1 Direct comparisons of ice cloud macro- and microphysical properties

2 simulated by the Community Atmosphere Model version 5 with

3 HIPPO aircraft observations

- 4 Chenglai Wu^{1,2}, Xiaohong Liu^{1,*}, Minghui Diao³, Kai Zhang⁴, Andrew Gettelman⁵,
- 5 Zheng Lu¹, Joyce E. Penner⁶, and Zhaohui Lin²
- ¹Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming,
 USA
- ⁸ ²International Center for Climate and Environment Sciences, Institute of Atmospheric
- 9 Physics, Chinese Academy of Sciences, Beijing, China
- ³Department of Meteorology and Climate Science, San Jose State University, San
- 11 Jose, California, USA
- 12 ⁴Pacifit Northwest National Laboratory, Richland, Washington, USA
- ⁵National Center for Atmospheric Research, Boulder, Colorado, USA
- ⁶Department of Climate and Space Sciences and Engineering, University of Michigan,
- 15 Ann Arbor, Michigan, USA

16

17 **Corresponding to:*

- 19 Xiaohong Liu
- 20 Department of Atmospheric Science
- 21 University of Wyoming
- 22 Dept. 3038, 1000 East University Avenue
- 23 Laramie, WY 82071
- 24 Email: <u>xliu6@uwyo.edu</u>.
- 25
- 26
- 27

28 Abstract

29	In this study we evaluate cloud properties simulated by the Community
30	Atmosphere Model Version 5 (CAM5) using in-situ measurements from the HIAPER
31	Pole-to-Pole Observations (HIPPO) for the period of 2009 to 2011. The modeled
32	wind and temperature are nudged towards reanalysis. Model results collocated with
33	HIPPO flight tracks are directly compared with the observations, and model
34	sensitivities to the representations of ice nucleation and growth are also examined.
35	Generally, CAM5 is able to capture specific cloud systems in terms of vertical
36	configuration and horizontal extension. In total, the model reproduces 79.8% of
37	observed cloud occurrences inside model grid boxes, and even higher (94.3%) for ice
38	clouds (T \leq -40°C). The missing cloud occurrences in the model are primarily ascribed
39	to the fact that the model cannot account for the high spatial variability of observed
40	relative humidity (RH). Furthermore, model RH biases are mostly attributed to the
41	discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds,
42	the model captures the observed increase of ice crystal mean sizes with temperature,
43	albeit with smaller sizes than the observations. The model underestimates the
44	observed ice number concentration (N_i) and ice water content (IWC) for ice crystals
45	larger than 75 μ m in diameter. Modeled IWC and N_i are more sensitive to the
46	threshold diameter for autoconversion of cloud ice to snow (D_{cs}) , while simulated ice
47	crystal mean size is more sensitive to ice nucleation parameterizations than to D_{cs} .
48	Our results highlight the need for further improvements to the sub-grid RH variability
49	and ice nucleation and growth in the model.

50 1 Introduction

Cirrus clouds, located at high altitudes and composed of ice crystals, are one of 51 52 the key components in the climate system. They cover about 30% of the globe (Wang et al., 1996; Wylie and Menzel, 1999). They have a significant impact on the earth's 53 radiation balance via two different effects: scattering and reflecting the incoming 54 short wave solar radiation back to space, which leads to a cooling effect on the planet; 55 and absorbing and re-emitting terrestrial longwave radiation, leading to a warming 56 effect (Liou, 1986; Ramanathan and Collins, 1991; Corti et al., 2005). The net 57 58 radiative effect is thus a balance of these two effects and mainly depends on the amount, microphysical and optical properties of cirrus clouds (Kay et al., 2006; 59 Fusina et al., 2007; Gettelman et al., 2012; Tan et al., 2016). Furthermore, as the 60 61 efficiency of dehydration at the tropical tropopause layer is strongly influenced by the microphysical processes within cirrus clouds, cirrus clouds can also regulate the 62 humidity of air entering the stratosphere and are recognized as an important 63 64 modulator for water vapor in the upper troposphere and the lower stratosphere (Gettelman et al., 2002; Wang and Penner, 2010; Jensen et al., 2013; Dinh et al., 65 2014). 66 Despite their important role in the climate system, there are still large 67 uncertainties in the representation of cirrus clouds in global climate models (GCMs) 68 (Boucher et al., 2013). The uncertainties are the result of several different aspects. 69 First, our understanding of processes initiating the cirrus cloud formation is still 70

71 limited (DeMott et al., 2003; Kärcher and Spitchtinger, 2009; Hoose and Möhler,

72	2012). Ice crystals can form via the homogeneous nucleation of soluble aerosol
73	particles and the heterogeneous nucleation associated with insoluble or partly
74	insoluble aerosol particles (e.g., Hagg et al., 2003; Liu and Penner, 2005; Wang and
75	Liu, 2014). Homogeneous nucleation generally requires high ice supersaturation
76	typically of 40%-60% and occurs at temperatures colder than about -37°C. It can be
77	fairly well represented by nucleation theory based on laboratory results (Koop et al.,
78	2000). Heterogeneous nucleation is initiated by certain types of aerosols (e.g., mineral
79	dust and biological aerosols) that act as ice nucleating particles (INP), which can
80	nucleate ice particles at significantly lower ice supersaturations in the environment.
81	Currently there are still large unknowns about the types of aerosol, modes of action
82	(e.g., immersion/condensation, deposition, contact), and the efficiencies of
83	heterogeneous nucleation in the atmosphere (Hoose and Möhler, 2012). Other ice
84	microphysical processes (e.g., ice aggregation, deposition/sublimation, and
85	sedimentation), as well as interactions among cirrus microphysical properties,
86	macroscopic properties (e.g., spatial extent), and meteorological fields could further
87	render the interpretation of observed ice cloud properties challenging (Diao et al.,
88	2013; Krämer et al., 2016).
89	In addition to our limited understanding of ice microphysical processes, it is
90	difficult for GCMs with coarse spatial resolution (e.g., tens to hundreds of kilometers
91	in the horizontal direction, and a kilometer in the vertical) to capture the sub-grid
92	variability of dynamical and microphysical processes that are vital for ice cloud

93 formation and evolution. The observed microphysical properties of cirrus clouds vary

94	significantly in time and space (e.g., Hoyle et al., 2005; Diao et al., 2013; Jensen et al.,
95	2013; Diao et al., 2014a), associated with variability in relative humidity, temperature,
96	and vertical wind speed. The spatial extent of clouds is represented in GCMs by
97	diagnosing the cloud fraction in individual model grid boxes using a parameterization.
98	Such a cloud fraction representation needs to be validated with observations in order
99	to identify model biases and to elucidate the reasons behind these biases for future
100	model improvement.

Two types of observational data are currently available for validating modeled 101 102 cirrus cloud properties: in-situ aircraft measurements (e.g., Krämer et al., 2009; Lawson et al., 2011; Diao et al., 2013), and remote-sensing data from space-borne or 103 ground-based instruments (Mace et al., 2005; Deng et al., 2006, 2008; Li et al., 2012). 104 105 Remote-sensing data may not be directly comparable to model simulations due to the sampling and algorithmic differences between GCM results and remote-sensing 106 retrievals unless a proper simulator, i.e. a so called "satellite simulator", is adopted 107 (Bodas-Salcedo et al., 2011; Kay et al., 2012). In-situ aircraft observations can 108 provide direct measurements of ice crystal properties such as ice crystal number 109 concentration and size distribution. In particular, these observations are a good source 110 of accurate and high frequency measurements, and thus provide a unique tool for 111 constraining GCM cirrus parameterizations (e.g., Zhang et al., 2013; Eidhammer et al., 112 2014). However, the grid scales of GCMs are much larger than those sampled by 113 in-situ observations. Thus direct comparisons at model grid scales are often hindered 114 unless in-situ observations are adequately distributed within the grid boxes and can be 115

116	scaled up. At the micro-scale level of cirrus clouds (sub-grid scale), statistical
117	comparisons between model simulations and in-situ observations, especially in terms
118	of relationships among cloud microphysical and meteorological variables, are
119	desirable to provide a reliable evaluation of model microphysics (e.g., Zhang et al.,
120	2013; Eidhammer et al., 2014). In addition, aircraft measurements are often limited in
121	their spatial and temporal coverage, which in some sense limits the scope of
122	model-observation comparisons that can be conducted.
123	Previous studies have focused on the evaluation of cirrus clouds from
124	free-running GCM simulations against in-situ observations (e.g., Wang and Penner,
125	2010; Zhang et al., 2013; Eidhammer et al., 2014). However, since the model
126	meteorology was not constrained by conditions that were representative of the time of
127	the observations, the model biases could not be exclusively ascribed to errors in the
128	cirrus parameterizations. Recently, a nudging technique has been developed to allow
129	the simulated meteorology to be more representative of global reanalysis/analysis
130	fields, and thus the comparison between model simulations and observations is more
131	straightforward for the interpretation and attribution of model biases (Kooperman et
132	al., 2012; Zhang et al., 2014). In such simulations, as the meteorology (winds and
133	temperatures) in the GCM are synchronized with observed meteorology, direct
134	comparisons can be achieved by selecting model results that are collocated with
135	observations in space and time, and thus the model outputs can be evaluated in a more
136	rigorous manner.
137	In this study, we use the in-situ aircraft measurements from the NSF HIAPER

138	Pole-to-Pole Observations (HIPPO) campaign (Wofsy et al., 2011) to evaluate the
139	cloud properties simulated by the Community Atmosphere Model version 5 (CAM5).
140	During the HIPPO campaign, high-resolution (~230 m, 1Hz) and comprehensive
141	measurements of ambient environmental conditions (such as air temperature, pressure,
142	water vapor, and wind speed), cloud ice crystals and droplets were obtained. HIPPO
143	also provides a nearly pole-to-pole spatial coverage and relatively long flight hours
144	(~400 hours in total) in various seasons, making it a valuable dataset for GCM
145	evaluations. To facilitate the evaluation, CAM5 is run with specified dynamics where
146	the model meteorological fields (horizontal winds (U, V) and temperature (T)) are
147	nudged towards the NASA GEOS-5 analysis, while water vapor, cloud hydrometeors
148	and aerosols are calculated interactively by the model (Larmarque et al., 2012).
149	Moreover, we select collocated CAM5 output along the HIPPO aircraft flight tracks,
150	and compare the model simulations and observations directly. Our comparisons focus
151	on cloud occurrence, and cloud microphysical properties (e.g., ice water content,
152	number concentration and size distribution of ice particles) with a specific focus on
153	cirrus clouds. We also investigate the sensitivities of model simulated cirrus cloud
154	properties to the ice microphysics parameterizations as well as to the large scale
155	forcing associated with the nudging strategy.
156	The remainder of the paper is organized as follows. In section 2, we introduce the
157	HIPPO observational dataset and instrumentations. The model simulations and
158	experimental design are described in section 3. In section 4, we examine the model
159	performance in simulating cirrus cloud occurrence and microphysical properties and

160	investigate the reasons behind the model biases. Sensitivities of model results to
161	different nudging strategies are presented in section 5, and discussions and
162	conclusions in section 6.
163	

2 HIPPO aircraft observations

The NSF HIPPO Global campaign provided comprehensive observations of 165 clouds and aerosols from 87°N to 67°S over the Pacific region during 2009 to 2011 166 (Wofsy et al., 2011). Observations were acquired using the National Science 167 168 Foundation's Gulfstream V (GV) research aircraft operated by the National Center for Atmospheric Research (NCAR). During this three-year period, five HIPPO 169 deployments were carried out, with each deployment lasting from 23 days to about 170 171 one month. In total, the HIPPO campaign included 64 flights, 787 vertical profiles (from the surface to up to 14 km), and 434 hours of high-rate measurements 172 (http://hippo.ucar.edu). In this study, we use the 1-Hz in-situ measurements of water 173 vapor, temperature, number concentration and size distribution of ice crystals as well 174 as the number concentration of cloud liquid droplets from HIPPO#2-5. HIPPO#1 did 175 not have ice probes onboard. 176 Water vapor was measured by the 25 Hz, open-path Vertical Cavity Surface 177 Emitting Laser (VCSEL) hygrometer (Zondlo et al., 2010). The accuracy and 178 precision of water vapor measurements was ~6% and \leq 1%, respectively. 179

