

1 Southeast Atmosphere Studies: learning from 2 model-observation syntheses

3
4 Jingqiu Mao¹, Annmarie Carlton^{2,*}, Ronald C. Cohen³, William H. Brune⁴, Steven S. Brown^{5,6},
5 Glenn M. Wolfe^{7,8}, Jose L. Jimenez⁵, Havaala O. T. Pye⁹, Nga Lee Ng¹⁰, Lu Xu¹¹, V. Faye
6 McNeill¹², Kostas Tsigaridis^{13,14}, Brian McDonald⁶, Carsten Warneke⁶, Alex Guenther¹⁵, Matthew
7 J. Alvarado¹⁶, Joost de Gouw⁵, Loretta J. Mickley¹⁷, Eric M. Leibensperger¹⁸, Rohit Mathur⁹,
8 Christopher G. Nolte⁹, Robert Portmann⁶, Nadine Unger¹⁹, Mika Tosca²⁰, Larry W. Horowitz²¹
9

10¹Geophysical Institute and Department of Chemistry, University of Alaska Fairbanks, Fairbanks,
11 Alaska, USA

12²Dept. of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA

13 * now at Dept. of Chemistry, Univ. of California, Irvine, CA, USA

14³Department of Earth and Planetary Science, University of California, Berkeley, California, USA

15⁴Department of Meteorology, Pennsylvania State University, University Park, Pennsylvania,
16 USA

17⁵Department of Chemistry and CIRES, University of Colorado, Boulder, Colorado, USA

18⁶Earth System Research Laboratory, National Oceanic and Atmospheric Administration,
19 Boulder, Colorado, USA

20⁷Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt,
21 MD, USA

22⁸Joint Center for Earth Systems Technology, University of Maryland Baltimore County,
23 Baltimore, MD, USA

24⁹National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research
25 Triangle Park, North Carolina, USA

26¹⁰School of Chemical & Biomolecular Engineering & School of Earth & Atmospheric Sciences,
27 Georgia Institute of Technology, Atlanta, Georgia, USA

28¹¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena,
29 CA, USA

30¹²Department of Chemical Engineering, Columbia University, New York, NY USA

31¹³Center for Climate Systems Research, Columbia University, New York, NY, USA

32¹⁴NASA Goddard Institute for Space Studies, New York, NY, USA

33¹⁵Department of Earth System Science, University of California, Irvine, California, USA

34¹⁶Atmospheric and Environmental Research, Lexington, Massachusetts, USA

35¹⁷School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts,
36 USA

37¹⁸Center for Earth and Environmental Science, SUNY Plattsburgh, Plattsburgh, NY, USA

38¹⁹College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK

39²⁰School of the Art Institute of Chicago (SAIC), Chicago, IL 60603, USA

40²¹Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration,
41 Princeton, New Jersey, USA

43 **Abstract**

44 Concentrations of atmospheric trace species in the United States have changed dramatically over
45 the past several decades in response to pollution control strategies, shifts in domestic energy policy
46 and economics, and economic development (and resulting emission changes) elsewhere in the
47 world. Reliable projections of the future atmosphere require models to not only accurately describe
48 current atmospheric concentrations; but to do so by representing chemical, physical and biological
49 processes with conceptual and quantitative fidelity. Only through incorporation of the processes
50 controlling emissions and chemical mechanisms that represent the key transformations among
51 reactive molecules can models reliably project the impacts of future policy, energy, and climate
52 scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms
53 in atmospheric models benefit from intensive observation periods (IOPs), during which co-located
54 measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained.
55 The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS)
56 conducted during the summer of 2013, provided an unprecedented opportunity for the atmospheric
57 modeling community to come together to evaluate, diagnose, and improve the representation of
58 fundamental climate and air quality processes in models of varying temporal and spatial scales.

59 This paper is aimed to discuss progress in evaluating, diagnosing, and improving air quality and
60 climate modeling using comparisons to SAS observations as a guide to thinking about
61 improvements to mechanisms and parameterizations in models. The effort focused primarily on
62 model representation of fundamental atmospheric processes that are essential to the formation of
63 ozone, secondary organic aerosols (SOA) and other trace species in the troposphere, with the
64 ultimate goal of understanding the radiative impacts of these species in the Southeast and
65 elsewhere. Here we address questions surrounding four key themes: gas phase chemistry, aerosol
66 chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions.
67 We expect this review to serve as a guidance for future modeling efforts.

68 **1. Introduction**

69 The Southeast US has been studied extensively because it includes both intense emissions of
70 biogenic VOC and has multiple large sources of anthropogenic emissions (e.g. Chameides et al.,
71 1988; Trainer et al., 1987). An improved understanding of ozone photochemistry in this region has
72 subsequently led to effective ozone control strategies (Council, 1991). In 1990s, a number of
73 aircraft and ground field campaigns were conducted to study ozone photochemistry in the
74 Southeast US (Cowling et al., 2000, 1998; McNider et al., 1998; Hübler et al., 1998; Meagher et
75 al., 1998; Martinez et al., 2003; Roberts et al., 2002; Stroud et al., 2001). Aggressive regulatory
76 efforts over the past decade have substantially decreased NO_x in this region (e.g. Russell et al.,
77 2012). This decrease is changing the factors that control the NO_x lifetime and offers an opportunity
78 to study mechanisms of emission from ecosystems in the region in different chemical regimes. The
79 decrease in NO_x is also shifting the regime of HO_x chemistry from one where the primary reaction
80 partner for HO_2 and RO_2 was NO to one where isomerization, $\text{RO}_2 + \text{HO}_2$ and $\text{HO}_2 + \text{HO}_2$ are
81 more important. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS
82 and SEAC4RS), was designed to study the atmospheric chemistry of the region in the context of
83 changing anthropogenic emissions.

84 Observational experiments in the Southeastern U.S. during SAS (Southeast Atmosphere Studies)
85 2013 (SOAS, SENEX, SEAC4RS, NOMADSS) provide a wealth of new insights into the
86 composition of the atmosphere. Results allow researchers to explore the chemical degradation of

87 biogenic organic molecules over a range of concentrations of ambient nitrogen oxide
88 concentrations during day and night, and the ensuing consequences for ozone, aerosol and radiative
89 properties of the atmosphere. The experiment was large and collaborative, and included
90 coordinated measurements at multiple surface sites and, among several aircraft, with many
91 flyovers of the surface sites and a wide suite of available remote sensing from space based
92 instruments. A comprehensive array of instruments at each site/aircraft tracked most of the key
93 atmospheric observables. Direct tracking of oxidative pathways was made possible by including
94 gas phase measurements of parent molecules and many of the first- and second-generation
95 daughter molecules. For the first time, many of the daughter molecules were also tracked into the
96 aerosol phase. These observations provided an important context for both the characterization of
97 new instruments and new methods by interpreting measurements from more established
98 instruments. In parallel with these field measurements, several laboratory experiments used the
99 same instrumentation to provide insights into the chemical mechanisms of oxidation and
100 instrument performance under field conditions. Overviews of the entire project and many of the
101 subprojects have been presented elsewhere (Carlton et al., 2017; Warneke et al., 2016; Toon et al.,
102 2016). Analyses of the observations have ranged from those that focus on the observations alone
103 to those that primarily describe model simulations of the region. In this review we focus on the
104 intersection of these two approaches, which is on analyses of observations that specifically test
105 and inform the construction of 3-D chemical weather models. Our evaluations are focused on the
106 Southeast data set, although we assert that the lessons learned are global.

107 **2. Gas-phase Chemistry**

108 **2.1 Background**

109 Global and regional models tend to significantly overestimate summertime surface ozone over the
110 Southeastern US (Fiore et al., 2009; Murazaki and Hess, 2006; Yu et al., 2010; Yu et al., 2007;
111 Lin et al., 2008; Rasmussen et al., 2012), posing a challenge for air quality management in this
112 region and elsewhere. It remains unclear whether this model bias in summertime surface ozone is
113 mainly due to the chemical processes (e.g. HO_x recycling, isoprene nitrate chemistry,
114 heterogeneous reactions, nighttime chemistry), physical processes (e.g. dry deposition, boundary
115 layer processes) or emissions. Fiore et al. (2005) suggested that this problem might be due to
116 incorrect representation of isoprene sources and chemistry. Measured deposition rates for isoprene
117 oxidation products appear to be higher than current model values (Nguyen et al., 2015a; Karl et
118 al., 2010). In the meantime, the understanding of isoprene oxidation chemistry has been evolving
119 rapidly in the past decade (Crounse et al., 2011; Peeters et al., 2014; Peeters et al., 2009), as a
120 result conclusions drawn from models using older chemical mechanism may not be correct.

121 A large debate surrounds our understanding of hydroxyl radical (OH) and hydroperoxy radical
122 (HO₂) concentrations in the presence of isoprene. Traditional mechanisms assume that isoprene
123 oxidation suppresses OH concentrations in low-NO_x conditions via the formation of organic
124 hydroxyperoxides (Jacob and Wofsy, 1988). However, observations show higher-than-expected
125 OH concentrations in isoprene-rich environments without corresponding enhancements in HO₂ or
126 RO₂ (Tan et al., 2001; Carslaw et al., 2001; Lelieveld et al., 2008; Hofzumahaus et al., 2009; Ren
127 et al., 2008; Pugh et al., 2010; Thornton et al., 2002; Stone et al., 2010), suggesting a gap in current
128 understanding of isoprene oxidation. On the other hand, an interference has been discovered to
129 affect some of these OH instruments (Mao et al., 2012; Novelli et al., 2014; Feiner et al., 2016).

130 Measurements of higher than expected OH in the presence of isoprene spurred renewed interest in
131 issues related to the products of the $\text{HO}_2 + \text{RO}_2$ reactions. Thornton et al. (2002) and Hasson et al.
132 (2004) had pointed out that if this reaction does not terminate the radical chain it would change
133 the behavior of HO_x radicals at low NO_x . Several specific case of the $\text{HO}_2 + \text{RO}_2$ reactions were
134 shown to have an OH product (Hasson et al., 2004; Jenkin et al., 2007; Dillon and Crowley, 2008).
135 Peeters et al. (2009; 2014) identified a new path for OH regeneration through unimolecular
136 isomerization of isoprene hydroxyperoxy radicals. This pathway was confirmed by laboratory
137 measurements of its rate (Crounse et al., 2011; Teng et al., 2017). A key feature of the SAS
138 experiments was that the NO_x concentrations spanned a range that resulted in measurements where
139 the three major fates of isoprene peroxy radicals (reaction with NO , HO_2 or isomerization) were
140 sampled at different times and locations.

141 Another major consequence of isoprene oxidation is the production of isoprene nitrates, formed
142 from $\text{RO}_2 + \text{NO}$ reaction in the isoprene degradation chain during daytime and by addition of NO_3
143 to the double bonds in isoprene or isoprene daughters at night. Different treatments of these
144 reactions in models including the yield and subsequent fate of daytime isoprene nitrates, cause as
145 much as 20% variations in global ozone production rate and ozone burden among different models
146 (Ito et al., 2009; Horowitz et al., 2007; Perring et al., 2009a; Wu et al., 2007; Fiore et al., 2005;
147 Paulot et al., 2012). Large variations mainly stem from different yield of isoprene nitrates (Wu et
148 al., 2007) and the NO_x recycling ratio of these isoprene nitrates (Ito et al., 2009; Paulot et al., 2012).
149 Recent laboratory data indicates the yield of first generation isoprene nitrates is in the range of 9%
150 to 14% (Giacopelli et al., 2005; Patchen et al., 2007; Paulot et al., 2009a; Lockwood et al., 2010;
151 Sprengnether et al., 2002; Xiong et al., 2015; Teng et al., 2015), which is much higher than the 4%
152 that was in favor as recently as 2007 (Horowitz et al., 2007). The subsequent fate of these isoprene
153 nitrates includes oxidation by OH, NO_3 and O_3 (Lockwood et al., 2010; Paulot et al., 2009a; Lee
154 et al., 2014), photolysis (Müller et al., 2014), and hydrolysis. Synthesis of models and SAS
155 observations suggest an important role for hydrolysis as expected based on the laboratory
156 measurements (Romer et al., 2016; Fisher et al., 2016; Wolfe et al., 2015).

157 The SAS observations also provide measurements that guide our thinking about the role of NO_3
158 chemistry and its representation in models, especially as it contributes to oxidation of biogenic
159 volatile organic compounds (BVOC) at night (Warneke et al., 2004; Brown et al., 2009; Aldener
160 et al., 2006; Ng et al., 2008; Ng et al., 2017; Edwards et al., 2017). During SAS, these reactions
161 were a substantial sink of NO_x in addition to their role in oxidation of BVOC. To a large extent
162 this is due to the high yield of carbonyl nitrates (65%-85%) from the isoprene + NO_3 oxidation
163 (Perring et al., 2009b; Rollins et al., 2009; Rollins et al., 2012; Kwan et al., 2012; Schwantes et al.,
164 2015). Models that incorporate this chemistry (Xie et al., 2013; Horowitz et al., 2007; von
165 Kuhlmann et al., 2004; Mao et al., 2013), indicate that the isoprene+ NO_3 reaction contributes more
166 than 50% of the total isoprene nitrate production and that the reaction is thus a major pathway for
167 nighttime NO_x removal. The fate of products from isoprene+ NO_3 and to what extent they return
168 NO_x remains a subject of discussion and thus an opportunity for exploration with models that
169 might guide our thinking about a plausible range of product molecules (Perring et al., 2009b;
170 Müller et al., 2014; Schwantes et al., 2015).

171 Compared to isoprene, the oxidation mechanism of monoterpene has received much less attention
172 partly due to lack of laboratory and field data. In contrast to isoprene, a significant portion of
173 terpenes emissions being released at night. Browne et al. (2014) showed that monoterpene
174 oxidation is a major sink of NO_x in the Arctic. The high yield of organic nitrates and the low vapor

175 pressure and high solubility of monoterpene organic nitrates results in strong coupling of gas phase
176 mechanisms to predictions of SOA in a model. For example, the reaction of terpenes+NO₃
177 provides a large source of SOA as inferred (Ng et al., 2017). These aerosol organic nitrates can be
178 either a permanent or temporary NO_x sink depending on their precursors as well as ambient
179 humidity (Nah et al., 2016b; Boyd et al., 2015; Lee et al., 2016a; Romer et al., 2016). Some of
180 monoterpene organic nitrates may be susceptible to rapid hydrolysis/photolysis in aerosol phase
181 (thus not detected as aerosol nitrates), leading to an underestimate of its contribution to SOA mass
182 (Rindelaub et al., 2015; Rindelaub et al., 2016).

183 **2.2 Major relevant findings**

184 A major focus of the SAS study was to study the daytime and nighttime oxidative chemistry of
185 isoprene and to compare the observations against models representing the ideas outlined above.
186 Over the range of the fate of the isoprene RO₂ radical, isomerization was important and the reaction
187 partners were mostly NO and HO₂ during the day and a mix of NO₃, RO₂ and HO₂ at night. The
188 field measurements were closely partnered with laboratory chamber experiments (Nguyen et al.,
189 2014b) which enhanced our understanding of oxidation mechanisms and provided increased
190 confidence in our understanding of the measurements of isoprene oxidation products. We
191 summarize these major relevant findings here:

192 (1) Radical simulation: Combining traditional laser-induced fluorescence with a chemical removal
193 method that mitigates potential OH measurement artifacts, Feiner et al. (2016) found that their
194 tower-based measurements of OH and HO₂ during SOAS show no evidence for dramatically
195 higher OH than current chemistry predicts in an environment with high BVOCs and low NO_x.
196 Instead, they are consistent with the most up-to-date isoprene chemical mechanism. Their
197 measurements are also in agreement with co-located OH measurements by another technique,
198 chemical ionization mass spectrometry (CIMS)(Sanchez et al., 2017). Romer et al. (2016) found
199 that the lifetime of NO_x was consistent with these OH observations and that the major source of
200 HNO₃ was isoprene nitrate hydrolysis. Their conclusions would be inconsistent with dramatically
201 higher OH levels, which would imply much more rapid isoprene nitrate production than observed.
202 Other ratios of parent and daughter molecules and chemical lifetimes are also sensitive to OH and
203 these should be explored for additional confirmation or refutation of ideas about OH production at
204 low NO_x.

205 Isoprene vertical flux divergence in the atmospheric boundary layer over the SOAS site and similar
206 forest locations was quantified by Kaser et al. (2015) during the NSF/NCAR C-130 aircraft flights
207 and used to estimate daytime boundary layer average OH concentrations of 2.8 to
208 6.6×10^6 molecules cm⁻³. These values, which are based on chemical budget closure, agree to within
209 20% of directly-observed OH on the same aircraft. After accounting for the impact of chemical
210 segregation, Kaser et al. (2015) found that current chemistry schemes can adequately predict OH
211 concentrations in high isoprene regimes. This is also consistent with the comparison between
212 measured and modeled OH reactivity on a ground site during SOAS, which show excellent
213 agreement above the canopy of an isoprene-dominated forest (Kaiser et al., 2016).

214 (2) Isoprene oxidation mechanism: Recent refinements in our understanding of the early
215 generations of isoprene degradation have stemmed from a synergy of laboratory, field, and
216 modeling efforts. Laboratory work has provided constraints on the production and fate of a wide
217 range of intermediates and end products, including organic nitrates (Teng et al., 2015; Xiong et al.,
218 2015; Lee et al., 2014; Müller et al., 2014), the isoprene RO₂ (Teng et al., 2017), IEPOX (St. Clair

219 et al., 2015; Bates et al., 2014; Bates et al., 2016), MVK (Praske et al., 2015), and MACR (Crounse
220 et al., 2012). These experiments have been guided and/or corroborated by analyses of field
221 observations of total and speciated alkyl nitrates (Romer et al., 2016; Nguyen et al., 2015a; Xiong
222 et al., 2015; Lee et al., 2016a), IEPOX/ISOPPOOH (Nguyen et al., 2015a), glyoxal (Min et al.,
223 2016), HCHO (Wolfe et al., 2016), OH reactivity (Kaiser et al., 2016), and airborne fluxes (Wolfe
224 et al., 2015). Recent modeling studies have incorporated these mechanisms to some extent and
225 showed success on reproducing temporal and spatial variations of these compounds (Su et al., 2016;
226 Fisher et al., 2016; Travis et al., 2016; Zhu et al., 2016; Li et al., 2017; Li et al., 2016), as
227 summarized in Table 1. Continued efforts are needed to reduce newfound mechanistic complexity
228 for inclusion in regional and global models.

229 (3) Oxidized VOC: Large uncertainties remain on the production of smaller oxidation products.
230 Several modeling studies indicate an underestimate of HCHO from isoprene oxidation in current
231 mechanisms (Wolfe et al., 2016; Li et al., 2016; Marvin et al., 2017). Current chemical mechanisms
232 differ greatly on the yield of glyoxal from isoprene oxidation (Li et al., 2016; Chan Miller et al.,
233 2017). The observations indicate that the ratio of glyoxal to HCHO is 2%, independent of NO_x
234 (Kaiser et al., 2015), and this ratio is reproduced, at least to some extent, in two modeling studies
235 (Li et al., 2016; Chan Miller et al., 2017). Confirmation of such a ratio is a useful indicator as these
236 molecules are also measured from space and both are short- lived and tightly coupled to oxidation
237 chemistry. Widespread ambient confirmation of the ratio is difficult because of large biases in
238 satellite glyoxal quantification (Chan Miller et al., 2017).

239 For the case of the major daughter products methylvinylketone (MVK) and methacrolein (MACR),
240 lab experiments have confirmed that ambient measurements reported to be MVK and MACR, by
241 instruments with metal inlets including gas chromatography (GC) and proton transfer reaction–
242 mass spectrometry (PTR-MS), are more accurately thought of as a sum of MVK, MACR and
243 isoprene hydroperoxides that react on metal and are converted to MVK and MACR (Rivera - Rios
244 et al., 2014; Liu et al., 2013).

245 (4) Organic Nitrates: The assumed lifetime and subsequent fate of organic nitrates can profoundly
246 influence NO_x levels across urban-rural gradients (Browne and Cohen, 2012; Mao et al., 2013),
247 affecting oxidant levels and formation of secondary organic aerosol (SOA). Field observations
248 during SAS suggest a short (2-3 hr) lifetime of total and isoprene/terpene organic nitrates (Wolfe
249 et al., 2015; Romer et al., 2016; Fisher et al., 2016; Lee et al., 2016a). One possible explanation is
250 aerosol uptake of these organic nitrates followed by rapid hydrolysis as confirmed in laboratory
251 experiments (Hu et al., 2011; Darer et al., 2011; Rindelaub et al., 2016; Rindelaub et al., 2015;
252 Jacobs et al., 2014; Bean and Hildebrandt Ruiz, 2016), although the hydrolysis rate varies greatly
253 with the structure of nitrate and aerosol acidity (Hu et al., 2011; Rindelaub et al., 2016; Boyd et
254 al., 2017; Boyd et al., 2015).

255 (5) Nighttime Chemistry: The SAS studies examined nighttime BVOC oxidation in both the
256 nocturnal boundary layer (NBL) and the residual layer (RL). Measurements at the SOAS ground
257 site provided a wealth of detailed information on nighttime oxidation processes in the NBL via
258 state of the art instrumentation to constrain the major oxidants, BVOCs and gas and aerosol phase
259 products (Ayres et al., 2015; Xu et al., 2015b; Lee et al., 2016a). A major focus of these efforts
260 was to understand the influence of nitrate radical (NO₃) oxidation as a source of secondary organic
261 aerosol. These results are reviewed in Section 3.2.3 below, and show that organic nitrates from
262 reactions of NO₃ with monoterpenes are an important SOA source in the NBL. Reactions of
263 monoterpenes dominate nighttime chemistry near the surface due to their temperature (but not

264 sunlight) dependent emissions and their accumulation to higher concentration in the relatively
265 shallow NBL.

266 Nighttime flights of the NOAA P-3 probed the composition of the overlying RL and the rates of
267 nighttime oxidation processes there. In contrast to the NBL, isoprene dominates the composition
268 of BVOCs in the RL, with mixing ratios over Alabama on one research flight demonstrating a
269 nighttime average near 1 ppbv. Monoterpene mixing ratios were more than an order of
270 magnitude lower. Consumption of isoprene by O_3 and NO_3 was shown to depend on the sunset
271 ratio of NO_x to isoprene, with NO_3 reaction dominating at ratios above approximately 0.5 and O_3
272 reaction dominant at lower ratios. Overall, O_3 and NO_3 contributed approximately equally to RL
273 isoprene oxidation in the 2013 study. This observation, combined with recent trends in NO_x
274 emissions, suggests that RL nighttime chemistry in the southeast U.S. is currently in transition
275 from a NO_x dominated past to an O_3 dominated future, a condition more representative of the pre-
276 industrial past. The implications of this trend for understanding organic nitrates and secondary
277 organic aerosol should be considered in models of the influence of changing NO_x emissions on
278 BVOC oxidation (Edwards et al., 2017).

279 (6) HONO: The community's confusion about sources of HONO was not resolved by SAS.
280 Airborne observations over water from the NCAR C130 suggest that conversion of HNO_3 to
281 HONO and NO_x via photolysis of particulate nitrate in the marine boundary layer is important (Ye
282 et al., 2016). A separate study using NOAA WP-3D observations indicates that HONO mixing
283 ratios in the background terrestrial boundary layer are consistent with established photochemistry
284 (Neuman et al., 2016). Persistent uncertainties regarding the potential for measurement artifacts
285 continue to hamper efforts to resolve outstanding questions about putative novel HONO sources.

286 (7) Higher-order terpenes: Monoterpene and sesquiterpene chemistry requires continued
287 investigation. Initial studies indicate that monoterpene oxidation can be an important sink of NO_x
288 and an important source of aerosol precursors (Lee et al., 2016a; Ayres et al., 2015). Additional
289 analysis is needed to understand the role of monoterpenes. We note that because our understanding
290 of isoprene chemistry has been changing so rapidly and because the role of isoprene sets the stage
291 for evaluating the role of monoterpenes, we are now in a much better position to evaluate the role
292 of monoterpene chemistry.

293 **2.3 Model recommendations**

294 Based upon the improved understanding outlined above, we make the following recommendations
295 for the future modeling efforts:

296 (1) Measurements and modeling effort on OH show no indication of a need for empirical tuning
297 factors to represent OH chemistry in the rural Southeast US. Detailed mechanisms based on recent
298 laboratory chamber studies (mostly at Caltech) and theoretical studies (Leuven) for isoprene result
299 in predicted OH that is in reasonable agreement with observations (Figure 1). Condensed
300 mechanisms that approximate the detailed ones are expected to do the same. Whatever mechanism
301 is used, a key diagnostic identified are parent-daughter molecular relationships such as NO_2/HNO_3
302 or MVK/isoprene. Models calculations should emphasize opportunities for observations of such
303 ratios as an independent measure of the effect of OH on the atmosphere.

