols) when lower RH is simulated, and
- 421 produces spurious clouds (blue symbols) when higher RH is simulated. Regarding the
- 422 contributions of dRH_q and dRH_T to dRH, the slopes of the linear regression for dRH_q

423	versus dRH are 0.748,	0.933 and 0.786 for T≤-40°C	$^{\circ}$, -40°C <t<math>\leq0°C and T>0°C,</t<math>
-----	-----------------------	-----------------------------	---

- 424 respectively, which are much larger than those for dRH_T versus dRH (0.087, 0.072
- and 0.210 for the three temperature ranges, respectively). This indicates that most of
- 426 the biases in RH are contributed by the biases in water vapor (dRH_q) . However, for
- 427 T>0°C, although dRH_q still dominates, dRH_T contributes notably to 21% of the RH
- 428 biases. For T \leq -40°C, $dRH_{q,T}$ also contributes about 17% to dRH, indicating
- 429 concurrent impact from biases of T and water vapor. In contrast, for -40°C<T≤0°C
- 430 and T>0°C, the contributions of $dRH_{q,T}$ to dRH are negligible. We note that the slopes
- 431 of linear regression lines for dRH_q versus dRH and dRH_T versus dRH indicate the
- 432 average contributions from water vapor and temperature biases to the RH biases,
- 433 respectively. The values of dRH_T can occasionally reach up to $\pm 100\%$, which
- 434 suggests the large impact from temperature biases in these cases. In addition, the
- 435 dRH_T and dRH_q terms can have the same (opposite) signs, which would lead to larger
- 436 (lower) total biases in RH. The coefficients of determination, R^2 , for the linear
- 437 regressions indicate that dRH_q versus dRH has a much stronger correlation than that
- 438 of dRH_T versus dRH.

439 4.1.4 Ice supersaturation

- 440 Ice nucleation only occurs in the regions where ice supersaturation exists.
- 441 Different magnitudes of ice supersaturation are required to initiate homogeneous and
- 442 heterogeneous nucleation (Liu and Penner, 2005). The distribution of ice
- 443 supersaturation may provide insights into the mechanisms for ice crystal formation
- 444 (e.g., Haag et al., 2003). In CAM5, ice supersaturation is allowed (Gettelman et al.,

445 2010). Homogeneous nucleation occurs when T \leq -35°C and ice supersatura	ation
--	-------

- reaches a threshold ranging from 145% to 175%. Dust aerosol can serve as INPs
- 447 when RH>120%. Ice supersaturation will be relaxed back to saturation via the vapor
- deposition process (Liu et al., 2007; Gettelman et al., 2010).
- 449 To examine the discrepancies in ice supersaturation between model results and
- 450 observations, we compare the distribution of RH for conditions in clear-sky and
- 451 within cirrus clouds (Figure 5). The analysis is limited to the conditions of T \leq -40°C
- 452 for both model simulations and observations. In CAM5, RH diagnosed in different
- 453 sections of the time integration procedure can be different due to the time splitting
- 454 algorithm. We present here both the RH before and after the microphysical processes.
- 455 The observations show that ice supersaturation exists in both clear-sky and
- 456 inside-cirrus conditions. In clear-sky environments, the PDF of RH shows a
- 457 continuous decrease with RH values in subsaturated conditions, followed by a
- 458 quasi-exponential decrease with the RH above saturation. The maximum RHi reaches
- up to 150%. In cirrus clouds, most of RH values range from 50% to 150% with a peak
- 460 in the PDF near 100%. This feature is consistent with the results of Diao et al. (2014b),
- who used 1-second HIPPO measurements and separated the southern and the northern
- 462 hemispheres for comparison.

The PDFs of modeled RH before and after the microphysical processes are very similar except the latter one has slightly lower probability of RHi above 140% for inside-cirrus conditions. Compared to the observations, the model can simulate the occurrences of ice supersaturation in both clear-sky and in-cloud conditions. However,

- 467 inside cirrus clouds, the simulated PDF of RH peaks around 120% instead of 100% as
- 468 observed. Outside the cirrus clouds (clear-sky), the model simulates a much lower
- 469 probability of ice supersaturation with the maximum RH value around 120%. The
- 470 largest ice supersaturation simulated by CAM5 under clear-sky conditions is around
- 471 20%, which corresponds to the ice supersaturation of 20% assumed in the model for
- the activation of heterogeneous nucleation. This indicates the dominant mode of
- 473 heterogeneous nucleation in the model. However, the observations show much higher
- 474 frequencies of ice supersaturations larger than 20%, indicating higher RH thresholds
- 475 for homogeneous nucleation or heterogeneous nucleation.
- 476

477 4.2 Microphysical properties of ice clouds

478 Together with cirrus cloud fraction, the ice crystal number concentration and size 479 distribution within cirrus clouds determine the radiative forcing of cirrus clouds. In this section, we will present the evaluation of modeled microphysical properties of 480 cirrus clouds for T≤-40°C. As measurements of ice crystal number concentration 481 482 include both ice and snow crystals, for comparison with observations, we combine the cloud ice and snow simulated in the model (hereafter referred as ice crystals). 483 Following Eidhammer et al. (2014), the slope and intercept parameters of the gamma 484 function for the ice crystal size distribution simulated by the model are derived from 485 486 the total number concentration and mass mixing ratio of cloud ice and snow, which are the integrations of the first and third moments of the size distribution function. 487 The simulated number concentration of ice crystals with sizes larger than 75 µm is 488

489	calculated by the integration of gamma size distributions from 75 μm to infinity. The
-----	--

- simulated IWC for ice crystals with sizes larger than 75 μ m is also derived by
- 491 integrating the mass concentration of cloud ice and snow from 75 μ m to infinity. We
- 492 note that about 94% of total cirrus cloud samples are at temperatures between -60°C
- 493 and -40°C.

494 4.2.1 Ice crystal size distribution

495	Direct comparison of the slope parameter (λ) for ice crystal size distributions is
496	shown in Figure 6. The slope parameter λ determines the decay rate of a gamma
497	function in relation to the increasing diameter. With a larger $\boldsymbol{\lambda},$ the decay of a gamma
498	function with increasing size is faster and there are relatively fewer large ice crystals.
499	The number-weighted mean diameter can be defined as the inverse of λ (i.e., $\lambda^{\text{-1}}).$ As
500	shown in Figure 6, the observed λ is generally within the range from 10^3 to 10^5 m ⁻¹ .
501	The model reproduces the magnitude of λ for some of the observations, but tends to
502	overestimate the observations for smaller λ values (10 ³ to 10 ⁴ m ⁻¹). This indicates that
503	the model produces higher fractions of ice crystals at smaller sizes, and the
504	number-weighted mean diameter is underestimated. Moreover, the model generally
505	simulates λ in a narrower range of 7.5×10^3 to 7×10^4 m $^{-1}$ for the three experiments with
506	different D_{cs} (CTL, DCS75, DCS300). SUL and PRE-ICE simulate a wider range of λ
507	which is comparable to the observations but tends to shift λ to larger values $(5\times 10^4 to$
508	$1 \times 10^5 \text{ m}^{-1}$). All the experiments rarely simulated the occurrence of small λ (below
509	$7.5 \times 10^3 \text{ m}^{-1}$).

