Atmospheric Chemistry and Physics Discussions

1 Long-term change in the contributions of various source

- 2 regions to surface ozone over Japan
- 3
- 4 Tatsuya Nagashima¹, Kengo Sudo^{2,3}, Hajime Akimoto¹, Junichi Kurokawa⁴, and
- 5 Toshimasa Ohara¹
- 6 ¹National Institute for Environmental Studies, Tsukuba, Japan
- 7 ²Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
- 8 ³Frontier Research Center for Global Change, Yokohama, Japan
- 9 ⁴Asia Center for Air Pollution Research, Niigata, Japan
- 10 Correspondence to: T. Nagashima (nagashima.tatsuya@nies.go.jp)
- 11

12 Abstract

13 The relative contributions of various source regions to the long-term (1980–2005) increasing 14 trend in surface ozone (O_3) over Japan were estimated by a series of tracer-tagging 15 simulations using a global chemical transport model. The model well simulated the observed 16 increasing trend of surface O_3 including its seasonal variation and geographical features in 17 Japan and demonstrated the relative roles of different source regions in forming this trend. Most of the simulated increasing trend of surface O3 over Japan (~97 %) was explained as the 18 19 sum of trends in contributions of different regions to photochemical O₃ production. The 20 increasing trend in O₃ produced in China accounted for 36 % of the total increasing trend and 21 those in the other northeast Asian regions (the Korean Peninsula, coastal regions in East Asia, 22 and Japan) each accounted for about 12-15 %. Furthermore, the contributions of O₃ created in 23 the entire free troposphere and in West, South, and Southeast Asian regions also increased; 24 and their increasing trends accounted for 16 and 7 % of the total trend, respectively. The 25 impact of interannual variations in climate, in methane concentration, and in emission of O₃ 26 precursors from different source regions on the relative contributions of O_3 created in each 27 region estimated above was also investigated. The variation of climate and the increase in 28 methane concentration together caused the increase of photochemical O₃ production in several 29 regions, and represented about 19 % of the total increasing trend of surface O₃ over Japan. 30 The increase in emission of O₃ precursors in China caused an increase of photochemical O₃ 31 production not only in China itself but also in the other northeast Asian regions and accounted 32 for about 46 % of the total increase in surface O₃ over Japan. Similarly, the relative impact of 33 O₃ precursor emission changes in the Korean Peninsula and Japan were estimated as about 16 34 and 4 % of the total increasing trend, respectively. The O₃ precursor emission change in regions other than northeast Asia caused increases in surface O3 over Japan mainly through 35 36 increasing photochemical O₃ production in West, South, and Southeast Asia and the free 37 troposphere, and accounted for about 16 % of the total.

38 1 Introduction

39 Tropospheric ozone (O_3) plays multiple roles in the atmosphere. O_3 itself is an oxidant and 40 photodissociates to generate the hydroxyl radical which strongly oxidizes many atmospheric 41 compounds including various air pollutants and thus removes them from the atmosphere. In 42 contrast, high levels of O_3 are a major air pollutant due to adverse effects on human health, 43 natural vegetation, and agricultural produce (Wang and Mauzerall, 2004; Mauzerall et al., 44 2005; US EPA, 2006; Silva et al., 2013). Moreover, tropospheric O₃ is a major greenhouse 45 gas in the atmosphere, and reduction of its amount was recently recognized as an effective 46 measure to mitigate near-term climate change (UNEP and WMO, 2011; Shindell et al., 2012). 47 Therefore, the spatial and temporal variations in tropospheric O_3 have been always a matter of 48 scientific and public concern.

49 An increasing trend in tropospheric O_3 concentration has been observed during recent 50 decades at many locations in East Asia including Taiwan (Chou et al., 2006; Chang and Lee; 51 2007; Li et al., 2010; Lin et al., 2010), mainland China (Lu and Wang, 2006; Ding et al., 52 2008; Xu et al., 2008; Wang et al., 2009; Zhang et al., 2014), and South Korea (Susaya et al., 53 2013; Lee et al., 2014; Seo et al., 2014). The increase rates of O3 in those East Asian regions 54 significantly vary depending on location and season in the range of about 0.3–3 ppbv/yr; 55 however, the increases are generally larger than the trends in tropospheric O_3 for other regions 56 in the world (Cooper et al., 2014). Japan is no exception, with an increasing trend found in 57 various observations of O₃ over the past approximately 40 years. Routine ozonesonde 58 measurements since 1970 at three Japanese sites of Sapporo (43° N), Tsukuba (36° N), and 59 Kagoshima (32° N) showed an increasing trend of O_3 concentration in the lowermost troposphere up to about 1990 and relatively stable thereafter, with largest increase near the 60 61 ground and discernible about 300 hPa height and below (Logan et al., 1999; Oltmans et al., 62 2006). With an air mass classification method based on backward air trajectories, Naja and 63 Akimoto (2004) showed that a significant amount of the air masses reaching these 64 ozonesonde sites in Japan spend substantial time over polluted regions in East Asia. The O₃ levels in these regionally polluted air masses increased from the 1970s to the 1990s, mainly 65 due to large increases in nitrogen oxide ($NO_x = NO + NO_2$) emissions over China in the 1990s. 66 67 Oltmans et al. (2013) analyzed a rather short period of data (1991–2010) obtained at the Ryori 68 (39° N) surface site in north-eastern Japan and showed an increase into the mid-1990s 69 followed by relatively little change. Other ground-based observations at a mountain site (Mt. 70 Happo; 43° N, 1850 m asl) and three sites in the marine boundary layer along the west coast 71 of Japan [Rishiri (45° N), Tappi (41° N), and Sado (38° N)], where few sources of pollutants 72 exist nearby, obtained under the monitoring network of EANET (the Acid Deposition 73 Monitoring Network in East Asia) also showed increasing trends of O₃ concentrations at least 74 until the mid-2000s (Tanimoto, 2009; Tanimoto et al., 2009; Parrish et al., 2012).

75 In addition, analysis of long-term observations by the ambient air quality monitoring 76 network mainly established in urban-suburban regions in Japan also showed continuous 77 increases of surface O₃ from the mid-1980s until the present (Ohara and Sakata, 2003; Ohara 78 et al., 2008; Kurokawa et al., 2009; MOE Japan, 2013; Wakamatsu et al., 2013; Akimoto et 79 al., 2015). However, simultaneous observations of O_3 precursors such as NO_x and non-80 methane hydrocarbons (NMHCs) by this monitoring network revealed their decreasing trends 81 in the same period (MOE Japan, 2013), which seemed inconsistent with the increasing trend 82 of O₃ over Japan. These observed features of O₃-related atmospheric species in Japan suggest 83 that there should be an influence of transboundary transport from outside of Japan on the 84 recent increasing trend in O_3 . The influence of transboundary transport on surface O_3 in East 85 Asia was examined in several studies (Sudo and Akimoto, 2007; Li et al., 2008; Nagashima et

86 al., 2010; Wang et al., 2011). Nagashima et al. (2010) demonstrated that the O_3 transported 87 from outside of Japan accounted for more than 70 % of surface O₃ over Japan in the cold 88 season (October–March) during 2000–2005, and most was attributable to O_3 from distant 89 sources outside East Asia and from the stratosphere. In the warm season (April-September), 90 the contribution of domestically created O_3 in Japan to surface O_3 over Japan increased 91 significantly (about 20–40 %), the short range intra-regional transport of O_3 from other parts 92 of East Asia still contributed about 25 %, and long range inter-regional transport of O_3 from 93 outside East Asia and the stratosphere particularly in spring could account for about half of 94 surface O₃ over Japan.

95 Therefore, the influence of O_3 from source regions outside and inside East Asia and the 96 stratosphere should be considered to explain the cause of the increasing trend in surface O₃ 97 over Japan. The rapid increase in O3 precursor emissions in East Asia in recent decades 98 (Ohara et al., 2007; Kurokawa et al., 2013) was demonstrated as a major cause of the 99 increasing trend of springtime O₃ over Japan by comparing regional chemical transport model (CTM) simulations of recent decades with and without the East Asian O3 precursor emission 100 increases during the period (Kurokawa et al., 2009; Tanimoto et al., 2009). However, they 101 102 only showed the springtime O_3 case and it was unclear whether the relationship held in other 103 seasons. Moreover, the relative contributions of individual countries or regions in East Asia 104 have not been well examined, particularly concerning increased surface O₃ over Japan.

105 Here, we investigated the cause of the continuous increase in surface O₃ over Japan reported 106 in the above literature, focusing on the relative contributions of various source regions over 107 the globe, particularly the contributions of individual regions in East Asia, with a long-term 108 simulation of a global CTM using the tagged tracer method. Using the same model and 109 method, Nagashima et al. (2010) showed such relative contributions of regions inside and 110 outside East Asia on surface O₃ over Japan as average values for the early 2000s. The current 111 study investigated the temporal evolution of the relative contributions of each region for the 112 26 years of 1980-2005.