304 (2) The chemistry of isoprene should be treated in more detail than most other molecules. We
305 recommend that there should be explicit chemistry through the first and second generation of
306 isoprene oxidation, to better illustrate the role of isoprene in ozone production, OH budget and
307 SOA production. No other species should be lumped with isoprene or its daughters. Even for

308 climate models that cannot afford this level of complexity, a reduced mechanism of isoprene
309 oxidation should be generated for a wide range of conditions.

310 (3) NO_3 chemistry is an important element of VOC oxidation, NO_x removal and aerosol production.
311 NO_3 chemistry should be included in models that do not explicitly take it into account, both as a
312 loss process of VOCs and NO_x and as a source of aerosols.

313 (4) The largest NO_x and BVOC emissions are not collocated, as one is mainly from mobile sources
314 and power plants and the other one is mainly from forests (Yu et al., 2016; Travis et al., 2016). As
315 a result, model resolution can impact predicted concentrations of trace species. Different model
316 resolutions may lead to as much as 15% differences at the tails of the NO_x and HCHO
317 distribution—less so for O_3 (Yu et al., 2016; Valin et al., 2016). Depending on the research
318 question models should evaluate the need to resolve this last 15% which requires a horizontal
319 resolution of order 12 km or less.

320 **2.4 Key model diagnostics**

321 We identified a number of key diagnostics that should probably be evaluated before a model is
322 used to pursue more interesting new questions. These include:

323 (1) NO_x concentrations from *in situ* and satellite observations. Models that do not predict the
324 correct magnitude of NO_x should produce the wrong OH, O_3 , and parent:daughter VOC ratios (e.g.
325 Isoprene: Isoprene + IEPOX, Isoprene : MACR + MVK). At the low NO_x characteristic of the
326 Southeast U.S. these errors are approximately linear—that is, a 15% error in NO_x should
327 correspond to a 15% error in OH, isoprene and other related species. Given the difficulty in
328 predicting NO_x to this tolerance, caution should be taken not to over interpret model predictions.

329 (2) HCHO from space based observations is emerging as a useful diagnostic of model oxidation
330 chemistry (Valin et al., 2016).

331 (3) A significant fraction of isoprene remains at sunset and is available for oxidation via O_3 or NO_3
332 at night. Analysis of nighttime isoprene and its oxidation products in the RL in the northeast U.S.
333 in 2004 suggested this fraction to be 20% (Brown et al. 2009). Preliminary analysis from SENEX
334 suggested a similar fraction, although the analysis depends on the emission inventory for isoprene,
335 and would be 10-12% if isoprene emissions were computed from MEGAN (see Section 4.2 for the
336 difference between BEIS and MEGAN). This fact might be a useful diagnostic of boundary layer
337 dynamics and nighttime chemistry in models. The overnight fate of this isoprene depends strongly
338 on available NO_x (see above). More exploration of the model prediction of the products of NO_3 +
339 isoprene and additional observations of those molecules will provide insight into best practices for
340 using it as a diagnostic of specific model processes.

341 (4) O_3 and aerosol concentrations and trends over decades and contrasts between weekdays and
342 weekends across the Southeast remain a valuable diagnostic of model performance, especially as
343 coupled to trends in NO_x on those same time scales.

344 **2.5 Open questions**

345 There are many open questions related to gas phase chemistry. Here we highlight a few that we
346 believe are best addressed by the community of experimentalists and modelers working together
347 (there were many other open questions that we think could be addressed by individual investigators
348 pursuing modeling or experiments on their own).

349 (1) The sources and sinks of NO_x are not well constrained in rural areas that cover most of
350 Southeast U.S. As anthropogenic combustion related emissions experience further decline, what
351 do we expect to happen to NO_x ? What observations would test those predictions?

352 (2) As we are reaching consensus on a mechanism for isoprene oxidation, the role of monoterpene
353 and sesquiterpene oxidation is becoming a larger fraction of remaining uncertainty. Strategies for
354 exploring and establishing oxidation mechanisms for these molecules and for understanding the
355 level of detail needed in comprehensive and reduced mechanisms are needed.

356 (3B) Air quality modeling efforts have long been most interested in conditions that are not of top
357 priority to meteorological researchers—e.g. stagnation. In addition to a better understanding of
358 horizontal flows in stagnant conditions these experiments highlighted the need for a deeper
359 understanding of the links between chemical mixing and boundary layer dynamics in day and night.
360 A number of new chemical observations have been identified in the Southeast US data sets.
361 Combined approaches using models and these observations to guide our thinking about PBL
362 dynamics are needed.

363 **3. Organic aerosol**

364 **3.1 Background**

365 Improving the representation of organic aerosol (OA) is a critical need for models applied to the
366 Southeast. Current air quality and chemistry-climate models produce a very wide range of organic
367 aerosol mass concentrations, with predicted concentrations spread over 1-2 orders-of-magnitude
368 in free troposphere (Tsigaridis et al., 2014). Secondary OA (SOA) has traditionally been modeled
369 by partitioning of semivolatile species between the gas and aerosol phase (Odum et al., 1996;
370 Chung and Seinfeld, 2002; Farina et al., 2010), but very large uncertainties remain on the detailed
371 formulations implemented in models (Spracklen et al., 2011; Heald et al., 2011; Tsigaridis et al.,
372 2014). In particular, the recent identification of substantial losses of semivolatile and intermediate
373 volatility species to Teflon chamber walls (Matsunaga and Ziemann, 2010; Zhang et al., 2014;
374 Krechmer et al., 2016; Nah et al., 2016a) necessitate a re-evaluation of the gas-phase SOA yields
375 used in models which has yet to be comprehensively performed. Models have difficulties to
376 reproduce the mass loading of OA in both urban and rural areas, although order-of-magnitude
377 underestimates have only been observed consistently for urban pollution (e.g. Volkamer et al.,
378 2006; Hayes et al., 2015). Furthermore, current OA algorithms often rely on highly parameterized
379 empirical fits to laboratory data that may not capture the role of oxidant (OH vs O_3 vs NO_3) or
380 peroxy radical fate. The peroxy radical fate for historical experiments in particular, may be biased
381 compared to the ambient atmosphere where peroxy radical lifetimes are longer and autoxidation
382 can be important.

383 Recent laboratory, field and model studies suggest that a significant fraction of SOA is formed in
384 aqueous phase cloud droplets and aerosols, following gas-phase oxidation to produce soluble
385 species (Sorooshian et al., 2007; Fu et al., 2008; Myriokefalitakis et al., 2011; Carlton et al., 2008;
386 Tan et al., 2012; Ervens et al., 2011; Volkamer et al., 2009). This is also consistent with the strong
387 correlation between OA and aerosol liquid water in the Southeast US over the past decade (Nguyen
388 et al., 2015b). A number of gas-phase VOC oxidation products have been recognized as important
389 precursors for aqueous production of SOA, including epoxides (Pye et al., 2013; Nguyen et al.,
390 2014a; Surratt et al., 2010) and glyoxal (Liggio et al., 2005; Woo and McNeill, 2015; McNeill et
391 al., 2012). Aerosol uptake of these oxygenated VOCs can be further complicated by aerosol acidity
392 and composition (Pye et al., 2013; Paulot et al., 2009b; Nguyen et al., 2014a; Marais et al., 2016).

393 While a significant portion of ambient OA has been attributed to various source classes and
394 precursors (e.g. BBOA from biomass burning, IEPOX-SOA from isoprene epoxydiols or IEPOX,
395 and less-oxidized oxygenated OA, LO-OOA from monoterpenes), a large portion of ambient OA
396 (e.g. more-oxidized oxygenated OA, MO-OOA) remains unapportioned. This portion lacks
397 detailed chemical characterization or source attribution, so further investigation is warranted (Xu
398 et al., 2015b; Xu et al., 2015a). A diversity of modeling approaches, including direct scaling with
399 emissions, reactive uptake of gaseous species, and gas-aerosol partitioning etc., is encouraged to
400 provide insight into OA processes, while trying to make use of all available experimental
401 constraints to evaluate the models.

402 **3.2 Major relevant findings**

403 A number of modeling groups will be interested in modeling aerosol for the Southeast Atmosphere
404 Study (SAS) across a variety of spatial and temporal scales. Different studies will be able to
405 support different levels of detail appropriate for their application. Detailed box model
406 representations can serve to confirm or refute mechanisms and, eventually, be condensed for
407 application at larger scales such as those in chemical transport or global climate models. In the
408 following sections, we highlight areas of organic aerosol that should be represented.

409 **3.2.1 Partitioning theory and phases**

410 No large kinetic limitations to partitioning are observed in the southeast and partitioning according
411 to vapor pressure is active on short timescales (Lopez-Hilfiker et al., 2016). The higher relative
412 humidity in this region, which results in fast diffusion in isoprene-SOA containing particles (Song
413 et al., 2015), may be at least partially responsible for this behavior. In some instances (e.g. for key
414 IEPOX-SOA species), observations indicate that detected OA species are significantly less volatile
415 than their structure indicates, likely due to thermal decomposition of their accretion products or
416 inorganic-organic adducts in instruments (Lopez-Hilfiker et al., 2016; Hu et al., 2016; Isaacman-
417 VanWertz et al., 2016; Stark et al., 2017).

418 Further research is needed regarding the role of organic partitioning into OA versus water and this
419 can be evaluated using field data. If both processes occur in parallel in the atmosphere, vapor
420 pressure dependent partitioning to OA may occur along with aqueous processing without
421 significant double counting or duplication in models. However, due to the high relative humidity
422 (average RH is 74%, see Weber et al. (2016)) and degree of oxygenation of organic compounds
423 (OM/OC is 1.9-2.25, see below) in the southeast US atmosphere, inorganic-rich and organic-rich
424 phases may not be distinct (You et al., 2013) and more advanced partitioning algorithms
425 accounting for a mixed inorganic-organic-water phase may be needed (Pye et al., 2017a; Pye et
426 al., 2017b).

427 Phase separation can be predicted based on determining a separation relative humidity (SRH),
428 which is a function of degree of oxygenation and inorganic constituent identity (You et al., 2013),
429 and comparing to the ambient relative humidity. For $RH < SRH$, phase separation occurs. Pye et al.
430 (2017a), predicted phase separation into organic-rich and electrolyte-rich phases occurs 70% of
431 the time during SOAS at CTR with a higher frequency during the day due to lower RH.

432 **3.2.2 Primary organic aerosol**

433 Primary organic aerosol concentrations are expected to be small in the Southeast outside urban
434 areas and we make no major recommendation for how to model them. Modelers should be aware
435 that a fraction of primary organic aerosol (POA) based on the EPA National Emission Inventory
436 (NEI) is semivolatile (Robinson et al., 2007). However, not all POA is thought to be semivolatile

437 – for example, OA from sources such as soil are included in the NEI. Modeled POA may already
438 include some oxidized POA (OPOA) (if the models include heterogeneous oxidation (as in CMAQ
439 (Simon and Bhade, 2012)), or hydrophilic conversion (as in GEOS-Chem (Park et al., 2003))).
440 Thus care should be exercised in evaluating model species such as POA with Aerosol Mass
441 Spectrometer (AMS) Positive Matrix Factorization (PMF) factors such as hydrocarbon-like OA
442 (HOA). For semivolatile POA treatments, mismatches between POA inventories and
443 semivolatile/intermediate volatility organic compounds (S/IVOCs) needs to be carefully
444 considered. Comparisons of model inventory versus ambient ratios of POA/ΔCO, POA/black
445 carbon (BC), or POA/NO_x can be used to indicate whether or not POA emissions are excessive
446 (De Gouw and Jimenez, 2009). As these ratios can be affected by errors in the denominator species,
447 it is important to also evaluate those carefully against observations. For models with limited POA
448 information, the ratio of organic matter to organic carbon (OM/OC) should be adjusted to reflect
449 the highly oxidized nature of ambient OA (as mass is transferred from hydrophobic/hydrophilic
450 concentrations for example). The OM/OC ratio of bulk ambient OA in the Southeast US is 1.9-
451 2.25 as measured during summer 2013 (Kim et al., 2015; Pye et al., 2017a).

452 A biomass burning PMF factor (BBOA) was observed during SOAS and likely has a higher impact
453 on brown carbon (BrC) than its contribution to OA mass would suggest, although overall BrC
454 concentrations were very small (Washenfelder et al., 2015). Net SOA mass added via
455 photochemical processing of biomass burning emissions is thought to be modest, relative to the
456 high POA emissions (Cubison et al., 2011; Jolley et al., 2012; Shrivastava et al., 2017).

457 **3.2.3 Particle-phase organic nitrates**

458 Organic nitrates, primarily from monoterpene reactions with the nitrate radical, have been
459 recognized as an important source of OA in the southeast, contributing from 5 to 12% in Southeast
460 US in summer (Xu et al., 2015a; Ayres et al., 2015; Pye et al., 2015; Xu et al., 2015b; Lee et al.,
461 2016a). In fact, this number could be an underestimate if some of these organic nitrates are
462 susceptible to hydrolysis or photodegradation, and thus are not detected as nitrates. We have high
463 confidence that models should include SOA formation from nitrate radical oxidation of
464 monoterpenes. Sesquiterpenes and isoprene may also contribute OA through nitrate radical
465 oxidation, but the contribution is expected to be smaller (Pye et al., 2015; Fisher et al., 2016). A
466 number of options exist for representing this type of aerosol including fixed yields, Odum 2-
467 product parameterizations, volatility basis set (VBS) representations (Boyd et al., 2015), and
468 explicit partitioning/uptake of organic nitrates (Pye et al., 2015; Fisher et al., 2016).

469 Detailed modeling studies can provide additional insight into the interactions between
470 monoterpene nitrate SOA and gas-phase chemistry, as well as the fates of specific organic nitrates.
471 Explicit formation and treatment of organic nitrates, yields of which are parent hydrocarbon
472 specific, can take into account hydrolysis of particle-phase organic nitrate (ON). The hydrolysis
473 should depend on the relative amounts of primary, secondary, and tertiary nitrates which are
474 produced in different abundances in photooxidation vs. nitrate radical oxidation (Boyd et al., 2015;
475 Boyd et al., 2017). Hydrolysis may also depend on the level of acidity and presence of double
476 bonds in the organic nitrate (Jacobs et al., 2014; Rindelau et al., 2016). In addition to hydrolysis,
477 particle organic nitrates could photolyze and release NO_x or serve as a NO_x sink through deposition
478 (Nah et al., 2016b).

479 Formation of organic nitrates should also be considered in the context of emerging evidence for
480 the role of autoxidation, especially in the monoterpene system (Ehn et al., 2014). Autoxidation has
481 been shown to occur in both photooxidation and ozonolysis of monoterpenes (Jokinen et al., 2015)

482 and leads to highly oxidized species including organic nitrates (Lee et al., 2016a; Nah et al., 2016b),
483 many of which are low volatility. While some empirical representations (e.g. VBS or Odum 2-
484 product) of monoterpene SOA may capture these species, autoxidation products may be very
485 susceptible to chamber wall loss (Zhang et al., 2014; Krechmer et al., 2016) and missing from
486 SOA parameterizations. The role of autoxidation in forming SOA in the southeastern US
487 atmosphere remains to be determined. In this regard, future laboratory studies should carefully
488 constrain the peroxy radical reaction channels (e.g. Schwantes et al., 2015; Boyd et al., 2015) and
489 be conducted under regimes that are representative of ambient environments where the peroxy
490 radical lifetimes can vary.

491 **3.2.4 Isoprene epoxydiol (IEPOX) SOA**

492 Due to the abundance of observations in the Southeastern atmosphere (Budisulistiorini et al., 2016;
493 Hu et al., 2015b; Xu et al., 2015a; Xu et al., 2015b; Xu et al., 2016; Hu et al., 2016), similarity
494 between laboratory and field IEPOX-SOA determined by PMF analysis, and availability of model
495 parameterizations to predict IEPOX-SOA (Pye et al., 2013; Woo and McNeill, 2015; Marais et al.,
496 2016; Budisulistiorini et al., 2017; Sareen et al., 2017), we have high confidence that IEPOX-SOA
497 should be included in models. D'Ambro et al. (2017) predicts IEPOX will be the major precursor
498 to SOA under low- NO_x conditions when peroxy radical lifetimes are atmospherically relevant,
499 which has not always been the case in older experiments. However, a number of parameters needed
500 to predict IEPOX-SOA are uncertain and different modeling approaches, as well as the use of all
501 available experimental constraints, could be beneficial. The mechanism of IEPOX-SOA formation
502 involves gas-phase reactions followed by aqueous processing which can occur either in aerosols
503 or cloud droplets, although the acid-catalyzed initiation step of the epoxide ring opening favors SE
504 USA aerosol conditions and makes this process less efficient in cloud water. This mechanism could
505 be represented as heterogeneous reaction with a reactive uptake coefficient or more explicit
506 partitioning and particle reaction (Table 1).

507 The correlation of IEPOX-SOA with sulfate (Xu et al., 2015a; Xu et al., 2016; Hu et al., 2015b)
508 can serve as a useful model evaluation technique as underestimates in sulfate could lead to
509 underestimates in IEPOX-SOA in models (Figure 2). Current pathways for IEPOX-SOA
510 formation (Eddingsaas et al., 2010) involve acidity in aqueous solutions (Kuwata et al., 2015), but
511 several studies suggest that IEPOX-SOA is not correlated well with aerosol acidity or aerosol
512 water (Budisulistiorini et al., 2017; Xu et al., 2015a). Ion balances or other simple measures of
513 aerosol acidity are likely inadequate to characterize particle acidity and thermodynamic models
514 such as ISORROPIA II or AIM are more appropriate for modeling IEPOX-SOA (Guo et al., 2015;
515 Weber et al., 2016). Currently, different observational datasets indicate different nominal ratios of
516 ammonium to sulfate (Pye et al., 2017b), so it needs to be kept in mind that some measurements
517 report only inorganic sulfate (e.g. ion chromatography) while others report total (inorganic +
518 organic) sulfate (e.g. AMS). A modeling study suggested that ammonia uptake might be limited
519 by organics, thus affecting acidity (Kim et al., 2015; Silvern et al., 2017).

520 SAS observations also provide estimates of some components of IEPOX-SOA including 2-
521 methyltetros and IEPOX-organosulfates (Budisulistiorini et al., 2015; Hu et al., 2015b). For
522 modeling applications focusing on IEPOX-SOA, additional speciation of IEPOX-SOA (into
523 tetros, organosulfates, etc.) and oligomerization and volatility can be treated. Treating the
524 monomers (e.g. 2-methyltetros) explicitly with their molecular properties will likely lead to
525 excessive volatility of the IEPOX-SOA (Lopez-Hilfiker et al., 2016; Hu et al., 2016; Isaacman-
526 VanWertz et al., 2016; Stark et al., 2017).

527 **3.2.5 Glyoxal SOA**

528 New information on glyoxal SOA is emerging in this area but its importance in the Southeast
529 remains unclear. Glyoxal has been suspected to be the dominant aqueous SOA source under high-
530 NO_x ($\text{RO}_2 + \text{NO}$) oxidation conditions (McNeill et al., 2012) and the Southeast has a mix of high-
531 NO_x and low- NO_x ($\text{RO}_2 + \text{HO}_2$) conditions (Travis et al., 2016). In addition, abundant isoprene
532 emissions can lead to substantial glyoxal concentrations. Modeling for the southeastern U.S.
533 indicates significant SOA can form from glyoxal (Marais et al., 2016; Pye et al., 2015; Knoté et
534 al., 2014; Li et al., 2016; Chan Miller et al., 2017). Implementation in models may require
535 modifications to the gas-phase chemistry to specifically track glyoxal which may be lumped with
536 other aldehydes (e.g. in CB05). Recent model studies do not find that a large SOA source from
537 glyoxal is required to match observations, but more field measurements and laboratory studies,
538 especially of the yield from isoprene oxidation and the aerosol uptake coefficient, are required to
539 constrain the process.

540 **3.2.6 Cloud SOA**

541 Results from SOAS and SEAC4RS indicate only a modest enhancement of OA due to cloud
542 processing over the SE US, which was not statistically significant (Wagner et al., 2015). In addition,
543 epoxide reactions in cloud droplets are predicted to lead to minor amounts of SOA due to the pH
544 dependence of IEPOX hydrolysis (Fahey et al., 2017; McNeill, 2015).

545 **3.2.7 SOA from Anthropogenic Emissions**

546 While the rural southeast is assumed to be dominated by SOA from biogenic precursors (which
547 may be influenced by anthropogenic pollution) as a result of high modern carbon (Hidy et al.,
548 2014), SOA from anthropogenic VOCs is known to play a role from fossil carbon measurements
549 (~18% at Centerville) (Kim et al., 2015), but it is not directly apportioned otherwise. We note that
550 since ~50% of urban POA and 30% of urban SOA is non-fossil (Zotter et al., 2014; Hayes et al.,
551 2015), an urban fraction of ~28% for the SOAS site is consistent with observations (Kim et al.,
552 2015). This source is as large as most of the other individual sources discussed in this section, and
553 should not be neglected in modeling studies. A simple parameterization based on CO emissions
554 (Hayes et al., 2015) may be adequate for incorporating this source in modeling studies and has
555 shown good results for the Southeast US (Kim et al., 2015), but care should be taken to evaluate
556 the CO emissions when using it.

557 **3.2.8 Surface network observations of organic aerosols**

558 We list several caveats for the process of comparing model results to surface network observations.
559 OC measurements from IMPROVE surface sites may be biased low in the summer due to
560 evaporation of organic aerosols during the sample collection and handling (Kim et al., 2015). On
561 the other hand, SEARCH measurements agree well with research community instruments in
562 Centerville site, such as AMS. Therefore the SEARCH data should be considered as the reference.

563 Decreases in mass concentrations of particulate sulfate and nitrate over the past decades is
564 consistent with environmental policy targeting their gas phase precursors, namely SOx and NOx
565 emissions. Reductions in particulate organic carbon in the southeastern U.S. over the past decade
566 (Blanchard et al., 2016; Blanchard et al., 2013) are more difficult to reconcile because in the
567 summertime it is predominantly modern and there is no control policy aimed at reducing biogenic
568 VOCs. Decreased SOx (Kim et al., 2015; Xu et al., 2015b; Blanchard et al., 2013) and NOx
569 emissions modulate the amount of organic aerosol formation through the gas phase impacts

570 described above, and impacts on the absorbing medium amount (Nguyen et al., 2015b; Attwood
571 et al., 2014) and chemical composition.

572 In addition to sources and sinks of OA, attention should also be paid to the role of dry deposition
573 of gases in determining mass loadings, as this process can have a large impact on model predictions
574 and is very poorly constrained (Glasius and Goldstein, 2016; Knote et al., 2015).

575 **3.2.9 Climate relevant properties**

576 A motivating goal of the southeast studies was to examine PM mass measurements at the surface
577 and satellite-measured AOD, to facilitate improved prediction of the total aerosol loading. Aerosol
578 mass aloft contributes to AOD (Wagner et al., 2015), and this complicates the relationship to
579 surface concentrations. Relative humidity, vertical structure of the daytime PBL, and aerosol liquid
580 water (not measured by surface networks) influences remotely sensed AOD (Brock et al., 2016a;
581 Brock et al., 2016b; Kim et al., 2015; Nguyen et al., 2016). AOD is also complicated by aerosol
582 composition. Attwood et al. (2014) finds that the steeper decrease in sulfate aerosol relative to
583 organic from 2001 to 2013, has changed the hygroscopicity of SE US aerosol, leading to lower
584 aerosol liquid water and thus lower optical extinction and AOD.

585 **3.3 Model recommendations**

586 Based upon the improved understanding outlined above, we make the following recommendations
587 for the future modeling efforts:

588 (1) There is high confidence that a pathway of SOA formation from isoprene epoxydiol (IEPOX)
589 should be included in models. However, since many of the parameters needed to predict IEPOX-
590 SOA are uncertain, further mechanistic studies are needed to address these uncertainties.

591 (2) There is high confidence that models should include SOA formation from nitrate radical
592 oxidation of monoterpenes (with or without explicit nitrate functionality). Sesquiterpenes and
593 isoprene may also contribute SOA through nitrate radical oxidation, but the contribution is
594 expected to be smaller.

595 (3) More field measurements and laboratory studies, especially of the yield from isoprene
596 oxidation and the aerosol uptake coefficient, are required to constrain the importance of glyoxal
597 SOA.

598 (4) There is high confidence that models should predict SOA from urban emissions with a
599 parameterization that results in realistic concentrations. The non-fossil fraction of urban POA and
600 SOA needs to be taken into account when interpreting modern carbon measurements.

601 (5) Current SOA modeling efforts should be coupled with an up-to-date gas-phase chemistry, to
602 provide realistic concentrations for several important SOA precursors, including IEPOX, glyoxal,
603 organic nitrates etc.

604 **3.4 Open questions**

605 A number of open questions remain that would benefit from modeling studies:

606 (1) What is the role of particle-phase organic nitrates in removing or recycling NO_x from the
607 system?

608 (2) How much detail do models need to represent in terms of types of organic nitrate (ON)?

609 (3) What are the formation mechanisms of highly oxygenated organics?

610 (4) What anthropogenic sources of SOA are models missing?

611 (5) What climate-relevant aerosol properties are needed in models? What are the controls over
612 the presence and lifetime of condensed liquid water? What model and observational diagnostics
613 serve as tests of our understanding?