Figure 7 shows the relationship of λ with temperature from observations and

511	model simulations. Here, both the geometric means and the standard deviations of $\boldsymbol{\lambda}$
512	for each temperature interval of 4°C are also shown. Although the observed λ doesn't
513	monotonically decrease with increasing temperature, overall an decreasing trend can
514	be found for the whole temperature range below -40°C. This indicates a general
515	increase in the number-weighted mean diameter of ice crystals with increasing
516	temperature. The correlation between $\boldsymbol{\lambda}$ and temperature from HIPPO is similar to that
517	from the Atmospheric Radiation Measurements Spring Cloud Intensive Operational
518	Period in 2000 (ARM-IOP) and the Tropical Composition, Cloud and Climate
519	Coupling (TC4) campaigns as shown in Eidhammer et al. (2014), but the HIPPO
520	observations extend to lower temperatures than ARM-IOP and TC4 observations
521	where temperatures are mostly above -56 $^{\circ}\text{C}.$ In addition, HIPPO observations show a
522	broader scatter range of λ , which may be because HIPPO sampled ice crystals at
523	various environment conditions as the flight tracks covered much wider areas and
524	lasted for much longer periods. The decrease of $\boldsymbol{\lambda}$ with increasing temperature has
525	been shown in many other studies (e.g., Heymsfield et al., 2008; 2013). Such a feature
526	is mainly due to more large ice particles at higher temperatures, and can also be partly
527	explained by more ice crystals formed from nucleation and less water vapor available
528	for ice crystal growth at lower temperatures (Eidhammer et al., 2014).
529	Compared to the observations, the simulated mean λ is about 2-4 times larger for
530	all the experiments, indicating that the model simulates smaller mean sizes for ice
531	crystals. The simulated λ decreases with increasing temperature, which is generally
532	consistent with the observations. In addition, the geometric standard deviations (less

2^{-5} 2
--

- explained by the fact that in-situ observations sampled the sub-grid variability of
- 535 cloud properties.
- 536 The difference of simulated λ is within a factor of 2 among the five experiments
- sign when temperature is between -40° C and -56° C, and is larger (around 2-4) when
- temperature is below -56 °C. For the experiments with different D_{cs} , CTL and DCS75
- simulated λ are close to each other when temperature is between -40°C and -60 °C,
- and DCS300 simulates larger λ compared to DCS75 and CNTL. For temperatures
- 541 between -64°C and -72 °C, CTL and DCS300 simulated λ are close to each other and
- 542 both are larger than that of DCS75. For the experiments with different ice nucleation
- parameterizations, both SUL and PRE-ICE simulate larger λ than CTL especially for
- temperatures below -56 °C. SUL simulates the largest λ of all the experiments. This
- 545 can be explained by much larger number concentration of ice crystals (for all size
- range, figure not shown) simulated by SUL, while IWC is not very different from
- other experiments (section 4.2.3).
- 548

549 4.2.2 Ice crystal number concentration

Figure 8 shows the comparison of in-cloud number concentrations (N_i) of ice crystals with diameters larger than 75 µm between observations and simulations. The magnitude of observed N_i varies by three orders of magnitude from 10⁻¹ L⁻¹ to 10² L⁻¹. The model simulates reasonably well the range of N_i in cirrus clouds. However, the model tends to underestimate N_i for all the experiments except DCS75. About 13%

- 555 (DCS75) to 30% (PRE) of observations are underestimated in the model by a factor of
- 10. The underestimation of N_i may be partly attributed to the fact that the model
- underestimates the ice crystal size (section 4.2.1), leading to a smaller fraction of ice
- crystals with diameter larger than 75 μ m. Additional bias may result from the bias in
- the total ice crystal number concentration, although the observations are not available
- for comparison. We also compare simulated N_i with observed in-cloud N_i averaged
- within the model grid boxes. We choose the flight segments with over 300 1-second
- aircraft measurements within an individual model grid and calculate the average for
- in-cloud N_i of ice clouds (T \leq -40 °C). The comparison results are, however, similar to
- those shown in Figure 8.
- 565 DCS75 reasonably simulates the occurrence frequency of $N_i < 1 \text{ L}^{-1}$ albeit with
- significantly higher frequency for N_i around 1-5 L⁻¹ and lower frequency for N_i

around 5-10 L⁻¹. Most of the experiments cannot reproduce the occurrence frequency of high N_i (N_i >50 L⁻¹) except DCS75 and PRE-ICE.

The relationships between N_i and temperature are shown in Figure 9. Since N_i here only takes into account of ice crystals larger than 75 µm, the geometric mean of observed N_i generally ranges between 5-10 L⁻¹ for temperatures below -40°C, which

- is 1-2 orders of magnitude lower than the number of ice crystals between 0.3-775 μ m
- from observations complied by Krämer et al. (2009) and between 10-3000 μm from
- the SPARTICUS campaign (Zhang et al., 2013), but is comparable to the number of
- 575 ice crystals in the same size range from the ARM-IOP and TC4 campaigns
- 576 (Eidhammer et al., 2014). The geometric standard deviation of observed N_i within a

577	temperature interval of 4°C can be as high as a factor of 5.
578	The model simulates no apparent trends of N_i when temperature decreases from
579	-40°C to -60°C for the experiments CTL, DCS75 and PRE-ICE. The model simulates
580	somehow larger N_i with decreasing temperatures for the experiments DCS300 and
581	SUL. Increase of N_i at lower temperatures in SUL may indicate the occurrence of
582	homogeneous nucleation. Overall, simulated N_i is sensitive to D_{cs} . Simulated N_i is
583	also sensitive to the number of sulfate aerosol particles for homogeneous nucleation.
584	With the removal of the lower size limit (0.1 μ m diameter) of sulfate aerosol particles
585	for homogeneous nucleation in the experiment SUL, simulated N_i is significantly
586	higher than that in CTL. This result is consistent with that of Wang et al. (2014).
587	Although some experiments can simulate a similar magnitude of N_i as the
588	observations in some temperature ranges, most of the experiments underestimate N_i
589	and some experiments (CTL and PRE-ICE) underestimate N_i for all the temperature
590	ranges. Overall DCS75 simulates the closest magnitude of N_i with the observations
591	for temperatures from -40°C to -64°C.
592	

593 4.2.3 Ice water content

Figure 10 shows the comparison of in-cloud IWC for ice crystals with diameter larger than 75 μ m between observations and simulations. The magnitude of observed IWC varies by four orders of magnitude from 10⁻² to 10² mg m⁻³, which is within the range of observed IWC in previous studies (Kramer et al., 2016; Luebke et al., 2016). Observed IWC here is mostly larger than 1 mg m⁻³. Compared to the observations, the

599	model for all the experiments underestimates observed IWC for 70%-95% of the
600	samples and by one order of magnitude for 25%-45% of the samples. Although the
601	model reproduces the highest occurrence frequency of IWC around 1-5 mg m ⁻³ , the
602	model simulates more occurrence of IWC below 1 mg m^{-3} and fewer occurrence of
603	IWC above 5 mg m ^{-3} .
604	The relationships between IWC and temperature are shown in Figure 11. An
605	overall increasing trend of observed IWC with temperature is found for the entire
606	temperature range. The observed relationship between IWC and temperature is
607	consistent with those shown in the previous studies (e.g., Kramer et al., 2016; Luebke
608	et al., 2016). However, the mean IWC from HIPPO is 3-5 times as large as previous
609	observations (Kramer et al., 2016; Luebke et al., 2016). Observations here only
610	account for ice crystals with diameter larger than 75 μm and thus it is less frequent
611	that observed IWC is lower than 1 mg m ⁻³ . In contrast, previous studies showed that
612	IWC (including smaller sizes of ice crystals) lower than 1 mg m ⁻³ was often measured
613	in observations. This contributes to the mean IWC shown here being larger than that
614	in the previous studies.
615	The simulated IWC is lower than observations for all the experiments at
616	temperatures between -40°C and -60 °C where most of the observations were made.
617	The model also simulates less variation of IWC with temperature when temperature is
618	between -40°C and -60 °C. When temperature is below -60 °C, a steep decrease of
619	IWC is found in some experiments (e.g., CTL, SUL). Considering the large scatter of
620	IWC and relatively few samples available, this may be due to a lack of a sufficient

