

Interactive comment on "Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events" *by* Teruya Maki et al.

Teruya Maki et al.

makiteru@se.kanazawa-u.ac.jp

Received and published: 8 August 2017

Dear Anonymous Referee #2:

We thank for admitting the value of our manuscript very much. I take your comments into account in our revised manuscript. I revised our manuscript with paying attention to the points that you commented. I described my response for each your comment. The revised manuscript is attached as supplement file. The sections [Q] indicate your comments and the sections (A) indicate my responses. The changes introduced in the revised manuscript were indicated by the line numbers at the sections (A).

C1

[Q]1. Introduction: bioaerosols could act as active ice nucleus, consequently affect the microphysical properties of cloud in the atmosphere. Please review some papers about climate effects of bioaerosol, so that the readers are easy to understand the importance of your study.

(A1) The climate effects of bioaerosol has been enhanced using some references in the Introduction section (lines 45-59).

[Q]2. Line 28 in page 3: the authors claimed that aerosols in the two cities directly originate from continental areas. I think it is not rigorous and suitable. There are several sources of aerosols in the Noto Peninsula, such as continental and Ocean area, even from local area, depending on condition of airflows. The word should be changed.

(A2) I agree with this comment. Several sources areas of air-mass transported to Noto Peninsula were explained in the revised manuscript (lines 121-122).

[Q]3. Line 23 in page 4: depolarization ratio is more popular for lidar community that depolarization rates. Please replace it throughout the manuscript.

(A3) The term "depolarization rates" has been changed to "depolarization ratio" in the revised manuscript (entire revised manuscript).

[Q]4. Line 8 in page 5: add 'number concentration' to the behind of 'aerosol'.

(A4) Thank you for your indication. I have revised this part (lines 195-196).

[Q]5. Line 17 in page 6: change 'dust mineral' to 'mineral dust'.

(A5) As your decision, I have changed the term 'dust mineral' to 'mineral dust' (entire revised manuscript).

[Q]6. Line 7-10 in page 7: the word 'troposphere' is not appropriate in the manuscript, please consider 'tropopause'.

(A6) Thank you for your suggestion. In this section, I have revised to more clear expla-

nation defining the boundary layers over sampling areas (lines 286-288).

[Q]7. Line 25-29 in page 7: please rewrite and cut the paragraph short, it is not necessary to list so many names of the samples. Perhaps the authors can mark dust samples and non-dust samples in Table 1.

(A7) I also think Table 1 can cover the explanation about sample names. Accordingly, this parts explaining about the sample name have been shortened in the revised manuscript (lines 321-325).

[Q]8. Section 3.3: four types of fluorescence particles, such as white, blue, yellow, or black particles, could be seen from fluorescent microscopy. To make the reader easier understand, the author should explain the methods and basis of classification. For example, why the white particles are indicative of mineral dust and yellow particles are organic matter.

(A8) Although some parts of the DAPI staining theory of each fluorescent particles are unclear, they were tried to be explained in the revised manuscript (lines 188-195).

[Q]9. Section 4.1: I suggest move this sentences to Introduction and Section 3.1. Also, I suggest that rewrite the Section 4, and move some sentences to Introduction.

(A9) I agree to your comments. The previous discussion section included some parts which had to be moved to Introduction. In the revised manuscript, the parts were shortened and move to Introduction and the introduction has been modified (in particular lines 455-459, 517-522).

[Q]10. Line 21 in page 12: combine "Maki et al., 2010" and "Maki et al., 2013" to "Maki et al., 2010 and 2013".

(A10) Thank you for your suggestion. "Maki et al., 2010" and "Maki et al., 2013" have been combined to "Maki et al., 2010 and 2013" in the revised manuscript (line 551).

[Q]11. Line 32 in page 12: add 'long-range' in the front of 'transported'.

C3

(A11) The term 'long-range' has been moved to the front of 'transported' (line 567).

[Q]12. Figure 1: it is not easy for the readers to understand meaning. Please enlarge four panels of helicopter flight routes and reduce size of the East Asia map. Furthermore, panel (a) can be removed and the location of three cities could be marked in panel (b). N and E should be put at the front of latitude ad longitude, such as 50°N and 120°E.

(A12) The maps in Figure 1 have been improved by depending on your suggestion. Thank you for your comments (Figure 1).

[Q]13. Figure 2: according to the meaning described in the paper, the authors would like to use depolarization ratio of aerosols from lidar measurements, for classifying dust events and non-dust events. But the lidar data as shown in fig. 2 is attenuated backscattering, not depolarization ratio. Same as for the panel (a) in fig. 4 and fig. 5. Please replace the data.