614 (6) What is the role of clouds in forming and processing organic aerosols?

615 **4. Emissions**

616 **4.1 Background**

617 Emission inventories are a critical input to atmospheric models, and reliable inventories are needed
618 to design cost-effective strategies that control air pollution. For example, in the 1970s and 1980s,
619 emission control strategies implemented under the Clean Air Act emphasized the control of
620 anthropogenic VOC emissions over NO_x (National Research Council, 2004). Despite large order
621 of magnitude reductions in anthropogenic VOC emissions (Warneke et al., 2012), abatement of
622 O₃ was slow in many regions of the country. In the late 1980s, a large and underrepresented source
623 of biogenic VOC emissions was identified (Trainer et al., 1987; Abelson, 1988; Chameides et al.,
624 1988), putting into question the effectiveness of anthropogenic VOC emission control strategies
625 to mitigate O₃ nationally (Hagerman et al., 1997). Since the mid-1990s, large reductions in NO_x
626 emissions have resulted from: (i) controls implemented at power plants (Frost et al., 2006), (ii)
627 more durable three-way catalytic converters installed on gasoline vehicles (Bishop and Stedman,
628 2008), and (iii) more effective regulation of diesel NO_x emissions from heavy-duty trucks
629 (Yanowitz et al., 2000; McDonald et al., 2012). Emission reductions implemented on combustion
630 sources, have also been linked to decreases in organic aerosol concentrations observed in both
631 California (McDonald et al., 2015) and the Southeastern U.S. (Blanchard et al., 2016). Though
632 substantial progress has been made in improving scientific understanding of the major biogenic
633 and anthropogenic sources of emissions contributing to air quality problems, some issues remain
634 in current U.S. inventories and are highlighted below.

635 The Southeast US is a region that has both large natural emissions and anthropogenic emissions.
636 The accurate knowledge of biogenic emissions is key to understanding many of the processes that
637 lead to ozone and aerosol formation. Previous studies suggest that MEGANv2.1 can estimate twice
638 as large isoprene emissions compared with BEIS over the Eastern US (Warneke et al., 2010;
639 Carlton and Baker, 2011), but most global models using MEGANv2.1 do not show a significant
640 bias of isoprene over the Southeast US (Mao et al., 2013; Millet et al., 2006). This is likely due to
641 different landcover data being used in the regional and global applications of MEGAN. Validation
642 of the various biogenic emission inventories was therefore one of the main science questions for
643 the SAS studies.

644 The National Emissions Inventory (NEI) developed by U.S. EPA, is an inventory of air pollutants
645 released every three years, and commonly used in U.S.-based air quality modeling studies. A
646 recent modeling study reported that NO_x emissions from mobile source emissions were
647 overestimated by 51-70% in the Baltimore-Washington, D.C. region (Anderson et al., 2014). Past
648 studies have also found discrepancies in motor vehicle emission models used by EPA to inform
649 the NEI (Parrish, 2006; McDonald et al., 2012). Additionally, problems have been identified in
650 estimates of NO_x, VOC, and methane emissions from U.S. oil and gas development (Ahmadov et
651 al., 2015; Pétron et al., 2014; Brandt et al., 2014). Some major oil and gas basins of note are located
652 in the Southeastern U.S., which were measured by aircraft during the SAS2013 studies. In contrast
653 to mobile source and oil and gas emissions, power plant emissions of NO_x and SO_x are believed

654 to be known with greater certainty since large stationary sources of emissions are continuously
655 monitored. In addition to biogenic emission inventories, the datasets collected by the SAS2013
656 studies have provided an opportunity to assess the accuracy of anthropogenic emissions and their
657 impacts on atmospheric chemistry.

658 The topic of model resolution, which involves the relationship between emissions and chemistry,
659 is also key to interpreting model-observation comparisons. Regional-scale air quality models can
660 be simulated at very high horizontal resolutions (e.g., 1 km and finer) (Joe et al., 2014); however,
661 typically they are run at coarser resolutions, such as at 12 km by 12 km (e.g., continental U.S.)(Gan
662 et al., 2016) or 4 km by 4 km (e.g., urban scale) (Kim et al., 2016b). The horizontal resolution of
663 global chemistry models has significantly improved, with nesting being performed at horizontal
664 resolutions as fine as $0.25^\circ \times 0.3125^\circ$ degree (Travis et al., 2016). Coarse model resolutions can
665 complicate evaluations with high spatial and temporal-resolution measurements (e.g., from aircraft)
666 of chemical constituents undergoing fast chemistry (e.g., isoprene, OH) (Kaser et al., 2015). Sharp
667 concentration gradients are observable from space for species with relatively short atmospheric
668 lifetimes (e.g., nitrogen dioxide, formaldehyde, and glyoxal), and potentially provide insights into
669 the role of natural and anthropogenic emissions on air quality (Duncan et al., 2010; Russell et al.,
670 2012; Lei et al., 2014). Lastly, some emission sources are described by large emission intensities
671 (e.g., power plants and biomass burning), which result in elevated concentrations of emitted
672 species downwind. A coarse model will artificially dilute these high emission fluxes (e.g., NO_x
673 and SO_x) over a wider area, which could alter the chemical regime by which ozone (Ryerson et al.,
674 1998; Ryerson et al., 2001) and secondary aerosols (Xu et al., 2015a) form.

675 **4.2 Major relevant findings**

676 **4.2.1 Biogenic emissions**

677 Isoprene emissions measured by the NOAA P3, using the mixed boundary layer budget method,
678 and NCAR/NSF C-130 and NASA DC-8 aircraft using direct eddy covariance flux measurements
679 were within the wide range of observations reported by previous studies. The two methods of
680 estimating isoprene emissions agreed within their uncertainties (Yu et al., 2017). Solar radiation
681 and temperature measured by the aircraft along the flight tracks and available from regional model
682 and assimilations (e.g., WRF, NLDAS-2) enabled estimation of emissions using models including
683 BEIS3.12, BEIS3.13, MEGAN2.0, MEGAN2.1 with default landcover, MEGAN2.1 with revised
684 landcover, and MEGAN3. Isoprene emissions are highly sensitive to solar radiation and
685 temperature and biases in the values used to drive emission models can result in errors exceeding
686 40% and complicating efforts to evaluate biogenic emission models. As has previously been noted
687 in the southeastern US, MEGAN2.1 predicted isoprene emissions in the Southeast US were about
688 twice as high as BEIS3.13. The measurements fall between the two models and are within the
689 model and measurement uncertainties (Warneke et al. 2010). Isoprene mixing ratios were modeled
690 with a) WRF-Chem using BEIS and with b) CAMx using MEGAN and the results were consistent
691 with the measurement-inventory comparison: WRF-Chem was biased low and CAMx biased high
692 (Warneke et al., in preparation).

693 Landcover characteristics including Leaf Area Index (LAI) and tree species composition data are
694 also critical driving variables for BEIS and MEGAN isoprene and monoterpene emission estimates.
695 Airborne flux measurements agreed well with MEGAN2.1 for landscapes dominated by
696 southeastern oaks, which are high isoprene emitting tree species, but landscapes that had an
697 overstory of non-emitters, with the high isoprene emitters in the understory, showed emissions
698 lower than expected by the model. The isoprene emission factor was linearly correlated with the

699 high isoprene emitter plant species fraction in the landcover data set. This may indicate a need for
700 models to include canopy vertical heterogeneity of the isoprene emitting fraction (Yu et al., 2017).

701 A simplification used in current biogenic emission models including BEIS3.13, BEIS3.6, and
702 MEGAN2.1 is that all high isoprene emitting species are assigned the same isoprene emission
703 factor. For example, all North American species of *Quercus* (oak), *Liquidambar* (sweetgum),
704 *Nyssa* (tupelo), *Platanus* (sycamore), *Salix* (willow), *Robinia* (locust) and *Populus* (poplar and
705 aspen) are assigned a single value based on the average of an extensive set of enclosure
706 measurements conducted in North Carolina, California and Oregon in the 1990s (Geron et al.,
707 2001). Earlier studies had reported isoprene emission factors for these tree species that ranged
708 over more than an order of magnitude (Benjamin et al., 1996). Geron et al. (2001) showed that by
709 following specific measurement protocols, including leaf cuvettes with environmental controls and
710 ancillary physiological measurements such as photosynthesis, the variability dropped from over
711 an order of magnitude to about a factor of 3. They concluded that this remaining variability was
712 due at least as much to growth conditions as to species differences and so recommended that a
713 single isoprene emission factor be used for all of these species. Recent aircraft flux measurements
714 (Misztal et al., 2016; Yu et al., 2017) indicate that there is at least a factor of two difference in the
715 isoprene emission factors of these species. This could be due to a genetic difference in emission
716 capacity and/or differences in canopy structure. The aircraft measurements indicate that sweetgum
717 and tupelo emission factors are similar to the value used in BEIS3.13 and BEIS3.6 while the
718 California oak emission factor is similar to that used in MEGAN2.1. The aircraft based estimate
719 of southeastern oak emission factors falls between the BEIS3.6 and MEGAN2.1 values. As a result,
720 aircraft flux measurements in the southeastern US are higher than BEIS3.13/BEIS3.6 and lower
721 than MEGAN2.1. The MEGAN3 emission factor processor provides an approach for synthesizing
722 available emission factor data and can be used to account for the emission rate variability observed
723 by these aircraft flux studies (Guenther et al., in preparation).

724 Modeling monoterpene emissions is even more challenging than isoprene emissions for reasons
725 that include multiple emission processes (e.g., both light dependent and light independent
726 emissions), stress-induced emission capability present in many plant species but not always
727 expressed, and the potential for enclosure measurements to dramatically overestimate emissions
728 due to release of monoterpenes from damaged storage pools. The eddy covariance flux
729 measurements on the NCAR/NSF C130 are similar to the values estimated by MEGAN2.1 for
730 needle leaf forests, considered to be high emission regions, but are higher than the modeled
731 monoterpene emissions from other landscapes (Yu et al., 2017). They conclude that unaccounted
732 processes, such as floral and stress emissions, or sources such as non-tree vegetation may be
733 responsible for the unexpectedly high monoterpene emissions observed by the aircraft.

734 During the experiment direct observations of fluxes for a variety of species from large aircraft
735 were conducted, enabling a first direct estimate of fluxes over a regional domain (Wolfe et al.,
736 2015; Yuan et al., 2015; Kaser et al., 2015). These data have the potential for enabling analyses of
737 strengths and weaknesses of current emission and deposition schemes and their implementation
738 within chemical transport models. Vertical flux profiles also contain information on the chemical
739 production and loss rates, providing a new observational constraint on the processes controlling
740 reactive gas budgets. An LES model was used to simulate isoprene, NO_x and their variability in
741 the boundary layer. The results showed good agreement between the measurements and the model.
742 The atmospheric variability of isoprene, the altitude profile in the boundary layer of isoprene and
743 NO_x mixing ratios and fluxes were well reproduced in the model, which was used to validate the

744 eddy covariance and mixed boundary layer methods of estimating isoprene fluxes (Kim et al.,
745 2016a; Wolfe et al., 2015).

746 **4.2.2 Anthropogenic emissions**

747 Travis et al. (2016) utilizing the GEOS-Chem model report that NO_x emissions are significantly
748 overestimated by the NEI 2011, and suggest that mobile source and industrial emissions of NO_x
749 need to be lowered by 30-60% to be consistent with aircraft measurements collected over the
750 Southeastern U.S. during the SEAC4RS Study. These results are consistent with modeling studies
751 performed during the DISCOVER-AQ field campaign, which also found that the NEI 2011
752 overestimated NO_x emissions (Anderson et al., 2014; Souri et al., 2016). However, a later study
753 by Li et al. (2017) utilizing the AM3 model during the SENEX Study suggests that overestimates
754 in NEI 2011 NO_x emissions may be smaller than reported in the Travis et al. study (~14% vs. 30-
755 60%). McDonald et al. (in preparation) using WRF-Chem, found mobile source emissions in the
756 NEI 2011 to be overestimated by ~50% and a factor of 2.2 for NO_x and CO, respectively, when
757 evaluated with SENEX aircraft measurements. Due to rapidly declining trends in vehicle emissions
758 (McDonald et al., 2013; McDonald et al., 2012), some of the emissions overestimate was attributed
759 to utilizing a 2011 inventory in 2013 model simulations. However, roadside measurements of
760 vehicular exhaust also suggest systematic overestimates in emission factors used by EPA's vehicle
761 emissions model (MOVES), likely contributing to the consistent reporting to date of overestimated
762 mobile source NO_x emissions (Anderson et al., 2014; Souri et al., 2016; Travis et al., 2016). When
763 NO_x emissions were reduced from mobile sources by this amount, model predictions of O₃ over
764 the Southeastern U.S. were improved both for mean concentrations and O₃ extreme days
765 (McDonald et al., in preparation), consistent with modeling by Li et al. (2017) demonstrating the
766 sensitivity of O₃ to NO_x emissions in the Southeastern U.S. over the 2004-2013 timespan.

767 Along with other aircraft field campaigns and tall tower measurements in the Upper Midwest, data
768 from the SENEX Study was used to assess anthropogenic emissions of VOCs in the NEI and a
769 global inventory (RETRO). Hu et al. (2015a) found that RETRO consistently overestimates U.S.
770 emissions of C6-C8 aromatic compounds, by factors of 2 - 4.5; the NEI 2008 overestimates toluene
771 by a factor of 3, but is consistent with top-down emission estimates for benzene and C8 aromatics.
772 The study also suggests that East Asian emissions are an increasingly important source of benzene
773 concentrations over the U.S., highlighting the importance of long-range transport on U.S. air
774 quality as domestic sources of emissions decline (Warneke et al., 2012).

775 Two studies have quantified top-down emissions of oil and gas operations, derived from aircraft
776 measurements for VOCs and methane from SENEX P-3 data (Peischl et al., 2015; Yuan et al.,
777 2015). The oil and gas regions measured during SENEX account for half of the U.S. shale gas
778 production, and loss rates of methane to the atmosphere relative to production were typically lower
779 than prior assessments (Peischl et al., 2015). Yuan et al. (2015) explored the utility of eddy-
780 covariance flux measurements on SENEX and NOMADDS aircraft campaigns, and showed that
781 methane emissions were disproportionately from a subset of higher emitting oil and gas facilities.
782 Strong correlations were also found between methane and benzene, indicating that VOCs are also
783 emitted in oil and gas extraction. High wintertime O₃ has been found in the Uinta Basin, UT
784 (Ahmadov et al., 2015; Edwards et al., 2014), though it is unclear at this time how significant oil
785 and gas emissions of VOCs could be in an isoprene-rich source region on tropospheric O₃
786 formation. Future atmospheric modeling efforts of oil and gas emissions are needed.

787 During the SENEX and SEAC4RS studies, research aircraft measured agricultural fires over the
788 Southeast. Liu et al. (2016) reported emission factors of trace gases, which were consistent with
789 prior literature. In general, the authors' found emissions of SO_2 , NO_x , and CO from agricultural
790 fires to be small relative to mobile sources (<10%). However, within fire plumes, rapid O_3
791 formation was observed, indicating potential air quality impacts on downwind communities. To
792 represent the impact of biomass burning, air quality models need improved treatments of initial
793 VOC and NO_x emissions and near source chemistry. Sub-grid parameterizations, based on detailed
794 models like the Aerosol Simulation Program (ASP) (Alvarado and Prinn, 2009) and which
795 incorporates gas-phase chemistry, inorganic and organic aerosol thermodynamics, and evolution
796 of aerosol size distribution and optical properties, could improve coarse model representations of
797 chemistry near biomass burning plumes. Zarzana et al. (2017) investigated enhancements of
798 glyoxal and methylglyoxal relative to CO from agricultural fires, and report that global models
799 may overestimate biomass burning emissions of glyoxal by a factor of 4. This highlights large
800 uncertainties and variability in fire emissions, and a need for additional observational constraints
801 on inventories and models.

802 **4.3 Model Recommendations and Future Work**

803 (1) In the Southeast US isoprene emissions are so large that they influence most atmospheric
804 chemistry processes. Users of model simulations using the different isoprene inventories have to
805 be aware of the differences. For example, OH and isoprene concentrations are anti-correlated (Kim
806 et al 2015) and model simulations using BEIS will potentially have higher OH than simulations
807 using MEGAN and chemistry will proceed at different rates. In addition, modeled products from
808 isoprene oxidation in the gas and particle phase will be different. Isoprene derived SOA or
809 secondary CO in the Southeast US can vary by a factor two between the two inventories.

810 (2) For future work, BEIS3.6 is now available and needs to be evaluated using the methods
811 described here.

812 (3) MEGAN3 emission factor processor can be used to synthesize the available emission factor
813 estimates from SAS and other studies. A beta version of the MEGAN3 emission factor processor
814 and MEGAN3 model processes is available and should be evaluated.

815 (4) A revised NO_x emissions inventory is needed to improve air quality models for O_3 , especially
816 in the Southeast U.S. where O_3 is sensitive to changes in NO_x emissions. Anthropogenic emissions
817 of NO_x in the NEI 2011 may be overestimated by 14-60% in the Southeastern U.S. during the
818 SAS2013 study time period (Travis et al., 2016; Li et al., 2017).

819 **5. Chemistry-Climate Interactions**

820 **5.1 Background**

821 Interactions between atmospheric chemistry and climate over the southeastern United States are
822 not well quantified. The dense vegetation and warm temperatures over the Southeast result in
823 large emissions of isoprene and other biogenic species. These emissions, together with
824 anthropogenic emissions, lead to annual mean aerosol optical depths (AODs) of nearly 0.2, with a
825 peak in summer (Goldstein et al., 2009). The climate impacts of US aerosol trends in the Southeast
826 due to changing anthropogenic emissions is under debate (e.g. Leibensperger et al., 2012a, b; Yu
827 et al., 2014). Climate change can, in turn, influence surface air quality, but even the sign of the
828 effect is unknown in the Southeast (Weaver et al., 2009). Part of this uncertainty has to do with
829 complexities in the mechanism of isoprene oxidation, the details of which are still emerging from

830 laboratory experiments and field campaigns (Liao et al., 2015; Fisher et al., 2016; Marais et al.,
831 2016). In addition, the influence of day-to-day weather on surface ozone and particulate matter
832 ($PM_{2.5}$) has not been fully quantified, and climate models simulate different regional climate
833 responses. Resolving these uncertainties is important, as climate change in the coming decades
834 may impose a “climate penalty” on surface air quality in the Southeast and elsewhere (Fiore et al.,
835 2015).

836 **5.2 Key science issues and recent advances.**

837 We describe recent advances in four areas related to chemistry-climate interactions in the
838 Southeast.

839 **5.2.1. Seasonality and trends in aerosol loading in the Southeast**

840 Using satellite data, Goldstein et al. (2009) diagnosed summertime enhancements in AOD of 0.18
841 over the Southeast, relative to winter, and hypothesized that secondary organic aerosol from
842 biogenic emissions accounts for this enhancement. Goldstein et al. (2009) further estimated a
843 regional surface cooling of -0.4 W m^{-2} in response to annual mean AOD over the Southeast. These
844 findings seemed at first at odds with surface $PM_{2.5}$ measurements, which reveal little seasonal
845 enhancement in summer. Using SEAC4RS measurements and GEOS-Chem, Kim et al. (2015)
846 determined that the relatively flat seasonality in surface $PM_{2.5}$ can be traced to the deeper boundary
847 layer in summer, which dilutes surface concentrations.

848 In response to emission controls, aerosol loading over the Southeast has declined in recent decades.
849 For example, wet deposition fluxes of sulfate decreased by as much as $\sim 50\%$ from the 1980s to
850 2010 (Leibensperger et al., 2012a). Over the 2003-2013 time period, surface concentrations of
851 sulfate $PM_{2.5}$ declined by 60%. Organic aerosol (OA) also declined by 60% even though most OA
852 appears to be biogenic and there is no indication of a decrease in anthropogenic sources (Kim et
853 al., 2015). Model results suggest that the observed decline in OA may be tied to the decrease in
854 sulfate, since OA formation from biogenic isoprene depends on aerosol water content and acidity
855 (Marais et al., 2016; Marais et al., 2017). Consistent with these surface trends, 550-nm AOD at
856 AERONET sites across the Southeast has also decreased, with trends of $-4.1\% \text{ a}^{-1}$ from 2001-2013
857 (Attwood et al., 2014). Xing et al. (2015a) reported a roughly -4% decrease in remotely sensed
858 AOD across the eastern United States, as measured by the Moderate Resolution Imaging and
859 Spectroradiometer (MODIS) on board Terra and Aqua. These large declines could potentially have
860 had a substantial impact on regional climate, both through aerosol-radiation interactions and
861 aerosol-cloud interactions.

862 **5.2.2. Contribution of aerosol trends to the U.S. “warming hole.”**

863 Even as global mean temperatures rose over the 20th century in response to increasing greenhouse
864 gases, significant cooling occurred over the central and southeastern United States. This cooling,
865 referred to as the U.S. warming hole (Pan et al., 2004), has been quantified in several ways. For
866 example, Figure 3 shows that annual mean temperatures across the Southeast decreased by $\sim 1 \text{ }^{\circ}\text{C}$
867 during the 1930-1990 timeframe (Capparelli et al., 2013). A different temperature metric, the 20-
868 year annual return value for the hot tail of daily maximum temperatures, decreased by $2 \text{ }^{\circ}\text{C}$ from
869 1950 to 2007 (Grotjahn et al., 2016). Over a similar time frame, Portmann et al. (2009) diagnosed
870 declines in maximum daily temperatures in the Southeast of $2\text{-}4 \text{ }^{\circ}\text{C}$ per decade, with peak declines
871 in May-June, and linked these temperature trends with regions of high climatological precipitation.
872 Since the early 2000s, the cooling trend has appeared to reverse (Meehl et al., 2015).

873 The causes of the U.S. warming hole are not clear. Most freely running climate models
874 participating in the Coupled Model Intercomparison Project (CMIP5) cannot capture the observed
875 20th century temperature trends over the Southeast (Knutson et al., 2013; Kumar et al., 2013;
876 Sheffield et al., 2013); this failure likely arises from either model deficiency or natural variability
877 not included in the simulations. Indeed, several studies have argued that naturally occurring
878 oscillations in sea surface temperatures (SSTs) influenced the large-scale cooling in the Southeast
879 (Robinson et al., 2002; Kunkel et al., 2006; Meehl et al., 2012; Weaver, 2013; Mascioli et al.,
880 2017). Kumar et al. (2013), for example, linked the June-July-August indices of the Atlantic
881 Multidecadal Oscillation (AMO) to annual mean temperatures across the eastern U.S. for the 1901-
882 2004 period. Mauget and Cordero (2014), however, pointed out inconsistencies in these two time
883 series, with the AMO index sometimes lagging temperature changes. A recent study has argued
884 that the transition of the Interdecadal Pacific Oscillation (IPO) phase from positive to negative in
885 the late 1990s may have triggered a reversal of the warming hole trend (Meehl et al., 2015).

886 The cool period in the Southeast coincided with heavy aerosol loading over the region, and several
887 studies have suggested that trends in aerosol forcing may have also played a role in driving the
888 U.S. warming hole. For example, Leibensperger et al. (2012a, 2012b) found that the regional
889 radiative forcing from anthropogenic aerosols led to a strong regional climate response, cooling
890 the central and eastern US by 0.5-1.0 °C from 1970-1990 (Figure 3), with the strongest effects on
891 maximum daytime temperatures in summer and autumn. In that study, the spatial mismatch
892 between maximum aerosol loading and maximum cooling could be partly explained by aerosol
893 outflow cooling the North Atlantic, which strengthened the Bermuda High and increased the flow
894 of moist air into the south-central United States. Another model study diagnosed positive
895 feedbacks between aerosol loading, soil moisture, and low cloud cover that may amplify the local
896 response to aerosol trends (Mickley et al., 2012). The strength of such positive feedbacks may vary
897 regionally, yielding different sensitivities in surface temperature to aerosol forcing.

898 The cool period in the Southeast coincided with heavy aerosol loading over the region, and several
899 studies have suggested that trends in aerosol forcing may have also played a role in driving the
900 U.S. warming hole. For example, Leibensperger et al. (2012a, 2012b) found that the regional
901 radiative forcing from anthropogenic aerosols led to a strong regional climate response, cooling
902 the central and eastern US by 0.5-1.0 °C from 1970-1990 (Figure 3), with the strongest effects on
903 maximum daytime temperatures in summer and autumn. In that study, the spatial mismatch
904 between maximum aerosol loading and maximum cooling could be partly explained by aerosol
905 outflow cooling the North Atlantic, which strengthened the Bermuda High and increased the flow
906 of moist air into the south-central United States. Another model study diagnosed positive
907 feedbacks between aerosol loading, soil moisture, and low cloud cover that may amplify the local
908 response to aerosol trends in the eastern U.S., including the Southeast (Mickley et al., 2012). The
909 strength of such positive feedbacks may vary regionally, yielding different sensitivities in surface
910 temperature to aerosol forcing. More recent modelling studies, however, have generated
911 conflicting results regarding the role of aerosols in driving the warming hole. For example, the
912 model study of Mascioli et al. (2016) reported little sensitivity in Southeast surface temperatures
913 to external forcings such as anthropogenic aerosols or even greenhouse gases. In contrast,
914 Banerjee et al. (2017) found that as much of 50% of the observed 1950-1975 summertime cooling
915 trend in the Southeast could be explained by increasing aerosols. Examining multi-model output,
916 Mascioli et al. (2017) concluded that aerosols accounted for just 17% of this cooling trend in

917 summer. These contrasting model results point to the challenges in modeling climate feedbacks,
918 such as those involving cloud cover or soil moisture.