113

114 2 Methods

115 **2.1 Model description**

116 In this study, we employed a chemistry climate model (CCM), CHASER (Sudo et al., 2002), developed for the atmospheric chemistry research in the troposphere. The basic setting of the 117 118 model was almost identical to that used by Nagashima et al. (2010). However, the horizontal 119 resolution was modified from T63 (about 1.9° by 1.9° grid spacing in longitude and latitude) 120 to T42 (about 2.8° by 2.8°), because longer simulation period was necessary than in the 121 previous study, and so the cost of computation was reduced in the present study by selecting lower horizontal resolution. There were 32 vertical layers with the top layer set at 122 approximately 40 km altitude. A detailed tropospheric photochemistry consisted of 113 123 chemical reactions and 27 photodissociation involving O₃, HO_x, NO_x, methane (CH₄), CO and 124 125 NMHCs calculated the temporal evolution in the concentrations of 53 chemical species. The 126 gas and liquid phase oxidation of sulfur dioxide (SO₂) and dimethyl sulfide to form the sulfate 127 aerosol was also included in the model. The concentrations of O_3 and some nitrogen 128 compounds (NO_x , HNO_3 , and N_2O_5) above the tropopause that should affect tropospheric 129 chemistry were assimilated into the monthly mean output data of stratospheric CCM, because 130 the version of CHASER used was unable to calculate several chemical processes, such as 131 halogen-related chemical reactions, which are indispensable for realistic representation of

such chemical compounds in the stratosphere. For the transport of chemical species, a semiLagrangian advective transport scheme (Lin and Rood, 1996; van Leer, 1997) and vertical
convective transport associated with cumulus convection process were considered. The model
also included dry and wet deposition of chemical species.

136 In this study, we conducted tracer-tagging simulation by using two different setups (full-137 chemistry and tracer-transport setups) of CHASER. The full-chemistry setup calculated the 138 actual temporal change in the concentration of chemical species through the abovementioned 139 chemical and physical processes and outputted the chemical production and loss tendencies of 140 O₃ and related species. Then, the tracer-transport setup used the outputted chemical 141 tendencies to calculate the temporal change in the concentration of hypothetical O₃ tracers. In 142 the following subsection, the calculation procedure is briefly described.

143

144 **2.2** Outline of the numerical simulations

145 **2.2.1 Forcings for long-term simulation**

Long-term simulation was performed for the period 1980–2005. To drive the physical properties of the model for this 26-year period, the temperature and horizontal wind velocities in the model were assimilated into the National Center for Environmental Prediction/National Center of Atmospheric Research (NCEP/NCAR) 6-hour reanalysis data (Kalnay et al., 1996) of the corresponding year, and sea surface temperature and sea ice data of the Hadley Centre's Sea Ice and Sea Surface Temperature (HadISST) data set (Rayner et al., 2003) were used in the model.

153 The monthly mean stratospheric O_3 data of Akiyoshi et al. (2009) was used for the 154 assimilation above the tropopause for this period. These data were the output of a 155 stratospheric CCM simulation according to the hindcasting scenario for 1980-2004 (REF1 156 scenario) of the CCM validation activity (CCMVal) (Eyring et al., 2005), and included an 157 interannual variation (IAV) associated with the 11-year solar cycle and large declines after 158 1982 and 1991 due to the El Chichon and Pinatubo eruptions, respectively, in addition to a 159 continuous decreasing trend during the whole period. Although the simulated declines of 160 stratospheric O_3 due to the two large volcanic eruptions were somewhat overestimated, the 161 simulated IAVs in stratospheric O_3 reasonably well represented those observed with a total 162 ozone mapping spectrometer (TOMS) from satellites (Akiyoshi et al., 2009). Incidentally, the 163 stratospheric O₃ data of 2004 were used for 2005.

The long-term variation of the emissions of O3 precursors (NOx, CO, and NMHCs) and SO2 164 165 were taken from multiple emission inventories. For anthropogenic emissions in Asia, the 166 Regional Emission inventory in ASia (REAS ver.1.2) (Ohara et al., 2007) was used for the 167 whole simulation period (1980-2005); the REAS emission data were available for each year 168 in the period. Kurokawa et al. (2009) used these emission data with a regional air quality 169 model representing well the interannual variability of surface O_3 over Japan for similar period 170 (1981–2005) to the present study. For anthropogenic emissions outside Asia, a combination of 171 three versions of EDGAR (Emission Database for Global Atmospheric Research) emission 172 data was used: EDGAR-HYDE (Van Aardenne et al., 2001) for 1980 and 1990; EDGAR v3.2 173 (Olivier and Berdowski, 2001) for 1990 and 1995; and EDGAR v3.2 Fast Track 2000 174 (FT2000) (Olivier and Berdowski, 2001) for 2000. Because several emission sectors 175 considered in EDGAR v3.2 were not considered in EDGAR-HYDE, the emissions for 1990 176 in EDGAR-HYDE were generally smaller than in EDGAR v3.2. Therefore, we used EDGAR

177 v3.2 data for 1990, and also scaled them to estimate emission data for 1980 rather than simply 178 using EDGAR-HYDE data for 1980. For that, we scaled EDGAR v3.2 data for 1990 so that 179 the ratio (r) of the difference between 1980 (f_1) and 1990 data (f_2) and their average in EDGAR-HYDE [i.e., $r = (f_2 - f_1)/(f_1 + f_2)/2$] equaled the corresponding ratio (R) calculated 180 181 from 1990 data in EDGAR v3.2 (F₂) and 1980 data scaled from it (F₁) [i.e., $\mathbf{R} = (\mathbf{F}_2 - \mathbf{F}_1)/(\mathbf{F}_1 + \mathbf{F}_2)$ 182 F_2 /2]. We calculated F_1 from the known values of f_1 , f_2 , and F_2 using the equation r = R. 183 Since EDGAR emission data were not available for each year but for every 10 or 5 years in 184 the simulation period, the emissions for intermediate years were interpolated, and FT2000 185 data used for years after 2000. The vegetation fire emission data developed in the REanalysis 186 of the TROpospheric chemical composition over the past 40 years project (RETRO) (Schultz 187 et al., 2008) were used for O_3 precursor emissions from biomass burning for the whole land 188 area. RETRO data were available for each year until 2000 in the simulation period, and data 189 for 2000 were used for years after 2000. Historical transition of the atmospheric 190 concentrations of carbon dioxide, nitrous oxide (N₂O), and CH₄ were prescribed with those 191 used in Nozawa et al. (2005), which were somewhat old estimations of the historical 192 evolution in greenhouse gas concentrations, but not much different from recent estimations 193 such as for the Representative Concentration Pathways (RCPs) (Meinshausen et al., 2011). 194 The difference in the concentrations between both estimations were generally within a couple 195 of percent in the simulation period.

196 The linear trends of NO_x and NMVOC annual emissions used in this study in the simulation 197 period of 1980–2005 are shown in Fig. 1. The long-term trends of emissions of both species 198 showed generally similar geographical features to each other; large decrease trends in central 199 Europe, Scandinavia, western Russia, and Kazakhstan, whereas there were widely spread 200 increasing emissions in West, South, Southeast, and East Asia, almost all Africa and Central 201 and South America except for inland Brazil. In North America, NO_x emission generally 202 decreased in the simulation period except for the west coast and New England area of the 203 USA, but that of NMVOC mostly increased with a few patchy exceptions. The trends of NO_x 204 and NMVOC emissions mentioned above were mainly due to the change in anthropogenic 205 emissions, while the change in biomass burning emissions led to a discernible trend in several 206 regions such as inland Brazil and the south of Sahel.

207 The long-term evolution of annual emissions of NOx and NMVOC over several source areas 208 in the Northern Hemisphere is shown in Fig. 2. Because the emission data were the 209 combination of three different datasets outside Asia, there were somewhat discontinuous 210 changes at the joint years (1990 and 1995) in European and North American emissions. The 211 emissions of NO_x and NMVOC over Europe had peaks around 1990 and generally decreased 212 afterward. Over North America, both species showed small long-term trends: slight decreases 213 in NO_x and slight increases in NMVOC emissions. The emissions of both species over China 214 greatly increased during the whole period. The NO_x emissions were about 4.0 times larger in 215 2005 than 1980 and correspondingly NMVOC was 2.5 times larger, which made emissions of 216 both species for China equal to or even surpassing those for Europe or North America in 2005. 217 The emissions of both species over the Korean Peninsula increased approximately 2.8 times 218 during this period. However, those over Japan showed no such increase: NO_x emission 219 decreased until 1995 and thereafter remained stable, whereas NMVOC emissions went up 220 until 1995 and then slightly decreased.

221 2.2.2 Tracer tagging

We conducted a 26-year simulation using the full-chemistry setup of CHASER with all the forcings mentioned above, followed by another 26-year simulation with the tracer-transport

224 setup of CHASER which calculated the concentration of hypothetical O₃ tracers, each tagged 225 with a particular region in the model domain. The procedure to tag a tracer with each region 226 in the second simulation was the same as used by Nagashima et al. (2010) and a brief 227 description follows. In the second simulation, the transport and dry deposition of each O_3 228 tracer were calculated same as in the first simulation, however the chemical development of 229 tracers was calculated using the chemical production (P) and loss frequencies (L) of the 230 extended odd oxygen family $[O_x = O_3 + O + O(^1D) + NO_2 + 2NO_3 + 3N_2O_5 + PAN_8 + HNO_3]$ 231 + other nitrates] calculated and archived in the first simulation. In the first simulation, 3D 232 fields of P and L were outputted every 6 hours. Each O₃ tracer could be lost chemically 233 everywhere in the model domain at the frequency of L, but could be chemically produced 234 only inside its tagged region. In the stratosphere over the tropopause defined by the lapse rate, 235 the concentration of O_3 tracer tagged with the stratosphere was assimilated into the same 236 stratospheric O_3 data as used in the first simulation, but the concentration of the tracers tagged 237 with the region in the troposphere were all set to zero. The calculated concentration of each 238 tagged O₃ tracer at a given location represents the contribution of O₃ produced in each source 239 region and transported to that location.