- 621 number of samples. Therefore, more observations are needed to have a robust
- 622 comparison for relatively low temperatures (i.e., temperatures below -60 °C).
- 623 Simulated IWC is more sensitive to D_{cs} than to ice nucleation.
- 624
- 625 5 Impact of Nudging
- 626 In previous sections, we have nudged the simulated winds and temperature
- 627 towards the GEOS5 analysis, but kept the water vapor on-line calculated by the model
- itself. We showed that the model captures a large portion (79.8%) of cloud
- occurrences presented in the observations. We also identified the RH bias in the
- 630 simulation and attributed the RH bias mainly to the bias in water vapor. As the bias in
- temperature is reduced in the nudging run compared to the free run, the attribution of
- RH bias in the free-running model (i.e., no nudging applied) is still unclear. To
- examine the impact of nudging strategies on the cloud occurrences and the attribution
- 634 of RH bias, we conducted two additional experiments: one with neither temperature
- nor specific humidity nudged to the analysis (hereafter referred as NUG_UV), and the
- other one with both temperature and specific humidity nudged to the analysis
- 637 (hereafter referred as NUG_UVTQ). Without nudging temperature, the model
- experiment (NUG_UV) has a cold temperature bias of -1.8°C on average relative to
- 639 the HIPPO observations (Figure not shown). In comparison, the temperatures
- simulated by CTL and NUG_UVTQ are more consistent with in situ aircraft
- observations, and the mean temperature is slightly underestimated by 0.22 °C and
- 642 0.28 °C in these two experiments, respectively. By nudging specific humidity, the

- 643 model experiment (NUG UVTQ) improves the simulation of grid-mean water vapor
- 644 concentrations by eliminating the biases especially for the cases with low water vapor
- concentrations (less than 20 ppmv, Figure not shown). NUG_UV captures 86.0%,
- 646 80.9%, and 39.7% of observed ice, mixed-phase, and warm clouds, respectively,
- which are slightly smaller than those of CTL (i.e., 94.3%, 86.1%, and 49.9%,
- respectively). For NUG_UVTQ, although 73.5% of ice clouds are captured, the model
- captures only 61.8% of mixed-phase clouds and 31.4% of warm clouds. The worse
- simulation in NUG_UVTQ may be because the nudged water vapor is not internally
- consistent with the modeled cloud physics, which deteriorates the simulation of cloud
- 652 occurrences.

As seen in Table 3, in the two new nudging experiments (NUG UV and

- 654 NUG UVTQ), modeled RH biases in the comparison with in-situ observations also
- mainly result from the discrepancies of water vapor. The contribution of dRH_q to dRH
- ranges from 65.8% to 92.5%, which are slightly smaller than those in CTL. In
- 657 NUG_UV, as the model underestimates the temperature, modeled RH is
- 658 systematically higher than observations, especially for T \leq -40°C where the absolute

value of RH is overestimated by 30% on average. The large T bias leads to a smaller

- 660 contribution from the water vapor bias (dRH_q) and a larger contribution from the
- 661 concurrent bias in temperature and water vapor $(dRH_{q,T})$. When both T and Q are
- nudged in NUG_UVTQ, the contributions of the three terms to dRH are generally
- similar to those in CTL. A larger contribution from temperature (dRH_T) is found for
- temperature above 0°C in NUG UVTG. This may be a result of smaller contributions

- from either dRH_q or $dRH_{q,T}$ due to the reduced water vapor bias. We also examined
- 666 the in-cirrus microphysical properties simulated by these two new nudging
- experiments. The model features such as underestimations of N_i , IWC, and mean ice
- 668 crystal size are similar to those in CTL and are not sensitive to the nudging strategy
- 669 used.

670

671 6 Discussion and Conclusions

672	In this study,	we evaluate	ed the macro	 and microp 	hysical	properties	of ice cl	louds

simulated by CAM5 using in-situ measurements from the HIPPO campaign. The

HIPPO campaign sampled over the Pacific region from 67°S to 87°N across several

seasons, making it distinctive from other previous campaigns and valuable for

676 providing insight into evaluating model performance. To eliminate the impact of

677 large-scale circulation biases on the simulated cloud processes, we ran CAM5 using

678 specified dynamics which nudge the simulated meteorology (U, V and T) towards the

679 GEOS-5 analysis while keeping water vapor, hydrometeors, and aerosols online

calculated by the model itself. Model results collocated with the flight tracks spatially

and temporally are directly compared with the observations. Modeled cloud

occurrences and in-cloud ice crystal properties are evaluated, and the reasons for the

biases are examined. We also examined the model sensitivity to D_{cs} and different

684 parameterizations for ice nucleation.

The model can reasonably capture the vertical configuration and horizontal

extension of specific cloud systems. In total, the model captures 79.8% of observed

687	cloud occurrences within model grid boxes. For each cloud type, the model captures
688	94.3% of observed ice clouds, and 86.1% of mixed-phase and 49.9% of warm clouds.
689	This result is only modestly sensitive to whether meteorological fields (T and Q) are
690	nudged. The model cannot capture the large spatial variability of observed RH, which
691	is responsible for much of the model missing of low-level warm clouds. A large
692	portion of the RH bias results from the discrepancy in water vapor, with a small
693	portion from the discrepancy in temperature. The model also underestimates the
694	occurrence frequencies of ice supersaturation higher than 20% under clear-sky
695	conditions (i.e., outside of cirrus clouds), which may indicate too low threshold for
696	initiating heterogeneous ice nucleation in the model. In fact, a study comparing the
697	observed RH distributions with real-case simulations of the Weather Research and
698	Forecasting (WRF) model suggested that the threshold for initiating heterogeneous
699	nucleation should be set at RHi \ge 125% (D'Alessandro et al., submitted).
700	Down to the micro-scale of cirrus clouds (T \leq -40 °C), the model captures well the
701	decreasing trend of λ with increasing temperature from -72 °C to -40°C. However, the
702	simulated λ values are about 2-4 times on average larger than observations at all the
703	4°C temperature ranges for all the experiments with different D_{cs} and different ice
704	nucleation parameterizations. This indicates that the model simulates a smaller mean
705	size of ice crystals in each temperature range. The model is mostly able reproduce the
706	magnitude of observed N_i (to within one order of magnitude) for ice crystals with
707	diameter larger than 75 μ m, yet generally underestimates N_i except for the DCS75
708	simulation. Simulated N_i is sensitive to D_{cs} and the number of sulfate aerosol particles