(A13) In the previous manuscript, the data in Figs. 2, 4 and 5 were originated from depolarization ratio, but I showed wrong scale bar and unit. Sorry for causing confusion. The scale bar and unit have been changed to correct ones in the revised manuscript (Figures. 2, 4 and 5). Furthermore, the explanation about depolarization ratio have been also revised for describing that the ratio means the rates of non-spherical aerosols among all particles (lines 162-164).

[Q]14. In my opinion, more bacteria should be observed during dust events comparing the condition during non-dust events. Because mineral dust usually can be long-range transported with bioaerosols. However, concentration of fluorescent particles (especially blue particles) at near surface (ground level) was lower during dust events (as shown in fig. (a) and (b)) than those during non-dust events. Please explain the reason.

(A14) On our opinion, the fluorescent particles (blue particles and others) are mostly

similar each other between fig. (a) and (b), because the particle concentration units of x axis for fig. (a) are one order higher that for fig. (b); fig. (a): 106 particles/m3, and fig. (b): 105 particles/m3. However, I think that the reason for the similar concentrations is needed for this paper and should be inserted in the revised manuscript. At this sampling periods, the high amounts of bioaerosols would be transported to high altitudes and have not fall down to ground surfaces. On the other hands, the air mass during non-dust events is thought to including high amounts of local aerosols. Accordingly, the microbial concentrations in non-dust events were higher than those of dust events. This explanation has been inserted in the revised manuscript (lines 479-484).

[Q]15. Figure 3: there are several backward trajectories in each panel, but the authors claimed that these three-day backward trajectories only be obtained at two altitudes (2500m and 1200m). Same as for the panel (c) in fig. 4 and fig. 5. Please explain it.

(A15) Trajectories at two altitudes (2500m and 1200m) were calculated at every hour for 4hr (0hr, 1hr, 2hr, 3hr and 4hr) before the sampling finish time of each sampling periods. Accordingly, there are total 10 trajectories for each panel. This explanation has been inserted in the captions of Figs. 3, 4 and 5 (lines 1005-1006, 1019-1020, 1033-1034).

[Q]16. Figure 5: the title of x-axis in panel (a) should be "March 2015", please change it.

(A16) Sorry. I have changed "March 2014" to "March 2015" (Figure 5).

[Q]17. The results in the paper give us more information about bioaerosols in the atmosphere, especially during dust events. The authors are encouraged to compare their results with others from previous studies. Please summarize similar results from other papers in response to dust events, and then add a table in Section discussion.

(A17) As your comment, more references have been cited and the bacterial communities differed from the data of previous researches was discussed in the revised

C5

manuscript (Sections of Introduction and Discussion, Table 2).

Please also note the supplement to this comment: https://www.atmos-chem-phys-discuss.net/acp-2016-1095/acp-2016-1095-AC2supplement.pdf

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1095, 2017.

Fig. 1 T. Maki et al.

Fig. 1. Revised Figure 1

Fig. 2. Revised Figure 2

Fig. 3 T.Maki et al.

Fig. 3. Revised Figure 3

C9

Fig. 4. Revised Figure 4

Fig. 5. Revised Figure 5

, Fig. 6 T.Maki et al.

Fig. 6. Revised Figure 6

Fig. 7. Revised Figure 7

Fig. 8 T. Maki et al.

Fig. 8. Revised Figure 8

Table 1 Sampling information during the sampling periods.

Sample name	Sampling date	Collection time (JST)	Total time (min)	Air volume	Sampling method	Sampling location ^{*1}	Free troposphere*2
13H319-u	19 March 2013	14:04 - 15:04	60	700 L	helicopter	2500m	FT
13H319-m		15:19 - 16:19	60	700 L	helicopter	1200m	ABL
13H319-I		14:25 - 15:25	60	700 L	building	10m	GL
13H428-u	28 April 2013	12:10 - 13:04	56	653 L	helicopter	2500m	FT
13H428-m		13:13 - 14:03	50	583 L	helicopter	1200m	ABL
13H428-I		12:03 - 13:03	60	700 L	building	10m	GL
14H328-u	28 March 2014	12:50 - 13:50	60	700 L	helicopter	3000m	FT
14H328-m		14:04 - 15:04	60	700 L	helicopter	1200m	ABL
14H328-I		13:00 - 14:00	60	700 L	building	10m	GL
15H320-u	20 March 2015	12:26-13:23	47	548 L	helicopter	2500m	FT
15H320-m		13:39-14:40	60	711 L	helicopter	500m	ABL
14H323-m	23 March 2014	10:45-11:02	17	11.1 L	helicopter	1200m	ABL
14H324-m	24 March 2014	9:09-9:30	21	13.7 L	helicopter	1200m	ABL
14H325-m	25 March 2014	9:31 - 9:50	29	18.9 L	helicopter	1200m	ABL
14H328-m	28 March 2014	14:04 - 15:04	60	700 L	helicopter	1200m	ABL
14H329-m	29 March 2014	9:06-9:24	15	9.75 L	helicopter	1200m	РТ
15H316-m	16 March 2015	11:21-11:43	22	14.3 L	helicopter	1200m	FT
15H317-m	17 March 2015	11:04-11:31	27	17.6 L	helicopter	1200m	FT
15H320-u	20 March 2015	12:26-13:23	47	548 L	helicopter	2500m	FT
15H321-m	21 March 2015	15:35-15:55	20	13.0 L	helicopter	1200m	FT