240 The horizontal and vertical separation of the model domain for the tracer tagging was also 241 the same as used by Nagashima et al. (2010). The troposphere in the model domain was 242 horizontally separated into 22 regions and each horizontal region was further separated 243 vertically between the free troposphere (FT) and the planetary boundary layer (PBL). The 244 stratosphere was considered one separate source region, that is, the model domain was 245 separated into 45 source regions. The 22 regions for horizontal separation are shown in Fig. 1 246 and each region was assigned a three-letter code (e.g., AMN for North America) which is 247 used in the following sections. For the vertical separation of the source regions in the 248 troposphere, the PBL was defined as the lowest six layers in the model (surface to about 750 249 hPa), based on the observed and modeled vertical profiles of O₃ production.

250 The long-term tracer-tagging simulation allowed estimation of the long-term variations in 251 contributions of each source region to the O₃ concentration at given receptor locations. This is 252 important information to explain the cause of the reported increasing trend in surface O_3 over 253 East Asia. However, it should be noted that the tracer-tagging simulation calculates the 254 amount of O_3 in a receptor location that was produced chemically in each source region from 255 O₃ precursors emitted both from the source region and adjacent source regions. Thus, the 256 contribution of a source region estimated in tracer-tagging simulation should not be fully 257 attributed to emissions of O₃ precursors in that source region. Emission sensitivity simulation 258 is another method of estimating the portion of O₃ fully attributable to a change in O₃ precursor 259 emissions in a source region, and takes the difference of simulated O_3 between two model 260 runs with and without perturbed O_3 precursor emissions in that source region. The resulting 261 estimations of source contributions by the two methods can differ; however, the differences 262 have not yet been well quantified. Li et al. (2008) reported that the difference between the two 263 methods could be as much as 30 % in source apportionment estimation for one location and 264 time (i.e., Mt. Tai in central eastern China in June 2006). Wang et al. (2011) found somewhat 265 larger differences in the contributions of China to domestic O₃ concentration between the two 266 methods for each month of the year, but no discussions were made for O₃ over Japan.

Nevertheless, we employed the tracer-tagging simulation to study the cause of reported longterm change in surface O₃ over Japan mainly due to its computational efficiency. Thus, the results should be carefully interpreted in terms of the difference between the source regions of chemical O₃ production and those of O₃ precursor emissions. The computational efficiency resulting from the tracer-tagging approach and relatively coarse horizontal resolution enabled

us to make several sensitivity simulations with the different combination of forcings for longterm simulation. In the following sections, the simulation with the full set of long-term forcings described above, hereinafter referred to as "standard" simulation, is initially analyzed. This is then further interpreted using the results of sensitivity simulations; the specific settings of sensitivity simulations are also described.

277

278 3 Results and discussion

279 **3.1** Long-term evolution of surface O₃ over Japan

280 Nagashima et al. (2010) validated how well CHASER can reproduce the observed features 281 of surface O_3 concentrations by comparing the simulated surface O_3 concentrations with 282 observations taken during 2000-2005 at several sites mainly in rural areas in the Northern 283 Hemisphere, and CHASER successfully simulated the annual variation of surface O₃ in a 284 variety of regions. In this study, the horizontal resolution of the model differed from that used 285 in Nagashima et al. (2010); however, the model well represented the observed concentrations 286 and seasonal evolutions of surface O_3 (Fig. S1 and Table S1 in the Supplement). The surface 287 O_3 over Japan has been observed at ambient air quality monitoring stations since the early 288 1970s when severe air pollution occurred in industrial or urban areas. The monitoring data 289 have been compiled by the Atmospheric Environmental Regional Observation System 290 (AEROS). The number of stations increased since the launch of the system and, for the period 291 of simulation (1980–2005), about 1000 monitoring stations widely distributed throughout 292 Japan except in the southern islands could be used for validation of the model results. The 293 monitoring data of AEROS have been used to examine the long-term variation of surface O₃ 294 over Japan in several studies and showed significant increasing trends (Ohara and Sakata, 295 2003; Ohara et al., 2008; Kurokawa et al., 2009; Akimoto et al., 2015). We validated the 296 simulated surface O_3 over Japan with the AEROS data in terms of the long-term variation in 297 the following.

298 For the validation, the monitoring sites selected had continuously observed the surface O_3 299 during the simulation period (1980-2005). To ensure continuity of sites, we selected 300 monitoring sites with annual mean surface O_3 available for every year in the simulation period. 301 The annual mean data at a monitoring site was calculated as the average of monthly means 302 when available for more than 9 months, the monthly mean was calculated from daily means 303 when available for over 19 days per month, and the daily mean was calculated from hourly 304 means when available for more than 19 hours per day. There were 339 sites, located mainly in 305 populated areas of Japan except in the northernmost island (Hokkaido) and southern islands 306 (Nansei Islands). We first calculated the annual mean surface O_3 from the observed hourly 307 data at each monitoring site as described above, and then the annual means of all sites were 308 averaged to calculate the observed annual mean surface O_3 over Japan. The simulated annual 309 mean surface O_3 over Japan was calculated as the average of annual means of the model grids, 310 which included the locations of monitoring sites selected for the validation. Therefore, the 311 model grids including Hokkaido or Nansei Islands were not used to calculate the simulated 312 annual mean. The temporal variations of observed and simulated annual mean surface O₃ 313 anomalies during 1980-2005 averaged over Japan are shown in Fig. 3. During the period, the 314 observed annual mean surface O₃ over Japan showed a clear increasing trend with a linear 315 increase of about 2.70 ppbv/decade, which was significant at the 5 % risk level. The simulated 316 annual mean surface O_3 over Japan also showed a significant increasing trend with a rate of 317 about 2.58 ppbv/decade, which corresponded well to the observed increase in surface O_3 over

318 Japan. The value of the linear increasing trend and the observed features of IAVs in surface 319 O_3 over Japan – such as a rapid increase from the mid-1980s to the mid-1990s followed by a 320 stagnation of increase for about 7–8 years and a further increase in the past several years – 321 were reasonably well captured by the model.

322 The model also well represented the longitudinal differences in the long-term trend of 323 surface O_3 in Japan. Figure 4 shows the maps of linear trends of annual mean surface O_3 324 during 1980-2005 calculated from the model simulations and observations at AEROS 325 monitoring sites as selected for Fig. 3. The simulated annual mean surface O₃ showed an 326 increasing trend in the whole area including all of Japan and the Korean Peninsula (Fig. 4a). 327 The simulated increasing trend of annual mean surface O₃ well exceeded 2.0 ppbv/decade in 328 wide areas of Japan except for Hokkaido, and tended to be greater toward western Japan, 329 which is nearer to the Asian continent. However, the increasing trends of observed annual 330 mean surface O₃ at each monitoring site (Fig. 4b) differed greatly from each other even in 331 nearby sites, and there was no apparent longitudinal tendency in trends at individual 332 monitoring sites. However, we averaged the observed annual mean surface O₃ at individual 333 monitoring sites at longitudinal intervals (approximately 2.8°) of the model grids as shown by 334 gray rectangles (Fig. 4b) and calculated the long-term trend of averaged monitoring data at 335 each longitudinal band. The calculated increasing trends were clearly larger toward the west, 336 which was consistent with westward rise of the increasing trends of simulated data.

337 There were seasonal differences in the long-term increasing trend of surface O_3 over Japan. 338 The temporal variations of observed and simulated seasonal mean surface O₃ anomalies 339 during 1980-2005 averaged over Japan are shown in Fig. 5. The increasing trend of surface O₃ over Japan in the monitoring data was greatest in spring (March–May: 4.04 ppbv/year) and 340 341 was also large in summer (June-August: 3.07 ppbv/year); in contrast, increasing trends were relatively small in fall (September-November: 2.29 ppbv/year) and winter (December-342 343 February: 1.28 ppbv/year). Seasonal dependency in the increasing trends of observed surface 344 O₃ over Japan has been previously reported (Ohara and Sakata, 2003; Naja and Akimoto, 345 2004; Parrish et al., 2012). Ohara and Sakata (2003) examined almost the same O3 monitoring 346 data in Japan as used in the present study for the period 1985-1999 and showed year-round 347 increase in surface O_3 from 1985–1987 to 1997–1999 with a greater increase in the warm 348 season (March-August) than in the rest of the year. Naja and Akimoto (2004) also reported a 349 larger increase of O_3 in the warm season between the period 1970–1985 and 1986–2002 in the 350 boundary layer over Japan by analyzing ozonesonde data at four sites. Parrish et al. (2012) 351 summarized long-term changes in lower tropospheric baseline O₃ over the world including 352 two regions in Japan (Mt. Happo and several sites in the marine boundary layer grouped as one region), and showed that the increasing trend of surface O_3 was greatest in spring and 353 354 least in fall in these two regions. In the present study, the simulated increasing trend in 355 seasonal mean surface O₃ was also larger in the warm (spring-summer) than in the cold 356 season (fall-winter), consistent with the observed increasing trends.

As described above, our model captured well the basic features of long-term trends in observed surface O_3 over Japan, which allowed us to use the simulated data for further analysis on the source of the long-term trend in the next section.

360

361 3.2 Contributions of O₃ production regions

The tracer-tagging simulation for 1980–2005 was conducted to examine the long-term variations of O₃ tracers tagged by regions of photochemical production. IAVs in the annual

364 mean concentrations of each tagged O_3 tracer averaged over Japan are shown in Fig. 6. The 365 tagged tracers other than FT and stratosphere in Fig. 6 and the following figures represent the 366 contribution of O₃ produced in the PBL of different source regions shown in Fig. 1, where contributions of several source regions were grouped into some combined source regions. It 367 should be noted that the model grids used for averaging in these figures differed from those in 368 369 Figs. 3–5. They encompassed almost all of Japan excluding the Nansei Islands in order to 370 examine temporal behavior of tagged O_3 tracers in all of Japan (see Fig. 4 for actual areas for 371 averaging).

Domestically created O₃ was the largest contribution to surface O₃ concentration averaged over Japan during the whole simulation period. The contribution of domestic production had a large IAV and was larger in the last decade than previously.