919 These early model studies have been accompanied by more observationally based efforts to link
920 trends in surface temperature to aerosol loading. A key first step is to determine whether changes
921 in surface solar radiation are related to changes in aerosol loading. Measurements from the Surface
922 Radiation network (SURFRAD) reveal increases of $+0.4 \text{ Wm}^{-2} \text{ a}^{-1}$ in total surface solar radiation
923 across the East during 1995-2010 (Gan et al., 2014). An attempt to reproduce the trend in total
924 surface radiation with a regional chemistry-climate model found a reasonable match with
925 observations over the East when aerosol-radiation interactions were included (Xing et al., 2015a).
926 Most of the observed increase in surface solar radiation, however, appears due to increasing diffuse
927 radiation, at odds with the decline in AOD, which should instead increase direct radiation (Gan et
928 al., 2015; Gan et al., 2014). Using satellite data and assimilated meteorology, Yu et al. (2014)
929 showed that trends in spatially averaged AOD and cloud optical depth declined over the 2000-
930 2011 time period over the eastern US, while daily maximum temperatures and shortwave cloud
931 forcing increased. These opposing trends suggest that aerosol-cloud interactions may have
932 influenced the observed $\sim 1^\circ\text{C}$ warming trend in the Southeast over this ten-year time period, with
933 the decline in anthropogenic aerosols driving a decrease in cloud cover and a rise in surface
934 temperatures. Yu et al. (2014) confirmed this hypothesis using a chemistry-climate model. In
935 contrast, the observational study of Tosca et al. (2017), which also relied on satellite AOD, pointed
936 to aerosol-radiation interactions as the driver of surface temperature trends in the Southeast.
937 Analysis of ground-based observations in Mississippi, however, found little covariability between
938 AOD and clear-sky solar radiation at the surface, casting doubt on the importance of aerosol-
939 radiation interactions in driving the observed cooling in this region (Cusworth et al., 2017).

940 Continued improvements of $\text{PM}_{2.5}$ air quality in the Southeast may further influence regional
941 climate. Lee et al. (2016b) projected a warming of about $+0.5 \text{ Wm}^{-2}$ over the eastern U.S.,
942 including the Southeast, over the 2000-2030 timeframe due to anticipated improvements in air
943 quality and the associated reduction in AOD. Xing et al. (2015b) have pointed out that an
944 overlooked beneficial effect of aerosol reduction is increased ventilation of surface air, a positive
945 feedback that leads to further decline in surface $\text{PM}_{2.5}$ concentrations. The feedback arises from
946 changes in the temperature profile, with warmer temperatures at the surface and cooler
947 temperatures aloft, which together enhance atmospheric instability and ventilation as aerosol
948 induced cooling is reduced. The feedback may lead to unexpected health benefits of clearing $\text{PM}_{2.5}$
949 pollution (Xing et al., 2016).

950 **5.2.3. Influence of meteorology on surface air quality in the Southeast**

951 Pollution episodes in the southeastern United States are correlated with high temperatures, low
952 wind speeds, clear skies, and stagnant weather (Camalier et al., 2007; Jacob and Winner, 2009).
953 The spatial extent of the Bermuda High also plays a role in modulating air quality in the Southeast
954 (Zhu and Liang, 2013).

955 Fu et al. (2015) used models and observations to examine the sensitivity of August surface ozone
956 in the Southeast to temperature variability during 1988-2011. This study finds that warmer
957 temperatures enhance ozone by increasing biogenic emissions and accelerating photochemical
958 reaction rates. However, variability in ozone advection into the region may also explain much of
959 the variability of surface ozone, with possibly increased advection occurring during the positive
960 phase of the Atlantic Multidecadal Oscillation (AMO). Applying empirical orthogonal functions
961 (EOF) analysis to observed ozone, Shen et al. (2015) determined that the sensitivity of surface

962 ozone in the Southeast can be quantified by the behavior of the west edge of the Bermuda High.
963 Specifically, for those summers when the average position of the west edge is located west of
964 $\sim 85.4^\circ$ W, a westward shift in the Bermuda High west edge increases ozone in the southeast by 1
965 ppbv deg^{-1} in longitude. For all summers, a northward shift in the Bermuda High west edge
966 increases ozone over the entire eastern United States by 1-2 ppbv deg^{-1} in latitude.

967 The influence of meteorology on $\text{PM}_{2.5}$ in the Southeast is not well quantified. Tai et al. (2010)
968 found that observed sulfate and OC concentrations increase with increasing temperature across the
969 region due to faster oxidation rates and the association of warm temperatures with stagnation and
970 biogenic and fire emissions. Nitrate $\text{PM}_{2.5}$, however, becomes more volatile at higher temperatures
971 and decreases with temperature. Using local meteorology, however, Tai et al. (2010) could explain
972 only about 20-30% of $\text{PM}_{2.5}$ daily variability in the Southeast. Both Thishan Dharshana et al. (2010)
973 and Tai et al. (2012b) diagnosed a relatively weak effect of synoptic scale weather systems on
974 $\text{PM}_{2.5}$ air quality in the Southeast, especially in the deep South. Shen et al. (2017), however,
975 extended the statistical studies of Tai et al. (2012a, b) by taking into account not just the local
976 influences of meteorology on $\text{PM}_{2.5}$ air quality but also the relationships between local $\text{PM}_{2.5}$ and
977 meteorological variables in the surrounding region. These authors developed a statistical model
978 that explains 30-50% of $\text{PM}_{2.5}$ monthly variability in the Southeast. Shen et al. (2017) further
979 reported that many atmospheric chemistry models may underestimate or even fail to capture the
980 strongly positive sensitivity of monthly mean $\text{PM}_{2.5}$ to surface temperature in the eastern United
981 States, including the Southeast, in summer. In GEOS-Chem, this underestimate can be traced to
982 the overly strong tendency of modeled low cloud cover to decrease as temperatures rise (Shen et
983 al., 2017).

984 **5.2.4. Effects of future climate change on Southeast air quality**

985 Emissions of U.S. pollution precursors are expected to decline in coming decades (Lamarque et
986 al., 2013; Fiore et al., 2015), which may offset any potential climate penalty. Background ozone,
987 however, may increase due to increasing methane (West et al., 2012). A major challenge in
988 quantifying the future trends in surface air quality is our lack of knowledge in temperature-
989 dependent isoprene emissions and photochemistry (Achakulwisut et al., 2015).

990 Using a regional chemistry-climate model, Gonzalez-Abraham et al. (2015) found that daily
991 maximum 8 h average (MDA8) ozone concentrations in the Southeast would likely increase by 3-
992 6 ppbv by the 2050s due solely to climate change and land use change. Changes in anthropogenic
993 emissions of ozone precursors such as methane could further enhance MDA8 ozone in the
994 Southeast by 1-2 ppbv. Rieder et al. (2015), however, determined that large areas of the Southeast
995 would experience little change in surface ozone by the 2050s, but that study neglected the influence
996 of warming temperatures on biogenic emissions. Shen et al. (2016) developed a statistical model
997 using extreme value theory to estimate the 2000–2050 changes in ozone episodes across the United
998 States. Assuming constant anthropogenic emissions at the present level, they found an average
999 annual increase in ozone episodes of 2.3 d (>75 ppbv) across the United States by the 2050s, but
1000 relatively little change in the Southeast. In fact, a key result of this work is the relative insensitivity
1001 of ozone episodes to temperature in the Southeast. However, Zhang and Wang (2016) have
1002 suggested that warmer and drier conditions in the Southeast future atmosphere could extend the
1003 ozone season, leading to ozone episodes in October.

1004 Model studies differ on the effects of future climate change on $\text{PM}_{2.5}$ in the Southeast. Tai et al.
1005 (2012a) and Tai et al. (2012b) analyzed trends in meteorological modes from an ensemble of
1006 climate models and found only modest changes in annual mean $\text{PM}_{2.5}$ ($\pm 0.4 \mu\text{g m}^{-3}$) by the 2050s

1007 in the Southeast, relative to the present-day. Using a single chemistry-climate model, Day and
1008 Pandis (2015) calculated significant increases of $\sim 3.6 \mu\text{g m}^{-3}$ in July mean $\text{PM}_{2.5}$ along the Gulf
1009 coast by the 2050s and attributed these increases to a combination of decreased rain-out, reduced
1010 ventilation, and increased biogenic emissions. Building on the statistical model of Tai et al.
1011 (2012a,b), Shen et al. (2017) found that $\text{PM}_{2.5}$ concentrations in the Southeast could increase by
1012 $0.5\text{--}1.0 \mu\text{g m}^{-3}$ by 2050 on an annual basis, and as much as $2.0\text{--}3.0 \mu\text{g m}^{-3}$ in summer, assuming
1013 anthropogenic emissions remained at present-day levels. These authors found that the driver for
1014 these increases was rising surface temperature, which influences both biogenic emissions and the
1015 rate of sulfate production.

1016 **5.3. Open questions**

1017 Unresolved issues in chemistry-climate interactions in the Southeast include the following:

1018 1. What is the impact of aerosols on regional climate of the Southeast? What role do feedbacks
1019 play, including feedbacks involving cloud cover, soil moisture, and boundary layer height? Did
1020 land use changes play a role in the Southeast warming hole? How will changing aerosol
1021 composition affect regional climate? Can we reconcile observed trends in insolation and aerosols?
1022 Can we use observed weekly cycles in temperature or precipitation to probe possible aerosol
1023 effects on regional climate (Forster and Solomon, 2003; Bell et al., 2008; Bäumer et al., 2008;
1024 Daniel et al., 2012)?

1025 2. What caused the U.S. warming hole? Is the observed cooling over the Southeast partly due to
1026 natural variability of North Atlantic SSTs? Do aerosol changes induce changes the North Atlantic
1027 SSTs that feedback on the Southeast U.S.? Has the warming hole ended and made the central and
1028 southeastern United States more vulnerable to high temperatures and drought?

1029 3. What limits model skill in simulating the variability of surface pollution in the Southeast? Can
1030 we capture the observed effects of the Bermuda High or the AMO on surface air quality?

1031 4. How will air quality in the Southeast change in the future? Do current model weaknesses in
1032 simulating present-day ozone and $\text{PM}_{2.5}$ daily or seasonal variability limit our confidence in future
1033 projections?

1034 **5.4. Model recommendations**

1035 We recommend the following approaches for studies involving chemistry-climate interactions in
1036 the southeastern U.S.

1037 1. Take advantage of findings from the 2013 measurement campaigns.

1038 For aerosol, such findings include information on composition, hygroscopicity, lifetime, aerosol-
1039 cloud interactions, optical properties, and the mechanism of SOA formation. Modelers should also
1040 take advantage of new information on isoprene emission flux and oxidation mechanisms.

1041 2. Link 2013 results with findings from previous measurement campaigns and with long-term in
1042 situ and satellite data.

1043 3. Work to apply best practices, including standard statistical tests, to chemistry-climate studies.

1044 Modelers need to consider the statistical significance of observed trends and perform ensemble
1045 simulations for robust statistics. The auto-correlation of the variables under investigation should
1046 be examined. Comparison of observed trends with samples of internal climate variability from

1047 model control runs, as in (Knutson et al., 2013), may be a useful approach, and modelers should
1048 acknowledge that observations may represent an outlier of unforced variability.

1049 4. Benchmark chemistry-climate models in a way that is useful for chemistry-climate studies.

1050 For the Southeast, modelers should consider testing the following model properties:

1051 (1) Sensitivity of surface air quality to synoptic weather systems, including the westward extent
1052 of Bermuda High and cold front frequency.

1053 (2) Sensitivity of surface air quality to local meteorological variables and isoprene emissions
1054 on a range of temporal scales.

1055 (3) Sensitivity of soil moisture and cloud cover to changing meteorology and the consequences
1056 for regional climate and air quality.

1057 6. Summary

1058 The primary purpose of this work is to improve model representation of fundamental processes
1059 over Southeast US. We summarize the modeling recommendations here:

1060 **Gas-phase chemistry** (1) Up-to-date “standard” chemical mechanisms represent OH chemistry
1061 well over the observed range of NO_x concentrations. Detailed mechanisms based on recent
1062 laboratory chamber studies (mostly at Caltech) and theoretical studies (Leuven) for isoprene
1063 chemistry result in predicted OH that is in reasonable agreement with observations. Condensed
1064 mechanisms that approximate these details are expected to do the same. (2) Given the large
1065 emissions and high chemical reactivity of isoprene, its chemistry should be treated fairly explicitly,
1066 including more detail than for most other hydrocarbons. (3) NO₃ chemistry contributes
1067 significantly to both VOC oxidation and aerosol production. (4) The regions of peak NO_x and
1068 BVOC emissions are not collocated. As a result, the model resolution can impact the predictions.

1069 **Organic Aerosol** (1) There is high confidence that a pathway of SOA formation from isoprene
1070 epoxydiol (IEPOX) should be included in models. However, since many of the parameters needed
1071 to predict IEPOX-SOA are uncertain, further mechanistic studies are needed to address these
1072 uncertainties. (2) There is high confidence that models should include SOA formation from nitrate
1073 radical oxidation of monoterpenes (with or without explicit nitrate functionality). Sesquiterpenes
1074 and isoprene may also contribute SOA through nitrate radical oxidation, but the contribution is
1075 expected to be smaller. (3) More field measurements and laboratory studies, especially of the yield
1076 from isoprene oxidation and the aerosol uptake coefficient, are required to constrain the
1077 importance of glyoxal SOA. (4) There is high confidence that models should include SOA from
1078 urban emissions with a parameterization that results in realistic concentrations.

1079 **Natural and anthropogenic emissions** (1) Biogenic emissions from BEIS are generally lower,
1080 and those from MEGAN generally higher, than from measurements for all campaigns. (2)
1081 Observations confirm a rapid decrease of ozone precursor emissions over past few decades. Thus,
1082 use of the correct scaling of anthropogenic emissions for a particular year is important for accurate
1083 simulations. (3) National Emissions Inventory (NEI) 2011 likely overestimates NO_x emissions in
1084 the study area from mobile sources that use fuel-based estimates.

1085 **Climate and chemistry interactions** (1) Annual mean temperatures during the 1930-1990
1086 timeframe decreased by ~1°C over the central and southeastern United States. Several studies have
1087 argued that patterns of sea surface temperatures in the North Atlantic may have caused this large-
1088 scale cooling. Trends in aerosol forcing may have also played a role. (2) Pollution episodes in the

1089 southeastern United States are correlated with high temperatures, low wind speeds, clear skies,
1090 and stagnant weather. Surface air quality over Southeast US may be to some extent modulated by
1091 large-scale circulations, such the Bermuda High or Atlantic Multi-decadal Oscillation (AMO).

1092 Acknowledgement

1093 This work is based on a workshop held in GFDL in 2015, funded by National Science Foundation
1094 Atmospheric Chemistry Program (AGS-1505306). We acknowledge Haofei Yu (University of
1095 Central Florida), Vaishali Naik (NOAA GFDL), Tom Knutson (NOAA GFDL), John Crounse
1096 (Caltech), Paul Wennberg (Caltech), Daniel Jacob (Harvard), Jen Kaiser (Harvard), Luke Valin
1097 (EPA), Petros Vasilakos (Georgia Tech), Arlene Fiore (Columbia), Nora Mascioli (Columbia),
1098 Yiqi Zheng (Yale), Tzung-May Fu (PKU),
1099 Michael Trainer (NOAA ESRL), Siwan Kim (NOAA ESRL), Ravan Ahmadov (NOAA ESRL),
1100 Nick Wagner (NOAA ESRL), Eladio Knipping (EPRI), for their contributions. We also
1101 acknowledge travel supports from US Environmental Protection Agency (EPA), NOAA Climate
1102 Program Office, and the Cooperative Institute for Climate Science (CICS) at Princeton University.
1103 In particular, we would like to thank Princeton and GFDL staff for support on logistics. We would
1104 also like to thank Ann Marie Carlton's group (Thien Khoi Nguyen, Caroline Farkas, Neha Sareen)
1105 and Luke Valin for additional support on meeting logistics.

1106 **Disclaimer:** Although this document has been reviewed by U.S. EPA and approved for publication,
1107 it does not necessarily reflect U.S. EPA's policies or views.

1108 7. Glossary of Acronyms

1109 **AM3:** The atmospheric component of the GFDL coupled climate model CM3.
1110 **AMS:** Aerosol Mass Spectrometer
1111 **AMO:** Atlantic Multi-decadal Oscillation
1112 **AOD:** aerosol optical depth
1113 **BBOA:** Biomass burning OA
1114 **BEIS:** Biogenic Emission Inventory System
1115 **BVOC:** Biogenic Volatile Organic Compounds
1116 **CAMx:** Comprehensive Air Quality Model with Extensions
1117 **CEMS:** Continuous emission monitoring systems
1118 **CMAQ:** Community Multi-scale Air Quality Model
1119 **CSN:** Chemical Speciation Monitoring Network
1120 **EF:** Emission Factor
1121 **FIXCIT:** A laboratory experiment focused on isoprene oxidation chemistry and the instruments
1122 we took to the field to understand that chemistry
1123 **HOA:** Hydrocarbon-like OA
1124 **IEPOX:** Isoprene epoxydiol
1125 **IMPROVE:** Interagency Monitoring of Protected Visual Environments visibility monitoring
1126 network
1127 **LAI:** Leaf Area Index
1128 **LES:** Large-eddy simulation
1129 **LO-OOA:** Less-oxidized oxygenated OA
1130 **MACR:** Methacrolein
1131 **MEGAN:** Model of Emissions of Gases and Aerosols from Nature
1132 **MO-OOA:** More-oxidized oxygenated OA

1133 **MVK**: Methyl vinyl ketone
1134 **NEI**: National Emissions Inventory
1135 **NOAA**: National Oceanic and Atmospheric Administration
1136 **NOMADSS**: Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks aircraft
1137 campaign, took place during Jun-Jul 2013 with the NSF/NCAR C-130 aircraft.
1138 **OA**: Organic aerosol
1139 **OC**: Organic carbon
1140 **OM**: Organic matter
1141 **OMI**: Ozone Monitoring Instrument
1142 **PAN**: Peroxy Acetyl Nitrate
1143 **PFT**: Plant Functional Type
1144 **PMF**: Positive Matrix Factorization
1145 **POA**: primary organic aerosol
1146 **RGF**: Ratio of Glyoxal to Formaldehyde
1147 **SAS**: Southeast Atmosphere Studies
1148 **SCIPUFF**: Second Order Closure Integrated Puff Model
1149 **SEAC4RS**: Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by
1150 Regional Surveys aircraft campaign, took place during Aug-Sept 2013 with NASA DC-8 and
1151 ER-2 aircraft
1152 **SEARCH**: Southeastern Aerosol Research and Characterization Network
1153 **SENEX**: SouthEast NEXus of air quality and climate campaign
1154 **S/IVOCs**: Semivolatile/intermediate volatility organic compounds
1155 **SOA**: Secondary Organic Aerosols
1156 **SOAS**: the Southern Oxidant and Aerosol Study ground-based campaign, took place during Jun-
1157 Jul 2013 near Brent, Alabama.
1158 **SURFRAD**: Surface Radiation Budget Network
1159 **VBS**: volatility basis set (VBS)
1160 **WRF-Chem**: Weather Research and Forecasting with Chemistry model
1161

1162 **8. References**

1163

1164 Abelson, P. H.: Rural and Urban Ozone, *Science*, 241, 1569-1569, 10.1126/science.241.4873.1569,
1165 1988.

1166 Achakulwisut, P., Mickley, L. J., Murray, L. T., Tai, A. P. K., Kaplan, J. O., and Alexander, B.:
1167 Uncertainties in isoprene photochemistry and emissions: implications for the oxidative capacity of
1168 past and present atmospheres and for climate forcing agents, *Atmos. Chem. Phys.*, 15, 7977-7998,
1169 10.5194/acp-15-7977-2015, 2015.

1170 Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A., Brown, S., Edwards, P. M., de
1171 Gouw, J. A., Frost, G. J., Gilman, J., Helmig, D., Johnson, B., Karion, A., Koss, A., Langford, A.,
1172 Lerner, B., Olson, J., Oltmans, S., Peischl, J., Pétron, G., Pichugina, Y., Roberts, J. M., Ryerson,
1173 T., Schnell, R., Senff, C., Sweeney, C., Thompson, C., Veres, P. R., Warneke, C., Wild, R.,
1174 Williams, E. J., Yuan, B., and Zamora, R.: Understanding high wintertime ozone pollution events
1175 in an oil- and natural gas-producing region of the western US, *Atmos. Chem. Phys.*, 15, 411-429,
1176 10.5194/acp-15-411-2015, 2015.

1177 Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C., Goldan, P. D.,
1178 Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactivity and loss
1179 mechanisms of NO₃ and N₂O₅ in a polluted marine environment: Results from in situ
1180 measurements during New England Air Quality Study 2002, *J. Geophys. Res.*, 111, D23S73,
1181 10.1029/2006jd007252, 2006.

1182 Alvarado, M. J., and Prinn, R. G.: Formation of ozone and growth of aerosols in young smoke
1183 plumes from biomass burning: 1. Lagrangian parcel studies, *Journal of Geophysical Research: Atmospheres*, 114, n/a-n/a, 10.1029/2008JD011144, 2009.

1185 Anderson, D. C., Loughner, C. P., Diskin, G., Weinheimer, A., Carty, T. P., Salawitch, R. J.,
1186 Worden, H. M., Fried, A., Mikoviny, T., Wisthaler, A., and Dickerson, R. R.: Measured and
1187 modeled CO and NO_y in DISCOVER-AQ: An evaluation of emissions and chemistry over the
1188 eastern US, *Atmos. Environ.*, 96, 78-87, <http://dx.doi.org/10.1016/j.atmosenv.2014.07.004>, 2014.

1189 Attwood, A. R., Washenfelder, R. A., Brock, C. A., Hu, W., Baumann, K., Campuzano-Jost, P.,
1190 Day, D. A., Edgerton, E. S., Murphy, D. M., Palm, B. B., McComiskey, A., Wagner, N. L., de Sá,
1191 S. S., Ortega, A., Martin, S. T., Jimenez, J. L., and Brown, S. S.: Trends in sulfate and organic
1192 aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing, *Geophys. Res. Lett.*, 41, 7701-7709, 10.1002/2014GL061669, 2014.

1194 Ayres, B. R., Allen, H. M., Draper, D. C., Brown, S. S., Wild, R. J., Jimenez, J. L., Day, D. A.,
1195 Campuzano-Jost, P., Hu, W., de Gouw, J., Koss, A., Cohen, R. C., Duffey, K. C., Romer, P.,
1196 Baumann, K., Edgerton, E., Takahama, S., Thornton, J. A., Lee, B. H., Lopez-Hilfiker, F. D., Mohr,
1197 C., Wennberg, P. O., Nguyen, T. B., Teng, A., Goldstein, A. H., Olson, K., and Fry, J. L.: Organic
1198 nitrate aerosol formation via NO₃ + biogenic volatile organic compounds in the southeastern
1199 United States, *Atmos. Chem. Phys.*, 15, 13377-13392, 10.5194/acp-15-13377-2015, 2015.

1200 Baker, K. R., and Woody, M. C.: Assessing Model Characterization of Single Source Secondary
1201 Pollutant Impacts Using 2013 SENEX Field Study Measurements, *Environ. Sci. Technol.*, 51,
1202 3833-3842, 10.1021/acs.est.6b05069, 2017.

1203 Banerjee, A., Polvani, L. M., and Fyfe, J. C.: The United States “warming hole”: Quantifying the
1204 forced aerosol response given large internal variability, *Geophys. Res. Lett.*, 44, 1928-1937,
1205 10.1002/2016GL071567, 2017.

1206 Bates, K. H., Crounse, J. D., St. Clair, J. M., Bennett, N. B., Nguyen, T. B., Seinfeld, J. H., Stoltz,
1207 B. M., and Wennberg, P. O.: Gas Phase Production and Loss of Isoprene Epoxydiols, *The Journal*
1208 of Physical Chemistry A, 118, 1237-1246, 10.1021/jp4107958, 2014.

1209 Bates, K. H., Nguyen, T. B., Teng, A. P., Crounse, J. D., Kjaergaard, H. G., Stoltz, B. M., Seinfeld,
1210 J. H., and Wennberg, P. O.: Production and Fate of C4 Dihydroxycarbonyl Compounds from
1211 Isoprene Oxidation, *The Journal of Physical Chemistry A*, 120, 106-117,
1212 10.1021/acs.jpca.5b10335, 2016.

