Supplementary materials

Table list:

Table S1. The SPAMS markers used to search for major groups of oxalic acid particles in this work.

Figure caption:

Figure S1. The topography of Heshan sampling site (22.73N, 112.93E) and its surrounding areas.

Figure S2. The positive and negative mass spectra of oxalic acid measured by SPAMS through standard oxalic acid solution (400 µg•ml⁻¹).

Figure S3. The temporal variation of in-situ pH (pH_{is}) of ambient PM_{2.5} particles during sampling period in summer.

Figure S4. The clustered 48 hr back trajectories of air masses arriving in Heshan during the sampling period: (a) summer (from July 18 to August 1, 2014), (b) winter (from January 27 to February 8, 2015).

Figure S5. The diurnal variations of in-situ pH (pH_{is}), RH, nitrate, sulfate, ammonium and the free amount of H⁺ in aerosols from July 28 to August 1 in 2014.

Figure S6. Temporal variation of organosulfate (m/z=-155) containing particles during whole sampling periods in Heshan, China.

Table S1. The SPAMS markers used to search for major groups of oxalic acid particles in this work.

				Relative	
Species	m/z	Marker Ion	Area	Area	Function
Elemental Carbon	12±0.5	[C] ⁺	50	0.005	or
	24±0.5	$[C_2]^+$	50	0.005	or
	36±0.5	$[C_3]^+$	50	0.005	or
	48±0.5	$[C_4]^+$	50	0.005	or
	60±0.5	$[C_5]^+$	50	0.005	or
	-12	[C] ⁻	50	0.005	or
	-24	$[C_2]^-$	50	0.005	or
	-36	$[C_3]^-$	50	0.005	or
	-48	$[C_4]^{\scriptscriptstyle{-}}$	50	0.005	or
	-60	$[C_5]^{\scriptscriptstyle{-}}$	50	0.005	or
Organic Carbon	27	$[C_2H_3]^+$	50	0.005	or
	43	$[C_2H_3O]^+$	50	0.005	or
Elemental Carbon and Organic Carbon	12	[C] +	50	0.005	or
	24	$[C_2]^+$	50	0.005	or
	36	$[C_3]^+$	50	0.005	or
	37	$[C_3H]^+$	50	0.005	or
	43	$[C_2H_3O]^+$	50	0.005	or
Biomass Burning	39	[K] ⁺	1500		and
	113,115	[K ₂ Cl] ⁺	50	0.005	or
	213	$[K_3SO_4]^+$	50	0.005	or
	-26	[CN]	50	0.005	or
	-59	$[C_2H_3O_2]^-$	50	0.005	or
	-73	$[C_3H_3O_2]^{-}$	50	0.005	or
Sec	18	[NH ₄] ⁺	50	0.005	or
	39	[K] ⁺	1500		and
	-62	[NO ₃]	100	0.05	
	-97	[HSO ₄]	100	0.05	
Heavy Metal	206-208	[Pb] ⁺	50	0.005	or
	64,66	$[Zn]^+$	50	0.005	or
	63,65	[Cu] ⁺	50	0.005	or
	56	[Fe] ⁺	50	0.005	or
	55	[Mn] ⁺	50	0.005	or
	71	[MnO] ⁺	50	0.005	or
	51	[V] ⁺	50	0.005	or
	67	[VO] ⁺	50	0.005	or
Dust	24	[Mg] ⁺	1000		
	27	[Al] ⁺	1500		
	40	[Ca] ⁺	2500		
	56	[CaO] ⁺ /[Fe] ⁺	100	0.05	

	-76	[SiO ₃]	500	0.05	
NaK	23	[Na] ⁺	100	0.05	
	62	$[Na_2O]^+$	50	0.005	or
	63	[Na ₂ OH] ⁺	50	0.005	or
	81,83	[Na ₂ Cl] ⁺	50	0.005	or
	-35,-37	[Cl] ⁻	100	0.05	
Ammonium	18	[NH ₄] ⁺	50	0.005	
Nitrate	-46	$[NO_2]^-$	100	0.05	
	-62	[NO ₃]	100	0.05	
Sulfate	-80	[SO ₃] ⁻	100	0.05	
	-97	[HSO ₄]	100	0.05	