375 The second largest contribution was the O₃ created in the FT as a whole during almost the 376 entire period. For the FT, the northern mid-latitude regions such as North Pacific (NPC), Europe (EUR), North Atlantic (NAT), North America (AMN), and China (CHN) made 377 378 leading contributions during the period; however, the increasing trend of these contributions 379 was considerable particularly for CHN and NPC (Fig. S2). Despite such differences among 380 the regional contributions in the FT, we hereafter only considered the total of each regional 381 contribution in the FT, since it was difficult to associate a regional contribution with a 382 particular source region of O_3 precursor emissions. The precursors eventually resulted in O_3 383 production in a region in the FT can be transported longer distance due to faster wind speed in 384 the FT and therefore would be influenced by emissions from a wider range of source regions 385 than in the PBL. The total FT contribution showed an increasing trend during the period.

386 The NO_x emission from lightning was an indispensable source of NO_x in the FT. The global 387 annual lightning-NO_x emission in the current simulation was about 3.1 TgN/year averaged 388 over the entire period and showed a small but significant increase of about 0.012 TgN/year 389 (0.39 %/year). The increase in lightning-NO_x emission was a consequence of changes in 390 convection activities due to the change in climate forced into the model during the period 391 (NCEP/NCAR meteorology and HadISST data). However, this increase in lightning-NOx 392 emission was not the main cause of the increase in the contribution of the total FT - because a 393 sensitivity simulation with all emissions, CH_4 concentration, and stratospheric O_3 fixed at the 394 year 1980 level but with the same temporal evolution in climate showed a quite similar 395 increase in lightning-NOx emission but no significant increasing trend in the total FT 396 contribution. Therefore, the main cause of the increasing trend in the total FT contribution 397 was likely to be factors other than the increase in lightning-NO_x emission.

The contribution of stratospheric O_3 was also large during the entire period, with considerable temporal fluctuations. The large decreases of stratospheric contribution in the early 1980s and 1990s stemmed from the decline of stratospheric O_3 concentration due to the impact of large volcanic eruptions of Mt. El Chichon in 1982 and Mt. Pinatubo in 1991, respectively (Akiyoshi et al., 2009).

403 In the early 1980s, the combined contributions of far remote regions from Japan in the 404 northern mid-latitude (Remote: EUR, NAT, and AMN) made a significant contribution, the 405 fourth largest, to the surface O_3 over Japan and remained at a steady level of contribution 406 during the study period. At the same time, the contribution of CHN significantly increased 407 from the mid-1980s, overtook the contribution of Remote in the early 1990s, and became the 408 largest single regional contribution - excluding the domestic one (i.e., JPN). Moreover, the 409 contributions of O₃ produced in the Korean Peninsula (KOR), the coastal regions in East Asia 410 [E-Asia-Seas: NPC, East China Sea (ECS), and Japan Sea (JPS)], and West-South-SouthEast

(WSSE) Asian regions [including Middle East (MES), India (IND), Indochina and Philippines
(IDC), and Indonesia etc. (IDN)] also showed obvious increasing trends.

413 The linear trend (ppbv/decade) of annual mean tagged O_3 tracers during the simulation 414 period as well as that of the total O₃, which is the sum of all tagged O₃ tracers averaged over 415 whole Japan (JPN-ALL) and those averaged over three sub-regions in Japan: western (JPN-416 W), eastern (JPN-E), and northern (JPN-N) Japan is shown in Fig. 7 (see Fig. 4 for the 417 definition of sub-regions). The trend was calculated from the annual mean concentrations. 418 The increasing trend of total O₃ averaged over JPN-ALL was 2.37 ppbv/decade, which was 419 somewhat smaller than estimated in Fig. 3 (2.58 ppbv/decade) due to inclusion of model grids 420 in JPN-N for averaging where the simulated increasing trend of O_3 was relatively small. The 421 increasing trend of total O₃ tended to be greater westward. The absolute contribution of 422 domestically produced O₃ in Japan differed among the regions – it tended to be larger in JPN-423 E than other parts of Japan (Nagashima et al., 2010); however, there were no such regional 424 differences in long-term trends. The westward tendency of larger increasing trends in total O_3 425 over Japan was mainly due to the similar tendency in the trends of the contribution of CHN, 426 KOR, and E-Asia-Seas, which strongly suggested a large impact of intra-regional 427 transboundary air pollution in East Asia. In particular, the increasing trend in the CHN 428 contribution was the largest for all sub-regions in Japan. The increasing trend in the 429 contributions of total FT and WSSE Asia was slightly smaller for JPN-N than for other parts 430 of Japan, which also contributed to the regional differences of the trend in total O_3 over Japan. Interestingly, the contribution of Remote showed a small but significant increase only in JPN-431 432 N – although emissions of O₃ precursors, NO_x in particular, in Remote did not increase during 433 the period. Due to the large interannual fluctuation, the linear long-term trend of the 434 stratospheric contribution was non-significant for all regions in Japan.

435 The linear trend of tagged O₃ tracers and total O₃ averaged over all of Japan in spring, 436 summer, fall, and winter is shown in Fig. 8. The increasing trends of total O_3 in decreasing 437 order were spring, summer, winter, and fall. This is quite consistent with the seasonal 438 differences in the increasing trend of O_3 observed at several Japanese sites from the 1990s to 439 2011 (Parrish et al., 2012). The increasing trend in the CHN contribution was the largest of all 440 contributions in all four seasons and the trend was particularly large in spring. The KOR 441 contribution was also larger in spring than in other seasons, with the trend in summer of low 442 statistical significance due to relatively large IAVs. The contribution of E-Asia-Seas increased 443 significantly in all seasons. Seasonal differences in the increasing trend in the E-Asia-Seas 444 contribution were small, but were slightly larger in the warm (spring-summer) than the cold 445 season (fall-winter). The increasing trend in domestic (JPN) contribution was larger in spring 446 than in summer similarly to the cases of CHN and KOR contributions, but trends in both 447 seasons were non-significant; whereas those in the cold season were significantly larger than 448 in the warm season. The FT and WSSE Asian contributions showed semi-annual change in 449 their increasing trends; larger in summer and winter than in spring and fall. The contribution 450 of Remote showed a significant increasing trend only in winter; conversely that of Central-451 North (CN) Asian regions [Central Asia (CAS) and East Siberia (ESB)] showed small but 452 significant decreasing trends in the cold season but non-significant trends in the warm season. The seasonal features in each regional contribution described above enabled explanation of 453 454 the cause of the seasonality of increasing trend in total O_3 over Japan as follows. The largest 455 increasing trend of total O_3 in spring was predominantly attributed to the large increasing 456 trend in contributions of source regions in northeast Asia (CHN, KOR, E-Asia-Seas, and JPN). 457 The increasing trends in the contributions of CHN, KOR, and JPN were smaller in summer, 458 however, partly compensated by the growth of increasing trends in the FT and WSSE Asian

459 contributions from spring to summer. In the cold season, trends for most regions were smaller 460 than in the warm season, except for JPN. The increasing trend in contributions of northeast 461 Asian regions differed little between fall and winter; however, those of FT, WSSE Asia, and 462 Remote had larger increasing trends in winter than in fall, which made the increasing trend of 463 total O₃ in winter larger than in fall.

464 Table 1 summarizes the linear trends of annual mean tagged O_3 tracers and the total O_3 465 averaged over JPN-ALL. The vast majority (about 97 %) of the trend in total O_3 was balanced 466 with the sum of those trends in regional contributions with statistical significance. The largest 467 contribution was from the increase of O_3 produced in CHN (0.85 ppbv/decade), which 468 corresponded to about 36 % of the increasing trend of total O_3 . The increasing trend in the contribution of the total FT was also large (0.37 ppbv/decade), representing about 16 % of the 469 470 total O₃ trend. The contributions of northeast Asian regions other than CHN also increased 471 significantly (0.34, 0.29, and 0.27 ppbv/decade for KOR, E-Asia-Seas, and JPN, respectively) 472 and each accounted for about 12-15 % of the total O₃ trend. About 7 % of the total O₃ trend 473 was attributable to the increasing trend in WSSE Asian contributions (0.16 ppbv/decade). The 474 linear trends in the contributions of remaining regions [CN Asia, Remote, stratosphere, and 475 the others (OTH)] were small and non-significant, and so were not important concerning the 476 cause of reported surface O₃ increase over Japan.

477

478 3.3 Impact of IAVs in O₃ precursor emissions in different source regions on 479 regional O₃ production

480 The results in the preceding section revealed the relative importance of O_3 produced in 481 different regions to the recent increasing trend in surface O₃ over Japan. It is noteworthy that 482 this does not indicate the relative importance of the different regions of O_3 precursor 483 emissions. For example, there were significant contributions of E-Asia-Seas to the increasing 484 trend in surface O₃ over Japan, but there were clearly no large emission sources of precursors 485 in these maritime regions other than navigation. The increasing trend in the contribution of E-486 Asia-Seas was likely a consequence of increased transport of O_3 precursors to this region, 487 which had been emitted in adjacent land areas. However, the tracer-tagging approach cannot 488 distinguish the differences in origins of emissions of precursors that resulted in O₃ production 489 in E-Asia-Seas. To further investigate the roles of different regions in the recent increasing 490 trend of surface O_3 over Japan, we performed a series of sensitivity simulations with different 491 assumptions for the temporal variation of factors, which would affect the surface O₃ over 492 Japan. Each sensitivity simulation consisted of a 26-year simulation with full-chemistry setup 493 of CHASER followed by another 26-year simulation with tracer-tagging setup of CHASER. 494 Initially, a sensitivity simulation was performed that was only forced by the IAVs in the 495 climate (NCEP/NCAR meteorology and HadISST data) but with all emissions of O3 496 precursors, CH₄ concentration, and stratospheric O₃ fixed at the year 1980 level; then we 497 gradually added the increase or the IAV of chemical factors as summarized in Table 2. The 498 simulation F, driven by the IAV of all forcings, was identical to the standard simulation; and 499 simulation A was mentioned concerning lightning-NO_x emission in the preceding section 500 (3.2).