1213 Bäumer, D., Rinke, R., and Vogel, B.: Weekly periodicities of Aerosol Optical Thickness over
1214 Central Europe – evidence of an anthropogenic direct aerosol effect, *Atmos. Chem. Phys.*,
1215 8, 83-90, 10.5194/acp-8-83-2008, 2008.

1216 Bean, J. K., and Hildebrandt Ruiz, L.: Gas–particle partitioning and hydrolysis of organic nitrates
1217 formed from the oxidation of α -pinene in environmental chamber experiments, *Atmos. Chem. Phys.*,
1218 16, 2175-2184, 10.5194/acp-16-2175-2016, 2016.

1219 Bell, T. L., Rosenfeld, D., Kim, K.-M., Yoo, J.-M., Lee, M.-I., and Hahnenberger, M.: Midweek
1220 increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms,
1221 *Journal of Geophysical Research: Atmospheres*, 113, n/a-n/a, 10.1029/2007JD008623, 2008.

1222 Benjamin, M. T., Sudol, M., Bloch, L., and Winer, A. M.: Low-emitting urban forests: A
1223 taxonomic methodology for assigning isoprene and monoterpene emission rates, *Atmos. Environ.*,
1224 30, 1437-1452, [https://doi.org/10.1016/1352-2310\(95\)00439-4](https://doi.org/10.1016/1352-2310(95)00439-4), 1996.

1225 Bishop, G. A., and Stedman, D. H.: A Decade of On-road Emissions Measurements, *Environ. Sci.
1226 Technol.*, 42, 1651-1656, 10.1021/es702413b, 2008.

1227 Blanchard, C. L., Hidy, G. M., Shaw, S., Baumann, K., and Edgerton, E. S.: Effects of emission
1228 reductions on organic aerosol in the southeastern United States, *Atmos. Chem. Phys.*, 16, 215-238,
1229 10.5194/acp-16-215-2016, 2016.

1230 Blanchard, C. L., Hidy, G. M., Tanenbaum, S., Edgerton, E. S., and Hartsell, B. E.: The
1231 Southeastern Aerosol Research and Characterization (SEARCH) study: Temporal trends in gas
1232 and PM concentrations and composition, 1999–2010, *J. Air Waste Manage. Assoc.*, 63, 247-259,
1233 10.1080/10962247.2012.748523, 2013.

1234 Boyd, C. M., Nah, T., Xu, L., Berkemeier, T., and Ng, N. L.: Secondary Organic Aerosol (SOA)
1235 from Nitrate Radical Oxidation of Monoterpenes: Effects of Temperature, Dilution, and Humidity

1236 on Aerosol Formation, Mixing, and Evaporation, *Environ. Sci. Technol.*, 51, 7831-7841,
1237 10.1021/acs.est.7b01460, 2017.

1238 Boyd, C. M., Sanchez, J., Xu, L., Eugene, A. J., Nah, T., Tuet, W. Y., Guzman, M. I., and Ng, N.
1239 L.: Secondary organic aerosol formation from the β -pinene+NO₃ system: effect of humidity and
1240 peroxy radical fate, *Atmos. Chem. Phys.*, 15, 7497-7522, 10.5194/acp-15-7497-2015, 2015.

1241 Brandt, A. R., Heath, G. A., Kort, E. A., O'Sullivan, F., Pétron, G., Jordaan, S. M., Tans, P., Wilcox,
1242 J., Gopstein, A. M., Arent, D., Wofsy, S., Brown, N. J., Bradley, R., Stucky, G. D., Eardley, D.,
1243 and Harriss, R.: Methane Leaks from North American Natural Gas Systems, *Science*, 343, 733-
1244 735, 10.1126/science.1247045, 2014.

1245 Brock, C. A., Wagner, N. L., Anderson, B. E., Attwood, A. R., Beyersdorf, A., Campuzano-Jost,
1246 P., Carlton, A. G., Day, D. A., Diskin, G. S., Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J.,
1247 Markovic, M. Z., Middlebrook, A. M., Ng, N. L., Perring, A. E., Richardson, M. S., Schwarz, J.
1248 P., Washenfelder, R. A., Welti, A., Xu, L., Ziembka, L. D., and Murphy, D. M.: Aerosol optical
1249 properties in the southeastern United States in summer – Part 1: Hygroscopic growth, *Atmos.*
1250 *Chem. Phys.*, 16, 4987-5007, 10.5194/acp-16-4987-2016, 2016a.

1251 Brock, C. A., Wagner, N. L., Anderson, B. E., Beyersdorf, A., Campuzano-Jost, P., Day, D. A.,
1252 Diskin, G. S., Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J., Markovic, M. Z., Middlebrook,
1253 A. M., Perring, A. E., Richardson, M. S., Schwarz, J. P., Welti, A., Ziembka, L. D., and Murphy,
1254 D. M.: Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity
1255 of aerosol optical depth to relative humidity and aerosol parameters, *Atmos. Chem. Phys.*, 16,
1256 5009-5019, 10.5194/acp-16-5009-2016, 2016b.

1257 Brown, S. S., deGouw, J. A., Warneke, C., Ryerson, T. B., Dubé, W. P., Atlas, E., Weber, R. J.,
1258 Peltier, R. E., Neuman, J. A., Roberts, J. M., Swanson, A., Flocke, F., McKeen, S. A., Brioude, J.,
1259 Sommariva, R., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Nocturnal isoprene
1260 oxidation over the Northeast United States in summer and its impact on reactive nitrogen
1261 partitioning and secondary organic aerosol, *Atmos. Chem. Phys.*, 9, 3027-3042, 10.5194/acp-9-
1262 3027-2009, 2009.

1263 Browne, E. C., and Cohen, R. C.: Effects of biogenic nitrate chemistry on the NO_x lifetime in
1264 remote continental regions, *Atmos. Chem. Phys.*, 12, 11917-11932, 10.5194/acp-12-11917-2012,
1265 2012.

1266 Browne, E. C., Wooldridge, P. J., Min, K. E., and Cohen, R. C.: On the role of monoterpene
1267 chemistry in the remote continental boundary layer, *Atmos. Chem. Phys.*, 14, 1225-1238,
1268 10.5194/acp-14-1225-2014, 2014.

1269 Budisulistiorini, S. H., Baumann, K., Edgerton, E. S., Bairai, S. T., Mueller, S., Shaw, S. L.,
1270 Knipping, E. M., Gold, A., and Surratt, J. D.: Seasonal characterization of submicron aerosol
1271 chemical composition and organic aerosol sources in the southeastern United States: Atlanta,
1272 Georgia, and Look Rock, Tennessee, *Atmos. Chem. Phys.*, 16, 5171-5189, 10.5194/acp-16-5171-
1273 2016, 2016.

1274 Budisulistiorini, S. H., Li, X., Bairai, S. T., Renfro, J., Liu, Y., Liu, Y. J., McKinney, K. A., Martin,
1275 S. T., McNeill, V. F., Pye, H. O. T., Nenes, A., Neff, M. E., Stone, E. A., Mueller, S., Knote, C.,
1276 Shaw, S. L., Zhang, Z., Gold, A., and Surratt, J. D.: Examining the effects of anthropogenic
1277 emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern
1278 Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site, *Atmos. Chem. Phys.*,
1279 15, 8871-8888, 10.5194/acp-15-8871-2015, 2015.

1280 Budisulistiorini, S. H., Nenes, A., Carlton, A. G., Surratt, J. D., McNeill, V. F., and Pye, H. O. T.:
1281 Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production
1282 During the 2013 Southern Oxidant and Aerosol Study (SOAS), *Environ. Sci. Technol.*, 51, 5026-
1283 5034, 10.1021/acs.est.6b05750, 2017.

1284 Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology on ozone in urban areas and
1285 their use in assessing ozone trends, *Atmos. Environ.*, 41, 7127-7137,
1286 <http://dx.doi.org/10.1016/j.atmosenv.2007.04.061>, 2007.

1287 Capparelli, V., Franzke, C., Vecchio, A., Freeman, M. P., Watkins, N. W., and Carbone, V.: A
1288 spatiotemporal analysis of U.S. station temperature trends over the last century, *Journal of
1289 Geophysical Research: Atmospheres*, 118, 7427-7434, 10.1002/jgrd.50551, 2013.

1290 Carlton, A. G., and Baker, K. R.: Photochemical Modeling of the Ozark Isoprene Volcano:
1291 MEGAN, BEIS, and Their Impacts on Air Quality Predictions, *Environ. Sci. Technol.*, 45, 4438-
1292 4445, 10.1021/es200050x, 2011.

1293 Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S. P., Mathur, R., Roselle, S. J., and Weber,
1294 R. J.: CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is
1295 Included: Comparisons of Organic Carbon Predictions with Measurements, *Environ. Sci. Technol.*,
1296 42, 8798-8802, 10.1021/es801192n, 2008.

1297 Carslaw, N., Creasey, D. J., Harrison, D., Heard, D. E., Hunter, M. C., Jacobs, P. J., Jenkin, M. E.,
1298 Lee, J. D., Lewis, A. C., Pilling, M. J., Saunders, S. M., and Seakins, P. W.: OH and HO₂ radical
1299 chemistry in a forested region of north-western Greece, *Atmos. Environ.*, 35, 4725-4737, 2001.

1300 Chameides, W., Lindsay, R., Richardson, J., and Kiang, C.: The role of biogenic hydrocarbons in
1301 urban photochemical smog: Atlanta as a case study, *Science*, 241, 1473-1475,
1302 10.1126/science.3420404, 1988.

1303 Chan Miller, C., Jacob, D. J., Marais, E. A., Yu, K., Travis, K. R., Kim, P. S., Fisher, J. A., Zhu,
1304 L., Wolfe, G. M., Hanisco, T. F., Keutsch, F. N., Kaiser, J., Min, K. E., Brown, S. S., Washenfelder,
1305 R. A., González Abad, G., and Chance, K.: Glyoxal yield from isoprene oxidation and relation to
1306 formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and
1307 interpretation of OMI satellite data, *Atmos. Chem. Phys.*, 17, 8725-8738, 10.5194/acp-17-8725-
1308 2017, 2017.

1309 Chung, S. H., and Seinfeld, J. H.: Global distribution and climate forcing of carbonaceous aerosols,
1310 *J. Geophys. Res.*, 107, 4407, 10.1029/2001jd001397, 2002.

1311 Council, N. R.: Rethinking the Ozone Problem in Urban and Regional Air Pollution, The National
1312 Academies Press, Washington, DC978-0-309-04631-2, 524, 1991.

1313 Cowling, E. B., Chameides, W. L., Kiang, C. S., Fehsenfeld, F. C., and Meagher, J. F.: Introduction
1314 to special section: Southern Oxidants Study Nashville/Middle Tennessee Ozone Study, *Journal of*
1315 *Geophysical Research: Atmospheres*, 103, 22209-22212, 10.1029/98JD01770, 1998.

1316 Cowling, E. B., Chameides, W. L., Kiang, C. S., Fehsenfeld, F. C., and Meagher, J. F.: Introduction
1317 to special section: Southern Oxidants Study Nashville/Middle Tennessee Ozone Study, Part 2,
1318 *Journal of Geophysical Research: Atmospheres* (1984–2012), 105, 9075-9077,
1319 10.1029/1999JD901190, 2000.

1320 Crounse, J. D., Knap, H. C., Ørnsø, K. B., Jørgensen, S., Paulot, F., Kjaergaard, H. G., and
1321 Wennberg, P. O.: Atmospheric Fate of Methacrolein. 1. Peroxy Radical Isomerization Following
1322 Addition of OH and O₂, *The Journal of Physical Chemistry A*, 116, 5756-5762,
1323 10.1021/jp211560u, 2012.

1324 Crounse, J. D., Paulot, F., Kjaergaard, H. G., and Wennberg, P. O.: Peroxy radical isomerization
1325 in the oxidation of isoprene, *Phys. Chem. Chem. Phys.*, 13, 13607-13613, 10.1039/C1CP21330J
1326 2011.

1327 Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H.,
1328 Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny, T.,
1329 Riener, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J., Wisthaler, A., and
1330 Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft
1331 and laboratory studies, *Atmos. Chem. Phys.*, 11, 12049-12064, 10.5194/acp-11-12049-2011, 2011.

1332 Cusworth, D. H., Mickley, L. J., Leibensperger, E. M., and Iacono, M. J.: Aerosol trends as a
1333 potential driver of regional climate in the central United States: Evidence from observations,
1334 *Atmos. Chem. Phys. Discuss.*, 2017, 1-27, 10.5194/acp-2017-208, 2017.

1335 D'Ambro, E. L., Møller, K. H., Lopez-Hilfiker, F. D., Schobesberger, S., Liu, J., Shilling, J. E.,
1336 Lee, B. H., Kjaergaard, H. G., and Thornton, J. A.: Isomerization of Second-Generation Isoprene
1337 Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields,
1338 *Environ. Sci. Technol.*, 51, 4978-4987, 10.1021/acs.est.7b00460, 2017.

1339 Daniel, J. S., Portmann, R. W., Solomon, S., and Murphy, D. M.: Identifying weekly cycles in
1340 meteorological variables: The importance of an appropriate statistical analysis, *Journal of*
1341 *Geophysical Research: Atmospheres*, 117, n/a-n/a, 10.1029/2012JD017574, 2012.

1342 Darer, A. I., Cole-Filipliak, N. C., O'Connor, A. E., and Elrod, M. J.: Formation and Stability of
1343 Atmospherically Relevant Isoprene-Derived Organosulfates and Organonitrates, *Environ. Sci.*
1344 *Technol.*, 45, 1895-1902, 10.1021/es103797z, 2011.

1345 Day, M. C., and Pandis, S. N.: Effects of a changing climate on summertime fine particulate matter
1346 levels in the eastern U.S, *Journal of Geophysical Research: Atmospheres*, 120, 5706-5720,
1347 10.1002/2014JD022889, 2015.

1348 De Gouw, J., and Jimenez, J. L.: Organic Aerosols in the Earth's Atmosphere, Environ. Sci.
1349 Technol., 43, 7614-7618, 10.1021/es9006004, 2009.

1350 Dillon, T. J., and Crowley, J. N.: Direct detection of OH formation in the reactions of HO₂ with
1351 CH₃C(O)O-2 and other substituted peroxy radicals, Atmos. Chem. Phys., 8, 4877-4889, 2008.

1352 Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal, L., Hu, Y., Pickering,
1353 Retscher, C., Allen, D. J., and Crawford, J. H.: Application of OMI observations to a space-
1354 based indicator of NO_x and VOC controls on surface ozone formation, Atmos. Environ., 44, 2213-
1355 2223, <http://dx.doi.org/10.1016/j.atmosenv.2010.03.010>, 2010.

1356 Eddingsaas, N. C., VanderVelde, D. G., and Wennberg, P. O.: Kinetics and Products of the Acid-
1357 Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy Alcohols, The Journal of
1358 Physical Chemistry A, 114, 8106-8113, 10.1021/jp103907c, 2010.

1359 Edwards, P. M., Aikin, K. C., Dube, W. P., Fry, J. L., Gilman, J. B., de Gouw, J. A., Graus, M. G.,
1360 Hanisco, T. F., Holloway, J., Hubler, G., Kaiser, J., Keutsch, F. N., Lerner, B. M., Neuman, J. A.,
1361 Parrish, D. D., Peischl, J., Pollack, I. B., Ravishankara, A. R., Roberts, J. M., Ryerson, T. B.,
1362 Trainer, M., Veres, P. R., Wolfe, G. M., Warneke, C., and Brown, S. S.: Transition from high- to
1363 low-NO_x control of night-time oxidation in the southeastern US, Nature Geosci., 10, 490-495,
1364 10.1038/ngeo2976

1365 <http://www.nature.com/ngeo/journal/v10/n7/abs/ngeo2976.html> - supplementary-information,
1366 2017.

1367 Edwards, P. M., Brown, S. S., Roberts, J. M., Ahmadov, R., Banta, R. M., deGouw, J. A., Dube,
1368 W. P., Field, R. A., Flynn, J. H., Gilman, J. B., Graus, M., Helmig, D., Koss, A., Langford, A. O.,
1369 Lefer, B. L., Lerner, B. M., Li, R., Li, S.-M., McKeen, S. A., Murphy, S. M., Parrish, D. D., Senff,
1370 C. J., Soltis, J., Stutz, J., Sweeney, C., Thompson, C. R., Trainer, M. K., Tsai, C., Veres, P. R.,
1371 Washenfelder, R. A., Warneke, C., Wild, R. J., Young, C. J., Yuan, B., and Zamora, R.: High
1372 winter ozone pollution from carbonyl photolysis in an oil and gas basin, Nature, 514, 351-354,
1373 10.1038/nature13767, 2014.

1374 Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I., Springer, M., Rubach,
1375 F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M., Jokinen, T.,
1376 Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurten, T., Nielsen, L. B.,
1377 Jorgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petaja, T., Wahner,
1378 A., Kerminen, V.-M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source
1379 of low-volatility secondary organic aerosol, Nature, 506, 476-479, 10.1038/nature13032, 2014.

1380 Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets
1381 and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem.
1382 Phys., 11, 11069-11102, 10.5194/acp-11-11069-2011, 2011.

1383 Fahey, K. M., Carlton, A. G., Pye, H. O. T., Baek, J., Hutzell, W. T., Stanier, C. O., Baker, K. R.,
1384 Appel, K. W., Jaoui, M., and Offenberg, J. H.: A framework for expanding aqueous chemistry in
1385 the Community Multiscale Air Quality (CMAQ) model version 5.1, Geosci. Model Dev., 10, 1587-
1386 1605, 10.5194/gmd-10-1587-2017, 2017.

1387 Farina, S. C., Adams, P. J., and Pandis, S. N.: Modeling global secondary organic aerosol
1388 formation and processing with the volatility basis set: Implications for anthropogenic secondary
1389 organic aerosol, *J. Geophys. Res.*, 115, D09202, 10.1029/2009jd013046, 2010.

1390 Feiner, P. A., Brune, W. H., Miller, D. O., Zhang, L., Cohen, R. C., Romer, P. S., Goldstein, A.
1391 H., Keutsch, F. N., Skog, K. M., Wennberg, P. O., Nguyen, T. B., Teng, A. P., DeGouw, J., Koss,
1392 A., Wild, R. J., Brown, S. S., Guenther, A., Edgerton, E., Baumann, K., and Fry, J. L.: Testing
1393 Atmospheric Oxidation in an Alabama Forest, *J. Atmos. Sci.*, 0, null, 10.1175/jas-d-16-0044.1,
1394 2016.

1395 Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., Textor, C., Schulz,
1396 M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D. T.,
1397 Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I.,
1398 Carmichael, G., Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S.,
1399 Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski, J. W.,
1400 Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari, G., Pringle, K. J., Pyle, J.
1401 A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu, S., and Zuber, A.: Multimodel
1402 estimates of intercontinental source-receptor relationships for ozone pollution, *J. Geophys. Res.-*
1403 *Atmos.*, 114, 10.1029/2008jd010816, 2009.

1404 Fiore, A. M., Horowitz, L. W., Purves, D. W., Levy, H., II, Evans, M. J., Wang, Y., Li, Q., and
1405 Yantosca, R. M.: Evaluating the contribution of changes in isoprene emissions to surface ozone
1406 trends over the eastern United States, *J. Geophys. Res.*, 110, D12303, 10.1029/2004jd005485,
1407 2005.

1408 Fiore, A. M., Naik, V., and Leibensperger, E. M.: Air Quality and Climate Connections, *J. Air*
1409 *Waste Manage. Assoc.*, 65, 645-685, 10.1080/10962247.2015.1040526, 2015.

1410 Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Chan Miller, C., Yu, K., Zhu,
1411 L., Yantosca, R. M., Sulprizio, M. P., Mao, J., Wennberg, P. O., Crounse, J. D., Teng, A. P.,
1412 Nguyen, T. B., St. Clair, J. M., Cohen, R. C., Romer, P., Nault, B. A., Wooldridge, P. J., Jimenez,
1413 J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Shepson, P. B., Xiong, F., Blake, D. R., Goldstein,
1414 A. H., Misztal, P. K., Hanisco, T. F., Wolfe, G. M., Ryerson, T. B., Wisthaler, A., and Mikoviny,
1415 T.: Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and
1416 monoterpane-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS)
1417 observations in the Southeast US, *Atmos. Chem. Phys.*, 16, 5969-5991, 10.5194/acp-16-5969-
1418 2016, 2016.

1419 Forster, P. M. d. F., and Solomon, S.: Observations of a “weekend effect” in diurnal temperature
1420 range, *Proceedings of the National Academy of Sciences*, 100, 11225-11230,
1421 10.1073/pnas.2034034100, 2003.

1422 Frost, G. J., McKeen, S. A., Trainer, M., Ryerson, T. B., Neuman, J. A., Roberts, J. M., Swanson,
1423 A., Holloway, J. S., Sueper, D. T., Fortin, T., Parrish, D. D., Fehsenfeld, F. C., Flocke, F., Peckham,
1424 S. E., Grell, G. A., Kowal, D., Cartwright, J., Auerbach, N., and Habermann, T.: Effects of
1425 changing power plant NO_x emissions on ozone in the eastern United States: Proof of concept, *J.*
1426 *Geophys. Res.*, 111, D12306, 10.1029/2005jd006354, 2006.

1427 Fu, T.-M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global
1428 budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary
1429 organic aerosols, *J. Geophys. Res.*, 113, D15303, 10.1029/2007jd009505, 2008.

1430 Fu, T.-M., Zheng, Y., Paulot, F., Mao, J., and Yantosca, R. M.: Positive but variable sensitivity of
1431 August surface ozone to large-scale warming in the southeast United States, *Nature Clim. Change*,
1432 5, 454-458, 10.1038/nclimate2567

1433 <http://www.nature.com/nclimate/journal/v5/n5/abs/nclimate2567.html> - [supplementary-
1434 information](#), 2015.

1435 Gan, C.-M., Hogrefe, C., Mathur, R., Pleim, J., Xing, J., Wong, D., Gilliam, R., Pouliot, G., and
1436 Wei, C.: Assessment of the effects of horizontal grid resolution on long-term air quality trends
1437 using coupled WRF-CMAQ simulations, *Atmos. Environ.*, 132, 207-216,
1438 <http://dx.doi.org/10.1016/j.atmosenv.2016.02.036>, 2016.

1439 Gan, C. M., Pleim, J., Mathur, R., Hogrefe, C., Long, C. N., Xing, J., Roselle, S., and Wei, C.:
1440 Assessment of the effect of air pollution controls on trends in shortwave radiation over the United
1441 States from 1995 through 2010 from multiple observation networks, *Atmos. Chem. Phys.*, 14,
1442 1701-1715, 10.5194/acp-14-1701-2014, 2014.

1443 Gan, C. M., Pleim, J., Mathur, R., Hogrefe, C., Long, C. N., Xing, J., Wong, D., Gilliam, R., and
1444 Wei, C.: Assessment of long-term WRF-CMAQ simulations for understanding direct aerosol
1445 effects on radiation "brightening" in the United States, *Atmos. Chem. Phys.*, 15, 12193-12209,
1446 10.5194/acp-15-12193-2015, 2015.

1447 Geron, C., Harley, P., and Guenther, A.: Isoprene emission capacity for US tree species, *Atmos.*
1448 *Environ.*, 35, 3341-3352, [https://doi.org/10.1016/S1352-2310\(00\)00407-6](https://doi.org/10.1016/S1352-2310(00)00407-6), 2001.

1449 Giacopelli, P., Ford, K., Espada, C., and Shepson, P. B.: Comparison of the measured and
1450 simulated isoprene nitrate distributions above a forest canopy, *J. Geophys. Res.-Atmos.*, 110,
1451 10.1029/2004jd005123, 2005.

1452 Glasius, M., and Goldstein, A. H.: Recent discoveries and future challenges in atmospheric organic
1453 chemistry, *Environ. Sci. Technol.*, 10.1021/acs.est.5b05105, 2016.

1454 Goldstein, A. H., Koven, C. D., Heald, C. L., and Fung, I. Y.: Biogenic carbon and anthropogenic
1455 pollutants combine to form a cooling haze over the southeastern United States, *Proceedings of the*
1456 *National Academy of Sciences*, 106, 8835-8840, 10.1073/pnas.0904128106, 2009.

1457 Gonzalez-Abraham, R., Chung, S. H., Avise, J., Lamb, B., Salathé Jr, E. P., Nolte, C. G., Loughlin,
1458 D., Guenther, A., Wiedinmyer, C., Duhl, T., Zhang, Y., and Streets, D. G.: The effects of global
1459 change upon United States air quality, *Atmos. Chem. Phys.*, 15, 12645-12665, 10.5194/acp-15-
1460 12645-2015, 2015.

1461 Grotjahn, R., Black, R., Leung, R., Wehner, M. F., Barlow, M., Bosilovich, M., Gershunov, A.,
1462 Gutowski, W. J., Gyakum, J. R., Katz, R. W., Lee, Y.-Y., Lim, Y.-K., and Prabhat: North American
1463 extreme temperature events and related large scale meteorological patterns: a review of statistical

1464 methods, dynamics, modeling, and trends, *Clim Dyn*, 46, 1151-1184, 10.1007/s00382-015-2638-
1465 6, 2016.