180 Temperature (T) was recorded by the Rosemount temperature probe. The accuracy

and precision of T measurements was 0.5 K and 0.01 K, respectively. Here saturation

vapor pressure is calculated following Murphy and Koop (2005), who stated that all 182 the commonly used expressions for the saturation vapor pressure over ice are within 1% 183 in the range between 170 and 273 K. Then we calculate relative humidity (RH) using 184 the saturation vapor pressure with respect to water $(T>0^{\circ}C)$ or with respect to ice 185 $(T \le 0^{\circ}C)$. Unless explicitly stated otherwise, we refer to RH with respect to water 186 when T>0°C and RH with respect to ice when T \leq 0°C. 187 Ice crystal concentrations were measured by the two-dimensional cloud particle 188 imaging (2DC) ice probe (Korolev et al., 2011). The 2DC measures ice crystals with a 189 190 64-diode laser array at 25 μ m resolution and the corresponding size range of 25 – 1600 µm. Outside this range, ice crystals between 1600 µm and 3200 µm are 191 mathematically reconstructed. A quality control was further applied to filter out the 192 193 particles with sizes below 75 µm in order to minimize the shattering effect and optical uncertainties associated with 2DC data. Thus the number concentration (N_i) of ice 194 crystals with diameter from 75 µm to 3200 µm (binned by 25 µm) was derived and is 195 used here for model comparisons. The ice water content (IWC) is derived by 196 integrating the ice crystal mass at each size bin. Mass is calculated from diameter and 197 N_i using the mass-dimension (*m*-*D*) relationship of Brown and Francis (1995). For the 198 ice crystal size distribution, a gamma function is assumed as in CAM5 (Morrison and 199 Gettelman, 2008): 200

201

$$\phi(D) = N_0 D^{\mu} \exp(-\lambda D) \tag{1}$$

where *D* is diameter, N_0 is the intercept parameter, μ is the shape parameter which is set to 0 currently, and λ is the slope parameter. The slope and intercept for the

204	observed ice crystal size distributions are obtained by fitting Eq. (1) using the least
205	squares method as described in Heymsfield et al. (2008). Observed size distributions
206	that provided less than five bins of non-zero concentrations are not considered in
207	order to maintain a reasonable fit, which is similar to what was done in Eidhammer et
208	al. (2014). This removes about 8% of the total 1-Hz observations of ice clouds
209	(T \leq -40°C). Furthermore, we only retain those fitted size distributions that are well
210	correlated with the measured ones, i.e., with a correlation coefficient larger than 0.6,
211	which leads to a further removal of 10% of the total 1-Hz ice crystal measurements.
212	Note that these screenings are applied only for the derivation of the slope and
213	intercept parameters for the ice crystal size distribution.
214	The cloud droplet number concentration (N_d) was measured by the Cloud Droplet
215	Probe (CDP) during the HIPPO campaign. The CDP measurement range of cloud
216	droplet diameter is 2-50 μ m. Because 2DC and CDP probes may report both ice
217	crystals and liquid droplets, we adopted a rigorous criteria for the detection of clouds
218	in different temperature ranges. 99% of the observed N_i are greater than 0.1 L ⁻¹ , thus a
219	threshold of 0.1 L ⁻¹ is used to define in-cloud conditions. For T \leq -40°C, we use the
220	criterion of $N_i > 0.1 \text{ L}^{-1}$ to detect the occurrence of ice clouds; For T>-40°C, the
221	occurrence of clouds including mixed-phase clouds (-40°C <t <math="" display="inline">\leqslant 0°C) and warm</t>
222	clouds (T>0°C) are defined by the conditions of either N_i >0.1 L ⁻¹ or N_d >1 cm ⁻³ . Here,
223	we only analyze CDP measurements with $N_d > 1 \text{ cm}^{-3}$ to avoid measurement noise as
224	determined by the sensitivity of the instrument.

The HIPPO dataset has been previously used for statistical analyses of ice cloud

226	formation conditions and microphysical properties, such as the conditions of the
227	birthplaces of ice clouds - the ice supersaturated regions, the evolutionary trend of
228	RH and N_i inside cirrus clouds, and hemispheric differences in these cloud properties
229	(Diao et al., 2013; 2014a, b). In this study, we will use these observations to evaluate
230	CAM5 simulation of ice clouds. We use 10-second averaged measurements (~2.3 km
231	horizontal resolution) which are derived from 1 Hz (~230 m horizontal resolution)
232	observations. Although variations are found (mostly within a factor of 2 and
233	sometimes up to 2-3 for N_i , IWC and λ) within 10-second intervals, the 10-second
234	averaged observations shown in this study are similar to those based on 1-second
235	measurements.
236	
237	3 Model and experiment design
237 238	3 Model and experiment design3.1 Model
238	3.1 Model
238 239	3.1 Model This study uses version 5.3 of CAM5 (Neale et al., 2012), the atmospheric
238 239 240	3.1 Model This study uses version 5.3 of CAM5 (Neale et al., 2012), the atmospheric component of NCAR Community Earth System Model (CESM). The cloud
238 239 240 241	3.1 Model This study uses version 5.3 of CAM5 (Neale et al., 2012), the atmospheric component of NCAR Community Earth System Model (CESM). The cloud macrophysics scheme in CAM5 provides an integrated framework for treatment of
238 239 240 241 242	3.1 Model This study uses version 5.3 of CAM5 (Neale et al., 2012), the atmospheric component of NCAR Community Earth System Model (CESM). The cloud macrophysics scheme in CAM5 provides an integrated framework for treatment of cloud processes and imposes full consistency between cloud fraction and cloud
238 239 240 241 242 243	3.1 Model This study uses version 5.3 of CAM5 (Neale et al., 2012), the atmospheric component of NCAR Community Earth System Model (CESM). The cloud macrophysics scheme in CAM5 provides an integrated framework for treatment of cloud processes and imposes full consistency between cloud fraction and cloud condensates (Park et al., 2014). Deep cumulus, shallow cumulus, and stratus clouds
238 239 240 241 242 243 244	3.1 Model This study uses version 5.3 of CAM5 (Neale et al., 2012), the atmospheric component of NCAR Community Earth System Model (CESM). The cloud macrophysics scheme in CAM5 provides an integrated framework for treatment of cloud processes and imposes full consistency between cloud fraction and cloud condensates (Park et al., 2014). Deep cumulus, shallow cumulus, and stratus clouds are assumed to be horizontally distributed in each grid layer without overlapping with

248	hereafter as version 1 of MG scheme (MG1)). MG1 was improved by Gettleman et al.
249	(2010) to allow for ice supersaturation. It is coupled with a modal aerosol model
250	(MAM, Liu et al. (2012a)) for aerosol-cloud interactions. Cloud droplets can form via
251	the activation of aerosols (Abdul-Razzak and Ghan, 2000). Ice crystals can form via
252	the homogeneous nucleation of sulfate aerosol, and/or heterogeneous nucleation of
253	dust aerosol (Liu and Penner, 2005; Liu et al., 2007). The moist turbulence scheme is
254	based on Bretherton and Park (2009). Shallow convection is parameterized following
255	Park and Bretherton (2009), and deep convection is treated following Zhang and
256	McFarlane (1995) with further modifications by Richter and Rasch (2008).
257	Compared to the default version 5.3, the CAM5.3 version we use includes a
258	version 2 of the MG scheme (MG2) as described by Gettelman and Morrison (2015)
259	and Gettelman et al. (2015). MG2 added prognostic precipitation (i.e., rain and snow)
260	as compared with the diagnostic precipitation in MG1. Note that current version of
261	MG scheme treats cloud ice and snow as different categories with their number and
262	mass predicted, respectively (Morrison and Gettelman, 2008). To be consistent with
263	the observations, here the number and mass concentrations of cloud ice and snow are
264	combined together to get the slope parameter λ following Eidhammer et al. (2014).
265	3.2 Experimental design for model-observation comparisons
266	Model experiments are performed using specified dynamics, that is, online
267	calculated meteorological fields (U, V, and T) are nudged towards the GEOS-5
268	analysis (the control experiment, referred to as CTL hereafter), while water vapor,
269	hydrometeors and aerosols are calculated online by the model itself (Larmarque et al.,

270	2012). We also conduct two experiments, one with only U and V nudged (referred to
271	as NUG_UV) and the other with U, V, T and water vapor (Q) nudged (referred to as
272	NUG_UVTQ). These results will be discussed in section 5. The model horizontal and
273	vertical resolutions are $1.9^{\circ} \times 2.5^{\circ}$ and 56 vertical levels, respectively. The time step
274	is 30 min. The critical threshold diameter for autoconversion of cloud ice to snow (D_{cs})
275	was found to be an important parameter affecting ice cloud microphysics (e.g., Zhang
276	et al., 2013; Eidhammer et al., 2014). D_{cs} is set to 150 µm in MG2. We also conduct
277	two sensitive experiments using a value of 75 μm (referred to as DCS75) and 300 μm
278	(referred to as DCS300) for D_{cs} (Table 1).
279	In the standard CAM5 model, homogeneous nucleation takes place on sulfate
280	aerosol in the Aitken mode with diameter greater than 0.1 μ m (Gettelman et al., 2010).
281	We conduct a sensitivity experiment (referred to as SUL) by removing this size limit
282	(i.e., using all sulfate aerosol particles in the Aitken mode for homogeneous
283	nucleation). Recently, Shi et al. (2015) incorporated the effects of pre-existing ice
284	crystals on ice nucleation in CAM5, simultaneously removing the lower limit of
285	sulfate aerosol size and the upper limit of the sub-grid updraft velocity used for the ice
286	nucleation parameterization. Here a sensitivity experiment (referred to as PRE-ICE)
287	with the Shi et al. (2015) modifications is conducted (Table 1).
288	We run the model from June 2008 to December 2011 (i.e., 43 months) with the
289	first seven months as the model spin-up. For direct comparisons between model
290	results and observations, only model output collocated with HIPPO aircraft flights are
291	recorded. That is, we locate the model grid boxes in which the HIPPO aircraft was

transecting through, and then output the model results of these grid boxes at the 292 closest time stamps with respect to the flight time. In total, we have 130,577 in-situ 293 294 observation samples at 10-second resolution (~363 hours) for HIPPO#2-5. We note that because the current CAM5 model cannot explicitly resolve the spatio-temporal 295 variability of dynamic fields and cloud properties inside a model grid box, there are 296 inevitably certain caveats in its comparison with in-situ observations. For example, as 297 the model time step is 30 min and horizontal grid spacing is ~200 km, there may be 298 cases where tens to hundreds of flight samples are located within one grid box at a 299 300 specific time stamp. In this study, we find that there are 1 to 170 observation samples within a model grid box. Therefore, we may over-sample the model results within a 301 model grid box with multiple aircraft samples. However, we note that because of the 302 303 specific flight plan of the HIPPO campaign, most of the HIPPO flights were designed to follow a nearly constant direction when flying from one location to the next, and 304 one vertical profile was generally achieved by about every 3 latitudinal degrees. This 305 306 unique flight pattern combined with the comparatively long flight hours helps to provide a large amount of observation samples transecting through various climate 307 model grid boxes. In total, 635 model grid boxes are used in the direct comparisons 308 with observations. Considering that the actual horizontal area fraction of a model grid 309 box that the aircraft transected through is relatively small, derivations of grid-scale 310 mean observations which can represent the realistic characteristics for the whole grid 311 box are not possible. Nevertheless, we also derive the mean of observations within a 312 model grid box and compare them with model simulations, and the comparison results 313

314	are similar to those shown in Section 4. Note that vertical interpolation is taken to
315	account for the altitude variation of model variables for the direct comparison with
316	aircraft observations.
317	
318	4 Results
319	4.1 Cloud occurrence
320	In this section, we will first demonstrate the model performance in simulating the
321	spatial distributions of clouds with a case study. Then we will show the overall
322	features of cloud occurrence for all comparison samples. To identify the reasons for
323	the model-observation discrepancies, we will analyze the meteorology conditions (e.g.,
324	T, Q and RH) and physics processes associated with the formation of clouds. The
325	probability density function (PDF) of ice supersaturation at clear-sky and inside ice
326	clouds will be examined.
327	
328	4.1.1 Case study – a specific cloud system
329	During HIPPO deployment #4 and research flight 05, the GV aircraft flew from
330	the Cook Islands to New Zealand over the South Pacific Ocean on June 25–26, 2011
331	(Figure 1). Low-level clouds existed along almost all the flight tracks at 700–1000
332	hPa, and most of them were warm clouds (T>0°C). Mid-level (at 400–700 hPa) and
333	high-level clouds (at 250-400 hPa) were also observed. Generally the model captures
334	well the locations of cloud systems along the flight tracks on June 25, 2011. The
335	simulated ice clouds are located above liquid clouds and extend for thousands of