501 The linear trends of annual mean total O₃ and tagged O₃ tracers that had significant effects 502 on the standard simulation averaged over all of Japan in all simulations are shown and 503 compared in Fig. 9. Simulation A showed no obvious increasing trend in total O₃ over Japan.

504 The JPN and total FT contributions exhibited increasing trends (0.12 and 0.06 ppbv/decade, 505 respectively), likely due to the IAV of the climate, but they were non-significant.

506 The increase in atmospheric concentration of CH₄ was added in simulation B, because this 507 would have a non-negligible impact on tropospheric O₃ (background O₃ in particular), as 508 frequently reported (Brasseur et al., 2006; Kawase et al., 2011; HTAP, 2010 and references 509 therein). In the simulations other than A, we used a CH₄ concentration increase rate of about 510 12.3 ppbv/year (0.73 %/year) during 1980–2000 and flattened thereafter. In simulation B, the 511 contribution of the total FT showed a significant increasing trend (0.18 ppbv/decade) as did 512 that of Remote (0.08 ppbv/decade; data not shown). The contributions of several other regions 513 such as CHN, E-Asia-Seas, and WSSE Asia also showed slight increasing trends 514 (approximately 0.01–0.02 ppbv/decade), although non-significant. Note that these values 515 included the impact of CH₄ increase as well as the IAV of the climate and, consequently, the 516 total O_3 in simulation B showed a significant increasing trend of about 0.44 ppbv/decade, 517 representing about 19 % of the increasing trend in total O_3 in the standard simulation (2.37) 518 ppbv/decade).

519 In simulations C-E, the IAVs in emission of O3 precursors in northeast Asian regions were 520 gradually added: CHN, KOR, and JPN, respectively. The increase in emissions of O3 521 precursors in CHN in simulation C caused a large significant increasing trend in the 522 contribution of CHN itself (0.83 ppbv/decade). Moreover, the emission increase in CHN also 523 had a large impact on the contributions of other regions, in particular, the increase trends in 524 the contributions of KOR and E-Asia-Seas became significant: 0.12 and 0.15 ppbv/decade, 525 respectively. The JPN and the total FT contributions also showed somewhat larger increasing 526 trends in simulation C than in B, but the growth in trends between the two simulations was 527 not as large as those of KOR and E-Asia-Seas. The total effect of the emission increase in 528 CHN on the increasing trend in surface O_3 over Japan, assessed using the difference in total O₃ trend between simulations B and C, was about 1.08 ppbv/decade and corresponded to 529 530 about 46 % of the increasing trend in total O_3 in the standard simulation. The relative 531 contribution of CHN as a source region of O₃ production to the surface O₃ increasing trend 532 over Japan was estimated as 36% in the preceding section (3.2); however, the contribution of 533 CHN as a source region of O_3 precursors emission was somewhat (10 %) larger due to the 534 production of O_3 outside CHN. It is noteworthy that the slight increasing trend in the 535 contribution of WSSE Asia shown in the CH₄ increase in simulation B was smaller in simulation C. The contributions of Remote and the stratosphere showed similar responses. 536 537 The increase in O_3 precursor emissions in CHN seemed to partly offset the increase in 538 influence of long range transport of O₃ from such regions.

539 The increase in emissions from KOR in addition to CHN in simulation D gave rise to a 540 much larger increasing trend in the contributions of KOR itself (0.38 ppbv/decade). 541 Compared with simulation C (0.12 ppbv/decade), about one-third of the increasing trend in 542 the contribution of KOR was attributed to the O₃ precursor emission increase in CHN and the 543 rest to emission increase in KOR. Similarly, the emission increase in KOR caused a larger 544 increasing trend in the contributions of E-Asia-Seas in simulation D (0.25 ppbv/decade). We 545 attributed about half of the increasing trend in the contribution of E-Asia-Seas in the standard 546 simulation (0.29 ppbv/decade) to the impact of O₃ precursor emission increase in CHN (and 547 partly that of the CH₄ increase: 0.15 ppbv/decade) as shown in simulation C, about one-third 548 to that in KOR, and the rest to that in regions other than northeast Asia. By further adding the 549 IAV in the domestic (JPN) emissions in simulation E, the increasing trend in the domestic 550 contribution became significant (0.28 ppbv/decade), implying that the increasing trend in 551 domestically produced O_3 was from a combination of multiple factors each of which did not

552 cause a significant increase. The total effect of the emission increase in KOR on the 553 increasing trend in surface O_3 over Japan assessed as the difference between simulations C 554 and D was about 0.38 ppbv/decade; and that of the IAV of domestic emission in Japan 555 assessed as the difference between simulations D and E was about 0.09 ppbv/decade; each of 556 which corresponded to about 16 and 4 % of the increasing trend in total O_3 in the standard 557 simulation, respectively.

558 The IAV in emissions of O₃ precursors in northeast Asian regions (CHN, KOR, and JPN) 559 together with the IAV in the climate and the increase in CH₄ concentration induced a 560 significant increasing trend in total O_3 over Japan with a rate of 1.99 ppbv/decade. This 561 accounted for about 84 % of the increasing trend in total O_3 in the standard simulation. The rest of the increasing trend should be regarded as from O3 precursor emission changes in 562 regions other than northeast Asia. The difference between simulations E and F (standard 563 564 simulation) showed that the emission change in such regions influenced surface O_3 over Japan 565 mainly through increasing the O₃ production in WSSE Asia and the FT (Fig. 9).

566

567 4 Summary and conclusion

568 We demonstrated the relative importance of the regions of photochemical O₃ production in 569 the global atmosphere on the long-term increasing trend in surface O₃ over Japan reported in 570 recent decades by conducting a series of tracer-tagging simulations using the global CTM 571 CHASER. The impact of the IAVs of climate, of CH₄ concentration, and of emission of O₃ 572 precursors (NO_x and NMVOC) in different source regions on regional photochemical O₃ 573 production were also investigated.

574 The observed increasing trend of surface O₃ over Japan for 1980–2005 (2.70 ppbv/decade 575 for annual mean over whole Japan) was successfully reproduced by the model (2.58 576 ppbv/decade) including an obvious tendency of increase toward western Japan and to be 577 greater in the warm (spring–summer) than in the cold season (fall–winter).

578 The absolute contribution of each photochemical O₃ production region to the surface O₃ over 579 Japan represented by the concentrations of tagged O_3 tracer showed different temporal 580 evolution by regions. The contributions of all Asian regions except the northern part (i.e., 581 CHN, KOR, E-Asia-Seas, JPN, and WSSE) as well as those of the total FT exhibited 582 significant increasing trends during the period. The increasing trend in the contribution of 583 domestically produced O₃ in Japan (i.e., JPN) did not differ much among the different regions 584 in Japan. However, there was a tendency in the increasing trends in contributions of CHN, 585 KOR, and E-Asia-Seas to be large toward western Japan, which was a main cause of the same 586 tendency in the increasing trend in total O_3 and suggested a large impact of intra-regional 587 transboundary air pollution in East Asia.

588 The trends in contributions of most O_3 production regions, except JPN, were larger in the 589 warm than in the cold season, providing a basis for the seasonality in the increasing trend in 590 total O_3 over Japan. Thus, the larger increasing trend of total O_3 in spring than in summer was 591 mainly due to the same tendency in increasing trends in the contributions of northeast Asian 592 regions (CHN, KOR, and JPN), although this was partly compensated by larger increasing 593 trends in the FT and WSSE Asia contributions in summer than spring. In the cold season, the contributions of FT, WSSE Asia, and Remote had larger increasing trends in winter than in 594 595 fall, which led to a larger increasing trend in total O₃ in winter than in fall.

596 The sum of the trends in contributions of O_3 production regions with sufficient statistical 597 significance accounted for most (about 97 %) of the increasing trend in total O_3 over Japan

598 (2.37 ppbv/decade). The largest portion was attributed to the increasing trend of O_3 produced 599 in CHN (36 %; 0.85 ppbv/decade), followed by that in the total FT (16 %; 0.37 ppbv/decade). 590 The increasing trend in contributions of the other northeast Asian regions (KOR, E-Asia-Seas, 501 and JPN; 0.27–0.34 ppbv/decade) each accounted for about 12–15 % of the total O_3 trend, and 502 the majority of the rest of the total O_3 trend (7 %; 0.16 ppbv/decade) was attributable to 503 WSSE Asia.

604 We further investigated the impact of the IAV of controlling factors, such as climate, CH₄ 605 concentration, and emission of O₃ precursors, on photochemical O₃ production in different 606 source regions and its influence on the long-term increasing trend in surface O₃ over Japan 607 through a series of sensitivity simulations that gradually added the IAV of these factors. The 608 IAV of the climate and the increase in CH₄ concentration together caused the increase of 609 photochemical O_3 production in several regions and resulted in the significant increasing 610 trend in surface O₃ over Japan (0.44 ppbv/decade) and represented about 19 % of the 611 increasing trend in surface O_3 in the standard simulation. The increase in emission of O_3 612 precursors in CHN led to the increase of photochemical O3 production in northeast Asian 613 regions including CHN itself, KOR, JPN, and E-Asia-Seas; and the resulting increasing trend 614 in surface O_3 over Japan (1.08 ppbv/decade) accounted for about 46 % of that in the standard 615 simulation. The relative contribution of CHN to the surface O₃ increasing trend over Japan as 616 the source region of O₃ precursor "emission" was 10 % larger than as the source region of O₃ 617 "production" due to production of O_3 outside of CHN. Then, the impact of the O_3 precursor emission change in KOR and JPN on the increasing trend in surface O₃ over Japan (about 618 619 0.38 and 0.10 ppbv/decade, respectively) corresponded to 16 and 4 % of the increasing trend 620 in total O₃ in the standard simulation, respectively. The rest of the increasing trend in total O₃ 621 in the standard simulation (about 16 %) was attributed to O_3 precursor emission change in 622 regions other than northeast Asia, mainly through increasing the photochemical O_3 production 623 in WSSE Asia and the total FT.