1466 Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr, J. R., Carlton, A. G., Lee,
1467 S. H., Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine-particle water and pH in the
1468 southeastern United States, *Atmos. Chem. Phys.*, 15, 5211-5228, 10.5194/acp-15-5211-2015,
1469 2015.

1470 Hagerman, L. M., Aneja, V. P., and Lonneman, W. A.: Characterization of non-methane
1471 hydrocarbons in the rural southeast United States, *Atmos. Environ.*, 31, 4017-4038,
1472 [http://dx.doi.org/10.1016/S1352-2310\(97\)00223-9](http://dx.doi.org/10.1016/S1352-2310(97)00223-9), 1997.

1473 Hasson, A. S., Tyndall, G. S., and Orlando, J. J.: A product yield study of the reaction of HO₂
1474 radicals with ethyl peroxy (C₂H₅O₂), acetyl peroxy (CH₃C(O)O-2), and acetonyl peroxy
1475 (CH₃C(O)CH₂O₂) radicals, *J. Phys. Chem. A*, 108, 5979-5989, 10.1021/jp048873t, 2004.

1476 Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S.,
1477 Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prévôt, A. S. H., Szidat,
1478 S., Kleindienst, T. E., Offenberg, J. H., Ma, P. K., and Jimenez, J. L.: Modeling the formation and
1479 aging of secondary organic aerosols in Los Angeles during CalNex 2010, *Atmos. Chem. Phys.*, 15,
1480 5773-5801, 10.5194/acp-15-5773-2015, 2015.

1481 Heald, C. L., Coe, H., Jimenez, J. L., Weber, R. J., Bahreini, R., Middlebrook, A. M., Russell, L.
1482 M., Jolley, M., Fu, T. M., Allan, J. D., Bower, K. N., Capes, G., Crosier, J., Morgan, W. T.,
1483 Robinson, N. H., Williams, P. I., Cubison, M. J., DeCarlo, P. F., and Dunlea, E. J.: Exploring the
1484 vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global
1485 model, *Atmos. Chem. Phys.*, 11, 12673-12696, 10.5194/acp-11-12673-2011, 2011.

1486 Hidy, G. M., Blanchard, C. L., Baumann, K., Edgerton, E., Tanenbaum, S., Shaw, S., Knipping,
1487 E., Tombach, I., Jansen, J., and Walters, J.: Chemical climatology of the southeastern United States,
1488 1999–2013, *Atmos. Chem. Phys.*, 14, 11893-11914, 10.5194/acp-14-11893-2014, 2014.

1489 Hofzumahaus, A., Rohrer, F., Lu, K. D., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Holland,
1490 F., Kita, K., Kondo, Y., Li, X., Lou, S. R., Shao, M., Zeng, L. M., Wahner, A., and Zhang, Y. H.:
1491 Amplified Trace Gas Removal in the Troposphere, *Science*, 324, 1702-1704,
1492 10.1126/science.1164566, 2009.

1493 Horowitz, L. W., Fiore, A. M., Milly, G. P., Cohen, R. C., Perring, A., Wooldridge, P. J., Hess, P.
1494 G., Emmons, L. K., and Lamarque, J. F.: Observational constraints on the chemistry of isoprene
1495 nitrates over the eastern United States, *J. Geophys. Res.-Atmos.*, 112, 10.1029/2006jd007747,
1496 2007.

1497 Hu, K. S., Darer, A. I., and Elrod, M. J.: Thermodynamics and kinetics of the hydrolysis of
1498 atmospherically relevant organonitrates and organosulfates, *Atmos. Chem. Phys.*, 11, 8307-8320,
1499 10.5194/acp-11-8307-2011, 2011.

1500 Hu, L., Millet, D. B., Baasandorj, M., Griffis, T. J., Travis, K. R., Tessum, C. W., Marshall, J. D.,
1501 Reinhart, W. F., Mikoviny, T., Müller, M., Wisthaler, A., Graus, M., Warneke, C., and de Gouw,

1502 J.: Emissions of C6–C8 aromatic compounds in the United States: Constraints from tall tower and
1503 aircraft measurements, *Journal of Geophysical Research: Atmospheres*, 120, 826-842,
1504 10.1002/2014JD022627, 2015a.

1505 Hu, W., Palm, B. B., Day, D. A., Campuzano-Jost, P., Krechmer, J. E., Peng, Z., de Sá, S. S.,
1506 Martin, S. T., Alexander, M. L., Baumann, K., Hacker, L., Kiendler-Scharr, A., Koss, A. R., de
1507 Gouw, J. A., Goldstein, A. H., Seco, R., Sjostedt, S. J., Park, J. H., Guenther, A. B., Kim, S.,
1508 Canonaco, F., Prévôt, A. S. H., Brune, W. H., and Jimenez, J. L.: Volatility and lifetime against
1509 OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol
1510 (IEPOX-SOA), *Atmos. Chem. Phys.*, 16, 11563-11580, 10.5194/acp-16-11563-2016, 2016.

1511 Hu, W. W., Campuzano-Jost, P., Palm, B. B., Day, D. A., Ortega, A. M., Hayes, P. L., Krechmer,
1512 J. E., Chen, Q., Kuwata, M., Liu, Y. J., de Sá, S. S., McKinney, K., Martin, S. T., Hu, M.,
1513 Budisulistiorini, S. H., Riva, M., Surratt, J. D., St. Clair, J. M., Isaacman-Van Wertz, G., Yee, L.
1514 D., Goldstein, A. H., Carbone, S., Brito, J., Artaxo, P., de Gouw, J. A., Koss, A., Wisthaler, A.,
1515 Mikoviny, T., Karl, T., Kaser, L., Jud, W., Hansel, A., Docherty, K. S., Alexander, M. L., Robinson,
1516 N. H., Coe, H., Allan, J. D., Canagaratna, M. R., Paulot, F., and Jimenez, J. L.: Characterization
1517 of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA)
1518 from aerosol mass spectrometer measurements, *Atmos. Chem. Phys.*, 15, 11807-11833,
1519 10.5194/acp-15-11807-2015, 2015b.

1520 Hübner, G., Alvarez, R., Daum, P., Dennis, R., Gillani, N., Kleinman, L., Luke, W., Meagher, J.,
1521 Rider, D., Trainer, M., and Valente, R.: An overview of the airborne activities during the Southern
1522 Oxidants Study (SOS) 1995 Nashville/Middle Tennessee Ozone Study, *Journal of Geophysical
1523 Research: Atmospheres* (1984–2012), 103, 22245-22259, 10.1029/98JD01638, 1998.

1524 Isaacman-VanWertz, G., Yee, L. D., Kreisberg, N. M., Wernis, R., Moss, J. A., Hering, S. V., de
1525 Sá, S. S., Martin, S. T., Alexander, M. L., Palm, B. B., Hu, W., Campuzano-Jost, P., Day, D. A.,
1526 Jimenez, J. L., Riva, M., Surratt, J. D., Viegas, J., Manzi, A., Edgerton, E., Baumann, K., Souza,
1527 R., Artaxo, P., and Goldstein, A. H.: Ambient Gas-Particle Partitioning of Tracers for Biogenic
1528 Oxidation, *Environ. Sci. Technol.*, 50, 9952-9962, 10.1021/acs.est.6b01674, 2016.

1529 Ito, A., Sillman, S., and Penner, J. E.: Global chemical transport model study of ozone response to
1530 changes in chemical kinetics and biogenic volatile organic compounds emissions due to increasing
1531 temperatures: Sensitivities to isoprene nitrate chemistry and grid resolution, *J. Geophys. Res.-
1532 Atmos.*, 114, 10.1029/2008jd011254, 2009.

1533 Jacob, D. J., and Winner, D. A.: Effect of climate change on air quality, *Atmos. Environ.*, 43, 51-
1534 63, 10.1016/j.atmosenv.2008.09.051, 2009.

1535 Jacob, D. J., and Wofsy, S. C.: Photochemistry of Biogenic Emissions Over the Amazon Forest, *J.
1536 Geophys. Res.*, 93, 1477-1486, 10.1029/JD093iD02p01477, 1988.

1537 Jacobs, M. I., Burke, W. J., and Elrod, M. J.: Kinetics of the reactions of isoprene-derived
1538 hydroxynitrates: gas phase epoxide formation and solution phase hydrolysis, *Atmos. Chem. Phys.*,
1539 14, 8933-8946, 10.5194/acp-14-8933-2014, 2014.

1540 Jenkin, M. E., Hurley, M. D., and Wallington, T. J.: Investigation of the radical product channel
1541 of the CH₃C(O)O-2+HO₂ reaction in the gas phase, *Phys. Chem. Chem. Phys.*, 9, 3149-3162,
1542 10.1039/b702757e, 2007.

1543 Joe, D. K., Zhang, H., DeNero, S. P., Lee, H.-H., Chen, S.-H., McDonald, B. C., Harley, R. A.,
1544 and Kleeman, M. J.: Implementation of a high-resolution Source-Oriented WRF/Chem model at
1545 the Port of Oakland, *Atmos. Environ.*, 82, 351-363,
1546 <http://dx.doi.org/10.1016/j.atmosenv.2013.09.055>, 2014.

1547 Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V.-M., Junninen, H., Paasonen, P., Stratmann,
1548 F., Herrmann, H., Guenther, A. B., Worsnop, D. R., Kulmala, M., Ehn, M., and Sipilä, M.:
1549 Production of extremely low volatile organic compounds from biogenic emissions: Measured
1550 yields and atmospheric implications, *Proceedings of the National Academy of Sciences*, 112,
1551 7123-7128, 10.1073/pnas.1423977112, 2015.

1552 Jolley, M. D., Coe, H., McFiggans, G., Capes, G., Allan, J. D., Crosier, J., Williams, P. I., Allen,
1553 G., Bower, K. N., Jimenez, J. L., Russell, L. M., Grutter, M., and Baumgardner, D.: Characterizing
1554 the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four
1555 Regions, *Environ. Sci. Technol.*, 46, 13093-13102, 10.1021/es302386v, 2012.

1556 Kaiser, J., Skog, K. M., Baumann, K., Bertman, S. B., Brown, S. B., Brune, W. H., Crounse, J. D.,
1557 de Gouw, J. A., Edgerton, E. S., Feiner, P. A., Goldstein, A. H., Koss, A., Misztal, P. K., Nguyen,
1558 T. B., Olson, K. F., St. Clair, J. M., Teng, A. P., Toma, S., Wennberg, P. O., Wild, R. J., Zhang,
1559 L., and Keutsch, F. N.: Speciation of OH reactivity above the canopy of an isoprene-dominated
1560 forest, *Atmos. Chem. Phys.*, 16, 9349-9359, 10.5194/acp-16-9349-2016, 2016.

1561 Kaiser, J., Wolfe, G. M., Min, K. E., Brown, S. S., Miller, C. C., Jacob, D. J., deGouw, J. A., Graus,
1562 M., Hanisco, T. F., Holloway, J., Peischl, J., Pollack, I. B., Ryerson, T. B., Warneke, C.,
1563 Washenfelder, R. A., and Keutsch, F. N.: Reassessing the ratio of glyoxal to formaldehyde as an
1564 indicator of hydrocarbon precursor speciation, *Atmos. Chem. Phys.*, 15, 7571-7583, 10.5194/acp-
1565 15-7571-2015, 2015.

1566 Karl, T., Harley, P., Emmons, L., Thornton, B., Guenther, A., Basu, C., Turnipseed, A., and Jardine,
1567 K.: Efficient Atmospheric Cleansing of Oxidized Organic Trace Gases by Vegetation, *Science*,
1568 330, 816-819, 10.1126/science.1192534, 2010.

1569 Kaser, L., Karl, T., Yuan, B., Mauldin, R. L., Cantrell, C. A., Guenther, A. B., Patton, E. G.,
1570 Weinheimer, A. J., Knote, C., Orlando, J., Emmons, L., Apel, E., Hornbrook, R., Shertz, S.,
1571 Ullmann, K., Hall, S., Graus, M., de Gouw, J., Zhou, X., and Ye, C.: Chemistry-turbulence
1572 interactions and mesoscale variability influence the cleansing efficiency of the atmosphere,
1573 *Geophys. Res. Lett.*, 42, 10,894-810,903, 10.1002/2015GL066641, 2015.

1574 Kim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M.
1575 P., Jimenez, J. L., Campuzano-Jost, P., Froyd, K. D., Liao, J., Hair, J. W., Fenn, M. A., Butler, C.
1576 F., Wagner, N. L., Gordon, T. D., Welti, A., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Teng,
1577 A. P., Millet, D. B., Schwarz, J. P., Markovic, M. Z., and Perring, A. E.: Sources, seasonality, and
1578 trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations

1579 with the GEOS-Chem chemical transport model, *Atmos. Chem. Phys.*, 15, 10411-10433,
1580 10.5194/acp-15-10411-2015, 2015.

1581 Kim, S. W., Barth, M. C., and Trainer, M.: Impact of turbulent mixing on isoprene chemistry,
1582 *Geophys. Res. Lett.*, 43, 7701-7708, 10.1002/2016GL069752, 2016a.

1583 Kim, S. W., McDonald, B. C., Baidar, S., Brown, S. S., Dube, B., Ferrare, R. A., Frost, G. J.,
1584 Harley, R. A., Holloway, J. S., Lee, H. J., McKeen, S. A., Neuman, J. A., Nowak, J. B., Oetjen,
1585 H., Ortega, I., Pollack, I. B., Roberts, J. M., Ryerson, T. B., Scarino, A. J., Senff, C. J., Thalman,
1586 R., Trainer, M., Volkamer, R., Wagner, N., Washenfelder, R. A., Waxman, E., and Young, C. J.:
1587 Modeling the weekly cycle of NO_x and CO emissions and their impacts on O₃ in the Los Angeles-
1588 South Coast Air Basin during the CalNex 2010 field campaign, *Journal of Geophysical Research: Atmospheres*, 121, 1340-1360, 10.1002/2015JD024292, 2016b.

1589

1590 Knote, C., Hodzic, A., and Jimenez, J. L.: The effect of dry and wet deposition of condensable
1591 vapors on secondary organic aerosols concentrations over the continental US, *Atmos. Chem. Phys.*,
1592 15, 1-18, 10.5194/acp-15-1-2015, 2015.

1593 Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., Brioude, J., Fast, J.,
1594 Gentner, D. R., Goldstein, A. H., Hayes, P. L., Knighton, W. B., Oetjen, H., Setyan, A., Stark, H.,
1595 Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q.: Simulation of semi-
1596 explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model, *Atmos. Chem. Phys.*,
1597 14, 6213-6239, 10.5194/acp-14-6213-2014, 2014.

1598 Knutson, T. R., Zeng, F., and Wittenberg, A. T.: Multimodel Assessment of Regional Surface
1599 Temperature Trends: CMIP3 and CMIP5 Twentieth-Century Simulations, *Journal of Climate*, 26,
1600 8709-8743, 10.1175/JCLI-D-12-00567.1, 2013.

1601 Krechmer, J. E., Pagonis, D., Ziemann, P. J., and Jimenez, J. L.: Quantification of Gas-Wall
1602 Partitioning in Teflon Environmental Chambers Using Rapid Bursts of Low-Volatility Oxidized
1603 Species Generated in Situ, *Environ. Sci. Technol.*, 50, 5757-5765, 10.1021/acs.est.6b00606, 2016.

1604 Kumar, S., III, J. K., Dirmeyer, P. A., Pan, Z., and Adams, J.: Multidecadal Climate Variability
1605 and the “Warming Hole” in North America: Results from CMIP5 Twentieth- and Twenty-First-
1606 Century Climate Simulations, *Journal of Climate*, 26, 3511-3527, doi:10.1175/JCLI-D-12-00535.1,
1607 2013.

1608 Kunkel, K. E., Liang, X.-Z., Zhu, J., and Lin, Y.: Can CGCMs Simulate the Twentieth-Century
1609 “Warming Hole” in the Central United States?, *Journal of Climate*, 19, 4137-4153,
1610 10.1175/JCLI3848.1, 2006.

1611 Kuwata, M., Liu, Y., McKinney, K., and Martin, S. T.: Physical state and acidity of inorganic
1612 sulfate can regulate the production of secondary organic material from isoprene photooxidation
1613 products, *Phys. Chem. Chem. Phys.*, 17, 5670-5678, 10.1039/C4CP04942J, 2015.

1614 Kwan, A. J., Chan, A. W. H., Ng, N. L., Kjaergaard, H. G., Seinfeld, J. H., and Wennberg, P. O.:
1615 Peroxy radical chemistry and OH radical production during the NO₃-initiated oxidation of
1616 isoprene, *Atmos. Chem. Phys.*, 12, 7499-7515, 10.5194/acp-12-7499-2012, 2012.

1617 Lamarque, J. F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., Bergmann, D.,
1618 Cameron-Smith, P., Collins, W. J., Doherty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S.
1619 J., Horowitz, L. W., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Naik, V., Plummer, D., Righi,
1620 M., Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S.,
1621 Voulgarakis, A., and Zeng, G.: The Atmospheric Chemistry and Climate Model Intercomparison
1622 Project (ACCMIP): overview and description of models, simulations and climate diagnostics,
1623 *Geosci. Model Dev.*, 6, 179-206, 10.5194/gmd-6-179-2013, 2013.

1624 Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L., Romer, P., Cohen, R.
1625 C., Iyer, S., Kurtén, T., Hu, W., Day, D. A., Campuzano-Jost, P., Jimenez, J. L., Xu, L., Ng, N. L.,
1626 Guo, H., Weber, R. J., Wild, R. J., Brown, S. S., Koss, A., de Gouw, J., Olson, K., Goldstein, A.
1627 H., Seco, R., Kim, S., McAvey, K., Shepson, P. B., Starn, T., Baumann, K., Edgerton, E. S., Liu,
1628 J., Shilling, J. E., Miller, D. O., Brune, W., Schobesberger, S., D'Ambro, E. L., and Thornton, J.
1629 A.: Highly functionalized organic nitrates in the southeast United States: Contribution to secondary
1630 organic aerosol and reactive nitrogen budgets, *Proceedings of the National Academy of Sciences*,
1631 113, 1516-1521, 10.1073/pnas.1508108113, 2016a.

1632 Lee, L., Teng, A. P., Wennberg, P. O., Crounse, J. D., and Cohen, R. C.: On Rates and Mechanisms
1633 of OH and O₃ Reactions with Isoprene-Derived Hydroxy Nitrates, *The Journal of Physical
1634 Chemistry A*, 118, 1622-1637, 10.1021/jp4107603, 2014.

1635 Lee, Y., Shindell, D. T., Faluvegi, G., and Pinder, R. W.: Potential impact of a US climate policy
1636 and air quality regulations on future air quality and climate change, *Atmos. Chem. Phys.*, 16, 5323-
1637 5342, 10.5194/acp-16-5323-2016, 2016b.

1638 Lei, Z., Daniel, J. J., Loretta, J. M., Eloïse, A. M., Daniel, S. C., Yasuko, Y., Bryan, N. D., Gonzalo
1639 González, A., and Kelly, V. C.: Anthropogenic emissions of highly reactive volatile organic
1640 compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of
1641 HCHO columns, *Environmental Research Letters*, 9, 114004, 2014.

1642 Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W. T., Seinfeld, J. H., Nenes, A., Adams,
1643 P. J., Streets, D. G., Kumar, N., and Rind, D.: Climatic effects of 1950–2050 changes in US
1644 anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing, *Atmos. Chem. Phys.*, 12,
1645 3333-3348, 10.5194/acp-12-3333-2012, 2012a.

1646 Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W. T., Seinfeld, J. H., Nenes, A., Adams,
1647 P. J., Streets, D. G., Kumar, N., and Rind, D.: Climatic effects of 1950–2050 changes in US
1648 anthropogenic aerosols–Part 2: Climate response, *Atmos. Chem. Phys.*, 12, 3349-3362,
1649 10.5194/acp-12-3349-2012, 2012b.

1650 Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H.,
1651 Lawrence, M. G., Martinez, M., Taraborrelli, D., and Williams, J.: Atmospheric oxidation capacity
1652 sustained by a tropical forest, *Nature*, 452, 737-740, 10.1038/nature06870, 2008.

1653 Li, J., Mao, J., Fiore, A. M., Cohen, R. C., Crounse, J. D., Teng, A. P., Wennberg, P. O., Lee, B.
1654 H., Lopez-Hilfiker, F. D., Thornton, J. A., Peischl, J., Pollack, I. B., Ryerson, T. B., Veres, P.,
1655 Roberts, J. M., Neuman, J. A., Nowak, J. B., Wolfe, G. M., Hanisco, T. F., Fried, A., Singh, H. B.,
1656 Dibb, J., Paulot, F., and Horowitz, L. W.: Decadal change of summertime reactive nitrogen species

1657 and surface ozone over the Southeast United States, *Atmos. Chem. Phys. Discuss.*, 2017, 1-42,
1658 10.5194/acp-2017-606, 2017.

1659 Li, J., Mao, J., Min, K.-E., Washenfelder, R. A., Brown, S. S., Kaiser, J., Keutsch, F. N., Volkamer,
1660 R., Wolfe, G. M., Hanisco, T. F., Pollack, I. B., Ryerson, T. B., Graus, M., Gilman, J. B., Lerner,
1661 B. M., Warneke, C., de Gouw, J. A., Middlebrook, A. M., Liao, J., Welti, A., Henderson, B. H.,
1662 McNeill, V. F., Hall, S. R., Ullmann, K., Donner, L. J., Paulot, F., and Horowitz, L. W.:
1663 Observational constraints on glyoxal production from isoprene oxidation and its contribution to
1664 organic aerosol over the Southeast United States, *Journal of Geophysical Research: Atmospheres*,
1665 121, 9849-9861, 10.1002/2016JD025331, 2016.

1666 Liao, J., Froyd, K. D., Murphy, D. M., Keutsch, F. N., Yu, G., Wennberg, P. O., St. Clair, J. M.,
1667 Crounse, J. D., Wisthaler, A., Mikoviny, T., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu,
1668 W., Ryerson, T. B., Pollack, I. B., Peischl, J., Anderson, B. E., Ziembba, L. D., Blake, D. R.,
1669 Meinardi, S., and Diskin, G.: Airborne measurements of organosulfates over the continental U.S.,
1670 *Journal of Geophysical Research: Atmospheres*, 120, 2990-3005, 10.1002/2014JD022378, 2015.

1671 Liggio, J., Li, S.-M., and McLaren, R.: Reactive uptake of glyoxal by particulate matter, *J. Geophys. Res.*, 110, D10304, 10.1029/2004jd005113, 2005.

1673 Lin, J.-T., Youn, D., Liang, X.-Z., and Wuebbles, D. J.: Global model simulation of summertime
1674 U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions,
1675 *Atmos. Environ.*, 42, 8470-8483, <http://dx.doi.org/10.1016/j.atmosenv.2008.08.012>, 2008.

1676 Liu, X., Zhang, Y., Huey, L. G., Yokelson, R. J., Wang, Y., Jimenez, J. L., Campuzano-Jost, P.,
1677 Beyersdorf, A. J., Blake, D. R., Choi, Y., St. Clair, J. M., Crounse, J. D., Day, D. A., Diskin, G.
1678 S., Fried, A., Hall, S. R., Hanisco, T. F., King, L. E., Meinardi, S., Mikoviny, T., Palm, B. B.,
1679 Peischl, J., Perring, A. E., Pollack, I. B., Ryerson, T. B., Sachse, G., Schwarz, J. P., Simpson, I. J.,
1680 Tanner, D. J., Thornhill, K. L., Ullmann, K., Weber, R. J., Wennberg, P. O., Wisthaler, A., Wolfe,
1681 G. M., and Ziembba, L. D.: Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions
1682 of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol, *Journal
1683 of Geophysical Research: Atmospheres*, 121, 7383-7414, 10.1002/2016JD025040, 2016.

1684 Liu, Y. J., Herdlinger-Blatt, I., McKinney, K. A., and Martin, S. T.: Production of methyl vinyl
1685 ketone and methacrolein via the hydroperoxy pathway of isoprene oxidation, *Atmos. Chem. Phys.*,
1686 13, 5715-5730, 10.5194/acp-13-5715-2013, 2013.

1687 Lockwood, A. L., Shepson, P. B., Fiddler, M. N., and Alaghmand, M.: Isoprene nitrates:
1688 preparation, separation, identification, yields, and atmospheric chemistry, *Atmos. Chem. Phys.*,
1689 10, 6169-6178, 10.5194/acp-10-6169-2010, 2010.

1690 Lopez-Hilfiker, F. D., Mohr, C., D'Ambro, E. L., Lutz, A., Riedel, T. P., Gaston, C. J., Iyer, S.,
1691 Zhang, Z., Gold, A., Surratt, J. D., Lee, B. H., Kurten, T., Hu, W. W., Jimenez, J., Hallquist, M.,
1692 and Thornton, J. A.: Molecular Composition and Volatility of Organic Aerosol in the Southeastern
1693 U.S.: Implications for IEPOX Derived SOA, *Environ. Sci. Technol.*, 10.1021/acs.est.5b04769,
1694 2016.