336	kilometers, which corresponds with the observed mid- to high-level clouds at
337	250-600 hPa at UTC 2200-2400 on June 25, 2011. However, the model misses the
338	low-level clouds observed on late June 25 and early June 26, and simulates a smaller
339	horizontal extent for the mid-level cloud at UTC 0230 on June 26. Overall, the
340	observed clouds on June 26 (further South) were more scattered than those on June 25.
341	The model is less capable of reproducing these scattered clouds. CAM5 is able to
342	better simulate cloud systems with larger spatial extents, since these systems are
343	controlled by the nudged large-scale meteorology.
344	Figure 2 shows the time series of RH, Q and T during the flight segment shown in
345	Figure 1. The observations show large spatial variability in RH even during the
346	horizontal flights on June 26. Overall, the simulated RH is within the range of the
347	observations but the model is unable to simulate the larger variability, which occurred
348	on sub-grid spatial scales. Both observed and simulated RH values are above 100%
349	when the model captures the clouds successfully at UTC 2240-2250 and 2310-2330
350	on June 25 and at UTC 0000-0010 on June 26 (denoted by green vertical bars),
351	although the simulated maximum grid-mean RH value is around 110%, which is
352	10-30% less than observed RH values. However, the model cannot capture some of
353	the observed clouds with large RH values within the grid boxes. For example, the
354	model misses the RH associated with low-level clouds (Figure 1) at UTC 2250-2310
355	when simulated grid-mean RH values are around 90% compared to observed values
356	of around 100%. Note that since the aircraft sampled only portions of the model grid
357	boxes, the "over-production" of cloud occurrences by the model shown in Figure 2

358	(blue vertical bars) may not necessarily be the case. Thus we will focus on the cases
359	when the model captures or misses the observed clouds within the model grid boxes.
360	The spatial distributions of RH play an important role in determining whether
361	modeled clouds occur at the same times and locations as those observed. Biases in
362	either Q or T may lead to discrepancies in RH (Figs. 2d and 2f). For example, at
363	around UTC 2150 on June 25, higher RH in the model is caused by the larger
364	simulated Q; at UTC 2250 on June 25, simulated lower RH is mainly caused by the
365	warmer T. To illustrate whether T or Q biases are the main cause for the RH biases,
366	we calculate the offline distribution of RH by replacing the modeled Q or T with the
367	aircraft observations, as shown in Figures 3a and 3b, respectively. After adopting the
368	observed T spatial distributions, the updated RH still misses the RH variability around
369	UTC 0230 – 0400 on June 26, while by adopting the observed Q spatial distribution,
370	the updated RH distribution is very close to the observed one. Thus, in this case study
371	the lack of a large RH spatial variability shown in the observations mainly results
372	from the model's lack of sub-grid scale variability of Q rather than that of T.
373	4.1.2 Synthesized analyses on cloud occurrences and cloud fraction
374	The overall performance of the model in simulating the cloud occurrences for all

flights in HIPPO 2–5 is shown in Table 2. In the model, clouds often occupy a

376 fraction of a grid box, and cloud fraction together with in-cloud liquid/ice number

- 377 concentrations are used to represent the occurrence of stratus clouds (Park et al.,
- 2014). For HIPPO, the occurrence of clouds is derived by combining the observations
- of both liquid and ice number concentrations as described in section 2. In total, the

model captures 79.8% of observed cloud occurrences inside model grid boxes. For 380 different cloud types, the model reproduces the highest fraction (94.3%) of observed 381 ice clouds, and the second highest fraction (86.1%) for mixed-phase clouds. In 382 contrast, the model captures only about half (49.9%) of observed warm clouds. As 383 depicted in the case study in section 4.1.1, the missing of cloud occurrences are 384 mainly due to the insufficient representation of sub-grid variability of RH in the 385 model. Next we will further quantify the contribution of sub-grid water vapor and 386 temperature variations to sub-grid variability of RH. 387

388

4.1.3 Decomposition of relative humidity biases

The formation of liquid droplets/ice crystals depends on dynamical and 389 thermodynamical conditions such as temperature, water vapor and updraft velocity 390 391 (Abdul-Razzak and Ghan, 2000; Liu et al., 2007, 2012b; Gettelman et al., 2010). The fraction of liquid/ice stratus clouds is calculated empirically from the grid-mean RH 392 (Park et al., 2014). Thus RH is an important factor for both model representations of 393 394 cloud occurrences and cloud fraction. RH is a function of pressure, temperature and water vapor. Since we only compare observations with the simulation results on the 395 same pressure levels, differences of RH (dRH) between simulations and observations 396 (i.e., model biases in RH) only result from the differences in temperature and water 397 vapor. We calculate the contributions of biases in water vapor and temperature to the 398 biases in RH following the method that was used to analyze RH spatial variability in 399 Diao et al. (2014a). RH_o (observations) and RH_m (model results) are calculated as: 400

401
$$RH_m = \frac{e_m}{e_{s,m}}, RH_o = \frac{e_o}{e_{s,o}}$$
(2)

where e_o and e_m are observed and simulated water vapor partial pressure, respectively, and $e_{s,o}$ and $e_{s,m}$ are observed and simulated saturation vapor pressure over ice (T $\leq 0^{\circ}$ C) or over water (T>0°C) in the observations or the model, respectively.

Here *d*RH is calculated from the difference of simulated grid-mean RH (with vertical variances taken into account by the vertical interpolation) and in-situ

407 observations. We define
$$de = (e_m - e_o)$$
, and $d(\frac{1}{e_s}) = \frac{1}{e_{s,m}} - \frac{1}{e_{s,o}}$, therefore dRH is

408
$$dRH = RH_m - RH_o = de \cdot \frac{1}{e_{s,o}} + e_o \cdot d(\frac{1}{e_s}) + de \cdot d(\frac{1}{e_s})$$
(3)

Thus dRH can be separated into three terms: the first term is the contribution from the water vapor partial pressure (dRH_q), the second term from temperature (dRH_T), and the third term for concurrent impact of biases in temperature and water vapor

412
$$(dRH_{q,T}).$$

Figure 4 shows the contributions of these three terms to dRH for different 413 temperature ranges. All the three terms as well as dRH are given in percentage. The 414 intercepts and slopes of linear regression lines for dRH_q versus dRH, dRH_T versus 415 dRH, and $dRH_{T,q}$ versus dRH are also presented. As temperature is constrained by 416 GEOS-5 analysis, the bias in temperature is reduced (although not eliminated) to 417 mostly within ±7°C. A considerable amount of discrepancy in RH exist between 418 model and observations. The model successfully captures the clouds (green symbols) 419 420 when the simulated RH is close to observations in all the three temperature ranges. The model tends to miss the clouds (red symbols) when lower RH is simulated, and 421

422	produces spurious clouds (blue symbols) when higher RH is simulated. Regarding the
423	contributions of dRH_q and dRH_T to dRH , the slopes of the linear regression for dRH_q
424	versus <i>d</i> RH are 0.748, 0.933 and 0.786 for T≤-40°C, -40°C <t≤0°c and="" t="">0°C,</t≤0°c>
425	respectively, which are much larger than those for dRH_T versus dRH (0.087, 0.072
426	and 0.210 for the three temperature ranges, respectively). This indicates that most of
427	the biases in RH are contributed by the biases in water vapor (dRH_q) . However, for
428	T>0°C, although dRH_q still dominates, dRH_T contributes notably to 21% of the RH
429	biases. For T \leq -40°C, <i>d</i> RH _{q,T} also contributes about 17% to <i>d</i> RH, indicating
430	concurrent impact from biases of T and water vapor. In contrast, for -40°C <t<math>\leq0°C</t<math>
431	and T>0°C, the contributions of $dRH_{q,T}$ to dRH are negligible. We note that the slopes
432	of linear regression lines for dRH_q versus dRH and dRH_T versus dRH indicate the
433	average contributions from water vapor and temperature biases to the RH biases,
434	respectively. The values of dRH_T can occasionally reach up to ±100%, which
435	suggests the large impact from temperature biases in these cases. In addition, the
436	dRH_T and dRH_q terms can have the same (opposite) signs, which would lead to larger
437	(lower) total biases in RH. The coefficients of determination, R^2 , for the linear
438	regressions indicate that dRH_q versus dRH has a much stronger correlation than that
439	of dRH_T versus dRH .
440	4.1.4 Ice supersaturation

441 Ice nucleation only occurs in the regions where ice supersaturation exists.

442 Different magnitudes of ice supersaturation are required to initiate homogeneous and

heterogeneous nucleation (Liu and Penner, 2005). The distribution of ice

444	supersaturation may provide insights into the mechanisms for ice crystal formation
445	(e.g., Haag et al., 2003). In CAM5, ice supersaturation is allowed (Gettelman et al.,
446	2010). Homogeneous nucleation occurs when T≤-35°C and ice supersaturation
447	reaches a threshold ranging from 145% to 175%. Dust aerosol can serve as INPs
448	when RH>120%. Ice supersaturation will be relaxed back to saturation via the vapor
449	deposition process (Liu et al., 2007; Gettelman et al., 2010).
450	To examine the discrepancies in ice supersaturation between model results and
451	observations, we compare the distribution of RH for conditions in clear-sky and
452	within cirrus clouds (Figure 5). The analysis is limited to the conditions of T \leq -40°C
453	for both model simulations and observations. In CAM5, RH diagnosed in different
454	sections of the time integration procedure can be different due to the time splitting
455	algorithm. We present here both the RH before and after the microphysical processes.
456	The observations show that ice supersaturation exists in both clear-sky and
457	inside-cirrus conditions. In clear-sky environments, the PDF of RH shows a
458	continuous decrease with RH values in subsaturated conditions, followed by a
459	quasi-exponential decrease with the RH above saturation. The maximum RHi reaches
460	up to 150%. In cirrus clouds, most of RH values range from 50% to 150% with a peak
461	in the PDF near 100%. This feature is consistent with the results of Diao et al. (2014b),
462	who used 1-second HIPPO measurements and separated the southern and the northern
463	hemispheres for comparison.
464	The PDFs of modeled RH before and after the microphysical processes are very

similar except the latter one has slightly lower probability of RHi above 140% for

466	inside-cirrus conditions. The model is capable to simulate the occurrences of ice
467	supersaturation in both clear-sky and in-cloud conditions. However, inside cirrus
468	clouds, the simulated PDF of RH peaks around 120% instead of 100% as observed.
469	Outside the cirrus clouds (clear-sky), the model simulates a much lower probability of
470	ice supersaturation with the maximum RH value around 120%. The largest ice
471	supersaturation simulated by CAM5 under clear-sky conditions is around 20%, which
472	corresponds to the ice supersaturation of 20% assumed in the model for the activation
473	of heterogeneous nucleation. This indicates the dominant mode of heterogeneous
474	nucleation in the model. However, the observations show much higher frequencies of
475	ice supersaturations larger than 20%, indicating higher RH thresholds for
476	homogeneous nucleation or heterogeneous nucleation.
177	

478 **4.2** Microphysical properties of ice clouds

Together with cirrus cloud fraction, the ice crystal number concentration and size 479 distribution within cirrus clouds determine the radiative forcing of cirrus clouds. In 480 this section, we will present the evaluation of modeled microphysical properties of 481 cirrus clouds for T≤-40°C. As measurements of ice crystal number concentration 482 include both ice and snow crystals, for comparison with observations, we combine the 483 cloud ice and snow simulated in the model (hereafter referred as ice crystals). 484 Following Eidhammer et al. (2014), the slope and intercept parameters of the gamma 485 function for the ice crystal size distribution simulated by the model are derived from 486 the total number concentration and mass mixing ratio of cloud ice and snow, which 487

are the integrations of the first and third moments of the size distribution function. The simulated number concentration of ice crystals with sizes larger than 75 μ m is calculated by the integration of gamma size distributions from 75 μ m to infinity. The simulated IWC for ice crystals with sizes larger than 75 μ m is also derived by integrating the mass concentration of cloud ice and snow from 75 μ m to infinity. We note that about 94% of total cirrus cloud samples are at temperatures between -60°C and -40°C.