624

625 Acknowledgements. This research was supported by the Global Environment Research Fund 626 (S-7) by the Ministry of the Environment (MOE) of Japan and the East Asian Environment 627 Research Program at the National Institute for Environmental Studies (NIES). We 628 acknowledge the entire staff of the EANET and the AEROS air quality monitoring stations of 629 the MOE of Japan and of the local governments for carrying out measurements and providing 630 the observations. The calculations were performed on the NIES supercomputer system (NEC 631 SX-8R, SX9). The GFD-DENNOU library was used for drawing the figures.

632

633 References

- 634 Akimoto, H., Mori, Y., Sasaki, K., Nakanishi, H., Ohizumi, T., and Itano, Y.: Analysis of
- 635 monitoring data of ground-level ozone in Japan for longterm trend during 1990–2010:
- 636 Causes of temporal and spatial variation, Atmos. Environ., 102, 302–310, 2015.
- 637 Akiyoshi, H., Zhou, L. B., Yamashita, Y., Sakamoto, K., Yoshiki, M., Nagashima, T.,
- 638 Takahashi, T., Kurokawa, J., Takigawa, M., and T. Imamura, T.: A CCM simulation of the
- breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios,
- 640 J. Geophys. Res., 114, D03103, doi:10.1029/2007JD009261, 2009.
- 641 Brasseur, G. P., Schultz, M., Granier, C., Saunois, M., Diehl, T., Botzet, M., and Roeckner,
- E.: Impact of climate change on the future chemical composition of the global troposphere,
 J. Clim., 19, 3932–3951, doi:10.1175/JCLI3832.1, 2006.
- Chang, S.-C. and Lee, C.-T.: Evaluation of the trend of air quality in Taipei, Taiwan from
 1994 to 2003, Environ. Monit. Assess., 127, 87–96, doi:10.1007/s10661-006-9262-1, 2007.
- Chou, C. C.-K., Liu, S. C., Lin, C.-Y., Shiu, C.-J., and Chang, K.-H.: The trend of surface
 ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies, Atmos.
 Environ., 40, 3898–3908, 2006.
- Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., Gilge,
 S., Horowitz, L., Jensen, N. R., Lamarque, J.-F., Naik, V., Oltmans, S. J., Schwab, J.,
 Shindell, D. T., Thompson, A. M., Thouret, V., Wang, Y., and Zbinden, R. M.: Global
 distribution and trends of tropospheric ozone: An observation-based review, Elementa, 2,
 000029, doi: 10.12952/journal.elementa.000029, 2014.
- Ding, A. J., Wang, T., Thouret, V., Cammas, J.-P., and Nédélec, P.: Tropospheric ozone
 climatology over Beijing: analysis of aircraft data from the MOZAIC program, Atmos.
 Chem. Phys., 8, 1–13, 2008.
- Eyring, V., Harris, N. R P., Rex, M., Shepherd, T. G., Fahey, D. W., Amanatidis, G. T.,
 Austin, J., Chipperfield, M. P., Dameris, M., Forster, P. M. De F., Gettelman, A., Graf, H.
- 659 F., Nagashima, T., Newman, P. A., Pawson, S., Prather, M. J., Pyle, J. A., Salawitch, R. J.,
- 660 Santer, B. D., and Waugh, D. W.: A strategy for process-oriented validation of coupled
- chemistry-climate models. Bull. Am. Meteorol. Soc., 86, 1117–1133, 2005.

HTAP, UNECE: Hemispheric Transport of Air Pollution 2010: Part A: Ozone and Particulate
Matter, Air Pollution Studies No. 17, (ed. by Dentener, F., Keating, T., and Akimoto, H.),
ECE/EN.Air/100, 2010.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha,

- 666 S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki,
- 667 W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph,
- D.: The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, 437–470,
 1996.
- Kawase, H., Nagashima, T., Sudo, K., and Nozawa, T.: Future changes in tropospheric ozone
 under Representative Concentration Pathways (RCPs), Geophys. Res. Lett., 38, L05801,
 doi:10.1029/2010GL046402, 2011.
- Kurokawa, J., Ohara, T., Uno, I., Hayasaki, M., and Tanimoto, H.: Influence of
 meteorological variability on interannual variations of springtime boundary layer ozone
 over Japan during 1981–2005, Atmos. Chem. Phys., 9, 6287–6304, 2009.
- Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T.,
 Kawashima, K., and Akimoto, H.: Emissions of air pollutants and greenhouse gases over
 Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2,
 Atmos. Chem. Phys., 13, 11019–11058, 2013.
- Lee, H.-J., Kim, S.-W., Brioude, J., Cooper, O. R., Frost, G. J., Kim, C.-H., Park, R. J.,
 Trainer, M., and Woo J.-H.: Transport of NOx in East Asia identified by satellite and in
 situ measurements and Lagrangian particle dispersion model simulations, J. Geophys. Res.
 Atmos., 119, 2574–2596, doi:10.1002/2013JD021185, 2014.
- Li, J., Wang, Z. F., Akimoto, H., Yamaji, K., Takigawa, M., Pochanart, P., Liu, Y., Tanimoto,
 H., and Kanaya, Y.: Near-ground ozone source attributions and outflow in central eastern
 China during MTX2006, Atmos. Chem. Phys., 8, 7335–7351, 2008.
- Li, H. C., Chen, K. S., Huang, C. H., and Wang, H. K.: Meteorologically adjusted long-term
 trend of ground-level ozone concentrations in Kaohsiung County, southern Taiwan, Atmos.
 Environ., 44, 3605–3608, 2010.
- Lin, S.-J. and Rood, R. B.: Multidimensional flux-form semi-Lagrangian transport scheme,
 Mon. Weather Rev., 124, 2046–2070, 1996.

- Lin, Y.-K., Lin, T.-H., and Chang, S.-C.: The changes in different ozone metrics and their
 implications following precursor reductions over northern Taiwan from 1994 to 2007,
 Environ. Monit. Assess., 169, 143–157, 2010.
- 695 Logan, J. A., Megretskaia, I. A., Miller, A. J., Tiao, G. C., Choi, D., Zhang, L., Stolarski, R.
- 696 S., Labow, G. J., Hollandsworth, S. M., Bodeker, G. E., Claude, H., de Muer, D., Kerr, J.
- 697 B., Tarasick, D. W., Oltmans, S. J., Johnson, B., Schmidlin, F., Staehelin, J., Viatte, P., and
- 698 Uchino, O.: Trends in the vertical distribution of ozone: A comparison of two analyses of
- ozonesonde data, J. Geophys. Res., 104, 26373–26399, 1999.
- Lu, W.-Z. and Wang, X.-K.: Evolving trend and self-similarity of ozone pollution in central
 Hong Kong ambient during 1984–2002, Sci. Total Environ., 357, 160–168, 2006.
- Mauzerall, D. L., Sultan, B., Kim, N., and Bradford, D. F.: NOx emissions from large point
 sources: variability in ozone production, resulting health damages and economic costs,
 Atmos. Environ., 39, 2851–2866, 2005.
- 705 Meinshausen, M., Smith. S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J-F.,
- Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M.,
 and van Vuuren, D. P. P.: The RCP greenhouse gas concentrations and their extensions
- from 1765 to 2300, Climatic Change, 109, 213–241, 2011.
- MOE (Ministry of Environment) Japan: FY 2013 status of air pollution, available online at:
 http://www.env.go.jp/air/osen/jokyoh25/ (in Japanese), 2013.
- Nagashima, T., Ohara, T., Sudo, K., and Akimoto, H.: The relative importance of various
 source regions on East Asian surface ozone, Atmos. Chem. Phys., 10, 11305–11322, 2010.
- Naja, M. and Akimoto, H.: Contribution of regional pollution and long-range transport to the
 Asia-Pacific region: Analysis of long-term ozonesonde data over Japan, J. Geophys. Res.,
 109, D21306, doi:10.1029/2004JD004687, 2004.
- Nozawa, T., Nagashima, T., Shiogama, H., and Crooks, S. A.: Detecting natural influence on
 surface air temperature change in the early twentieth century, Geophys. Res. Lett., 32,
 L20719, doi:10.1029/2005GL023540, 2005.
- Ohara, T. and Sakata, T.: Long-term variation of photochemical oxidants over Japan, J. Jpn.
 Soc. Atmos. Environ., 38, 47–54. (in Japanese with English summary), 2003.