709	for homogeneous nucleation used in the model. No apparent correlations between the
710	mean N_i and temperature are found in the observations, while a decrease of N_i with
711	increasing temperature is found in the two simulations (DCS300 and SUL). All the
712	experiments underestimate the magnitude of IWC for ice crystals larger than 75 $\mu m.$
713	The observations show an overall decreasing trend of IWC with decreasing
714	temperature while the model simulated trends are not as strong. Simulated IWC is
715	sensitive to D_{cs} but less sensitive to the different parameterizations of ice nucleation
716	examined here.
717	Current climate models have typical horizontal resolutions of tens to hundreds of
718	kilometers and are unable to represent the large spatial variability of environmental
719	conditions for cloud formation and evolution within a model grid box. A previous
720	study of Diao et al. (2014a) shows that the spatial variability of water vapor
721	dominantly contribute to the spatial variability in RH, compared with the
722	contributions from those of temperature. Here our comparisons of model simulations
723	with observations show that the biases in water vapor spatial distributions are the
724	dominant sources of the model biases in RH spatial distributions. Thus it is a priority
725	to develop parameterizations that are able to treat the sub-grid variability of water
726	vapor for climate models. There are also substantial sub-grid variations of cloud
727	microphysical properties shown in previous observational studies (e.g., Lebsock et al.,
728	2013). Currently a framework for treating the sub-grid variability of temperature,
729	moisture and vertical velocity has been developed and implemented into CAM5
730	(Bogenschutz et al., 2013). A multi-scale modeling framework has also been

- 731 developed to explicitly resolve the cloud dynamics and cloud microphysics down to
- the scales of cloud-resolving models (e.g., Wang et al., 2011; Zhang et al., 2014). The
- 733 PDFs of sub-grid scale distributions can be sampled on sub-columns for cloud
- microphysics (Thayer-Calder et al., 2015). With the increase of model resolutions for
- future model developments, the subgrid variablility of temperature, moisture, and
- cloud microphysics and dynamics will be better resolved. We plan to evaluate the
- 737 model performances at higher resolutions.
- Given the various environmental conditions and aerosol characteristics in the
- atmosphere, the formation and evolution of ice crystals are not well understood, and it
- r40 is even more challenging for climate models to represent these processes. For the bulk
- 741 ice microphysics used in our model, several assumptions have to be made to simulate
- both N_i and λ . One of them is to partition the ice crystals into cloud ice and snow
- categories, while using D_{cs} to convert cloud ice to snow. Thus a more physical
- treatment of ice crystal evolution such as using bin microphysics (e.g., Bardeen et al.,
- 745 2013; Khain et al., 2015) or a single category to represent all ice-phase hydrometeors
- 746 (Morrison and Milbrandt, 2015) is needed.
- 747

748 Acknowledgements

- 749 X. Liu and C. Wu acknowledge support of the U.S. Department of Energy's
- 750 Atmospheric System Research Program (grant DE-572 SC0014239). The authors
- vould like to acknowledge the use of computational resources (ark:/85065/d7wd3xhc)
- at the NCAR-Wyoming Supercomputing Center provided by the National Science

- Foundation and the State of Wyoming, and supported by NCAR's Computational and
- 754 Information Systems Laboratory. We appreciate the efforts of the National Center for
- 755 Atmospheric Research (NCAR) Earth Observing Laboratory flight, technical, and
- 756 mechanical crews during the National Science Foundation (NSF) HIPPO Global
- campaign, in particular the PIs of the HIPPO Global campaign: S. Wofsy, R. Keeling,
- and B. Stephens. NCAR is sponsored by NSF. We acknowledge the support of the
- 759 VCSEL hygrometer by M. Diao, M. Zondlo and S. Beaton, the support of 2DC probe
- 760 by A. Bansemer, C. J. Webster and D. C. Rogers. We also acknowledge the funding
- of NSFAGS-1036275 for field support and data analyses from the VCSEL
- ⁷⁶² hygrometer in the HIPPO Global campaign. M. Diao gratefully acknowledges the
- support from the NCAR Advanced Study Program (ASP) postdoctoral fellowship in
- 764 Oct 2013– Aug 2015. Final data sets and documentation from the NSF HIPPO Global
- campaign can be accessed at <http://hippo.ornl.gov> in the Carbon Dioxide
- 766 Information Analysis Center Data Archive at Oak Ridge National Laboratory. We
- thank T. Eidhammer from NCAR for her help on model result analysis.
- 768

769 **References**

Abdul-Razzak, H., and Ghan, S. J.: A parameterization of aerosol activation 2. 770 Multiple aerosol types. J. Geophysical Research-Atmospheres 105(D5), 771 6837-6844, 2000. 772 Bodas-Salcedo, A. et al.: COSP: A satellite simulation software for model assessment. 773 774 Bull. Amer. Meteor. Soc., 92, 1023-1043, 2011. Bardeen, C. G., A. Gettelman, E. J. Jensen, A. Heymsfield, A. J. Conley, J. Delanoë, 775 M. Deng, O. B. Toon (2013), Improved cirrus simulations in a GCM using 776 CARMA sectional microphysics, Geophys. 777 J. Res., 118. doi:10.1002/2013JD020193. 778

779 Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., and

780	Schanen, D. P.: Higher-Order Turbulence Closure and Its Impact on Climate
781	Simulations in the Community Atmosphere Model, J Climate, 26, 9655-9676,
782	10.1175/JCLI-D-13-00075.1, 2013.
783	Boucher, O., and Coauthors: Clouds and Aerosols, in: Climate Change 2013: The
784	Physical Science Basis. Contribution of Working Group I to the Fifth
785	Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
786	Stocker, T.F., et al., 1535, 571-657, Cambridge University Press, Cambridge,
787	United Kingdom and New York, NY, USA, 2013.
788	Bretherton, C. S., and Park, S.: A New Moist Turbulence Parameterization in the
789	Community Atmosphere Model, J Climate, 22, 3422-3448,
790	10.1175/2008JCLI2556.1, 2009.
791	Corti, T., Luo, B. P., Peter, T., Vömel, H., and Fu, Q.: Mean radiative energy balance
792	and vertical mass fluxes in the equatorial upper troposphere and lower
793	stratosphere, Geophys Res Lett, 32, L06802, 10.1029/2004GL021889, 2005.
794	DeMott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S. M.,
795	Thomson, D. S., Borys, R., and Rogers, D. C.: Measurements of the
796	concentration and composition of nuclei for cirrus formation, Proceedings of the
797	National Academy of Sciences, 100, 14655-14660, 10.1073/pnas.2532677100,
798	2003.
799	Deng, M., and Mace, G. G.: Cirrus Microphysical Properties and Air Motion Statistics
800	Using Cloud Radar Doppler Moments. Part I: Algorithm Description, Journal of
801	Applied Meteorology and Climatology, 45, 1690-1709, 10.1175/JAM2433.1,
802	2006.
803	Deng, M., and Mace, G. G.: Cirrus Microphysical Properties and Air Motion Statistics
804	Using Cloud Radar Doppler Moments. Part II: Climatology, Journal of Applied
805	Meteorology and Climatology, 47, 3221-3235, 10.1175/2008JAMC1949.1,
806	2008.
807	D'Alessandro, J., Diao, M., Wu, C., Liu, X., Chen, M., Morrison, H., Eidhammer, T.,
808	Jensen, Jorgen B. Bansemer, A., Zondlo, M. A. and DiGangi, J. P.: Dynamical
809	conditions of ice supersaturation in convective systems: a comparative analysis
810	between in-situ aircraft observations and WRF simulations, submitted.
811	Diao, M., Zondlo, M. A., Heymsfield, A. J., Beaton, S. P., and Rogers, D. C.:
812	Evolution of ice crystal regions on the microscale based on in situ observations,
813	Geophys Res Lett, 40, 3473-3478, 10.1002/grl.50665, 2013.
814	Diao, M., Zondlo, M. A., Heymsfield, A. J., Avallone, L. M., Paige, M. E., Beaton, S.
815	P., Campos, T., and Rogers, D. C.: Cloud-scale ice-supersaturated regions
816	spatially correlate with high water vapor heterogeneities, Atmos. Chem. Phys.,
817	14, 2639-2656, 10.5194/acp-14-2639-2014, 2014a.
818	Diao, M., Zondlo, M. A., Heymsfield, A. J., and Beaton, S. P.: Hemispheric
819	comparison of cirrus cloud evolution using in situ measurements in HIAPER
820	Pole-to-Pole Observations, Geophys Res Lett, 41, 4090-4099,
821	10.1002/2014GL059873, 2014b.
822	Dinh, T., Fueglistaler, S., Durran, D., and Ackerman, T.: Cirrus and water vapour
323	transport in the tropical tropopause layer - Part 2: Roles of ice nucleation and