1695 Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg, P. O., Keller, C. A.,
1696 Hudman, R. C., Barkley, M. P., and Horowitz, L. W.: Ozone and organic nitrates over the eastern
1697 United States: Sensitivity to isoprene chemistry, *Journal of Geophysical Research: Atmospheres*,
1698 118, 2013JD020231, 10.1002/jgrd.50817, 2013.

1699 Mao, J., Ren, X., Zhang, L., Van Duin, D. M., Cohen, R. C., Park, J. H., Goldstein, A. H., Paulot,
1700 F., Beaver, M. R., Crounse, J. D., Wennberg, P. O., DiGangi, J. P., Henry, S. B., Keutsch, F. N.,
1701 Park, C., Schade, G. W., Wolfe, G. M., Thornton, J. A., and Brune, W. H.: Insights into hydroxyl
1702 measurements and atmospheric oxidation in a California forest, *Atmos. Chem. Phys.*, 12, 8009-
1703 8020, 10.5194/acp-12-8009-2012, 2012.

1704 Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Krechmer, J.,
1705 Zhu, L., Kim, P. S., Miller, C. C., Fisher, J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M.,
1706 Arkison, H. L., Pye, H. O. T., Froyd, K. D., Liao, J., and McNeill, V. F.: Aqueous-phase
1707 mechanism for secondary organic aerosol formation from isoprene: application to the southeast
1708 United States and co-benefit of SO₂ emission controls, *Atmos. Chem. Phys.*, 16, 1603-1618,
1709 10.5194/acp-16-1603-2016, 2016.

1710 Marais, E. A., Jacob, D. J., Turner, J. R., and Mickley, L. J.: Evidence of 1991–2013 decrease of
1711 biogenic secondary organic aerosol in response to SO₂ emission controls, *Environmental
1712 Research Letters*, 12, 054018, 2017.

1713 Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Frost,
1714 G. J., Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter, R. E., Wert,
1715 B., Fried, A., Aliche, B., Stutz, J., Young, V. L., White, A. B., and Zamora, R. J.: OH and HO₂
1716 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee,
1717 summer 1999, *J. Geophys. Res.-Atmos.*, 108, 17, 4617, 10.1029/2003jd003551, 2003.

1718 Marvin, M. R., Wolfe, G. M., Salawitch, R. J., Carty, T. P., Roberts, S. J., Travis, K. R., Aikin, K.
1719 C., de Gouw, J. A., Graus, M., Hanisco, T. F., Holloway, J. S., Hübner, G., Kaiser, J., Keutsch, F.
1720 N., Peischl, J., Pollack, I. B., Roberts, J. M., Ryerson, T. B., Veres, P. R., and Warneke, C.: Impact
1721 of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by
1722 in situ observations from SENEX, *Atmos. Environ.*, 164, 325-336,
1723 <https://doi.org/10.1016/j.atmosenv.2017.05.049>, 2017.

1724 Mascioli, N. R., Fiore, A. M., Previdi, M., and Correa, G.: Temperature and Precipitation Extremes
1725 in the United States: Quantifying the Responses to Anthropogenic Aerosols and Greenhouse Gases,
1726 *Journal of Climate*, 29, 2689-2701, doi:10.1175/JCLI-D-15-0478.1, 2016.

1727 Mascioli, N. R., Previdi, M., Fiore, A. M., and Ting, M.: Timing and seasonality of the United
1728 States ‘warming hole’, *Environmental Research Letters*, 12, 034008, 2017.

1729 Matsunaga, A., and Ziemann, P. J.: Gas-Wall Partitioning of Organic Compounds in a Teflon Film
1730 Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements, *Aerosol
1731 Science and Technology*, 44, 881-892, 10.1080/02786826.2010.501044, 2010.

1732 Mauget, S. A., and Cordero, E. C.: Optimal Ranking Regime Analysis of Intra- to Multidecadal
1733 U.S. Climate Variability. Part I: Temperature, *Journal of Climate*, 27, 9006-9026,
1734 doi:10.1175/JCLI-D-14-00040.1, 2014.

1735 McDonald, B. C., Dallmann, T. R., Martin, E. W., and Harley, R. A.: Long-term trends in nitrogen
1736 oxide emissions from motor vehicles at national, state, and air basin scales, *Journal of Geophysical*
1737 *Research: Atmospheres*, 117, n/a-n/a, 10.1029/2012JD018304, 2012.

1738 McDonald, B. C., Gentner, D. R., Goldstein, A. H., and Harley, R. A.: Long-Term Trends in Motor
1739 Vehicle Emissions in U.S. Urban Areas, *Environ. Sci. Technol.*, 47, 10022-10031,
1740 10.1021/es401034z, 2013.

1741 McDonald, B. C., Goldstein, A. H., and Harley, R. A.: Long-Term Trends in California Mobile
1742 Source Emissions and Ambient Concentrations of Black Carbon and Organic Aerosol, *Environ.*
1743 *Sci. Technol.*, 49, 5178-5188, 10.1021/es505912b, 2015.

1744 McNeill, V. F.: Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical Processing
1745 of Organic Aerosols, *Environ. Sci. Technol.*, 49, 1237-1244, 10.1021/es5043707, 2015.

1746 McNeill, V. F., Woo, J. L., Kim, D. D., Schwier, A. N., Wannell, N. J., Sumner, A. J., and Barakat,
1747 J. M.: Aqueous-Phase Secondary Organic Aerosol and Organosulfate Formation in Atmospheric
1748 Aerosols: A Modeling Study, *Environ. Sci. Technol.*, 46, 8075-8081, 10.1021/es3002986, 2012.

1749 McNider, R. T., Norris, W. B., Song, A. J., Clymer, R. L., Gupta, S., Banta, R. M., Zamora, R. J.,
1750 White, A. B., and Trainer, M.: Meteorological conditions during the 1995 Southern Oxidants Study
1751 Nashville/Middle Tennessee Field Intensive, *Journal of Geophysical Research: Atmospheres*
1752 (1984–2012), 103, 22225-22243, 10.1029/98JD01203, 1998.

1753 Meagher, J. F., Cowling, E. B., Fehsenfeld, F. C., and Parkhurst, W. J.: Ozone formation and
1754 transport in southeastern United States: Overview of the SOS Nashville/Middle Tennessee Ozone
1755 Study, *Journal of Geophysical Research: Atmospheres*, 103, 22213-22223, 10.1029/98JD01693,
1756 1998.

1757 Meehl, G. A., Arblaster, J. M., and Branstator, G.: Mechanisms Contributing to the Warming Hole
1758 and the Consequent U.S. East–West Differential of Heat Extremes, *Journal of Climate*, 25, 6394-
1759 6408, 10.1175/JCLI-D-11-00655.1, 2012.

1760 Meehl, G. A., Arblaster, J. M., and Chung, C. T. Y.: Disappearance of the southeast U.S. “warming
1761 hole” with the late 1990s transition of the Interdecadal Pacific Oscillation, *Geophys. Res. Lett.*, 42,
1762 5564-5570, 10.1002/2015GL064586, 2015.

1763 Mickley, L. J., Leibensperger, E. M., Jacob, D. J., and Rind, D.: Regional warming from aerosol
1764 removal over the United States: Results from a transient 2010–2050 climate simulation, *Atmos.*
1765 *Environ.*, 46, 545-553, <http://dx.doi.org/10.1016/j.atmosenv.2011.07.030>, 2012.

1766 Millet, D. B., Jacob, D. J., Turquety, S., Hudman, R. C., Wu, S. L., Fried, A., Walega, J., Heikes,
1767 B. G., Blake, D. R., Singh, H. B., Anderson, B. E., and Clarke, A. D.: Formaldehyde distribution

1768 over North America: Implications for satellite retrievals of formaldehyde columns and isoprene
1769 emission, *J. Geophys. Res.-Atmos.*, 111, 10.1029/2005jd006853, 2006.

1770 Min, K. E., Washenfelder, R. A., Dubé, W. P., Langford, A. O., Edwards, P. M., Zarzana, K. J.,
1771 Stutz, J., Lu, K., Rohrer, F., Zhang, Y., and Brown, S. S.: A broadband cavity enhanced absorption
1772 spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide,
1773 and water vapor, *Atmos. Meas. Tech.*, 9, 423-440, 10.5194/amt-9-423-2016, 2016.

1774 Misztal, P. K., Avise, J. C., Karl, T., Scott, K., Jonsson, H. H., Guenther, A. B., and Goldstein, A.
1775 H.: Evaluation of regional isoprene emission factors and modeled fluxes in California, *Atmos.*
1776 *Chem. Phys.*, 16, 9611-9628, 10.5194/acp-16-9611-2016, 2016.

1777 Müller, J. F., Peeters, J., and Stavrakou, T.: Fast photolysis of carbonyl nitrates from isoprene,
1778 *Atmos. Chem. Phys.*, 14, 2497-2508, 10.5194/acp-14-2497-2014, 2014.

1779 Murazaki, K., and Hess, P.: How does climate change contribute to surface ozone change over the
1780 United States?, *J. Geophys. Res.*, 111, D05301, 10.1029/2005jd005873, 2006.

1781 Murphy, B. N., Woody, M. C., Jimenez, J. L., Carlton, A. M. G., Hayes, P. L., Liu, S., Ng, N. L.,
1782 Russell, L. M., Setyan, A., Xu, L., Young, J., Zaveri, R. A., Zhang, Q., and Pye, H. O. T.:
1783 Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source
1784 strength and partitioning, *Atmos. Chem. Phys.*, 17, 11107-11133, 10.5194/acp-17-11107-2017,
1785 2017.

1786 Myrokefalitakis, S., Tsigaridis, K., Mihalopoulos, N., Sciare, J., Nenes, A., Kawamura, K., Segers,
1787 A., and Kanakidou, M.: In-cloud oxalate formation in the global troposphere: a 3-D modeling
1788 study, *Atmos. Chem. Phys.*, 11, 5761-5782, 10.5194/acp-11-5761-2011, 2011.

1789 Nah, T., McVay, R. C., Zhang, X., Boyd, C. M., Seinfeld, J. H., and Ng, N. L.: Influence of seed
1790 aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study
1791 with α -pinene ozonolysis, *Atmos. Chem. Phys.*, 16, 9361-9379, 10.5194/acp-16-9361-2016, 2016a.

1792 Nah, T., Sanchez, J., Boyd, C. M., and Ng, N. L.: Photochemical Aging of α -pinene and β -pinene
1793 Secondary Organic Aerosol formed from Nitrate Radical Oxidation, *Environ. Sci. Technol.*, 50,
1794 222-231, 10.1021/acs.est.5b04594, 2016b.

1795 National Research Council, U.: Air quality management in the United States, in, The National
1796 Academies Press Washington, DC, 2004.

1797 Neuman, J. A., Trainer, M., Brown, S. S., Min, K. E., Nowak, J. B., Parrish, D. D., Peischl, J.,
1798 Pollack, I. B., Roberts, J. M., Ryerson, T. B., and Veres, P. R.: HONO emission and production
1799 determined from airborne measurements over the Southeast U.S, *Journal of Geophysical Research: Atmospheres*, 121, 9237-9250, 10.1002/2016JD025197, 2016.

1801 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A.,
1802 Donahue, N. M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A.,
1803 Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R.,
1804 Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y.,

1805 Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri,
1806 R. A.: Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and
1807 organic aerosol, *Atmos. Chem. Phys.*, 17, 2103-2162, 10.5194/acp-17-2103-2017, 2017.

1808 Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H. O.
1809 T., Crounse, J. D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol
1810 (SOA) formation from reaction of isoprene with nitrate radicals (NO₃), *Atmos. Chem. Phys.*, 8,
1811 4117-4140, 10.5194/acp-8-4117-2008, 2008.

1812 Nguyen, T. B., Coggon, M. M., Bates, K. H., Zhang, X., Schwantes, R. H., Schilling, K. A., Loza,
1813 C. L., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Organic aerosol formation from the
1814 reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds, *Atmos. Chem.
1815 Phys.*, 14, 3497-3510, 10.5194/acp-14-3497-2014, 2014a.

1816 Nguyen, T. B., Crounse, J. D., Schwantes, R. H., Teng, A. P., Bates, K. H., Zhang, X., St. Clair, J.
1817 M., Brune, W. H., Tyndall, G. S., Keutsch, F. N., Seinfeld, J. H., and Wennberg, P. O.: Overview
1818 of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT):
1819 mechanistic chamber studies on the oxidation of biogenic compounds, *Atmos. Chem. Phys.*, 14,
1820 13531-13549, 10.5194/acp-14-13531-2014, 2014b.

1821 Nguyen, T. B., Crounse, J. D., Teng, A. P., St. Clair, J. M., Paulot, F., Wolfe, G. M., and Wennberg,
1822 P. O.: Rapid deposition of oxidized biogenic compounds to a temperate forest, *Proceedings of the
1823 National Academy of Sciences*, 112, E392-E401, 10.1073/pnas.1418702112, 2015a.

1824 Nguyen, T. K. V., Capps, S. L., and Carlton, A. G.: Decreasing Aerosol Water Is Consistent with
1825 OC Trends in the Southeast U.S, *Environ. Sci. Technol.*, 49, 7843-7850, 10.1021/acs.est.5b00828,
1826 2015b.

1827 Nguyen, T. K. V., Ghate, V. P., and Carlton, A. G.: Reconciling satellite aerosol optical thickness
1828 and surface fine particle mass through aerosol liquid water, *Geophys. Res. Lett.*, 43, 11,903-
1829 911,912, 10.1002/2016GL070994, 2016.

1830 Novelli, A., Hens, K., Tatum Ernest, C., Kubistin, D., Regelin, E., Elste, T., Plass-Dülmer, C.,
1831 Martinez, M., Lelieveld, J., and Harder, H.: Characterisation of an inlet pre-injector laser-induced
1832 fluorescence instrument for the measurement of atmospheric hydroxyl radicals, *Atmos. Meas.
1833 Tech.*, 7, 3413-3430, 10.5194/amt-7-3413-2014, 2014.

1834 Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/Particle Partitioning and Secondary Organic Aerosol Yields, *Environ. Sci. Technol.*, 30, 2580-
1835 2585, 10.1021/es950943+, 1996.

1836 Pan, Z., Arritt, R. W., Takle, E. S., Gutowski, W. J., Anderson, C. J., and Segal, M.: Altered
1837 hydrologic feedback in a warming climate introduces a “warming hole”, *Geophys. Res. Lett.*, 31,
1838 n/a-n/a, 10.1029/2004GL020528, 2004.

1839 Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of carbonaceous aerosols over the
1840 United States and implications for natural visibility, *J. Geophys. Res.-Atmos.*, 108,
1841 10.1029/2002jd003190, 2003.

1843 Parrish, D. D.: Critical evaluation of US on-road vehicle emission inventories, *Atmos. Environ.*,
1844 40, 2288-2300, <http://dx.doi.org/10.1016/j.atmosenv.2005.11.033>, 2006.

1845 Patchen, A. K., Pennino, M. J., Kiep, A. C., and Elrod, M. J.: Direct kinetics study of the product-
1846 forming channels of the reaction of isoprene-derived hydroxyperoxy radicals with NO, *Int. J.*
1847 *Chem. Kinet.*, 39, 353-361, 10.1002/kin.20248, 2007.

1848 Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.:
1849 Isoprene photooxidation: new insights into the production of acids and organic nitrates, *Atmos.*
1850 *Chem. Phys.*, 9, 1479-1501, 2009a.

1851 Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kurten, A., St Clair, J. M., Seinfeld, J. H., and
1852 Wennberg, P. O.: Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene,
1853 *Science*, 325, 730-733, 10.1126/science.1172910, 2009b.

1854 Paulot, F., Henze, D. K., and Wennberg, P. O.: Impact of the isoprene photochemical cascade on
1855 tropical ozone, *Atmos. Chem. Phys.*, 12, 1307-1325, 10.5194/acp-12-1307-2012, 2012.

1856 Peeters, J., Müller, J.-F., Stavrakou, T., and Nguyen, V. S.: Hydroxyl Radical Recycling in
1857 Isoprene Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1
1858 Mechanism, *The Journal of Physical Chemistry A*, 118, 8625-8643, 10.1021/jp5033146, 2014.

1859 Peeters, J., Nguyen, T. L., and Vereecken, L.: HO_x radical regeneration in the oxidation of isoprene,
1860 *Phys. Chem. Chem. Phys.*, 11, 5935-5939, 10.1039/b908511d, 2009.

1861 Peischl, J., Ryerson, T. B., Aikin, K. C., de Gouw, J. A., Gilman, J. B., Holloway, J. S., Lerner, B.
1862 M., Nadkarni, R., Neuman, J. A., Nowak, J. B., Trainer, M., Warneke, C., and Parrish, D. D.:
1863 Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern
1864 Marcellus shale gas production regions, *Journal of Geophysical Research: Atmospheres*, 120,
1865 2119-2139, 10.1002/2014JD022697, 2015.

1866 Perring, A. E., Bertram, T. H., Wooldridge, P. J., Fried, A., Heikes, B. G., Dibb, J., Crounse, J. D.,
1867 Wennberg, P. O., Blake, N. J., Blake, D. R., Brune, W. H., Singh, H. B., and Cohen, R. C.:
1868 Airborne observations of total RONO₂: new constraints on the yield and lifetime of isoprene
1869 nitrates, *Atmos. Chem. Phys.*, 9, 1451-1463, 2009a.

1870 Perring, A. E., Wisthaler, A., Graus, M., Wooldridge, P. J., Lockwood, A. L., Mielke, L. H.,
1871 Shepson, P. B., Hansel, A., and Cohen, R. C.: A product study of the isoprene+NO₃ reaction,
1872 *Atmos. Chem. Phys.*, 9, 4945-4956, 10.5194/acp-9-4945-2009, 2009b.

1873 Pétron, G., Karion, A., Sweeney, C., Miller, B. R., Montzka, S. A., Frost, G. J., Trainer, M., Tans,
1874 P., Andrews, A., Kofler, J., Helmig, D., Guenther, D., Dlugokencky, E., Lang, P., Newberger, T.,
1875 Wolter, S., Hall, B., Novelli, P., Brewer, A., Conley, S., Hardesty, M., Banta, R., White, A., Noone,
1876 D., Wolfe, D., and Schnell, R.: A new look at methane and nonmethane hydrocarbon emissions
1877 from oil and natural gas operations in the Colorado Denver-Julesburg Basin, *Journal of*
1878 *Geophysical Research: Atmospheres*, 119, 6836-6852, 10.1002/2013JD021272, 2014.

1879 Portmann, R. W., Solomon, S., and Hegerl, G. C.: Spatial and seasonal patterns in climate change,
1880 temperatures, and precipitation across the United States, *Proceedings of the National Academy of*
1881 *Sciences*, 106, 7324-7329, 10.1073/pnas.0808533106, 2009.

1882 Praske, E., Crounse, J. D., Bates, K. H., Kurtén, T., Kjaergaard, H. G., and Wennberg, P. O.:
1883 Atmospheric Fate of Methyl Vinyl Ketone: Peroxy Radical Reactions with NO and HO₂, *The*
1884 *Journal of Physical Chemistry A*, 119, 4562-4572, 10.1021/jp5107058, 2015.

1885 Pugh, T. A. M., MacKenzie, A. R., Hewitt, C. N., Langford, B., Edwards, P. M., Furneaux, K. L.,
1886 Heard, D. E., Hopkins, J. R., Jones, C. E., Karunaharan, A., Lee, J., Mills, G., Misztal, P., Moller,
1887 S., Monks, P. S., and Whalley, L. K.: Simulating atmospheric composition over a South-East Asian
1888 tropical rainforest: performance of a chemistry box model, *Atmos. Chem. Phys.*, 10, 279-298, 2010.

1889 Pye, H. O. T., Luecken, D. J., Xu, L., Boyd, C. M., Ng, N. L., Baker, K. R., Ayres, B. R., Bash, J.
1890 O., Baumann, K., Carter, W. P. L., Edgerton, E., Fry, J. L., Hutzell, W. T., Schwede, D. B., and
1891 Shepson, P. B.: Modeling the Current and Future Roles of Particulate Organic Nitrates in the
1892 Southeastern United States, *Environ. Sci. Technol.*, 49, 14195-14203, 10.1021/acs.est.5b03738,
1893 2015.

1894 Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H., Weber, R., Vasilakos,
1895 P., Appel, K. W., Budisulistiorini, S. H., Surratt, J. D., Nenes, A., Hu, W., Jimenez, J. L., Isaacman-
1896 VanWertz, G., Misztal, P. K., and Goldstein, A. H.: On the implications of aerosol liquid water
1897 and phase separation for organic aerosol mass, *Atmos. Chem. Phys.*, 17, 343-369, 10.5194/acp-
1898 17-343-2017, 2017a.

1899 Pye, H. O. T., Pinder, R. W., Piletic, I. R., Xie, Y., Capps, S. L., Lin, Y.-H., Surratt, J. D., Zhang,
1900 Z., Gold, A., Luecken, D. J., Hutzell, W. T., Jaoui, M., Offenberg, J. H., Kleindienst, T. E.,
1901 Lewandowski, M., and Edney, E. O.: Epoxide Pathways Improve Model Predictions of Isoprene
1902 Markers and Reveal Key Role of Acidity in Aerosol Formation, *Environ. Sci. Technol.*, 47, 11056-
1903 11064, 10.1021/es402106h, 2013.

1904 Pye, H. O. T., Zuend, A., Fry, J. L., Isaacman-VanWertz, G., Capps, S. L., Appel, K. W., Foroutan,
1905 H., Xu, L., Ng, N. L., and Goldstein, A. H.: Coupling of organic and inorganic aerosol systems
1906 and the effect on gas-particle partitioning in the southeastern United States, *Atmos. Chem. Phys.*
1907 *Discuss.*, 2017, 1-25, 10.5194/acp-2017-623, 2017b.

1908 Rasmussen, D. J., Fiore, A. M., Naik, V., Horowitz, L. W., McGinnis, S. J., and Schultz, M. G.:
1909 Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating
1910 chemistry-climate models, *Atmos. Environ.*, 47, 142-153,
1911 <http://dx.doi.org/10.1016/j.atmosenv.2011.11.021>, 2012.

1912 Ren, X. R., Olson, J. R., Crawford, J. H., Brune, W. H., Mao, J. Q., Long, R. B., Chen, Z., Chen,
1913 G., Avery, M. A., Sachse, G. W., Barrick, J. D., Diskin, G. S., Huey, L. G., Fried, A., Cohen, R.
1914 C., Heikes, B., Wennberg, P. O., Singh, H. B., Blake, D. R., and Shetter, R. E.: HO_x chemistry
1915 during INTEX-A 2004: Observation, model calculation, and comparison with previous studies, *J.*
1916 *Geophys. Res.-Atmos.*, 113, 13, D05310, 10.1029/2007jd009166, 2008.

1917 Rieder, H. E., Fiore, A. M., Horowitz, L. W., and Naik, V.: Projecting policy-relevant metrics for
1918 high summertime ozone pollution events over the eastern United States due to climate and
1919 emission changes during the 21st century, *Journal of Geophysical Research: Atmospheres*, 120,
1920 784-800, 10.1002/2014JD022303, 2015.

1921 Rindelaub, J. D., Borca, C. H., Hostetler, M. A., Slade, J. H., Lipton, M. A., Slipchenko, L. V.,
1922 and Shepson, P. B.: The acid-catalyzed hydrolysis of an α -pinene-derived organic nitrate: kinetics,
1923 products, reaction mechanisms, and atmospheric impact, *Atmos. Chem. Phys.*, 16, 15425-15432,
1924 10.5194/acp-16-15425-2016, 2016.

1925 Rindelaub, J. D., McAvey, K. M., and Shepson, P. B.: The photochemical production of organic
1926 nitrates from α -pinene and loss via acid-dependent particle phase hydrolysis, *Atmos. Environ.*, 100,
1927 193-201, <http://dx.doi.org/10.1016/j.atmosenv.2014.11.010>, 2015.

1928 Rivera - Rios, J. C., Nguyen, T. B., Crounse, J. D., Jud, W., Clair, J. M. S., Mikoviny, T., Gilman,
1929 J. B., Lerner, B. M., Kaiser, J. B., Gouw, J., Wisthaler, A., Hansel, A., Wennberg, P. O., Seinfeld,
1930 J. H., and Keutsch, F. N.: Conversion of hydroperoxides to carbonyls in field and laboratory
1931 instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled
1932 atmospheric chemistry, *Geophys. Res. Lett.*, 41, 8645-8651, 10.1002/2014GL061919, 2014.

1933 Roberts, J. M., Flocke, F., Stroud, C. A., Hereid, D., Williams, E., Fehsenfeld, F., Brune, W.,
1934 Martinez, M., and Harder, H.: Ground-based measurements of peroxycarboxylic nitric anhydrides
1935 (PANs) during the 1999 Southern Oxidants Study Nashville Intensive, *J. Geophys. Res.*, 107, 4554,
1936 10.1029/2001jd000947, 2002.

1937 Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop,
1938 A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking Organic Aerosols: Semivolatile
1939 Emissions and Photochemical Aging, *Science*, 315, 1259-1262, 10.1126/science.1133061, 2007.