721	Ohara, T., Yamaji, K., Uno, I., Tanimoto, H., Sugata, S., Nagashima, T., Kurokawa, J., Horii,
722	N., and Akimoto, H.: Long-term simulations of surface ozone in East Asia during 1980-
723	2020 with CMAQ and REAS inventory, In Air Pollution Modelling and Its Application
724	XIX (NATO Science for Peace and Security Series C: Environmental Security) (ed. by
725	Borrego, C., and Miranda, A. I.). Springer, Dordrecht, The Netherlands, 136–144, 2008.
726	Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An
727	Asian emission inventory of anthropogenic emission sources for the period 1980-2002,
728	Atmos. Chem. Phys., 7, 4410–4444, 2007.
729	Olivier, J. G. J. and Berdowski, J. J. M.: Global emissions sources and sinks, in: The Climate
730	System, Berdowski, J., Guicherit, R., and Heij, B. J. (eds.), A. A. Balkema Publishers/
731	Swets & Zeitlinger Publishers, Lisse, The Netherlands, 33–78, 2001.
732	Oltmans, S. J., Lefohn, A. S., Harris, J. M., Galbally, I., Scheel, H. E., Bodeker, G., Brunke,
733	E., Claude, H., Tarasick, D., Johnson, B. J., Simmonds, P., Shadwick, D., Anlauf, K.,
734	Hayden, K., Schmidlin, F., Fujimoto, T., Akagi, K., Meyer, C., Nichol, S., Davies, J.,
735	Redondas, A., and Cuevas, E.: Long-term changes in tropospheric ozone, Atmos. Environ.,
736	40, 3156–3173, 2006.
737	Oltmans, S. J., Lefohn, A. S., Shadwick, D., Harris, J. M., Scheel, H. E., Galbally, I., Tarasick,
738	D. W., Johnson, B. J., Brunke, EG., Claude, H., Zeng, G., Nichol, S., Schmidlin, F.,
739	Davies, J., Cuevas, E., Redondas, A., Naoe, H., Nakano, T., and Kawasato, T.: Recent
740	tropospheric ozone changes - A pattern dominated by slow or no growth, Atmos. Environ.,
741	67, 331–351, 2013.
742	Parrish, D. D., Law, K. S., Staehelin. J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-
743	Thomas, A., Gilge, S., Scheel, HE., Steinbacher, M., and Chan, E.: Long-term changes in
744	lower tropospheric baseline ozone concentrations at northern mid-latitudes, Atmos. Chem.
745	Phys., 12, 11485–11504, 2012.
746	Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P.,
747	Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night
748	marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407,
749	doi:10.1029/2002JD002670, 2003.
750	Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J. G., Held,
751	A. C., Pereira, J. M. C., and van het Bolscher, M.: Global wildland fire emissions from

752 1960 to 2000, Global Biogeochem. Cycles, 22, GB2002, doi:10.1029/2007GB003031,
753 2008.

- Seo, J., Youn, D., Kim, J. Y., and Lee, H.: Extensive spatiotemporal analyses of surface
 ozone and related meteorological variables in South Korea for the period 1999–2010,
 Atmos. Chem. Phys., 14, 6395–6415, 2014.
- Shindell, D., Kuylenstierna, J. C. I., Faluvegi, G., Milly, G., Emberson, L., Hicks, K., Vignati,
 E., Van Dingenen, R., Janssens-Maenhout, G., Raes, F., Pozzoli, L., Amann, M., Klimont,
 Z., Kupiainen, K., Höglund-Isaksson, L., Anenberg, S. C., Muller, N., Schwartz, J., Streets,
 D., Ramanathan, V., Oanh, N. T. K., Williams, M., Demkine, V., and Fowler, D.:
 Simultaneously mitigating near-term climate change and improving human health and food
 security, Science, 335, 183–189, 2012.
- Silva, R. A., West, J. J., Zhang, Y., Anenberg, S. C., Lamarque, J.-F., Shindell, D. T., Collins,
 W. J., Dalsoren, S., Faluvegi, G., Folberth, G., Horowitz, L. W., Nagashima, T., Naik, V.,
 Rumbold, S., Skeie, F., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni,
 I., Doherty, R. M., Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M.,
 Stevenson, D. S., Strode S., Szopa, S., and Zeng, G.: Global premature mortality due to
 anthropogenic outdoor air pollution and the contribution of past climate change, Environ.
 Res. Lett., 8, 034005, 2013.
- Sudo, K. and Akimoto, H.: Global source attribution of tropospheric ozone: Long-range
 transport from various source regions, J. Geophys. Res., 112, D12302,
 doi:10.1029/2006JD007992, 2007.
- Sudo, K., Takahashi, M., Kurokawa, J., and Akimoto, H.: CHASER: A global chemical
 model of the troposphere: 1. Model description, J. Geophys. Res., 107(D17), 4339,
 doi:10.1029/2001JD001113, 2002.
- Susaya, J., Kim, K.-H., Shon, Z.-H., and Brown, R. J. C.: Demonstration of long-term increases in tropospheric O₃ levels: Causes and potential impacts, Chemosphere, 92, 1520–1528, 2013.
- Tanimoto, H.: Increase in springtime tropospheric ozone at a mountainous site in Japan for
 the period 1998–2006, Atmos. Environ., 43, 1358–1363, 2009.

781 782	Tanimoto, H., Ohara, T., and Uno, I.: Asian anthropogenic emissions and decadal trends in springtime tropospheric ozone over Japan: 1998–2007, Geophys. Res. Lett., 36, L23802,							
783	doi:10.1029/2009GL041382, 2009.							
784	UNEP (United Nations Environment Programme) and WMO (World Meteorological							
785	Organization): Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary							
786	for Decision Makers, available online at							
787	http://www.unep.org/dewa/Portals/67/pdf/Black_Carbon.pdf, 2011.							
788	US EPA (U.S. Environmental Protection Agency): Air Quality Criteria for Ozone and Related							
789	Photochemical Oxidants (Final), U.S. Environmental Protection Agency, Washington, DC,							
790	EPA/600/R-05/004aF-cF, 2006.							
791	Van Aardenne, J. A., Dentener, F. J., Olivier, J. G. J., Klein Goldewijk, C. G. M., and							
792	Lelieveld, J.: A 1 x 1 degree resolution dataset of historical anthropogenic trace gas							
793	emissions for the period 1890-1990, Global Biogeochem. Cy., 15(4), 909-928, 2001.							
794	Van Leer, B.: Toward the ultimate conservative difference scheme. IV: A new approach to							
795	numerical convection, J. Comput. Phys., 23, 276–299, 1977.							
796	Wakamatsu, S., Morikawa, T., and Ito, A.: Air Pollution Trends in Japan between 1970 and							
797	2012 and Impact of Urban Air Pollution Countermeasures, Asian J. Atmos. Env., 7(4),							
798	177–190, 2013.							
799	Wang, X. and Mauzerall, D. L.: Characterizing distributions of surface ozone and its impact							
800	on grain production in China, Japan and South Korea: 1990 and 2020, Atmos. Environ., 38,							
801	4383–4402, 2004.							
802	Wang, T., Wei, X. L., Ding, A. J., Poon, C. N., Lam, K. S., Li, Y. S., Chan, L. Y., and Anson,							
803	M.: Increasing surface ozone concentrations in the background atmosphere of Southern							
804	China, 1994–2007, Atmos. Chem. Phys., 9, 6217–6227, 2009.							
805	Wang, Y., Zhang, Y., Hao, J., and Luo, M.: Seasonal and spatial variability of surface ozone							
806								
807	11, 3511–3525, 2011.							
808	Xu, X., Lin, W., Wang, T., Yan, P., Tang, J., Meng, Z., and Wang, Y.: Long-term trend of							
809	surface ozone at a regional background station in eastern China 1991-2006: enhanced							
810	variability, Atmos. Chem. Phys., 8, 2595–2607, 2008.							
	20							

- 811 Zhang, Q., Yuan, B., Shao, M., Wang, X., Lu, S., Lu, K., Wang, M., Chen, L., Chang, C.-C.,
- and Liu, S. C.: Variations of ground-level O₃ and its precursors in Beijing in summertime
- 813 between 2005 and 2011, Atmos. Chem. Phys., 14, 6089–6101, 2014.
- 814

- 815 **Table 1.** Summary of the linear trends of annual mean tagged O₃ tracers as well as the total O₃
- 816 averaged over Japan (JPN-ALL) for 1980-2005. Bold figures denote that trends are
- 817 significant at 5 % risk level.

Source Region	Trend [ppbv/dec]	Percent	
CHN	$\textbf{0.85} \pm \textbf{0.2}$	35.8	
KOR	$\textbf{0.34} \pm \textbf{0.14}$	14.6	
JPN	$\textbf{0.27} \pm \textbf{0.19}$	11.5	
E-Asia-Seas	$\textbf{0.29} \pm \textbf{0.05}$	12.4	
WSSE Asia	0.16 ± 0.04	6.8	
N Asia	$\textbf{-0.05} \pm 0.08$	-2.1	
Remote	0.04 ± 0.08	1.7	
OTH	0.01 ± 0.02	0.5	
FT	$\textbf{0.37} \pm \textbf{0.1}$	15.5	
Strat.	0.08 ± 0.28	3.3	
Total	$\textbf{2.37} \pm \textbf{0.42}$	100.0	

818

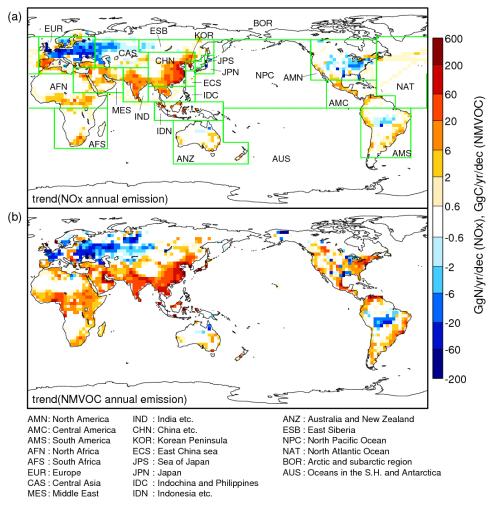
819

Simulation code	CH ₄	O ₃ precursor emissions				Stratospheric
Simulation code	concentration	CHN	KOR	JPN	ROW ^a	O ₃ trend
А	1980 ^b	1980	1980	1980	1980	1980
В	increasec	1980	1980	1980	1980	1980
С	increase	$\mathrm{IAV}^{\mathrm{d}}$	1980	1980	1980	1980
D	increase	IAV	IAV	1980	1980	1980
Е	increase	IAV	IAV	IAV	1980	1980
F (standard)	increase	IAV	IAV	IAV	IAV	IAV

820 Table 2. Summary of the sensitivity simulations and the standard simulation

a Precursor emissions in the Rest Of the World (ROW) other than CHN, KOR, and JPN

822 b Each factor was fixed at the year 1980 level


823 c CH₄ concentration increased until 2000 and flattened thereafter

824 d InterAnnual Variation (IAV) of each factor was considered

825

- Figure 1. Linear trends of (a) NO_x and (b) NMVOC emission during the simulation period
 (1980–2005) used in the study. Significant trends at 5 % risk level are colored. Source regions
- 828 for tracer tagging are also displayed in the top figure.