495

5 4.2.1 Ice crystal size distribution

Direct comparison of the slope parameter (λ) for ice crystal size distributions is 496 shown in Figure 6. The slope parameter λ determines the decay rate of a gamma 497 function in relation to the increasing diameter. With a larger λ , the decay of a gamma 498 499 function with increasing size is faster and there are relatively fewer large ice crystals. The number-weighted mean diameter can be defined as the inverse of λ (i.e., λ^{-1}). As 500 shown in Figure 6, the observed λ is generally within the range from 10^3 to 10^5 m⁻¹. 501 The model reproduces the magnitude of λ for some of the observations, but tends to 502 overestimate the observations for smaller λ values (10³ to 10⁴ m⁻¹). This indicates that 503 the model produces higher fractions of ice crystals at smaller sizes, and the 504 number-weighted mean diameter is underestimated. Moreover, the model generally 505 simulates λ in a narrower range of 7.5×10³ to 7×10⁴ m⁻¹ for the three experiments with 506 different D_{cs} (CTL, DCS75, DCS300). SUL and PRE-ICE simulate a wider range of λ 507 which is comparable to the observations but tends to shift λ to larger values (5×10⁴ to 508 1×10^5 m⁻¹). All the experiments rarely simulated the occurrence of small λ (below 509

 $7.5 \times 10^3 \text{ m}^{-1}$).

511	Figure 7 shows the relationship of λ with temperature from observations and
512	model simulations. Here, both the geometric means and the standard deviations of λ
513	for each temperature interval of 4°C are also shown. Although the observed λ doesn't
514	monotonically decrease with increasing temperature, overall an decreasing trend can
515	be found for the whole temperature range below -40°C. This indicates a general
516	increase in the number-weighted mean diameter of ice crystals with increasing
517	temperature. The correlation between λ and temperature from HIPPO is similar to that
518	from the Atmospheric Radiation Measurements Spring Cloud Intensive Operational
519	Period in 2000 (ARM-IOP) and the Tropical Composition, Cloud and Climate
520	Coupling (TC4) campaigns as shown in Eidhammer et al. (2014), but the HIPPO
521	observations extend to lower temperatures than ARM-IOP and TC4 observations
522	where temperatures are mostly above -56 °C. In addition, HIPPO observations show a
523	broader scatter range of λ , which may be because HIPPO sampled ice crystals at
524	various environment conditions as the flight tracks covered much wider areas and
525	lasted for much longer periods. The decrease of λ with increasing temperature has
526	been shown in many other studies (e.g., Heymsfield et al., 2008; 2013). Such a feature
527	is mainly due to more small ice particles at lower temperatures, which can be
528	explained by less water vapor available for ice crystal growth as well as more ice
529	crystals formed from nucleation (more likely from homogeneous nucleation than from
530	heterogeneous nucleation) at lower temperatures (Eidhammer et al., 2014).
531	Compared to the observations, the simulated mean λ is about 2-4 times larger for

all the experiments, indicating that the model simulates smaller mean sizes for ice crystals. The simulated λ decreases with increasing temperature, which is generally consistent with the observations. In addition, the geometric standard deviations (less than 2) of simulated λ are smaller than observed (around 2-3). This can be partly explained by the fact that in-situ observations sampled the sub-grid variability of cloud properties.

The difference of simulated λ is within a factor of 2 among the five experiments 538 when temperature is between -40°C and -56 °C, and is larger (around 2-4) when 539 temperature is below -56 °C. For the experiments with different D_{cs} , CTL and DCS75 540 simulated λ are close to each other when temperature is between -40°C and -60 °C, 541 and DCS300 simulates larger λ compared to DCS75 and CNTL. For temperatures 542 between -64°C and -72 °C, CTL and DCS300 simulated λ are close to each other and 543 both are larger than that of DCS75. For the experiments with different ice nucleation 544 parameterizations, both SUL and PRE-ICE simulate larger λ than CTL especially for 545 temperatures below -56 °C. SUL simulates the largest λ of all the experiments. This 546 can be explained by much larger number concentration of ice crystals (for all size 547 range, figure not shown) simulated by SUL, while IWC is not very different from 548 other experiments (section 4.2.3). 549

550

551 4.2.2 Ice crystal number concentration

Figure 8 shows the comparison of in-cloud number concentrations (N_i) of ice crystals with diameters larger than 75 µm between observations and simulations. The

554	magnitude of observed N_i varies by three orders of magnitude from $10^{-1} L^{-1}$ to $10^2 L^{-1}$.
555	The model simulates reasonably well the range of N_i in cirrus clouds. However, the
556	model tends to underestimate N_i for all the experiments except DCS75. About 13%
557	(DCS75) to 30% (PRE-ICE) of observations are underestimated in the model by a
558	factor of 10. The underestimation of N_i may be partly attributed to the fact that the
559	model underestimates the ice crystal size (section 4.2.1), leading to a smaller fraction
560	of ice crystals with diameter larger than 75 μ m. Additional bias may result from the
561	bias in the total ice crystal number concentration, although the observations are not
562	available for comparison. We also compare simulated N_i with observed in-cloud N_i
563	averaged within the model grid boxes. We choose the flight segments with over 300
564	1-second aircraft measurements within an individual model grid and calculate the
565	average for in-cloud N_i of ice clouds (T \leq -40 °C). The comparison results are, however,
566	similar to those shown in Figure 8.
567	DCS75 reasonably simulates the occurrence frequency of $N_i < 1 \text{ L}^{-1}$ albeit with
568	significantly higher frequency for N_i around 1-5 L ⁻¹ and lower frequency for N_i
569	around 5-10 L ⁻¹ . Most of the experiments cannot reproduce the occurrence frequency
570	of high N_i ($N_i > 50 \text{ L}^{-1}$) except DCS75 and PRE-ICE.
571	The relationships between N_i and temperature are shown in Figure 9. Since N_i
572	here only takes into account of ice crystals larger than 75 μ m, the geometric mean of
573	observed N_i generally ranges between 5-10 L ⁻¹ for temperatures below -40°C, which
574	is 1-2 orders of magnitude lower than the number of ice crystals between 0.3-775 μm
575	from observations complied by Krämer et al. (2009) and between 10-3000 μm from
	26

576	the SPARTICUS campaign (Zhang et al., 2013), but is comparable to the number of
577	ice crystals in the same size range from the ARM-IOP and TC4 campaigns
578	(Eidhammer et al., 2014). The geometric standard deviation of observed N_i within a
579	temperature interval of 4°C can be as high as a factor of 5.
580	The model simulates no apparent trends of N_i when temperature decreases from
581	-40°C to -60°C for the experiments CTL, DCS75 and PRE-ICE. The model simulates
582	somehow larger N_i with decreasing temperatures for the experiments DCS300 and
583	SUL. Increase of N_i at lower temperatures in SUL may indicate the occurrence of
584	homogeneous nucleation. Overall, simulated N_i is sensitive to D_{cs} . Simulated N_i is
585	also sensitive to the number of sulfate aerosol particles for homogeneous nucleation.
586	With the removal of the lower size limit (0.1 μ m diameter) of sulfate aerosol particles
587	for homogeneous nucleation in the experiment SUL, simulated N_i is significantly
588	higher than that in CTL because of the substantial increase in the total ice crystal
589	number concentration in SUL, although the slope parameter in SUL is larger
590	indicating a smaller fraction of ice crystals with larger sizes (e.g., larger than 75μ m).
591	This result is consistent with that of Wang et al. (2014).
592	Although some experiments can simulate a similar magnitude of N_i as the
593	observations in some temperature ranges, most of the experiments underestimate N_i
594	and some experiments (CTL and PRE-ICE) underestimate N_i for all the temperature
595	ranges. Overall DCS75 simulates the closest magnitude of N_i with the observations
596	for temperatures from -40°C to -64°C.

598 4.2.3 Ice water content

Figure 10 shows the comparison of in-cloud IWC for ice crystals with diameter 599 larger than 75 µm between observations and simulations. The magnitude of observed 600 IWC varies by four orders of magnitude from 10^{-2} to 10^2 mg m⁻³, which is within the 601 range of observed IWC in previous studies (Kramer et al., 2016; Luebke et al., 2016). 602 Observed IWC here is mostly larger than 1 mg m⁻³. Compared to the observations, the 603 model for all the experiments underestimates observed IWC for 70%-95% of the 604 samples and by one order of magnitude for 25%-45% of the samples. Although the 605 model reproduces the highest occurrence frequency of IWC around 1-5 mg m^{-3} , the 606 model simulates more occurrence of IWC below 1 mg m^{-3} and fewer occurrence of 607 IWC above 5 mg m^{-3} . 608 The relationships between IWC and temperature are shown in Figure 11. An 609 overall increasing trend of observed IWC with temperature is found for the entire 610 temperature range. The observed relationship between IWC and temperature is 611 consistent with those shown in the previous studies (e.g., Kramer et al., 2016; Luebke 612 et al., 2016). However, the mean IWC from HIPPO is 3-5 times as large as previous 613 observations (Kramer et al., 2016; Luebke et al., 2016). Observations here only 614 account for ice crystals with diameter larger than 75 µm and thus it is less frequent 615 that observed IWC is lower than 1 mg m^{-3} . In contrast, previous studies showed that 616 IWC (including smaller sizes of ice crystals) lower than 1 mg m⁻³ was often measured 617 in observations. This contributes to the mean IWC shown here being larger than that 618

619 in the previous studies.

620	The simulated IWC is lower than observations for all the experiments at
621	temperatures between -40°C and -60 °C where most of the observations were made.
622	The model also simulates less variation of IWC with temperature when temperature is
623	between -40°C and -60 °C. When temperature is below -60 °C, a steep decrease of
624	IWC is found in some experiments (e.g., CTL, SUL). Considering the large scatter of
625	IWC and relatively few samples available, this may be due to a lack of a sufficient
626	number of samples. Therefore, more observations are needed to have a robust
627	comparison for relatively low temperatures (i.e., temperatures below -60 °C).
628	Simulated IWC is more sensitive to D_{cs} than to ice nucleation.
629	
630	5 Impact of Nudging
631	In previous sections, we have nudged the simulated winds and temperature
632	towards the GEOS5 analysis, but kept the water vapor on-line calculated by the model
	towards the OEOSS analysis, but kept the water vapor on-the calculated by the model
633	itself. We showed that the model captures a large portion (79.8%) of cloud
633 634	
	itself. We showed that the model captures a large portion (79.8%) of cloud
634	itself. We showed that the model captures a large portion (79.8%) of cloud occurrences presented in the observations. We also identified the RH bias in the
634 635	itself. We showed that the model captures a large portion (79.8%) of cloud occurrences presented in the observations. We also identified the RH bias in the simulation and attributed the RH bias mainly to the bias in water vapor. As the bias in
634 635 636	itself. We showed that the model captures a large portion (79.8%) of cloud occurrences presented in the observations. We also identified the RH bias in the simulation and attributed the RH bias mainly to the bias in water vapor. As the bias in temperature is reduced in the nudging run compared to the free run, the attribution of
634 635 636 637	itself. We showed that the model captures a large portion (79.8%) of cloud occurrences presented in the observations. We also identified the RH bias in the simulation and attributed the RH bias mainly to the bias in water vapor. As the bias in temperature is reduced in the nudging run compared to the free run, the attribution of RH bias in the free-running model (i.e., no nudging applied) is still unclear. To
634 635 636 637 638	itself. We showed that the model captures a large portion (79.8%) of cloud occurrences presented in the observations. We also identified the RH bias in the simulation and attributed the RH bias mainly to the bias in water vapor. As the bias in temperature is reduced in the nudging run compared to the free run, the attribution of RH bias in the free-running model (i.e., no nudging applied) is still unclear. To examine the impact of nudging strategies on the cloud occurrences and the attribution

642	(hereafter referred as NUG_UVTQ). Without nudging temperature, the model
643	experiment (NUG_UV) has a cold temperature bias of -1.8°C on average relative to
644	the HIPPO observations (Figure not shown). In comparison, the temperatures
645	simulated by CTL and NUG_UVTQ are more consistent with in situ aircraft
646	observations, and the mean temperature is slightly underestimated by 0.22 $^{\circ}$ C and
647	0.28 °C in these two experiments, respectively. By nudging specific humidity, the
648	model experiment (NUG_UVTQ) improves the simulation of grid-mean water vapor
649	concentrations by eliminating the biases especially for the cases with low water vapor
650	concentrations (less than 20 ppmv, Figure not shown). NUG_UV captures 86.0%,
651	80.9%, and 39.7% of observed ice, mixed-phase, and warm clouds, respectively,
652	which are slightly smaller than those of CTL (i.e., 94.3%, 86.1%, and 49.9%,
653	respectively). For NUG_UVTQ, although 73.5% of ice clouds are captured, the model
654	captures only 61.8% of mixed-phase clouds and 31.4% of warm clouds. The worse
655	simulation in NUG_UVTQ may be because the nudged water vapor is not internally
656	consistent with the modeled cloud physics, which deteriorates the simulation of cloud
657	occurrences. The bias in cloud occurrences may also be related to the RH threshold
658	values used in the cloud fraction scheme in the model (Park et al., 2014), and further
659	study is needed to address the model sensitivity to the RH threshold values.
660	As seen in Table 3, in the two new nudging experiments (NUG_UV and
661	NUG_UVTQ), modeled RH biases in the comparison with in-situ observations also
662	mainly result from the discrepancies of water vapor. The contribution of dRH_q to dRH
663	ranges from 65.8% to 92.5%, which are slightly smaller than those in CTL. In