*1 Height above the ground. *2 Free troposhere: FT, Atmospheric boundary layer: ABL, Phase transiens: PT, GL: Ground level

Fig. 9. Revised Table 1

						Analytical method for		Dominated Dactoria		
Sampling area ¹⁴	Sample	Location	Altitudes (m)	Sampling place	Sampling method	microorranisms	Ist	2nd	Jed	nferme
							Bacteroidetes	Actinobactoria	Proteshacteria	
Dast source area	Sail	Taklamakan Desert, China		Ground surface	soil sampling	clone libarary	(Subjurybacterija)	(Actinebactoria)	(Alpha, Beta, Gamma)	Yamaruchi et al.
							Actinobactoria		Bacternidetes	
Dust source area	Sail	Gobi Desert, China		Ground surface	soil sampling	clone libarary	(Actinobacteria)	Proteobacteria (Beta)	(Sobiarobacterija)	Yamaruchi et al.
Dust source area	Sail	Taklamakan Desert, China		Ground surface	soil sampling	pyrosequencing	Firmicates (Bacilli)?	Actinobacteria	Protoshactoria (Gamma)	An et al. 2013
Dust source area	Sail	Gobi Desert, China		Ground surface	soil sampling	pyroseasencing	Firmicates (Bacilli)?	Protosbacteria (Gamma)	Rectoroidates	An et al. 2013
							Actinobactoria			
Dust source area	Sail	Taklamakan, China		Ground surface	sail samples	clone libarary	(Actinobacteria)	Firmicates (Bacilli)	Protoshacteria	Puspitasari et al.
Dust source and							Protoobacteria	Actinobactoria	Bacteroidetes	
deposition area	Sail	Loss plateau, China		Ground surface	soil sampling	clone libarary	(Beta, Gamma)	(Actinehactoria)	(Sphingsbacterila)	Vamaguchi et al.
Dust source and										
deposition area	Sail	Lores plateau, China		Ground surface	soil sampling	PCR-DGEX	Protoobacteria	Bacteroidetes	Genmatimonadates	Kenzaki et al. 28
									Actinobacturia	
Just source area	Air	Tsogt-Oreo, Mangolia	3	Ground surface	Stration	Milling sequencing	Proteobacteria (Alpha)	Firmicutes (Bacilli)	(Actinobacteria)	Maki et al. 2017
bust source area	Air	Dankaang, China	10	Top of building	Stration	clone libarary	Firmicates (Bacilli)?	Protoubactoria	Bacterwidetes	Puspitasari et al.
bust source area	Air	Dauhuang, China	500	Ralloon	Stration	PCR-DGEX	Firmicates (Bacilli)?	-		Maki et al. 2008
Just cource area	Air	Dankang, China	300	Halson	Mana	close liberary	Protobacteria (California)	Furniscules (Recch)		Kalakawa et al.
et deposition area	Aur	Note penneda, Japan	3990	Arcran	Manager	close libarary	Purmecules (Haodh)?	Bacterendeles (Bacterendia)	Pretechactoria (Gamma)	Maks et al. 2015
and descended on some		Non-sectored a lower	1000	through the	(hundred)	Million companying	Elementer (BerdWeb	Actuobactoria	(Alaba & Bata)	Mald at al 2014
et deposition area	Aur	Note penneda, Japan	3990	Arcran	Manager	Moseq sequencing	Purmecules (Haodh)?	(Adaebacheus)	(Appliant Bolta)	Maka et al. 2015
and descended on some		Mr. Backshord Assessment 1974	1740	Mr. Bushalan	(hundred)	and the set	Elementer (BerdWeb	Actuobactoria	Bentschesterle (Commit-	Further of Art 2
in adjourne area		AL BEITH OBSTUDY, UK	1.00	ALL BALLENS		Cunny	Bester besterie	(Automotive and a	(canna)	
and descended on a second		Mr. Backshord Assessment 1974	1700	Mr. Bushalan	floor from the second	15	(Bate & Comme)	(A selender started a)	Elementer (Berdlift)	Kardah at al. 2002
in adjourne area		AL BEITH OBSTUDY, UK	1.00	ALL BALLENS		Antonia	(In the Contral)	(Antonio antonio	A stimburger (manual)	