824	sedimentation, cloud dynamics, and moisture conditions, Atmos. Chem. Phys.,
825	14, 12225-12236, 10.5194/acp-14-12225-2014, 2014.
826	Eidhammer, T., Morrison, H., Bansemer, A., Gettelman, A., and Heymsfield, A. J.:
827	Comparison of ice cloud properties simulated by the Community Atmosphere
828	Model (CAM5) with in-situ observations, Atmos. Chem. Phys., 14, 10103-10118,
829	10.5194/acp-14-10103-2014, 2014.
830	Fusina, F., Spichtinger, P., and Lohmann, U.: Impact of ice supersaturated regions and
831	thin cirrus on radiation in the midlatitudes, Journal of Geophysical Research:
832	Atmospheres, 112, D24S14, 10.1029/2007JD008449, 2007.
833	Gettelman, A., Randel, W. J., Wu, F., and Massie, S. T.: Transport of water vapor in
834	the tropical tropopause layer, Geophys Res Lett, 29, 9-1-9-4,
835	10.1029/2001GL013818, 2002.
836	Gettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A. J., Klein, S. A.,
837	Boyle, J., Mitchell, D. L., and Li, J. L. F.: Global simulations of ice nucleation
838	and ice supersaturation with an improved cloud scheme in the Community
839	Atmosphere Model, Journal of Geophysical Research: Atmospheres, 115,
840	D18216, 10.1029/2009JD013797, 2010.
841	Gettelman, A., Liu, X., Barahona, D., Lohmann, U., and Chen, C.: Climate impacts of
842	ice nucleation, Journal of Geophysical Research: Atmospheres, 117, D20201,
843	10.1029/2012JD017950, 2012.
844	Gettelman, A., and Morrison, H.: Advanced Two-Moment Bulk Microphysics for
845	Global Models. Part I: Off-Line Tests and Comparison with Other Schemes, J
846	Climate, 28, 1268-1287, 10.1175/JCLI-D-14-00102.1, 2015.
847	Gettelman, A., Morrison, H., Santos, S., Bogenschutz, P., and Caldwell, P. M.:
848	Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global
849	Model Solutions and Aerosol-Cloud Interactions, J Climate, 28, 1288-1307,
850	10.1175/JCLI-D-14-00103.1, 2015.
851	Haag, W., Kärcher, B., Ström, J., Minikin, A., Lohmann, U., Ovarlez, J., and Stohl, A.:
852	Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ
853	measurements of relative humidity, Atmos. Chem. Phys., 3, 1791-1806,
854	10.5194/acp-3-1791-2003, 2003.
855	Heymsfield, A. J., Field, P., and Bansemer, A.: Exponential Size Distributions for
856	Snow, J Atmos Sci, 65, 4017-4031, 10.1175/2008JAS2583.1, 2008.
857	Heymsfield, A. J., Schmitt, C., and Bansemer, A.: Ice cloud particle size distributions
858	and pressure-dependent terminal velocities from in situ observations at
859	temperatures from 0 to -86 C, J. Atmos. Sci., 70, 4123-4154, 2013.
860	Hoose, C., and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a
861	review of results from laboratory experiments, Atmos. Chem. Phys., 12,
862	9817-9854, 10.5194/acp-12-9817-2012, 2012.
863	Hoyle, C. R., Luo, B. P., and Peter, T.: The Origin of High Ice Crystal Number
864	Densities in Cirrus Clouds, J Atmos Sci, 62, 2568-2579, 10.1175/JAS3487.1,
865	
866	Jensen, E. J., Diskin, G., Lawson, R. P., Lance, S., Bui, T. P., Hlavka, D., McGill, M.,
867	Prister, L., Toon, O. B., and Gao, R.: Ice nucleation and dehydration in the

868	Tropical Tropopause Layer, Proceedings of the National Academy of Sciences,
869	110, 2041-2046, 10.1073/pnas.1217104110, 2013.
870	Kärcher, B. and Spichtinger, B.: Cloud-controlling factors of cirrus, in: Clouds in the
871	Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric
872	Dynamics, and Precipitation, edited by: Heintzenberg, J. and Charlson, R. J.,
873	Strüngmann Forum Report, 3536, 235–267, The MIT Press, Cambridge, MA,
874	USA, 2009.
875	Kay, J. E., Baker, M., and Hegg, D.: Microphysical and dynamical controls on cirrus
876	cloud optical depth distributions, Journal of Geophysical Research: Atmospheres,
877	111, D24205, 10.1029/2005JD006916, 2006.
878	Kay, J. E., et al.: Exposing global cloud biases in the Community Atmosphere Model
879	(CAM) using satellite observations and their corresponding instrument
880	simulators, J. Clim., 25, 5190-5207, doi:10.1175/JCLI-D-11-00469.1, 2012.
881	Khain, A. P., Beheng, K. D., Heymsfield, A., Korolev, A., Krichak, S. O., Levin, Z.,
882	Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., van den Heever, S. C., and
883	Yano, J. I.: Representation of microphysical processes in cloud-resolving models:
884	Spectral (bin) microphysics versus bulk parameterization, Rev Geophys, 53,
885	247-322, 10.1002/2014RG000468, 2015.
886	Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the determinant for
887	homogeneous ice nucleation in aqueous solutions, Nature, 406, 611-614, 2000.
888	Kooperman, G. J., Pritchard, M. S., Ghan, S. J., Wang, M., Somerville, R. C. J., and
889	Russell, L. M.: Constraining the influence of natural variability to improve
890	estimates of global aerosol indirect effects in a nudged version of the Community
891	Atmosphere Model 5, J. Geophys. Res., 117, D23204,
892	doi:10.1029/2012JD018588, 2012.
893	Korolev, A. V., Emery, E. F., Strapp, J. W., Cober, S. G., Isaac, G. A., Wasey, M.,
894	and Marcotte, D.: Small Ice Particles in Tropospheric Clouds: Fact or Artifact?
895	Airborne Icing Instrumentation Evaluation Experiment, Bulletin of the American
896	Meteorological Society, 92, 967-973, 10.1175/2010BAMS3141.1, 2011.
897	Krämer, M., Schiller, C., Afchine, A., Bauer, R., Gensch, I., Mangold, A., Schlicht, S.,
898	Spelten, N., Sitnikov, N., Borrmann, S., de Reus, M., and Spichtinger, P.: Ice
899	supersaturations and cirrus cloud crystal numbers, Atmos. Chem. Phys., 9,
900	3505-3522, 10.5194/acp-9-3505-2009, 2009.
901	Krämer, M., Rolf, C., Luebke, A., Afchine, A., Spelten, N., Costa, A., Meyer, J.,
902	Zöger, M., Smith, J., Herman, R. L., Buchholz, B., Ebert, V., Baumgardner, D.,
903	Borrmann, S., Klingebiel, M., and Avallone, L.: A microphysics guide to cirrus
904	clouds - Part 1: Cirrus types, Atmos. Chem. Phys., 16, 3463-3483,
905	doi:10.5194/acp-16-3463-2016, 2016.
906	Lamarque, J. F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F.,
907	Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J.,
908	and Tyndall, G. K.: CAM-chem: description and evaluation of interactive
909	atmospheric chemistry in the Community Earth System Model, Geosci. Model
910	Dev., 5, 369-411, 10.5194/gmd-5-369-2012, 2012.
911	Lawson, R. P.: Effects of ice particles shattering on the 2D-S probe, Atmos. Meas.