664	NUG_UV, as the model underestimates the temperature, modeled RH is
665	systematically higher than observations, especially for T \leq -40°C where the absolute
666	value of RH is overestimated by 30% on average. The large T bias leads to a smaller
667	contribution from the water vapor bias (dRH_q) and a larger contribution from the
668	concurrent bias in temperature and water vapor $(dRH_{q,T})$. When both T and Q are
669	nudged in NUG_UVTQ, the contributions of the three terms to dRH are generally
670	similar to those in CTL. A larger contribution from temperature (dRH_T) is found for
671	temperature above 0°C in NUG_UVTG. This may be a result of smaller contributions
672	from either dRH_q or $dRH_{q,T}$ due to the reduced water vapor bias. We also examined
673	the in-cirrus microphysical properties simulated by these two new nudging
674	experiments. The model features such as underestimations of N_i , IWC, and mean ice
675	crystal size are similar to those in CTL and are not sensitive to the nudging strategy
676	used.
677	
678	6 Discussion and Conclusions
679	In this study, we evaluated the macro- and microphysical properties of ice clouds
680	simulated by CAM5 using in-situ measurements from the HIPPO campaign. The
681	HIPPO campaign sampled over the Pacific region from 67°S to 87°N across several
682	seasons, making it distinctive from other previous campaigns and valuable for

- providing insight into evaluating model performance. To eliminate the impact of
- 684 large-scale circulation biases on the simulated cloud processes, we ran CAM5 using
- specified dynamics with simulated meteorology (U, V and T) nudged towards the

GEOS-5 analysis while keeping water vapor, hydrometeors, and aerosols online calculated by the model itself. Model results collocated with the flight tracks spatially and temporally are directly compared with the observations. Modeled cloud occurrences and in-cloud ice crystal properties are evaluated, and the reasons for the biases are examined. We also examined the model sensitivity to D_{cs} and different parameterizations for ice nucleation.

The model can reasonably capture the vertical configuration and horizontal 692 extension of specific cloud systems. In total, the model captures 79.8% of observed 693 cloud occurrences within model grid boxes. For each cloud type, the model captures 694 94.3% of observed ice clouds, 86.1% of mixed-phase and 49.9% of warm clouds. This 695 result is only modestly sensitive to whether meteorological fields (T and Q) are 696 697 nudged. The model cannot capture the large spatial variability of observed RH, which is responsible for much of the model missing low-level warm clouds. A large portion 698 of the RH bias results from the discrepancy in water vapor, with a small portion from 699 700 the discrepancy in temperature. The model also underestimates the occurrence frequencies of ice supersaturation higher than 20% under clear-sky conditions (i.e., 701 outside of cirrus clouds), which may indicate too low threshold for initiating 702 heterogeneous ice nucleation in the model. In fact, a study comparing the observed 703 RH distributions with real-case simulations of the Weather Research and Forecasting 704 (WRF) model suggested that the threshold for initiating heterogeneous nucleation 705 should be set at RHi \geq 125% (D'Alessandro et al., 2017). 706

Down to the micro-scale of cirrus clouds (T \leq -40 °C), the model captures well the

708	decreasing trend of λ with increasing temperature from -72 °C to -40°C. However, the
709	simulated λ values are about 2-4 times on average larger than observations at all the
710	4°C temperature ranges for all the experiments with different D_{cs} and different ice
711	nucleation parameterizations. This indicates that the model simulates a smaller mean
712	size of ice crystals in each temperature range. The model is mostly able to reproduce
713	the magnitude of observed N_i (to within one order of magnitude) for ice crystals with
714	diameter larger than 75 μ m, yet generally underestimates N_i except for the DCS75
715	simulation. Simulated N_i is sensitive to D_{cs} and the number of sulfate aerosol particles
716	for homogeneous nucleation used in the model. No apparent correlations between the
717	mean N_i and temperature are found in the observations, while a decrease of N_i with
718	increasing temperature is found in the two simulations (DCS300 and SUL). All the
719	experiments underestimate the magnitude of IWC for ice crystals larger than 75 μ m.
720	The observations show an overall decreasing trend of IWC with decreasing
721	temperature while the model simulated trends are not as strong. Simulated IWC is
722	sensitive to D_{cs} but less sensitive to the different parameterizations of ice nucleation
723	examined here.
724	Current climate models have typical horizontal resolutions of tens to hundreds of
725	kilometers and are unable to represent the large spatial variability of environmental
726	conditions for cloud formation and evolution within a model grid box. A previous
727	study of Diao et al. (2014a) shows that the spatial variability of water vapor

- dominantly contribute to the spatial variability in RH, compared with the
- contributions from those of temperature. Here our comparisons of model simulations

730	with observations show that the biases in water vapor spatial distributions are the
731	dominant sources of the model biases in RH spatial distributions. Thus it is a priority
732	to develop parameterizations that are able to treat the sub-grid variability of water
733	vapor for climate models. There are also substantial sub-grid variations of cloud
734	microphysical properties shown in previous observational studies (e.g., Lebsock et al.,
735	2013). Currently a framework for treating the sub-grid variability of temperature,
736	moisture and vertical velocity has been developed and implemented into CAM5
737	(Bogenschutz et al., 2013). A multi-scale modeling framework has also been
738	developed to explicitly resolve the cloud dynamics and cloud microphysics down to
739	the scales of cloud-resolving models (e.g., Wang et al., 2011; Zhang et al., 2014). The
740	PDFs of sub-grid scale distributions can be sampled on sub-columns for cloud
741	microphysics (Thayer-Calder et al., 2015). With the increase of model resolutions for
742	future global model developments, the subgrid variablility of temperature, moisture,
743	and cloud microphysics and dynamics will be better resolved. In this study, we choose
744	the resolution of 1.9 degree \times 2.5 degree because this resolution is still widely used in
745	climate model simulations. We plan to evaluate the model performances at higher
746	resolutions and to understand the resolution dependence of model results.
747	Given the various environmental conditions and aerosol characteristics in the
748	atmosphere, the formation and evolution of ice crystals are not well understood, and it
749	is even more challenging for climate models to represent these processes. For the bulk
750	ice microphysics used in our model, several assumptions have to be made to simulate
751	both N_i and λ . One of them is to partition the ice crystals into cloud ice and snow

752	categories, while using D_{cs} to convert cloud ice to snow. Thus a more physical
753	treatment of ice crystal evolution such as using bin microphysics (e.g., Bardeen et al.,
754	2013; Khain et al., 2015) or a single category to represent all ice-phase hydrometeors
755	(Morrison and Milbrandt, 2015; Eidhammer et al., 2017) is needed.
756	

757 Acknowledgements

758 X. Liu and C. Wu acknowledge support of the U.S. Department of Energy's

Atmospheric System Research Program (grant DE-572 SC0014239). The authors

would like to acknowledge the use of computational resources (ark:/85065/d7wd3xhc)

at the NCAR-Wyoming Supercomputing Center provided by the National Science

Foundation and the State of Wyoming, and supported by NCAR's Computational and

763 Information Systems Laboratory. We appreciate the efforts of the National Center for

764 Atmospheric Research (NCAR) Earth Observing Laboratory flight, technical, and

mechanical crews during the National Science Foundation (NSF) HIPPO Global

campaign, in particular the PIs of the HIPPO Global campaign: S. Wofsy, R. Keeling,

and B. Stephens. NCAR is sponsored by NSF. We acknowledge the support of the

VCSEL hygrometer by M. Diao, M. Zondlo and S. Beaton, the support of 2DC probe

by A. Bansemer, C. J. Webster and D. C. Rogers. We also acknowledge the funding

of NSFAGS-1036275 for field support and data analyses from the VCSEL

hygrometer in the HIPPO Global campaign. M. Diao gratefully acknowledges the

support from the NCAR Advanced Study Program (ASP) postdoctoral fellowship in

773 Oct 2013– Aug 2015. Final data sets and documentation from the NSF HIPPO Global

- campaign can be accessed at http://hippo.ornl.gov in the Carbon Dioxide
- 775 Information Analysis Center Data Archive at Oak Ridge National Laboratory. We
- thank T. Eidhammer from NCAR for her help on model result analysis.
- 777

778 References

- Abdul-Razzak, H., and Ghan, S. J.: A parameterization of aerosol activation 2.
 Multiple aerosol types. J. Geophysical Research-Atmospheres 105(D5),
- **6837-6844**, 2000.
- Bodas-Salcedo, A. et al.: COSP: A satellite simulation software for model assessment.
 Bull. Amer. Meteor. Soc., 92, 1023–1043, 2011.
- Bardeen, C. G., A. Gettelman, E. J. Jensen, A. Heymsfield, A. J. Conley, J. Delanoë,
 M. Deng, O. B. Toon (2013), Improved cirrus simulations in a GCM using
 CARMA sectional microphysics, J. Geophys. Res., 118,
 doi:10.1002/2013JD020193.
- Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., and
 Schanen, D. P.: Higher-Order Turbulence Closure and Its Impact on Climate
 Simulations in the Community Atmosphere Model, J Climate, 26, 9655-9676,
 10.1175/JCLI-D-13-00075.1, 2013.
- Boucher, O., and Coauthors: Clouds and Aerosols, in: Climate Change 2013: The
 Physical Science Basis. Contribution of Working Group I to the Fifth
 Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
 Stocker, T.F., et al., 1535, 571-657, Cambridge University Press, Cambridge,
 United Kingdom and New York, NY, USA, 2013.
- Bretherton, C. S., and Park, S.: A New Moist Turbulence Parameterization in the
 Community Atmosphere Model, J Climate, 22, 3422-3448,
 10.1175/2008JCLI2556.1, 2009.
- Corti, T., Luo, B. P., Peter, T., Vömel, H., and Fu, Q.: Mean radiative energy balance
 and vertical mass fluxes in the equatorial upper troposphere and lower
 stratosphere, Geophys Res Lett, 32, L06802, 10.1029/2004GL021889, 2005.
- DeMott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S. M.,
 Thomson, D. S., Borys, R., and Rogers, D. C.: Measurements of the
 concentration and composition of nuclei for cirrus formation, Proceedings of the
 National Academy of Sciences, 100, 14655-14660, 10.1073/pnas.2532677100,
 2003.
- Deng, M., and Mace, G. G.: Cirrus Microphysical Properties and Air Motion Statistics
 Using Cloud Radar Doppler Moments. Part I: Algorithm Description, Journal of
 Applied Meteorology and Climatology, 45, 1690-1709, 10.1175/JAM2433.1,
 2006.
- 812 Deng, M., and Mace, G. G.: Cirrus Microphysical Properties and Air Motion Statistics