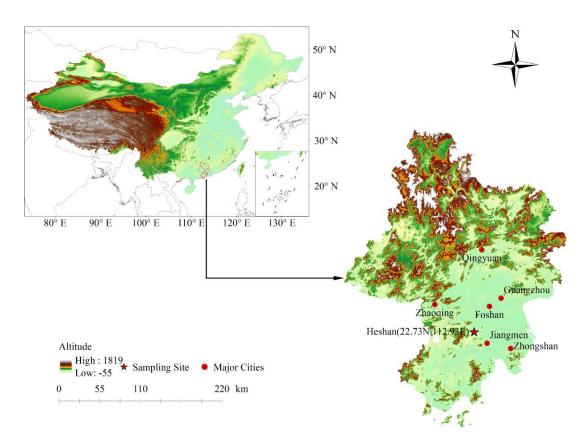


Figure S1. The topography of Heshan sampling site (22.73N, 112.93E) and its surrounding areas.

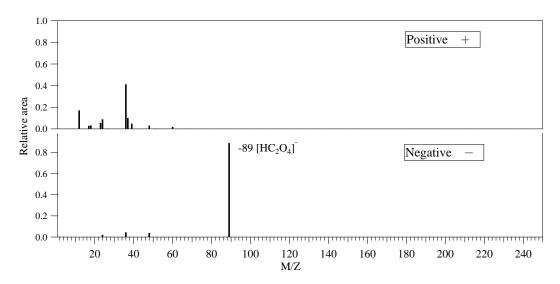


Figure S2. The positive and negative mass spectra of pure oxalic acid ($H_2C_2O_4$, purity: 99.99%, Aladdin Industrial Corporation) measured by SPAMS through authentic oxalic acid solution (200 μ g•ml⁻¹).

The relative area of each fragment refers to the abundance of each peak area in total signal of the mass spectra. The parent ion signal of oxalic acid at mass-to-charge (m/z) -89 $(HC_2O_4^-)$ is significant in the negative mass spectrum. Carbon clusters of $12[C]^+$, $24[C_2]^+$, $36[C_3]^+$ are observed in positive mass spectrum, and $23[Na]^+$ and $39[K]^+$ also show peaks due to extremely high sensitivity of SPAMS to these elements which are present as trace impurities (<0.01). $HC_2O_4^-$ (m/z -89) is selected as the marker ion for oxalic acid containing particles. In this work, oxalic acid particles are identified if the peak area of m/z -89 was larger than 0.5% of the total signal in the mass spectrum.

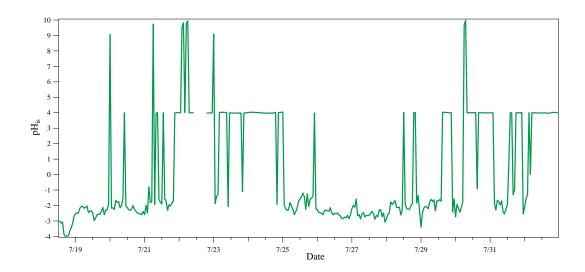


Figure S3. The temporal variation of in-situ pH (pH_{is}) of ambient PM_{2.5} particles during sampling period in summer.

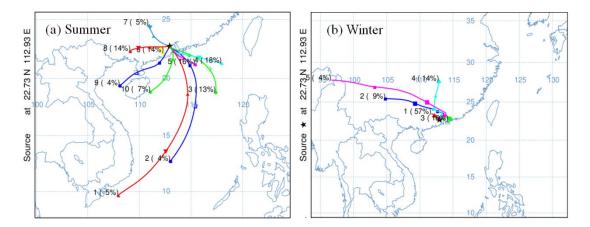


Figure S4. The clustered 48 hr back trajectories of air masses arriving in Heshan during the sampling period: (a) summer (from July 18 to August 1, 2014), (b) winter (from January 27 to February 8, 2015).

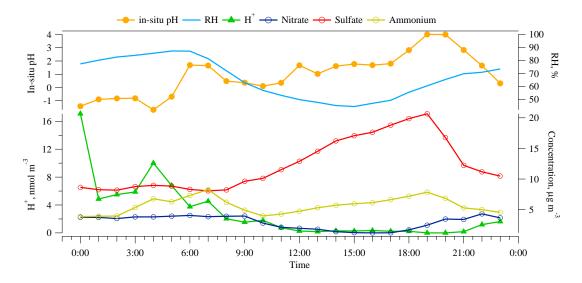


Figure S5. The diurnal variations of in-situ pH (pH_{is}), RH, nitrate, sulfate, ammonium and the free amount of H⁺ in aerosols from July 28 to August 1 in 2014.