829

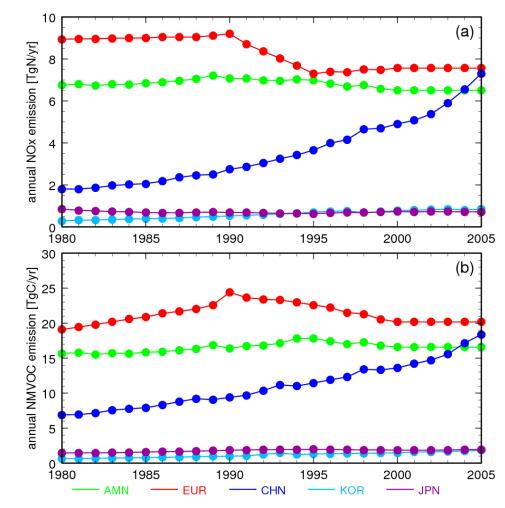
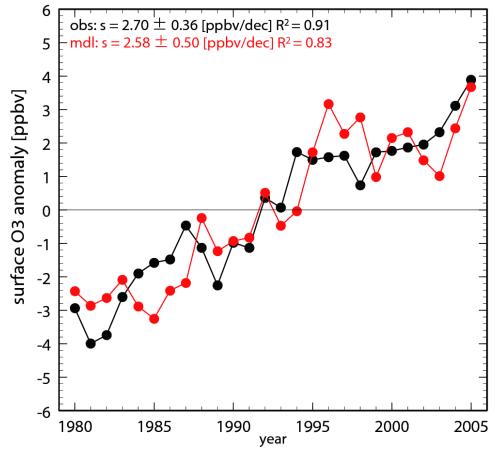



Figure 2. Temporal evolution of emissions of (a) NO_x and (b) NMVOC averaged over several
source areas in the Northern Hemisphere depicted in Fig. 1.

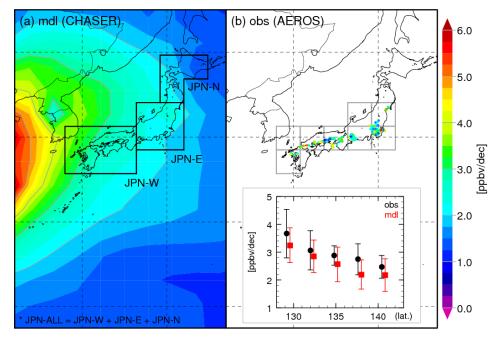

832

Figure 3. The temporal changes of annual mean surface O_3 anomaly averaged over Japan from observation (AEROS: black) and model calculation (red). Anomalies are defined as deviations from the values averaged over 1980–2005. The slope of a regression (s) for 1980– 2005 with their 95 % confidence interval and R^2 are also shown.

837

Figure 4. The linear trend of annual mean surface O₃ in 1980–2005 calculated from (a) model simulations and (b) observations at AEROS monitoring sites. The inset in figure (b) shows the longitudinal change of linear trends (black: AEROS observation; red: model) averaged within the model grids shown by gray rectangles. The error bars denote their 95 % confidence intervals. The black-rimmed areas in figure (a) are the area for averaging used in the figures from Fig. 6. Note that JPN-ALL is the sum of JPN-W, JPN-E, and JPN-N areas and used for the averaging in those figures.

845

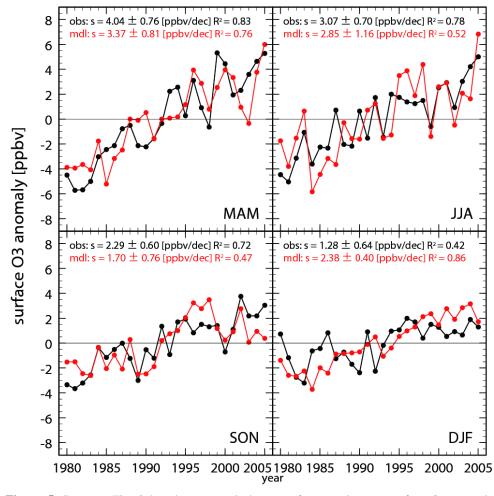
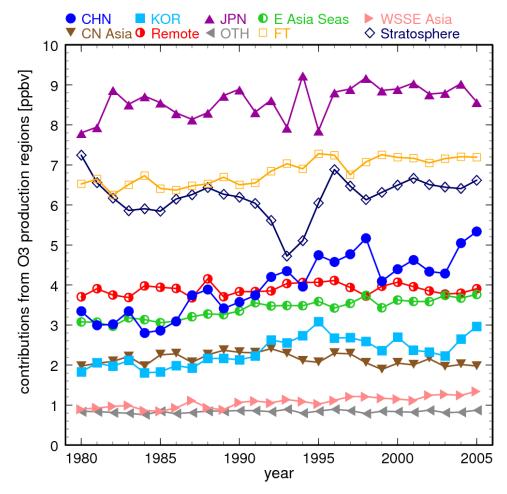
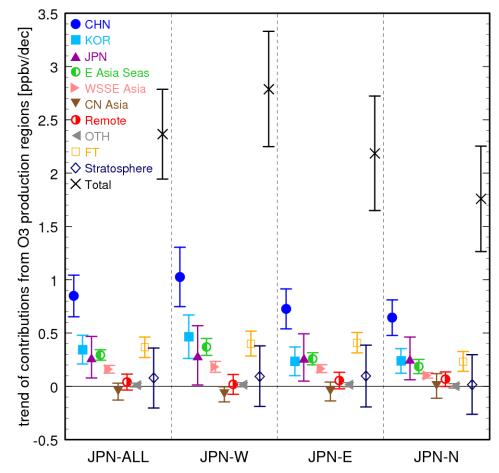
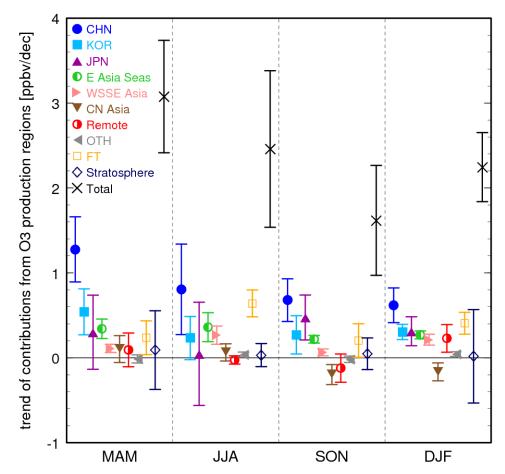



Figure 5. Same as Fig. 3 but the temporal changes of seasonal mean surface O₃ anomaly
averaged over Japan from observations (AEROS: black) and model calculations (red).



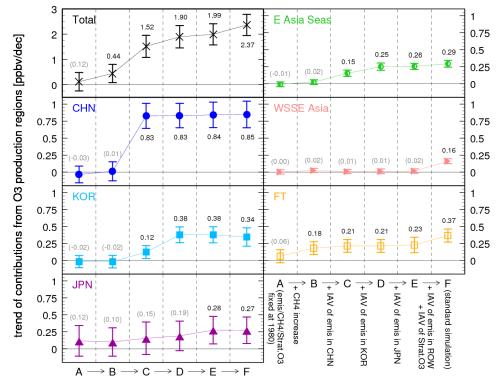
848

Figure 6. Long-term changes of annual mean contributions from source regions to surface O₃
over Japan. Some source regions are grouped: E-Asia-Seas is the sum of NPC, JPS, and ECS;
WSSE Asia is the sum of MES, IND, IDN, and IDC; CN Asia is the sum of CAS and ESB;
Remote is the sum of AMN, NAT, and EUR; and OTH is the other regions in the planetary
boundary layer.



854

Figure 7. Linear trends of annual mean contributions in 1980–2005 from source regions to
surface O₃ over Japan shown in Fig. 6 (JPN-ALL) and those averaged in three sub-regions in
Japan (JPN-W, JPN-E, and JPN-N). Error bars are 95 % confidence intervals.



858

Figure 8. Linear trends of the contributions in 1980–2005 from source regions to surface O₃
over Japan in different seasons: spring (MAM), summer (JJA), fall (SON), and winter (DJF).
Error bars are 95 % confidence intervals.

862

Figure 9. Linear trends of the annual mean contributions in 1980–2005 from source regions to surface O₃ over Japan in the sensitivity simulations and the standard simulation (error bars are 95 % confidence intervals). The exact values of the trends are also shown in the figure; the trends without sufficient statistical significance are shown in parentheses. The trends of each region's contribution in the simulations A–E and F (the standard simulation) are arranged from left to right in each panel.