- Using Cloud Radar Doppler Moments. Part II: Climatology, Journal of Applied
 Meteorology and Climatology, 47, 3221-3235, 10.1175/2008JAMC1949.1,
 2008.
- D'Alessandro, J., Diao, M., Wu, C., Liu, X., Chen, M., Morrison, H., Eidhammer, T.,
 Jensen, Jorgen B. Bansemer, A., Zondlo, M. A. and DiGangi, J. P.: Dynamical
 conditions of ice supersaturation in convective systems: a comparative analysis
 between in-situ aircraft observations and WRF simulations, J. Geophys. Res.
 Atmos., 122, doi:10.1002/2016JD025994, 2017.
- Diao, M., Zondlo, M. A., Heymsfield, A. J., Beaton, S. P., and Rogers, D. C.:
 Evolution of ice crystal regions on the microscale based on in situ observations,
 Geophys Res Lett, 40, 3473-3478, 10.1002/grl.50665, 2013.
- Diao, M., Zondlo, M. A., Heymsfield, A. J., Avallone, L. M., Paige, M. E., Beaton, S.
 P., Campos, T., and Rogers, D. C.: Cloud-scale ice-supersaturated regions
 spatially correlate with high water vapor heterogeneities, Atmos. Chem. Phys.,
 14, 2639-2656, 10.5194/acp-14-2639-2014, 2014a.
- Diao, M., Zondlo, M. A., Heymsfield, A. J., and Beaton, S. P.: Hemispheric
 comparison of cirrus cloud evolution using in situ measurements in HIAPER
 Pole-to-Pole Observations, Geophys Res Lett, 41, 4090-4099,
 10.1002/2014GL059873, 2014b.
- Dinh, T., Fueglistaler, S., Durran, D., and Ackerman, T.: Cirrus and water vapour
 transport in the tropical tropopause layer Part 2: Roles of ice nucleation and
 sedimentation, cloud dynamics, and moisture conditions, Atmos. Chem. Phys.,
 14, 12225-12236, 10.5194/acp-14-12225-2014, 2014.
- Eidhammer, T., Morrison, H., Bansemer, A., Gettelman, A., and Heymsfield, A. J.:
 Comparison of ice cloud properties simulated by the Community Atmosphere
 Model (CAM5) with in-situ observations, Atmos. Chem. Phys., 14, 10103-10118,
 10.5194/acp-14-10103-2014, 2014.
- Eidhammer, T., Morrison, H., Mitchell, D., Gettelman, A., and Erfani, E.:
 Improvements in Global Climate Model Microphysics Using a Consistent
 Representation of Ice Particle Properties, J. Climate, 30, 609-629,
 10.1175/jcli-d-16-0050.1, 2017.
- Fusina, F., Spichtinger, P., and Lohmann, U.: Impact of ice supersaturated regions and
 thin cirrus on radiation in the midlatitudes, Journal of Geophysical Research:
 Atmospheres, 112, D24S14, 10.1029/2007JD008449, 2007.
- Gettelman, A., Randel, W. J., Wu, F., and Massie, S. T.: Transport of water vapor in
 the tropical tropopause layer, Geophys Res Lett, 29, 9-1-9-4,
 10.1029/2001GL013818, 2002.
- Gettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A. J., Klein, S. A.,
 Boyle, J., Mitchell, D. L., and Li, J. L. F.: Global simulations of ice nucleation
 and ice supersaturation with an improved cloud scheme in the Community
 Atmosphere Model, Journal of Geophysical Research: Atmospheres, 115,
 D18216, 10.1029/2009JD013797, 2010.
- Gettelman, A., Liu, X., Barahona, D., Lohmann, U., and Chen, C.: Climate impacts of
 ice nucleation, Journal of Geophysical Research: Atmospheres, 117, D20201,

- 857 10.1029/2012JD017950, 2012.
- Gettelman, A., and Morrison, H.: Advanced Two-Moment Bulk Microphysics for
 Global Models. Part I: Off-Line Tests and Comparison with Other Schemes, J
 Climate, 28, 1268-1287, 10.1175/JCLI-D-14-00102.1, 2015.
- Gettelman, A., Morrison, H., Santos, S., Bogenschutz, P., and Caldwell, P. M.:
 Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global
 Model Solutions and Aerosol–Cloud Interactions, J Climate, 28, 1288-1307,
 10.1175/JCLI-D-14-00103.1, 2015.
- Haag, W., Kärcher, B., Ström, J., Minikin, A., Lohmann, U., Ovarlez, J., and Stohl, A.:
 Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ
 measurements of relative humidity, Atmos. Chem. Phys., 3, 1791-1806,
 10.5194/acp-3-1791-2003, 2003.
- Heymsfield, A. J., Field, P., and Bansemer, A.: Exponential Size Distributions for
 Snow, J Atmos Sci, 65, 4017-4031, 10.1175/2008JAS2583.1, 2008.
- Heymsfield, A. J., Schmitt, C., and Bansemer, A.: Ice cloud particle size distributions
 and pressure-dependent terminal velocities from in situ observations at
 temperatures from 0 to -86 C, J. Atmos. Sci., 70, 4123–4154, 2013.
- Hoose, C., and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a
 review of results from laboratory experiments, Atmos. Chem. Phys., 12,
 9817-9854, 10.5194/acp-12-9817-2012, 2012.
- Hoyle, C. R., Luo, B. P., and Peter, T.: The Origin of High Ice Crystal Number
 Densities in Cirrus Clouds, J Atmos Sci, 62, 2568-2579, 10.1175/JAS3487.1,
 2005.
- Jensen, E. J., Diskin, G., Lawson, R. P., Lance, S., Bui, T. P., Hlavka, D., McGill, M.,
 Pfister, L., Toon, O. B., and Gao, R.: Ice nucleation and dehydration in the
 Tropical Tropopause Layer, Proceedings of the National Academy of Sciences,
 110, 2041-2046, 10.1073/pnas.1217104110, 2013.
- Kärcher, B. and Spichtinger, B.: Cloud-controlling factors of cirrus, in: Clouds in the
 Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric
 Dynamics, and Precipitation, edited by: Heintzenberg, J. and Charlson, R. J.,
 Strüngmann Forum Report, 3536, 235–267, The MIT Press, Cambridge, MA,
 USA, 2009.
- Kay, J. E., Baker, M., and Hegg, D.: Microphysical and dynamical controls on cirrus
 cloud optical depth distributions, Journal of Geophysical Research: Atmospheres,
 111, D24205, 10.1029/2005JD006916, 2006.
- Kay, J. E., et al.: Exposing global cloud biases in the Community Atmosphere Model
 (CAM) using satellite observations and their corresponding instrument
 simulators, J. Clim., 25, 5190–5207, doi:10.1175/JCLI-D-11-00469.1, 2012.
- Khain, A. P., Beheng, K. D., Heymsfield, A., Korolev, A., Krichak, S. O., Levin, Z.,
 Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., van den Heever, S. C., and
 Yano, J. I.: Representation of microphysical processes in cloud-resolving models:
 Spectral (bin) microphysics versus bulk parameterization, Rev Geophys, 53,
 247-322, 10.1002/2014RG000468, 2015.
- 900 Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the determinant for

- homogeneous ice nucleation in aqueous solutions, Nature, 406, 611-614, 2000.
- Kooperman, G. J., Pritchard, M. S., Ghan, S. J., Wang, M., Somerville, R. C. J., and 902 Russell, L. M.: Constraining the influence of natural variability to improve 903 estimates of global aerosol indirect effects in a nudged version of the Community 904 Atmosphere Model 5, J. Geophys. Res., 117. D23204, 905 906 doi:10.1029/2012JD018588, 2012.
- Korolev, A. V., Emery, E. F., Strapp, J. W., Cober, S. G., Isaac, G. A., Wasey, M.,
 and Marcotte, D.: Small Ice Particles in Tropospheric Clouds: Fact or Artifact?
 Airborne Icing Instrumentation Evaluation Experiment, Bulletin of the American
 Meteorological Society, 92, 967-973, 10.1175/2010BAMS3141.1, 2011.
- Krämer, M., Schiller, C., Afchine, A., Bauer, R., Gensch, I., Mangold, A., Schlicht, S.,
 Spelten, N., Sitnikov, N., Borrmann, S., de Reus, M., and Spichtinger, P.: Ice
 supersaturations and cirrus cloud crystal numbers, Atmos. Chem. Phys., 9,
 3505-3522, 10.5194/acp-9-3505-2009, 2009.
- Krämer, M., Rolf, C., Luebke, A., Afchine, A., Spelten, N., Costa, A., Meyer, J.,
 Zöger, M., Smith, J., Herman, R. L., Buchholz, B., Ebert, V., Baumgardner, D.,
 Borrmann, S., Klingebiel, M., and Avallone, L.: A microphysics guide to cirrus
 clouds Part 1: Cirrus types, Atmos. Chem. Phys., 16, 3463-3483,
 doi:10.5194/acp-16-3463-2016, 2016.
- Lamarque, J. F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F.,
 Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J.,
 and Tyndall, G. K.: CAM-chem: description and evaluation of interactive
 atmospheric chemistry in the Community Earth System Model, Geosci. Model
 Dev., 5, 369-411, 10.5194/gmd-5-369-2012, 2012.
- Lawson, R. P.: Effects of ice particles shattering on the 2D-S probe, Atmos. Meas.
 Tech., 4, 1361-1381, 10.5194/amt-4-1361-2011, 2011.
- Lebsock, M., Morrison, H., and Gettelman, A.: Microphysical implications of
 cloud-precipitation covariance derived from satellite remote sensing, Journal of
 Geophysical Research: Atmospheres, 118, 6521-6533, 10.1002/jgrd.50347,
 2013.
- Li, J. L. F., Waliser, D. E., Chen, W. T., Guan, B., Kubar, T., Stephens, G., Ma, H. Y.,
 Deng, M., Donner, L., Seman, C., and Horowitz, L.: An observationally based
 evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary
 reanalyses using contemporary satellite data, Journal of Geophysical Research:
 Atmospheres, 117, D16105, 10.1029/2012JD017640, 2012.
- Liou, K.-N.: Influence of Cirrus Clouds on Weather and Climate Processes: A Global
 Perspective, Mon Weather Rev, 114, 1167-1199,
 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2, 1986.
- Liu, X., and Penner, J. E.: Ice nucleation parameterization for global models,
 Meteorol Z, 14, 499-514, 2005.
- Liu, X., Penner, J. E., Ghan, S. J., and Wang, M.: Inclusion of Ice Microphysics in the
 NCAR Community Atmospheric Model Version 3 (CAM3), J Climate, 20,
 4526-4547, 10.1175/JCLI4264.1, 2007.
- Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J. F.,

945	Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C.,
946	Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton,
947	C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of
948	aerosols in climate models: description and evaluation in the Community
949	Atmosphere Model CAM5, Geosci. Model Dev., 5, 709-739,
950	10.5194/gmd-5-709-2012, 2012a.
951	Liu, X., Shi, X., Zhang, K., Jensen, E. J., Gettelman, A., Barahona, D., Nenes, A., and
952	Lawson, P.: Sensitivity studies of dust ice nuclei effect on cirrus clouds with the
953	Community Atmosphere Model CAM5, Atmos. Chem. Phys., 12, 12061-12079,
954	10.5194/acp-12-12061-2012, 2012b.
955	Luebke, A. E., Afchine, A., Costa, A., Grooß, JU., Meyer, J., Rolf, C., Spelten, N.,
956	Avallone, L. M., Baumgardner, D., and Krämer, M.: The origin of midlatitude
957	ice clouds and the resulting influence on their microphysical properties, Atmos.
958	Chem. Phys., 16, 5793-5809, doi:10.5194/acp-16-5793-2016, 2016.
959	Mace, G. G., Zhang, Y., Platnick, S., King, M. D., Minnis, P., and Yang, P.:
960	Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud
961	Properties Derived from Ground-Based Observations Collected at the ARM SGP
962	Site, Journal of Applied Meteorology, 44, 221-240, 10.1175/JAM2193.1, 2005.
963	Morrison, H., and Gettelman, A.: A New Two-Moment Bulk Stratiform Cloud
964	Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3).
965	Part I: Description and Numerical Tests, J Climate, 21, 3642-3659,
966	10.1175/2008JCLI2105.1, 2008.
967	Morrison, H., and Milbrandt, J. A.: Parameterization of Cloud Microphysics Based on
968	the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and
969	Idealized Tests. J. Atmos. Sci., 72, 287-311. doi:
970	http://dx.doi.org/10.1175/JAS-D-14-0065.1, 2015.
971	Murphy, D. M., and Koop, T.: Review of the vapour pressures of ice and supercooled
972	water for atmospheric applications, Quarterly Journal of the Royal
973	Meteorological Society, 131, 1539-1565, 10.1256/qj.04.94, 2005.
974	Neale, R. B., and Coauthors: Description of the NCAR Community Atmosphere
975	Model (CAM 5.0), NCAR/TN-486+STR, available at:
976	http://www.cesm.ucar.edu/models/cesm1.0/ cam/docs/description/cam5_desc.pdf,
977	2012.
978	Park, S., and Bretherton, C. S.: The University of Washington Shallow Convection
979	and Moist Turbulence Schemes and Their Impact on Climate Simulations with
980	the Community Atmosphere Model, J Climate, 22, 3449-3469,
981	10.1175/2008JCLI2557.1, 2009.
982	Park, S., Bretherton, C. S., and Rasch, P. J.: Integrating Cloud Processes in the
983	Community Atmosphere Model, Version 5, J Climate, 27, 6821-6856,
984	10.1175/JCLI-D-14-00087.1, 2014.
985	Ramanathan, V., and Collins, W.: Thermodynamic regulation of ocean warming by
986	cirrus clouds deduced from observations of the 1987 El Nino, Nature, 351, 27-32,
987	1991.
988	Richter, J. H., and Rasch, P. J.: Effects of Convective Momentum Transport on the