Tech., 4, 1361-1381, 10.5194/amt-4-1361-2011, 2011. 912 Lebsock, M., Morrison, H., and Gettelman, A.: Microphysical implications of 913 cloud-precipitation covariance derived from satellite remote sensing, Journal of 914 Geophysical Research: Atmospheres, 118, 6521-6533, 10.1002/jgrd.50347, 915 916 2013. Li, J. L. F., Waliser, D. E., Chen, W. T., Guan, B., Kubar, T., Stephens, G., Ma, H. Y., 917 Deng, M., Donner, L., Seman, C., and Horowitz, L.: An observationally based 918 evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary 919 reanalyses using contemporary satellite data, Journal of Geophysical Research: 920 Atmospheres, 117, D16105, 10.1029/2012JD017640, 2012. 921 Liou, K.-N.: Influence of Cirrus Clouds on Weather and Climate Processes: A Global 922 Perspective, Mon Weather Rev, 114, 1167-1199, 923 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2, 1986. 924 Liu, X., and Penner, J. E.: Ice nucleation parameterization for global models, 925 Meteorol Z, 14, 499-514, 2005. 926 Liu, X., Penner, J. E., Ghan, S. J., and Wang, M.: Inclusion of Ice Microphysics in the 927 NCAR Community Atmospheric Model Version 3 (CAM3), J Climate, 20, 928 4526-4547, 10.1175/JCLI4264.1, 2007. 929 Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J. F., 930 Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., 931 Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, 932 933 C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community 934 935 Atmosphere Model CAM5, Geosci. Model Dev., 5, 709-739, 10.5194/gmd-5-709-2012, 2012a. 936 Liu, X., Shi, X., Zhang, K., Jensen, E. J., Gettelman, A., Barahona, D., Nenes, A., and 937 Lawson, P.: Sensitivity studies of dust ice nuclei effect on cirrus clouds with the 938 Community Atmosphere Model CAM5, Atmos. Chem. Phys., 12, 12061-12079, 939 10.5194/acp-12-12061-2012, 2012b. 940 Luebke, A. E., Afchine, A., Costa, A., Grooß, J.-U., Meyer, J., Rolf, C., Spelten, N., 941 Avallone, L. M., Baumgardner, D., and Krämer, M.: The origin of midlatitude 942 ice clouds and the resulting influence on their microphysical properties, Atmos. 943 944 Chem. Phys., 16, 5793-5809, doi:10.5194/acp-16-5793-2016, 2016. Mace, G. G., Zhang, Y., Platnick, S., King, M. D., Minnis, P., and Yang, P.: 945 Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud 946 947 Properties Derived from Ground-Based Observations Collected at the ARM SGP Site, Journal of Applied Meteorology, 44, 221-240, 10.1175/JAM2193.1, 2005. 948 Morrison, H., and Gettelman, A.: A New Two-Moment Bulk Stratiform Cloud 949 Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). 950 Part I: Description and Numerical Tests, J Climate, 21, 3642-3659, 951 10.1175/2008JCLI2105.1, 2008. 952 Morrison, H., and Milbrandt, J. A.: Parameterization of Cloud Microphysics Based on 953 the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and 954 955 Idealized Tests. J. Atmos. Sci., 72, 287-311. doi:

956	http://dx.doi.org/10.1175/JAS-D-14-0065.1, 2015.
957	Murphy, D. M., and Koop, T.: Review of the vapour pressures of ice and supercooled
958	water for atmospheric applications, Quarterly Journal of the Royal
959	Meteorological Society, 131, 1539-1565, 10.1256/qj.04.94, 2005.
960	Neale, R. B., and Coauthors: Description of the NCAR Community Atmosphere
961	Model (CAM 5.0), NCAR/TN-486+STR, available at:
962	http://www.cesm.ucar.edu/models/cesm1.0/ cam/docs/description/cam5 desc.pdf,
963	2012.
964	Park, S., and Bretherton, C. S.: The University of Washington Shallow Convection
965	and Moist Turbulence Schemes and Their Impact on Climate Simulations with
966	the Community Atmosphere Model, J Climate, 22, 3449-3469,
967	10.1175/2008JCLI2557.1, 2009.
968	Park, S., Bretherton, C. S., and Rasch, P. J.: Integrating Cloud Processes in the
969	Community Atmosphere Model, Version 5, J Climate, 27, 6821-6856,
970	10.1175/JCLI-D-14-00087.1, 2014.
971	Ramanathan, V., and Collins, W.: Thermodynamic regulation of ocean warming by
972	cirrus clouds deduced from observations of the 1987 El Nino, Nature, 351, 27-32,
973	1991.
974	Richter, J. H., and Rasch, P. J.: Effects of Convective Momentum Transport on the
975	Atmospheric Circulation in the Community Atmosphere Model, Version 3, J
976	Climate, 21, 1487-1499, 10.1175/2007JCLI1789.1, 2008.
977	Shi, X., Liu, X., and Zhang, K.: Effects of pre-existing ice crystals on cirrus clouds
978	and comparison between different ice nucleation parameterizations with the
979	Community Atmosphere Model (CAM5), Atmos. Chem. Phys., 15, 1503-1520,
980	10.5194/acp-15-1503-2015, 2015.
981	Tan, X., Y. Huang, M. Diao, A. Bansemer, M. A. Zondlo, J. P. DiGangi, R. Volkamer,
982	and Y. Hu: An assessment of the radiative effects of ice supersaturation based on
983	in situ observations, Geophys. Res. Lett., 43, 11,039–11,047,
984	doi: <u>10.1002/2016GL071144</u> , 2016.
985	Thayer-Calder, K., Gettelman, A., Craig, C., Goldhaber, S., Bogenschutz, P. A., Chen,
986	C. C., Morrison, H., Höft, J., Raut, E., Griffin, B. M., Weber, J. K., Larson, V. E.,
987	Wyant, M. C., Wang, M., Guo, Z., and Ghan, S. J.: A unified parameterization of
988	clouds and turbulence using CLUBB and subcolumns in the Community
989	Atmosphere Model, Geosci. Model Dev., 8, 3801-3821,
990	10.5194/gmd-8-3801-2015, 2015.
991	Wang, M., Ghan, S., Easter, R., Ovchinnikov, M., Liu, X., Kassianov, E., Qian, Y.,
992	Gustafson Jr, W. I., Larson, V. E., Schanen, D. P., Khairoutdinov, M., and
993	Morrison, H.: The multi-scale aerosol-climate model PNNL-MMF: model
994	description and evaluation, Geosci. Model Dev., 4, 137-168,
995	10.5194/gmd-4-137-2011, 2011.
996	Wang, M., Liu, X., Zhang, K., and Comstock, J. M.: Aerosol effects on cirrus through
997	ice nucleation in the Community Atmosphere Model CAM5 with a statistical
998	cirrus scheme, J. Adv. Model. Earth Syst., 06, doi:10.1002/2014MS000339,
999	2014.