and descended on some	£	Mr. Totorow Long	3450	Mr. Totoroom	for a second sec	INCO INCIDE	Elementer (BerdWeb	(Bate Commo)	(A selector set of a)	Transfer et al. 160
in adjourne area		NC Canyona, Japan	24.00	And Landshing	Anter campang	PC NORMAL	Louise (second)	(and, Commit)	Actinobacturia	12001010.20
and descended on some	£	Mr. Totorow Long	3450	Mr. Totoroom	for a second sec	INCO INCIDE	Elementer (BerdWeb	Restortion to Clinical	(A selector of a	Mald and Mill
in adjourne area		NC Canyona, Japan	24.00	And Landshing	Anter campang	PC NORMAL	Louise (second)	Protoshactoria	(Annessentia)	Aug 11 81 2011
ant dependition area	Air	Note positionale Januar	1200	Helicenter	Orration	Million segmenting	Eleminates (Bacille)	(Alpha Gamma)	Constructoria	This study
						and advantage		(Deinessoury-Thorney	
ant dependition area	Air	Serve Japan	1000	Balloon	Orration	Million segmenting	Eleminates (Bacille)	Protosbacturia (Alaba)	(Deinecacci)	Maki et al. 2015
		contract and and						Bacternideter	Actinohacturia	
at depending area	Air	Oraka Janan	588	Air craft	Obstation	close Barary	Ecolerator (BacHD)	(Sobiesebacterile)	(Actinobactoria)	Vamarachi et al
est deposition area	Air	Sura, Japan	500	Balloon	Stration	clone libarary	Firmicates (Bacilli)?	Bacternidetes (Bacternidia)	Proteshacteria (Gamma)	Maki et al. 2013
est deposition area	Air	Sura, Japan	689	Balloon	Stration	PCR-DGEE	Firmicates (Bacilli)?	-		Maki et al. 2010
		contract and and					Actinobactoria	Protoshactoria		
est deposition area	Air	Soual, South Korea	25	Top of building	liquid impirer	pyroseasencing	(Actinobacteria)	(Aloha, Gamma)	Firmicates (Bacillit)	Chartal 2017
							Actinobacteria		Acidebacteria	
est deposition area	Air	Ouka, Japan	29	Top of building	Stration	pyroseasencing	(Actinobacteria)	Cyanobacteria	(Acidebacteria)	Park et al. 2016
							Actinobacteria			
ext deposition area	Air	Seeal, Seath Korea	17	Top of building	Stration	PCR-DGEE	(Actinobacteria)	Firminates (Bacillit)	Protosbactoria (Gamma)	Lee et al. 2011
									Bactereidetes	
ast deposition area	Air	Brijing, China	15	Top of building	Stration	pyrosequencing	Firmicutes (Bacilli)	Protoubacteria (Gamma)	(Flavohacteriia)	Weietal, 2016
							Actinobacteria	Protosbactoria	Chlorafirai	
ast deposition area	Air	Bojing, China	10	Top of building	Stration	HiSeq sequencing	(Actinobacteria)	(Alpha, Beta, Gamma)	(Thermomicrebia)	Can et al. 2014
est deposition area	Air	Soual, South Korea	10	Top of building	Stration	clone libarary	Firmicates (Bacilli)?	Actinobactoria	Bacternidetes	Jeen et al. 2011
								Deinococcus-Thermos		
ast deposition area	Air	Sum, Japan	10	Top of building	Stration	MiNeq sequencing	Firmicates (Bacilli)?	(Dvinecocci)	Protoobacteria (Alpha)	Maki et al. 2015
							Actinobactoria			
ast deposition area	Air	Goyang, South Kerva	-	Top of building	Stration	pyrosequencing	(Actinobacteria)	Protoubacteria (Gamma)	Firmicutes (Bacilli)†	Cha et al. 2016
ast deposition area	Air	Kanazawa, Japan	10	Reof of building	Stration	Millioq sequencing	Firmicates (Bacilli)?	Cyanobacteria	Protobactoria (Alpha)	Maki et al. 2014
								Protoubactoria		
	Ale	Western Pacific Ocean	-	Ship board	Stration	pyrosequencing	Firmicutes (Bacilli)?	(Bets, Gamma)	Cyanobacteria	Xia et al. 2015

Fig. 10. Revised Table 2

Fig. 11. Revised Figure S4

C17