- Atmospheric Circulation in the Community Atmosphere Model, Version 3, J
 Climate, 21, 1487-1499, 10.1175/2007JCLI1789.1, 2008.
- Shi, X., Liu, X., and Zhang, K.: Effects of pre-existing ice crystals on cirrus clouds
 and comparison between different ice nucleation parameterizations with the
 Community Atmosphere Model (CAM5), Atmos. Chem. Phys., 15, 1503-1520,
 10.5194/acp-15-1503-2015, 2015.
- Tan, X., Y. Huang, M. Diao, A. Bansemer, M. A. Zondlo, J. P. DiGangi, R. Volkamer,
 and Y. Hu: An assessment of the radiative effects of ice supersaturation based on
 in situ observations, Geophys. Res. Lett., 43, 11,039–11,047,
 doi:10.1002/2016GL071144, 2016.
- Thayer-Calder, K., Gettelman, A., Craig, C., Goldhaber, S., Bogenschutz, P. A., Chen, 999 C. C., Morrison, H., Höft, J., Raut, E., Griffin, B. M., Weber, J. K., Larson, V. E., 1000 Wyant, M. C., Wang, M., Guo, Z., and Ghan, S. J.: A unified parameterization of 1001 clouds and turbulence using CLUBB and subcolumns in the Community 1002 Atmosphere Model. Geosci. Model 8, 3801-3821, Dev., 1003 10.5194/gmd-8-3801-2015, 2015. 1004
- Wang, M., Ghan, S., Easter, R., Ovchinnikov, M., Liu, X., Kassianov, E., Qian, Y., 1005 Gustafson Jr, W. I., Larson, V. E., Schanen, D. P., Khairoutdinov, M., and 1006 Morrison, H.: The multi-scale aerosol-climate model PNNL-MMF: model 1007 description 1008 and evaluation, Geosci. Model Dev., 4, 137-168, 10.5194/gmd-4-137-2011, 2011. 1009
- Wang, M., Liu, X., Zhang, K., and Comstock, J. M.: Aerosol effects on cirrus through
 ice nucleation in the Community Atmosphere Model CAM5 with a statistical
 cirrus scheme, J. Adv. Model. Earth Syst., 06, doi:10.1002/2014MS000339,
 2014.
- Wang, M. and Penner, J. E.: Cirrus clouds in a global climate model with a statistical
 cirrus cloud scheme, Atmos. Chem. Phys., 10, 5449-5474,
 doi:10.5194/acp-10-5449-2010, 2010.
- Wang, P.-H., Minnis, P., McCormick, M. P., Kent, G. S., and Skeens, K. M.: A 6-year
 climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas
 Experiment II observations (1985–1990), Journal of Geophysical Research:
 Atmospheres, 101, 29407-29429, 10.1029/96JD01780, 1996.
- Wang, Y., and Liu, X.: Immersion freezing by natural dust based on a soccer ball
 model with the Community Atmospheric Model version 5: climate effects,
 Environmental Research Letters, 9, 124020, 2014.
- Wofsy, S. C.: HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale
 measurements of climatically important atmospheric gases and aerosols,
 Philosophical Transactions of the Royal Society of London A: Mathematical,
 Physical and Engineering Sciences, 369, 2073-2086, 10.1098/rsta.2010.0313,
 2011.
- Wylie, D. P., and Menzel, W. P.: Eight Years of High Cloud Statistics Using HIRS, J
 Climate, 12, 170-184, 10.1175/1520-0442-12.1.170, 1999.
- Zhang, C., M. Wang, H. Morrison, R. C. J. Somerville, K. Zhang, X. Liu, and J. F. Li
 (2014), Investigating ice nucleation in cirrus clouds with an aerosol-enabled

- multi-scale modeling framework, J. Adv. Model. Earth Syst., 6, 998–1015,
 doi:10.1002/2014MS000343.
- Zhang, G. J., and McFarlane, N. A.: Sensitivity of climate simulations to the
 parameterization of cumulus convection in the Canadian Climate Centre general
 circulation model, Atmosphere-Ocean, 33, 407-446, 1995.
- Zhang, K., Liu, X., Wang, M., Comstock, J. M., Mitchell, D. L., Mishra, S., and Mace,
 G. G.: Evaluating and constraining ice cloud parameterizations in CAM5 using
 aircraft measurements from the SPARTICUS campaign, Atmos. Chem. Phys., 13,
 4963-4982, 10.5194/acp-13-4963-2013, 2013.
- Zhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P. L., Rasch, P. J.,
 Neubauer, D., and Lohmann, U.: Technical Note: On the use of nudging for
 aerosol-climate model intercomparison studies, Atmos. Chem. Phys., 14,
 8631-8645, 10.5194/acp-14-8631-2014, 2014.
- Zondlo, M. A., Paige, M. E., Massick, S. M., and Silver, J. A.: Vertical cavity laser
 hygrometer for the National Science Foundation Gulfstream-V aircraft, Journal
 of Geophysical Research: Atmospheres, 115, D20309, 10.1029/2010JD014445,
 2010.
- 1050

I	Table 1. CAMD experiments					
Experiment name	Nudging	Ice microphysics parameterizations				
CTL	U, V, T	Threshold diameter for autoconversion of				
		cloud ice to snow (D_{cs}) set to 150 μm				
DCS75	U, V, T	As CTL, but with $D_{cs}=75 \ \mu m$				
DCS300	U, V, T	As CTL, but with D_{cs} =300 µm				
SUL U, V, T A		As CTL, but without the lower limit $(0.1 \ \mu m)$				
		for sulfate particle diameter for homogeneous				
		freezing				
PRE-ICE	U, V, T	As CTL, but with the impacts of pre-existing				
		ice crystals on ice nucleation (Shi et al., 2015)				
NUG_UV	U, V	As CTL				
NUG UVTQ	U, V, T, Q	As CTL				

1051 Table 1. CAM5 experiments

1055	Table 2. The numbers of cloud occurrences in the 10-second averaged observations
1056	(N_{obs}) , as well as those that CAM5 captures (N_{cap}) or misses (N_{mis}) the observed
1057	clouds within the model grid boxes for different temperature ranges. The ratio of N_{cap}
1058	and N_{mis} to N_{obs} are given in parenthesis next to them, respectively.

Cloud type	Temperature ranges	Nobs	N_{cap}	N _{mis}	
Ice cloud	T≤-40°C	3101	2925 (94.3%)	176 (5.7%)	
Mixed-phase cloud	-40°C <t≤0°c< td=""><td>8768</td><td>7546 (86.1%)</td><td>1222 (13.9%)</td></t≤0°c<>	8768	7546 (86.1%)	1222 (13.9%)	
Warm cloud	T>0°C	3334	1665 (49.9%)	1669 (50.1%)	
All		15203	12136 (79.8%)	3067 (20.2%)	

1061 Table 3. The intercepts and slopes of the regression lines (i.e., Y=a+b*X) for dRH_q

1062 versus dRH, dRH_T versus dRH, and $dRH_{q,T}$ versus dRH in the three experiments CTL,

1063 NUG_UV, and NUG_UVTQ, respectively. The coefficients are determination (i.e., R^2)

1064 for each regression line are also presented.

		T≤-40°C		-40°C <t≤0°c< th=""><th colspan="2">T>0°C</th><th></th></t≤0°c<>			T>0°C			
		а	b	R^2	а	b	R^2	а	b	R^2
	<i>d</i> RH _q	5.209	0.748	0.663	4.632	0.933	0.786	0.177	0.786	0.840
CTL	$d R H_T$	-0.798	0.087	0.071	-3.013	0.072	0.039	-0.706	0.210	0.262
	$d \operatorname{RH}_{q,T}$	-4.411	0.165	0.241	-1.619	-0.005	.0004	0.529	0.004	0.001
	<i>d</i> RH _q	-16.85	0.723	0.562	-5.589	0.866	0.614	-5.207	0.658	0.698
NUG_UV	$d R H_T$	29.96	-0.103	0.024	10.09	-0.013	.0005	4.804	0.265	0.188
	$d R H_{q,T}$	-13.11	0.380	0.487	-4.498	0.148	0.088	0.402	0.078	0.085
	<i>d</i> RH _q	-2.851	0.813	0.770	2.260	0.925	0.672	-1.773	0.733	0.761
NUG_UVTQ	$d R H_T$	3.964	0.073	0.040	-0.265	0.094	0.038	1.892	0.308	0.311
	$dRH_{q,T}$	-1.113	0.114	0.262	-1.996	-0.019	0.003	-0.119	-0.041	0.095

1065

1068 Figure captions:

1067

1069 Figure 1. Cloud occurrences simulated by CAM5 (blue and green shaded areas)

1070 compared with HIPPO observations (crosses) during HIPPO#4 Research Flight 05

1071 (H4RF05) from Rarotonga, the Cook Islands (21.2°S, 159.77°W) to Christchurch,

1072 New Zealand (43.48°S, 172.54°E) on June 25–26, 2011. Modeled in-cloud ice crystal

number concentration and cloud droplet number concentration are denoted by blue

and green shaded areas, respectively. Three temperature ranges are used to categorize

the combined measurements of 2DC and CDP probes. The criteria for defining

1076 observed cloud occurrences are described in section 2.

1077 Figure 2. Spatial variabilities of RH, water vapor (Q), and temperature (T) from

1078 CAM5 simulation and HIPPO observation (left), and their differences (right).

1079 Absolute difference between CAM5 and HIPPO is shown for RH and T, while the

1080 ratio between CAM5 and HIPPO is shown for Q. Model performances are denoted by

shaded vertical bars: green (red) denotes when the model captures (misses) the

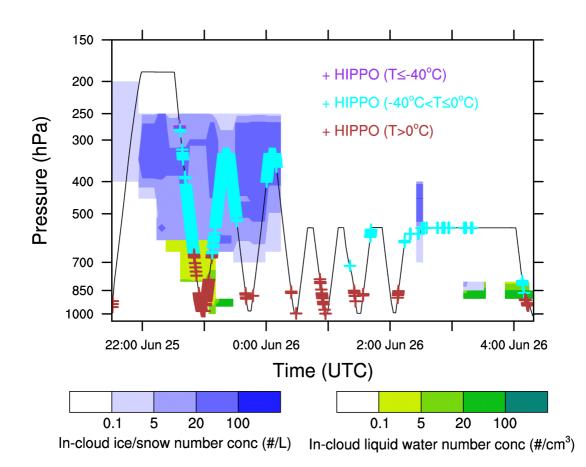

1082 observed cloud occurrences, and blue denotes when the model simulates a cloud that1083 is not present in the observation.

Figure 3. As Figure 2a, but for RH recalculated by replacing the model output witheither (a) observed Q or (b) observed T values.

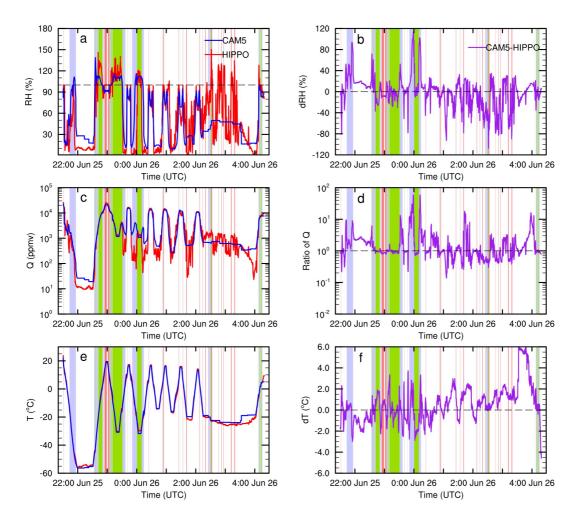

Figure 4. Corresponding (top) dRH_q versus dRH, (middle) dRH_T versus dRH, and (bottom) $dRH_{q,T}$ versus dRH (unit: %) for different temperature ranges. The colors indicating three types of model performances in simulating clouds as described in Fig.2: green ("captured"), red ("missed") and blue ("overproduced"). The black lines denote the linear regressions of the samples (i.e., Y=a+b*X), and the intercept (i.e., a) and slope (i.e., b) of the regression lines as well as the coefficient of determination (i.e., R^2) are shown in the legend.