1000	Wang, M. and Penner, J. E.: Cirrus clouds in a global climate model with a statistical
1001	cirrus cloud scheme, Atmos. Chem. Phys., 10, 5449-5474,
1002	doi:10.5194/acp-10-5449-2010, 2010.
1003	Wang, PH., Minnis, P., McCormick, M. P., Kent, G. S., and Skeens, K. M.: A 6-year
1004	climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas
1005	Experiment II observations (1985-1990), Journal of Geophysical Research:
1006	Atmospheres, 101, 29407-29429, 10.1029/96JD01780, 1996.
1007	Wang, Y., and Liu, X.: Immersion freezing by natural dust based on a soccer ball
1008	model with the Community Atmospheric Model version 5: climate effects,
1009	Environmental Research Letters, 9, 124020, 2014.
1010	Wofsy, S. C.: HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale
1011	measurements of climatically important atmospheric gases and aerosols,
1012	Philosophical Transactions of the Royal Society of London A: Mathematical,
1013	Physical and Engineering Sciences, 369, 2073-2086, 10.1098/rsta.2010.0313,
1014	2011.
1015	Wylie, D. P., and Menzel, W. P.: Eight Years of High Cloud Statistics Using HIRS, J
1016	Climate, 12, 170-184, 10.1175/1520-0442-12.1.170, 1999.
1017	Zhang, C., M. Wang, H. Morrison, R. C. J. Somerville, K. Zhang, X. Liu, and J. F. Li
1018	(2014), Investigating ice nucleation in cirrus clouds with an aerosol-enabled
1019	multi-scale modeling framework, J. Adv. Model. Earth Syst., 6, 998-1015,
1020	doi:10.1002/2014MS000343.
1021	Zhang, G. J., and McFarlane, N. A.: Sensitivity of climate simulations to the
1022	parameterization of cumulus convection in the Canadian Climate Centre general
1023	circulation model, Atmosphere-Ocean, 33, 407-446, 1995.
1024	Zhang, K., Liu, X., Wang, M., Comstock, J. M., Mitchell, D. L., Mishra, S., and Mace,
1025	G. G.: Evaluating and constraining ice cloud parameterizations in CAM5 using
1026	aircraft measurements from the SPARTICUS campaign, Atmos. Chem. Phys., 13,
1027	4963-4982, 10.5194/acp-13-4963-2013, 2013.
1028	Zhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P. L., Rasch, P. J.,
1029	Neubauer, D., and Lohmann, U.: Technical Note: On the use of nudging for
1030	aerosol-climate model intercomparison studies, Atmos. Chem. Phys., 14,
1031	8631-8645, 10.5194/acp-14-8631-2014, 2014.
1032	Zondlo, M. A., Paige, M. E., Massick, S. M., and Silver, J. A.: Vertical cavity laser
1033	hygrometer for the National Science Foundation Gulfstream-V aircraft, Journal
1034	of Geophysical Research: Atmospheres, 115, D20309, 10.1029/2010JD014445,
1035	2010.
1036	

1037	Table	1.	CAM5	experiments	

Experiment name	Nudging	Ice microphysics parameterizations
CTL	U, V, T	Threshold diameter for autoconversion of
		cloud ice to snow (D_{cs}) set to 150 μm
DCS75	U, V, T	As CTL, but with $D_{cs}=75 \ \mu m$
DCS300	U, V, T	As CTL, but with D_{cs} =300 µm
SUL	U, V, T	As CTL, but without the lower limit (0.1 μ m)
		for sulfate particle diameter for homogeneous
		freezing
PRE-ICE	U, V, T	As CTL, but with the impacts of pre-existing
		ice crystals on ice nucleation (Shi et al., 2015)
NUG_UV	U, V	As CTL
NUG_UVTQ	U, V, T, Q	As CTL

1038

1040

1041	Table 2. The numbers of cloud occurrences in the 10-second averaged observations
1042	(N_{obs}) , as well as those that CAM5 captures (N_{cap}) or misses (N_{mis}) the observed
1043	clouds within the model grid boxes for different temperature ranges. The ratio of N_{cap}
1044	and N_{mis} to N_{obs} are given in parenthesis next to them, respectively.

Cloud type Temperature rang		Nobs	N_{cap}	N_{mis}
Ice cloud	T≤-40°C	3101	2925 (94.3%)	176 (5.7%)
Mixed-phase cloud	-40°C <t≤0°c< td=""><td>8768</td><td>7546 (86.1%)</td><td>1222 (13.9%)</td></t≤0°c<>	8768	7546 (86.1%)	1222 (13.9%)
Warm cloud	T>0°C	3334	1665 (49.9%)	1669 (50.1%)
All		15203	12136 (79.8%)	3067 (20.2%)

1045

Table 3. The intercepts and slopes of the regression lines (i.e., Y=a+b*X) for dRH_q versus dRH, dRH_T versus dRH, and $dRH_{q,T}$ versus dRH in the three experiments CTL, NUG_UV, and NUG_UVTQ, respectively. The coefficients are determination (i.e., R^2) for each regression line are also presented.

		T≤-40°C		-40	-40°C <t≤0°c< th=""><th colspan="2">T>0°C</th></t≤0°c<>			T>0°C		
		а	b	R^2	а	b	R^2	а	b	R^2
	<i>d</i> RH _q	5.209	0.748	0.663	4.632	0.933	0.786	0.177	0.786	0.840
CTL	$d R H_T$	-0.798	0.087	0.071	-3.013	0.072	0.039	-0.706	0.210	0.262
	$d R H_{q,T}$	-4.411	0.165	0.241	-1.619	-0.005	.0004	0.529	0.004	0.001
	<i>d</i> RH _q	-16.85	0.723	0.562	-5.589	0.866	0.614	-5.207	0.658	0.698
NUG_UV	$d R H_T$	29.96	-0.103	0.024	10.09	-0.013	.0005	4.804	0.265	0.188
	$d R H_{q,T}$	-13.11	0.380	0.487	-4.498	0.148	0.088	0.402	0.078	0.085
	<i>d</i> RH _q	-2.851	0.813	0.770	2.260	0.925	0.672	-1.773	0.733	0.761
NUG_UVTQ	$d R H_T$	3.964	0.073	0.040	-0.265	0.094	0.038	1.892	0.308	0.311
	$dRH_{q,T}$	-1.113	0.114	0.262	-1.996	-0.019	0.003	-0.119	-0.041	0.095

1051

1053 **Figure captions:** 1054 Figure 1. Cloud occurrences simulated by CAM5 (blue and green shaded areas) 1055 compared with HIPPO observations (crosses) during HIPPO#4 Research Flight 05 1056 (H4RF05) from Rarotonga, the Cook Islands (21.2°S, 159.77°W) to Christchurch, 1057 New Zealand (43.48°S, 172.54°E) on June 25-26, 2011. Modeled in-cloud ice crystal 1058 1059 number concentration and cloud droplet number concentration are denoted by blue and green shaded areas, respectively. Three temperature ranges are used to categorize 1060 the combined measurements of 2DC and CDP probes. The criteria for defining 1061 observed cloud occurrences are described in section 2. 1062 Figure 2. Spatial variabilities of RH, water vapor (Q), and temperature (T) from 1063 CAM5 simulation and HIPPO observation (left), and their differences (right). 1064 1065 Absolute difference between CAM5 and HIPPO is shown for RH and T, while the ratio between CAM5 and HIPPO is shown for Q. Model performances are denoted by 1066 shaded vertical bars: green (red) denotes when the model captures (misses) the 1067 observed cloud occurrences, and blue denotes when the model simulates a cloud that 1068 1069 is not present in the observation.