The pH_{is} of ambient particles ranged from -1.42 to 4.01, which indicate that fine particles in the sampling site are highly acidic. These values are within the range of previous studies that investigated pH_{is} through filter-based and real-time measurements in the PRD area (Xue et al., 2011;Pathak et al., 2004;Yao et al., 2006). Based on the calculation equation, the pH_{is} is determined by the free amount of H^+ and liquid water content (LWC) in the aerosols. LWC is strongly dependent on the ambient RH and affected by water-soluble composition in the aerosols. Thus we investigate the diurnal patterns of RH, major inorganic ions and the free amount of H^+ in Figure S5. Although RH increased from 0:00 to 7:00, H^+ had higher concentration during this period than the other time, which resulted the lower value of pH_{is} (between -1.42 and 0) from 0:00 to 5:00. Thus more acidic aerosols with pH_{is} below 0 were observed due to the combined effects of the RH and relative abundance of H^+ in aerosols.

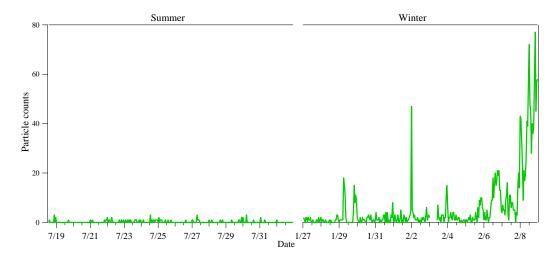


Figure S6. Temporal variation of organosulfate (m/z=-155) containing particles during whole sampling periods in Heshan, China.

The organosulfate derived from reaction between glyoxal and sulfuric acid was identified at m/z=-155 ([C₂H₃O₂SO₄]⁻) based on previous work conducted by Surratt (Surratt et al., 2007;Surratt et al., 2008) and Hatch (Hatch et al., 2011) in chamber and field measurements. In current work organosulfate-containing particles were identified if the relative peak area of m/z -155 was larger than 0.5%. With this threshold, 78 and 1874 of organosulfate particles were obtained in summer and winter separately, accounting for 0.01% and 0.25% in each total detected particles.

References

Hatch, L. E., Creamean, J. M., Ault, A. P., Surratt, J. D., Chan, M. N., Seinfeld, J. H., Edgerton, E. S., Su, Y., and Prather, K. A.: Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry-Part 1: Single particle atmospheric observations in Atlanta, Environmental science & technology, 45, 5105-5111, 2011.

Pathak, R. K., Louie, P. K. K., and Chan, C. K.: Characteristics of aerosol acidity in Hong kong, Atmospheric Environment, 38, 2965-2974, 10.1016/j.atmosenv.2004.02.044, 2004.

Surratt, J. D., Kroll, J. H., Kleindienst, T. E., Edney, E. O., Claeys, M., Sorooshian, A., Ng, N. L., Offenberg, J. H., Lewandowski, M., Jaoui, M., Flagan, R. C., and Seinfeld, J. H.: Evidence for organosulfates in secondary organic aerosol, Environmental Science & Technology, 41, 517-527, 10.1021/Es062081q, 2007.

- Surratt, J. D., Gomez-Gonzalez, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M., Kleindienst, T. E.,
 Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R.
 C., and Seinfeld, J. H.: Organosulfate formation in biogenic secondary organic aerosol, Journal of Physical Chemistry A, 112, 8345-8378, Doi 10.1021/Jp802310p, 2008.
- Xue, J., Lau, A. K. H., and Yu, J. Z.: A study of acidity on PM2.5 in Hong Kong using online ionic chemical composition measurements, Atmospheric Environment, 45, 7081-7088, 10.1016/j.atmosenv.2011.09.040, 2011.
- Yao, X. H., Ling, T. Y., Fang, M., and Chan, C. K.: Comparison of thermodynamic predictions for in situ pH in PM2.5, Atmospheric Environment, 40, 2835-2844, 10.1016/j.atmosenv.2006.01.006, 2006.