Figure 5. Observed and simulated probability density functions (PDFs) of relative 1093 humidity with respect to ice (RHi, unit: %) for T≤-40°C separated into clear-sky and 1094 in-cirrus conditions. PDFs of RHi before and after cloud microphysics in the 1095 simulations are both shown. The RHi is binned by 2% for the calculation of PDF. The 1096 PDFs (when RHi>100%) follow an exponent decay: $\ln(PDF)=a+b*RHi$. The values 1097 of a and b for each PDF are also shown in dark red (observed), dark blue (simulated 1098 1099 before ice nucleaction), and dark green (simulated after cloud microphysics), respectively. Note blue lines are mostly invisible as overlaid by green lines. 1100

- 1101 Figure 6. (a-e) Scatterplot of observed versus simulated slope parameter (λ) of the
- 1102 gamma size distribution function for each experiments, and (f) the frequency of λ for
- each range. Note that all the comparisons are restricted to the cases when the model
- 1104 captures observed ice clouds (T \leq -40 °C).
- Figure 7. λ versus temperature from the measurements and simulations. The lines are the geometric mean binned by 4°C, with the vertical bars denoting the geometric standard deviation. Note that the comparisons are restricted to the cases when the
- model captures the observed ice clouds (T \leq -40 °C).
- Figure 8. As Figure 6, but for the number concentrations (N_i) of ice crystals with
- 1110 diameters larger than 75 µm for all the experiments. Note that both the comparisons
- are restricted to the cases when the model captures observed ice clouds (T \leq -40 °C).
- 1112 Figure 9. As Figure 7, but for N_i .
- 1113 Figure 10. As Figure 8, but for the comparison of ice water content (IWC).
- 1114 Figure 11. As Figure 9, but for ice water content (IWC) versus temperature.
- 1115

1118	Figure 1. Cloud occurrences simulated by CAM5 (blue and green shaded areas)
1119	compared with HIPPO observations (crosses) during HIPPO#4 Research Flight 05
1120	(H4RF05) from Rarotonga, the Cook Islands (21.2°S, 159.77°W) to Christchurch,
1121	New Zealand (43.48°S, 172.54°E) on June 25–26, 2011. Modeled in-cloud ice crystal
1122	number concentration and cloud droplet number concentration are denoted by blue
1123	and green shaded areas, respectively. Three temperature ranges are used to categorize
1124	the combined measurements of 2DC and CDP probes. The criteria for defining
1125	observed cloud occurrences are described in section 2.

1126

1127 Figure 2. Spatial variabilities of RH, water vapor (Q), and temperature (T) from

1128 CAM5 simulation and HIPPO observation (left), and their differences (right).

Absolute difference between CAM5 and HIPPO is shown for RH and T, while the

1130 ratio between CAM5 and HIPPO is shown for Q. Model performances are denoted by

shaded vertical bars: green (red) denotes when the model captures (misses) the

observed cloud occurrences, and blue denotes when the model simulates a cloud that

is not present in the observation.

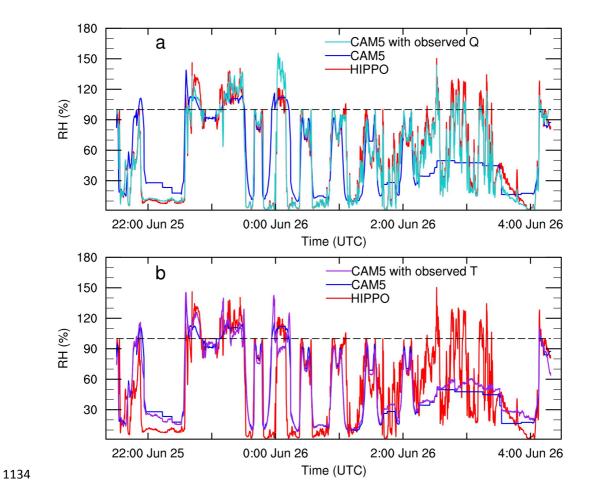


Figure 3. As Figure 2a, but for RH recalculated by replacing the model output witheither (a) observed Q or (b) observed T values.

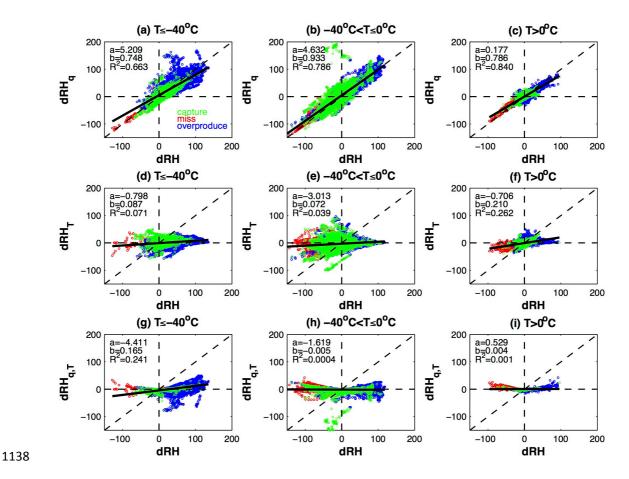
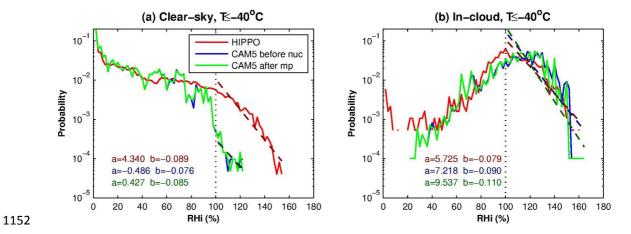



Figure 4. Corresponding (top) dRH_q versus dRH, (middle) dRH_T versus dRH, and (bottom) $dRH_{q,T}$ versus dRH (unit: %) for different temperature ranges. The colors indicating three types of model performances in simulating clouds as described in Fig.2: green ("captured"), red ("missed") and blue ("overproduced"). The black lines denote the linear regressions of the samples (i.e., Y=a+b*X), and the intercept (i.e., a) and slope (i.e., b) of the regression lines as well as the coefficient of determination (i.e., R^2) are shown in the legend.

1147

- 1148
- 1149

1153 Figure 5. Observed and simulated probability density functions (PDFs) of relative humidity with respect to ice (RHi, unit: %) for T≤-40°C separated into clear-sky and 1154 in-cirrus conditions. PDFs of RHi before and after cloud microphysics in the 1155 simulations are both shown. The RHi is binned by 2% for the calculation of PDF. The 1156 PDFs (when RHi>100%) follow an exponent decay: $\ln(PDF)=a+b*RHi$. The values 1157 of a and b for each PDF are also shown in dark red (observed), dark blue (simulated 1158 before ice nucleaction), and dark green (simulated after cloud microphysics), 1159 respectively. Note blue lines are mostly invisible as overlaid by green lines. 1160

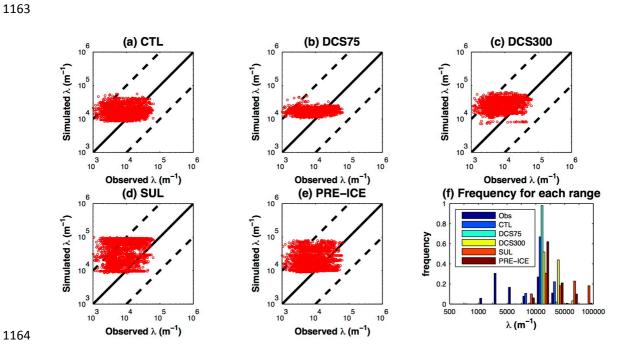


Figure 6. (a-e) Scatterplot of observed versus simulated slope parameter (λ) of the gamma size distribution function for each experiments, and (f) the frequency of λ for each range. Note that all the comparisons are restricted to the cases when the model captures observed ice clouds (T≤-40 °C).

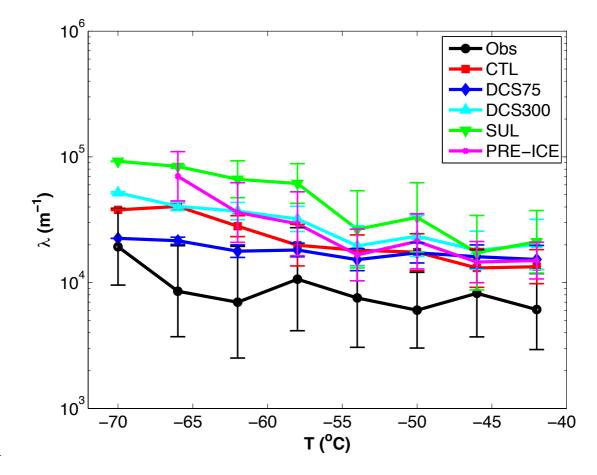


Figure 7. λ versus temperature from the measurements and simulations. The lines are the geometric mean binned by 4°C, with the vertical bars denoting the geometric standard deviation. Note that the comparisons are restricted to the cases when the model captures the observed ice clouds (T \leq -40 °C).

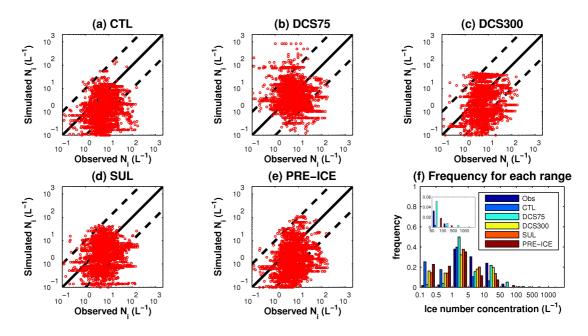
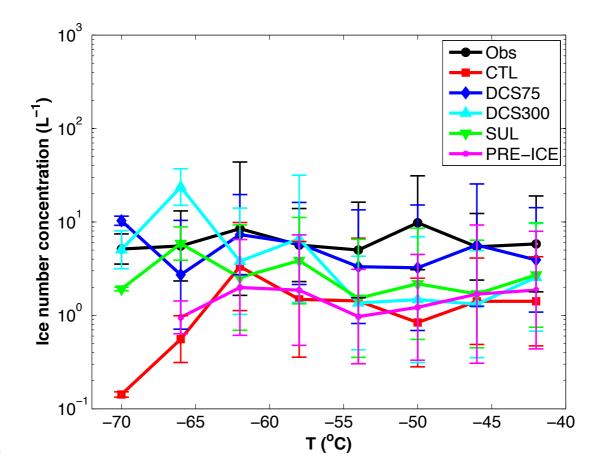
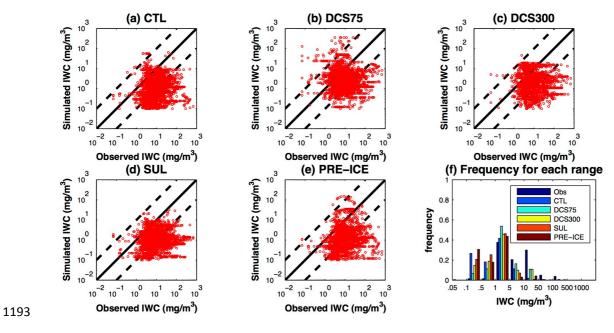
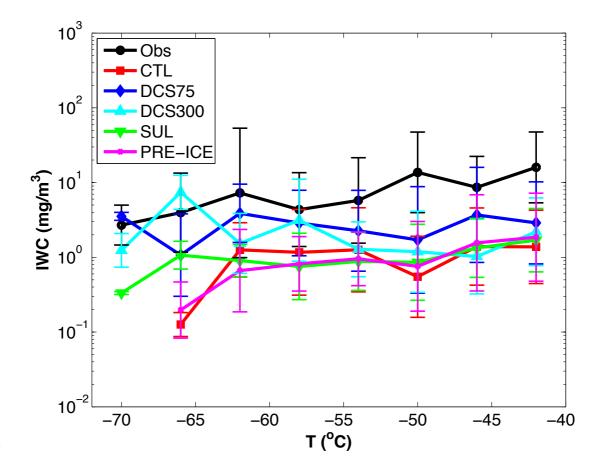




Figure 8. As Figure 6, but for the number concentrations (N_i) of ice crystals with diameters larger than 75 µm for all the experiments. The inset in (f) is the frequency of N_i plotted for $N_i > 50 \text{ L}^{-1}$. Note that both the comparisons are restricted to the cases when the model captures observed ice clouds (T \leq -40 °C).



1190 Figure 9. As Figure 7, but for N_i .

1194 Figure 10. As Figure 8, but for the comparison of ice water content (IWC).

1198 Figure 11. As Figure 9, but for ice water content (IWC) versus temperature.