- Figure 3. As Figure 2a, but for RH recalculated by replacing the model output with either (a) observed Q or (b) observed T values.
- Figure 4. Corresponding (top) dRH_q versus dRH, (middle) dRH_T versus dRH, and (bottom) $dRH_{q,T}$ versus dRH (unit: %) for different temperature ranges. The colors indicating three types of model performances in simulating clouds as described in Fig.2: green ("captured"), red ("missed") and blue ("overproduced"). The black lines denote the linear regressions of the samples (i.e., Y=a+b*X), and the intercept (i.e., a) and slope (i.e., b) of the regression lines as well as the coefficient of determination (i.e., R^2) are shown in the legend.
- Figure 5. Observed and simulated probability density functions (PDFs) of relative 1079 humidity with respect to ice (RHi, unit: %) for T<-40°C separated into clear-sky and 1080 in-cirrus conditions. PDFs of RHi before and after cloud microphysics in the 1081 simulations are both shown. The RHi is binned by 2% for the calculation of PDF. The 1082 PDFs (when RHi>100%) follow an exponent decay: ln(PDF)=a+b*RHi. The values 1083 of a and b for each PDF are also shown in dark red (observed), dark blue (simulated 1084 before ice nucleaction), and dark green (simulated after cloud microphysics), 1085 respectively. Note blue lines are mostly invisible as overlaid by green lines. 1086

- 1087 Figure 6. (a-e) Scatterplot of observed versus simulated slope parameter (λ) of the
- 1088 gamma size distribution function for each experiments, and (f) the frequency of λ for
- each range. Note that all the comparisons are restricted to the cases when the model
- 1090 captures observed ice clouds (T \leq -40 °C).
- 1091 Figure 7. λ versus temperature from the measurements and simulations. The lines are
- 1092 the geometric mean binned by 4° C, with the vertical bars denoting the geometric
- standard deviation. Note that the comparisons are restricted to the cases when the
- 1094 model captures the observed ice clouds (T \leq -40 °C).
- 1095 Figure 8. As Figure 6, but for the number concentrations (N_i) of ice crystals with
- 1096 diameters larger than 75 μm for all the experiments. Note that both the comparisons
- are restricted to the cases when the model captures observed ice clouds (T \leq -40 °C).
- 1098 Figure 9. As Figure 7, but for N_i .
- 1099 Figure 10. As Figure 8, but for the comparison of ice water content (IWC).
- 1100 Figure 11. As Figure 9, but for ice water content (IWC) versus temperature.
- 1101

150 + HIPPO (T≤-40°C) 200 $O(-40^{\circ}C < T \le 0^{\circ}C)$ 250 Pressure (hPa) + HIPPO (T>0°C) 300 400 500 700 850 1000 22:00 Jun 25 0:00 Jun 26 2:00 Jun 26 4:00 Jun 26 Time (UTC) 0.1 20 100 0.1 20 100 5 5 In-cloud ice/snow number conc (#/L) In-cloud liquid water number conc (#/cm³)

1102

Figure 1. Cloud occurrences simulated by CAM5 (blue and green shaded areas) 1104 compared with HIPPO observations (crosses) during HIPPO#4 Research Flight 05 1105 (H4RF05) from Rarotonga, the Cook Islands (21.2°S, 159.77°W) to Christchurch, 1106 New Zealand (43.48°S, 172.54°E) on June 25-26, 2011. Modeled in-cloud ice crystal 1107 number concentration and cloud droplet number concentration are denoted by blue 1108 and green shaded areas, respectively. Three temperature ranges are used to categorize 1109 the combined measurements of 2DC and CDP probes. The criteria for defining 1110 1111 observed cloud occurrences are described in section 2.

Figure 2. Spatial variabilities of RH, water vapor (Q), and temperature (T) from
CAM5 simulation and HIPPO observation (left), and their differences (right).
Absolute difference between CAM5 and HIPPO is shown for RH and T, while the

- ratio between CAM5 and HIPPO is shown for Q. Model performances are denoted by
- shaded vertical bars: green (red) denotes when the model captures (misses) the
- 1118 observed cloud occurrences, and blue denotes when the model simulates a cloud that
- 1119 is not present in the observation.

1121 Figure 3. As Figure 2a, but for RH recalculated by replacing the model output with

1122 either (a) observed Q or (b) observed T values.

Figure 4. Corresponding (top) dRH_q versus dRH, (middle) dRH_T versus dRH, and (bottom) $dRH_{q,T}$ versus dRH (unit: %) for different temperature ranges. The colors indicating three types of model performances in simulating clouds as described in Fig.2: green ("captured"), red ("missed") and blue ("overproduced"). The black lines denote the linear regressions of the samples (i.e., Y=a+b*X), and the intercept (i.e., a) and slope (i.e., b) of the regression lines as well as the coefficient of determination (i.e., R^2) are shown in the legend.

1132

- 1133
- 1134
- 1135
- 1136

Figure 5. Observed and simulated probability density functions (PDFs) of relative 1139 humidity with respect to ice (RHi, unit: %) for T≤-40°C separated into clear-sky and 1140 in-cirrus conditions. PDFs of RHi before and after cloud microphysics in the 1141 simulations are both shown. The RHi is binned by 2% for the calculation of PDF. The 1142 PDFs (when RHi>100%) follow an exponent decay: ln(PDF)=a+b*RHi. The values 1143 of a and b for each PDF are also shown in dark red (observed), dark blue (simulated 1144 before ice nucleaction), and dark green (simulated after cloud microphysics), 1145 respectively. Note blue lines are mostly invisible as overlaid by green lines. 1146 1147

1151Figure 6. (a-e) Scatterplot of observed versus simulated slope parameter (λ) of the1152gamma size distribution function for each experiments, and (f) the frequency of λ for1153each range. Note that all the comparisons are restricted to the cases when the model1154captures observed ice clouds (T≤-40 °C).

1156

1157

Figure 7. λ versus temperature from the measurements and simulations. The lines are the geometric mean binned by 4°C, with the vertical bars denoting the geometric standard deviation. Note that the comparisons are restricted to the cases when the model captures the observed ice clouds (T \leq -40 °C).

1162

- 1163
- 1164
- 1165

1166

1168

1169Figure 8. As Figure 6, but for the number concentrations (N_i) of ice crystals with1170diameters larger than 75 µm for all the experiments. Note that both the comparisons1171are restricted to the cases when the model captures observed ice clouds (T \leq -40 °C).

1175 Figure 9. As Figure 7, but for N_i .

1177

1179 Figure 10. As Figure 8, but for the comparison of ice water content (IWC).

1183 Figure 11. As Figure 9, but for ice water content (IWC) versus temperature.