1940 Robinson, W. A., Reudy, R., and Hansen, J. E.: General circulation model simulations of recent
1941 cooling in the east-central United States, *Journal of Geophysical Research: Atmospheres*, 107,
1942 ACL 4-1-ACL 4-14, 10.1029/2001JD001577, 2002.

1943 Rollins, A. W., Browne, E. C., Min, K.-E., Pusede, S. E., Wooldridge, P. J., Gentner, D. R.,
1944 Goldstein, A. H., Liu, S., Day, D. A., Russell, L. M., and Cohen, R. C.: Evidence for NO_x Control
1945 over Nighttime SOA Formation, *Science*, 337, 1210-1212, 10.1126/science.1221520, 2012.

1946 Rollins, A. W., Kiendler-Scharr, A., Fry, J. L., Brauers, T., Brown, S. S., Dorn, H. P., Dubé, W.
1947 P., Fuchs, H., Mensah, A., Mentel, T. F., Rohrer, F., Tillmann, R., Wegener, R., Wooldridge, P.
1948 J., and Cohen, R. C.: Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic
1949 aerosol yields, *Atmos. Chem. Phys.*, 9, 6685-6703, 10.5194/acp-9-6685-2009, 2009.

1950 Romer, P. S., Duffey, K. C., Wooldridge, P. J., Allen, H. M., Ayres, B. R., Brown, S. S., Brune,
1951 W. H., Crounse, J. D., de Gouw, J., Draper, D. C., Feiner, P. A., Fry, J. L., Goldstein, A. H., Koss,
1952 A., Misztal, P. K., Nguyen, T. B., Olson, K., Teng, A. P., Wennberg, P. O., Wild, R. J., Zhang, L.,
1953 and Cohen, R. C.: The lifetime of nitrogen oxides in an isoprene-dominated forest, *Atmos. Chem.
1954 Phys.*, 16, 7623-7637, 10.5194/acp-16-7623-2016, 2016.

1955 Russell, A. R., Valin, L. C., and Cohen, R. C.: Trends in OMI NO₂ observations over the United
1956 States: effects of emission control technology and the economic recession, *Atmos. Chem. Phys.*,
1957 12, 12197-12209, 10.5194/acp-12-12197-2012, 2012.

1958 Ryerson, T. B., Buhr, M. P., Frost, G. J., Goldan, P. D., Holloway, J. S., Hübler, G., Jobson, B. T.,
1959 Kuster, W. C., McKeen, S. A., Parrish, D. D., Roberts, J. M., Sueper, D. T., Trainer, M., Williams,
1960 J., and Fehsenfeld, F. C.: Emissions lifetimes and ozone formation in power plant plumes, *Journal*
1961 *of Geophysical Research: Atmospheres*, 103, 22569-22583, 10.1029/98JD01620, 1998.

1962 Ryerson, T. B., Trainer, M., Holloway, J. S., Parrish, D. D., Huey, L. G., Sueper, D. T., Frost, G.
1963 J., Donnelly, S. G., Schauffler, S., Atlas, E. L., Kuster, W. C., Goldan, P. D., Hübler, G., Meagher,
1964 J. F., and Fehsenfeld, F. C.: Observations of Ozone Formation in Power Plant Plumes and
1965 Implications for Ozone Control Strategies, *Science*, 292, 719-723, 10.1126/science.1058113, 2001.

1966 Sanchez, D., Jeong, D., Seco, R., Wrangham, I., Park, J.-H., Brune, W. H., Koss, A., Gilman, J.,
1967 de Gouw, J., Misztal, P., Goldstein, A., Baumann, K., Wennberg, P. O., Keutsch, F. N., Guenther,
1968 A., and Kim, S.: Intercomparison of OH and OH reactivity measurements in a high isoprene and
1969 low NO environment during the Southern Oxidant and Aerosol Study (SOAS), *Atmos. Environ.*,
1970 <https://doi.org/10.1016/j.atmosenv.2017.10.056>, 2017.

1971 Sareen, N., Waxman, E. M., Turpin, B. J., Volkamer, R., and Carlton, A. G.: Potential of Aerosol
1972 Liquid Water to Facilitate Organic Aerosol Formation: Assessing Knowledge Gaps about
1973 Precursors and Partitioning, *Environ. Sci. Technol.*, 51, 3327-3335, 10.1021/acs.est.6b04540,
1974 2017.

1975 Schwantes, R. H., Teng, A. P., Nguyen, T. B., Coggon, M. M., Crounse, J. D., St. Clair, J. M.,
1976 Zhang, X., Schilling, K. A., Seinfeld, J. H., and Wennberg, P. O.: Isoprene NO₃ Oxidation
1977 Products from the RO₂ + HO₂ Pathway, *The Journal of Physical Chemistry A*, 119, 10158-10171,
1978 10.1021/acs.jpcsa.5b06355, 2015.

1979 Sheffield, J., Camargo, S. J., Fu, R., Hu, Q., Jiang, X., Johnson, N., Karnauskas, K. B., Kim, S. T.,
1980 Kinter, J., Kumar, S., Langenbrunner, B., Maloney, E., Mariotti, A., Meyerson, J. E., Neelin, J. D.,
1981 Nigam, S., Pan, Z., Ruiz-Barradas, A., Seager, R., Serra, Y. L., Sun, D.-Z., Wang, C., Xie, S.-P.,
1982 Yu, J.-Y., Zhang, T., and Zhao, M.: North American Climate in CMIP5 Experiments. Part II:
1983 Evaluation of Historical Simulations of Intraseasonal to Decadal Variability, *Journal of Climate*,
1984 26, 9247-9290, doi:10.1175/JCLI-D-12-00593.1, 2013.

1985 Shen, L., Mickley, L. J., and Gilleland, E.: Impact of increasing heat waves on U.S. ozone episodes
1986 in the 2050s: Results from a multimodel analysis using extreme value theory, *Geophys. Res. Lett.*,
1987 43, 4017-4025, 10.1002/2016GL068432, 2016.

1988 Shen, L., Mickley, L. J., and Murray, L. T.: Influence of 2000–2050 climate change on particulate
1989 matter in the United States: results from a new statistical model, *Atmos. Chem. Phys.*, 17, 4355-
1990 4367, 10.5194/acp-17-4355-2017, 2017.

1991 Shen, L., Mickley, L. J., and Tai, A. P. K.: Influence of synoptic patterns on surface ozone
1992 variability over the eastern United States from 1980 to 2012, *Atmos. Chem. Phys.*, 15, 10925-
1993 10938, 10.5194/acp-15-10925-2015, 2015.

1994 Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., Kuang,
1995 C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld,
1996 J. H., Shilling, J., Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R., Zaveri,
1997 R. A., Zelenyuk, A., and Zhang, Q.: Recent advances in understanding secondary organic aerosol:
1998 Implications for global climate forcing, *Reviews of Geophysics*, 55, 509-559,
1999 10.1002/2016RG000540, 2017.

2000 Silvern, R. F., Jacob, D. J., Kim, P. S., Marais, E. A., Turner, J. R., Campuzano-Jost, P., and
2001 Jimenez, J. L.: Inconsistency of ammonium–sulfate aerosol ratios with thermodynamic models in
2002 the eastern US: a possible role of organic aerosol, *Atmos. Chem. Phys.*, 17, 5107-5118,
2003 10.5194/acp-17-5107-2017, 2017.

2004 Simon, H., and Bhave, P. V.: Simulating the Degree of Oxidation in Atmospheric Organic Particles,
2005 *Environ. Sci. Technol.*, 46, 331-339, 10.1021/es202361w, 2012.

2006 Song, M., Liu, P. F., Hanna, S. J., Li, Y. J., Martin, S. T., and Bertram, A. K.: Relative humidity-
2007 dependent viscosities of isoprene-derived secondary organic material and atmospheric
2008 implications for isoprene-dominant forests, *Atmos. Chem. Phys.*, 15, 5145-5159, 10.5194/acp-15-
2009 5145-2015, 2015.

2010 Sorooshian, A., Ng, N. L., Chan, A. W. H., Feingold, G., Flagan, R. C., and Seinfeld, J. H.:
2011 Particulate organic acids and overall water-soluble aerosol composition measurements from the
2012 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), *J. Geophys.*
2013 *Res.*, 112, D13201, 10.1029/2007jd008537, 2007.

2014 Souri, A. H., Choi, Y., Jeon, W., Li, X., Pan, S., Diao, L., and Westenbarger, D. A.: Constraining
2015 NO_x emissions using satellite NO₂ measurements during 2013 DISCOVER-AQ Texas campaign,
2016 *Atmos. Environ.*, 131, 371-381, <https://doi.org/10.1016/j.atmosenv.2016.02.020>, 2016.

2017 Spracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M. J., Mann, G. W.,
2018 Zhang, Q., Canagaratna, M. R., Allan, J., Coe, H., McFiggans, G., Rap, A., and Forster, P.: Aerosol
2019 mass spectrometer constraint on the global secondary organic aerosol budget, *Atmos. Chem. Phys.*,
2020 11, 12109-12136, 10.5194/acp-11-12109-2011, 2011.

2021 Sprengnether, M., Demerjian, K. L., Donahue, N. M., and Anderson, J. G.: Product analysis of the
2022 OH oxidation of isoprene and 1,3-butadiene in the presence of NO, *J. Geophys. Res.-Atmos.*, 107,
2023 10.1029/2001jd000716, 2002.

2024 St. Clair, J. M., Rivera-Rios, J. C., Crounse, J. D., Knap, H. C., Bates, K. H., Teng, A. P., Jørgensen,
2025 S., Kjaergaard, H. G., Keutsch, F. N., and Wennberg, P. O.: Kinetics and Products of the Reaction
2026 of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH, *The Journal of*
2027 *Physical Chemistry A*, 10.1021/acs.jpca.5b06532, 2015.

2028 Stark, H., Yatavelli, R. L. N., Thompson, S. L., Kang, H., Krechmer, J. E., Kimmel, J. R., Palm,
2029 B. B., Hu, W., Hayes, P. L., Day, D. A., Campuzano-Jost, P., Canagaratna, M. R., Jayne, J. T.,
2030 Worsnop, D. R., and Jimenez, J. L.: Impact of Thermal Decomposition on Thermal Desorption
2031 Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of
2032 Organic Species, *Environ. Sci. Technol.*, 51, 8491-8500, 10.1021/acs.est.7b00160, 2017.

2033 Stone, D., Evans, M. J., Commane, R., Ingham, T., Floquet, C. F. A., McQuaid, J. B., Brookes, D.
2034 M., Monks, P. S., Purvis, R., Hamilton, J. F., Hopkins, J., Lee, J., Lewis, A. C., Stewart, D.,
2035 Murphy, J. G., Mills, G., Oram, D., Reeves, C. E., and Heard, D. E.: HO_x observations over West
2036 Africa during AMMA: impact of isoprene and NO_x, *Atmos. Chem. Phys.*, 10, 9415-9429,
2037 10.5194/acp-10-9415-2010, 2010.

2038 Stroud, C. A., Roberts, J. M., Goldan, P. D., Kuster, W. C., Murphy, P. C., Williams, E. J., Hereid,
2039 D., Parrish, D., Sueper, D., Trainer, M., Fehsenfeld, F. C., Apel, E. C., Riemer, D., Wert, B., Henry,
2040 B., Fried, A., Martinez-Harder, M., Harder, H., Brune, W. H., Li, G., Xie, H., and Young, V. L.:
2041 Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site
2042 during the 1999 Southern Oxidants Study, *J. Geophys. Res.-Atmos.*, 106, 8035-8046, 2001.

2043 Su, L., Patton, E. G., Vilà-Guerau de Arellano, J., Guenther, A. B., Kaser, L., Yuan, B., Xiong, F.,
2044 Shepson, P. B., Zhang, L., Miller, D. O., Brune, W. H., Baumann, K., Edgerton, E., Weinheimer,
2045 A., Misztal, P. K., Park, J. H., Goldstein, A. H., Skog, K. M., Keutsch, F. N., and Mak, J. E.:
2046 Understanding isoprene photooxidation using observations and modeling over a subtropical forest
2047 in the southeastern US, *Atmos. Chem. Phys.*, 16, 7725-7741, 10.5194/acp-16-7725-2016, 2016.

2048 Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S.
2049 P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive intermediates revealed in
2050 secondary organic aerosol formation from isoprene, *Proceedings of the National Academy of
2051 Sciences*, 107, 6640-6645, 10.1073/pnas.0911114107, 2010.

2052 Tai, A. P. K., Mickley, L. J., and Jacob, D. J.: Correlations between fine particulate matter (PM_{2.5})
2053 and meteorological variables in the United States: Implications for the sensitivity of PM_{2.5} to
2054 climate change, *Atmos. Environ.*, 44, 3976-3984,
2055 <http://dx.doi.org/10.1016/j.atmosenv.2010.06.060>, 2010.

2056 Tai, A. P. K., Mickley, L. J., and Jacob, D. J.: Impact of 2000–2050 climate change on fine
2057 particulate matter (PM_{2.5}) air quality inferred from a multi-model analysis of
2058 meteorological modes, *Atmos. Chem. Phys.*, 12, 11329-11337, 10.5194/acp-12-11329-2012,
2059 2012a.

2060 Tai, A. P. K., Mickley, L. J., Jacob, D. J., Leibensperger, E. M., Zhang, L., Fisher, J. A., and Pye,
2061 H. O. T.: Meteorological modes of variability for fine particulate matter (PM_{2.5}) air
2062 quality in the United States: implications for PM_{2.5} sensitivity to climate change,
2063 *Atmos. Chem. Phys.*, 12, 3131-3145, 10.5194/acp-12-3131-2012, 2012b.

2064 Tan, D., Faloona, I., Simpas, J. B., Brune, W., Shepson, P. B., Couch, T. L., Sumner, A. L., Carroll,
2065 M. A., Thornberry, T., Apel, E., Riemer, D., and Stockwell, W.: HO_x budgets in a deciduous forest:
2066 Results from the PROPHET summer 1998 campaign, *J. Geophys. Res.-Atmos.*, 106, 24407-24427,
2067 2001.

2068 Tan, Y., Lim, Y. B., Altieri, K. E., Seitzinger, S. P., and Turpin, B. J.: Mechanisms leading to
2069 oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic
2070 acid and methylglyoxal, *Atmos. Chem. Phys.*, 12, 801-813, 10.5194/acp-12-801-2012, 2012.

2071 Teng, A. P., Crounse, J. D., Lee, L., St. Clair, J. M., Cohen, R. C., and Wennberg, P. O.: Hydroxy
2072 nitrate production in the OH-initiated oxidation of alkenes, *Atmos. Chem. Phys.*, 15, 4297-4316,
2073 10.5194/acp-15-4297-2015, 2015.

2074 Teng, A. P., Crounse, J. D., and Wennberg, P. O.: Isoprene Peroxy Radical Dynamics, *J. Am.*
2075 *Chem. Soc.*, 139, 5367-5377, 10.1021/jacs.6b12838, 2017.

2076 Thishan Dharshana, K. G., Kravtsov, S., and Kahl, J. D. W.: Relationship between synoptic
2077 weather disturbances and particulate matter air pollution over the United States, *Journal of*
2078 *Geophysical Research: Atmospheres*, 115, n/a-n/a, 10.1029/2010JD014852, 2010.

2079 Thornton, J. A., Wooldridge, P. J., Cohen, R. C., Martinez, M., Harder, H., Brune, W. H., Williams,
2080 E. J., Roberts, J. M., Fehsenfeld, F. C., Hall, S. R., Shetter, R. E., Wert, B. P., and Fried, A.: Ozone
2081 production rates as a function of NO_x abundances and HO_x production rates in the Nashville urban
2082 plume, *J. Geophys. Res.*, 107, 4146, 10.1029/2001jd000932, 2002.

2083 Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J., Luo, Z. J., Mace, G. G.,
2084 Pan, L. L., Pfister, L., Rosenlof, K. H., Redemann, J., Reid, J. S., Singh, H. B., Thompson, A. M.,
2085 Yokelson, R., Minnis, P., Chen, G., Jucks, K. W., and Pszenny, A.: Planning, implementation, and
2086 scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate
2087 Coupling by Regional Surveys (SEAC4RS) field mission, *Journal of Geophysical Research: Atmospheres*,
2088 121, 4967-5009, 10.1002/2015JD024297, 2016.

2089 Tosca, M., Campbell, J., Garay, M., Lolli, S., Seidel, F., Marquis, J., and Kalashnikova, O.:
2090 Attributing Accelerated Summertime Warming in the Southeast United States to Recent
2091 Reductions in Aerosol Burden: Indications from Vertically-Resolved Observations, *Remote*
2092 *Sensing*, 9, 674, 2017.

2093 Trainer, M., Williams, E. J., Parrish, D. D., Buhr, M. P., Allwine, E. J., Westberg, H. H.,
2094 Fehsenfeld, F. C., and Liu, S. C.: Models and observations of the impact of natural hydrocarbons
2095 on rural ozone, *Nature*, 329, 705-707, 1987.

2096 Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., Yu, K., Miller, C. C.,
2097 Yantosca, R. M., Sulprizio, M. P., Thompson, A. M., Wennberg, P. O., Crounse, J. D., St. Clair,
2098 J. M., Cohen, R. C., Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M., Pollack,
2099 I. B., Peischl, J., Neuman, J. A., and Zhou, X.: Why do models overestimate surface ozone in the
2100 Southeast United States?, *Atmos. Chem. Phys.*, 16, 13561-13577, 10.5194/acp-16-13561-2016,
2101 2016.

2102 Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski,
2103 Y., Bauer, S. E., Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H.,
2104 Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic, A.,
2105 Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W., Kirkevåg, A., Koch, D., Kokkola,
2106 H., Lee, Y. H., Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J. J.,
2107 Müller, J. F., Myhre, G., Myrookefalitakis, S., Ng, N. L., O'Donnell, D., Penner, J. E., Pozzoli, L.,
2108 Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., Seland, Ø., Shindell, D. T., Sillman, S., Skeie,
2109 R. B., Spracklen, D., Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S., Tost, H.,
2110 van Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang,

2111 H., Zhang, K., Zhang, Q., and Zhang, X.: The AeroCom evaluation and intercomparison of organic
2112 aerosol in global models, *Atmos. Chem. Phys.*, 14, 10845-10895, 10.5194/acp-14-10845-2014,
2113 2014.

2114 Valin, L. C., Fiore, A. M., Chance, K., and González Abad, G.: The role of OH production in
2115 interpreting the variability of CH₂O columns in the southeast U.S, *Journal of Geophysical*
2116 *Research: Atmospheres*, 121, 478-493, 10.1002/2015JD024012, 2016.

2117 Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L. T.,
2118 Worsnop, D. R., and Molina, M. J.: Secondary organic aerosol formation from anthropogenic air
2119 pollution: Rapid and higher than expected, *Geophys. Res. Lett.*, 33, L17811,
2120 10.1029/2006gl026899, 2006.

2121 Volkamer, R., Ziemann, P. J., and Molina, M. J.: Secondary Organic Aerosol Formation from
2122 Acetylene (C₂H₂): seed effect on SOA yields due to organic photochemistry in the aerosol
2123 aqueous phase, *Atmos. Chem. Phys.*, 9, 1907-1928, 10.5194/acp-9-1907-2009, 2009.

2124 von Kuhlmann, R., Lawrence, M. G., Poschl, U., and Crutzen, P. J.: Sensitivities in global scale
2125 modeling of isoprene, *Atmos. Chem. Phys.*, 4, 1-17, 2004.

2126 Wagner, N. L., Brock, C. A., Angevine, W. M., Beyersdorf, A., Campuzano-Jost, P., Day, D., de
2127 Gouw, J. A., Diskin, G. S., Gordon, T. D., Graus, M. G., Holloway, J. S., Huey, G., Jimenez, J. L.,
2128 Lack, D. A., Liao, J., Liu, X., Markovic, M. Z., Middlebrook, A. M., Mikoviny, T., Peischl, J.,
2129 Perring, A. E., Richardson, M. S., Ryerson, T. B., Schwarz, J. P., Warneke, C., Welti, A., Wisthaler,
2130 A., Ziembra, L. D., and Murphy, D. M.: In situ vertical profiles of aerosol extinction, mass, and
2131 composition over the southeast United States during SENEX and SEAC⁴RS:
2132 observations of a modest aerosol enhancement aloft, *Atmos. Chem. Phys.*, 15, 7085-7102,
2133 10.5194/acp-15-7085-2015, 2015.

2134 Warneke, C., de Gouw, J. A., Del Negro, L., Brioude, J., McKeen, S., Stark, H., Kuster, W. C.,
2135 Goldan, P. D., Trainer, M., Fehsenfeld, F. C., Wiedinmyer, C., Guenther, A. B., Hansel, A.,
2136 Wisthaler, A., Atlas, E., Holloway, J. S., Ryerson, T. B., Peischl, J., Huey, L. G., and Hanks, A.
2137 T. C.: Biogenic emission measurement and inventories determination of biogenic emissions in the
2138 eastern United States and Texas and comparison with biogenic emission inventories, *J. Geophys.*
2139 *Res.-Atmos.*, 115, 10.1029/2009jd012445, 2010.

2140 Warneke, C., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Williams, E. J., Lerner, B. M.,
2141 Jakoubek, R., Brown, S. S., Stark, H., Aldener, M., Ravishankara, A. R., Roberts, J. M.,
2142 Marchewka, M., Bertman, S., Sueper, D. T., McKeen, S. A., Meagher, J. F., and Fehsenfeld, F. C.:
2143 Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the
2144 New England coast in summer during New England Air Quality Study 2002, *J. Geophys. Res.*,
2145 109, D10309, 10.1029/2003jd004424, 2004.

2146 Warneke, C., de Gouw, J. A., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E., Blake, D.,
2147 Trainer, M., and Parrish, D. D.: Multiyear trends in volatile organic compounds in Los Angeles,
2148 California: Five decades of decreasing emissions, *Journal of Geophysical Research: Atmospheres*,
2149 117, n/a-n/a, 10.1029/2012JD017899, 2012.

2150 Warneke, C., Trainer, M., de Gouw, J. A., Parrish, D. D., Fahey, D. W., Ravishankara, A. R.,
2151 Middlebrook, A. M., Brock, C. A., Roberts, J. M., Brown, S. S., Neuman, J. A., Lerner, B. M.,
2152 Lack, D., Law, D., Hübner, G., Pollack, I., Sjostedt, S., Ryerson, T. B., Gilman, J. B., Liao, J.,
2153 Holloway, J., Peischl, J., Nowak, J. B., Aikin, K. C., Min, K. E., Washenfelder, R. A., Graus, M.
2154 G., Richardson, M., Markovic, M. Z., Wagner, N. L., Welti, A., Veres, P. R., Edwards, P., Schwarz,
2155 J. P., Gordon, T., Dube, W. P., McKeen, S. A., Brioude, J., Ahmadov, R., Bougiatioti, A., Lin, J.
2156 J., Nenes, A., Wolfe, G. M., Hanisco, T. F., Lee, B. H., Lopez-Hilfiker, F. D., Thornton, J. A.,
2157 Keutsch, F. N., Kaiser, J., Mao, J., and Hatch, C. D.: Instrumentation and measurement strategy
2158 for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013, *Atmos.*
2159 *Meas. Tech.*, 9, 3063-3093, 10.5194/amt-9-3063-2016, 2016.

2160 Washenfelder, R. A., Attwood, A. R., Brock, C. A., Guo, H., Xu, L., Weber, R. J., Ng, N. L., Allen,
2161 H. M., Ayres, B. R., Baumann, K., Cohen, R. C., Draper, D. C., Duffey, K. C., Edgerton, E., Fry,
2162 J. L., Hu, W. W., Jimenez, J. L., Palm, B. B., Romer, P., Stone, E. A., Wooldridge, P. J., and
2163 Brown, S. S.: Biomass burning dominates brown carbon absorption in the rural southeastern
2164 United States, *Geophys. Res. Lett.*, 42, 2014GL062444, 10.1002/2014GL062444, 2015.

2165 Weaver, C. P., Cooter, E., Gilliam, R., Gilliland, A., Grambsch, A., Grano, D., Hemming, B., Hunt,
2166 S. W., Nolte, C., Winner, D. A., Liang, X. Z., Zhu, J., Caughey, M., Kunkel, K., Lin, J. T., Tao,
2167 Z., Williams, A., Wuebbles, D. J., Adams, P. J., Dawson, J. P., Amar, P., He, S., Avise, J., Chen,
2168 J., Cohen, R. C., Goldstein, A. H., Harley, R. A., Steiner, A. L., Tonse, S., Guenther, A., Lamarque,
2169 J. F., Wiedinmyer, C., Gustafson, W. I., Leung, L. R., Hogrefe, C., Huang, H. C., Jacob, D. J.,
2170 Mickley, L. J., Wu, S., Kinney, P. L., Lamb, B., Larkin, N. K., McKenzie, D., Liao, K. J.,
2171 Manomaiphiboon, K., Russell, A. G., Tagaris, E., Lynn, B. H., Mass, C., Salathé, E., O'Neill, S.
2172 M., Pandis, S. N., Racherla, P. N., Rosenzweig, C., and Woo, J. H.: A Preliminary Synthesis of
2173 Modeled Climate Change Impacts on U.S. Regional Ozone Concentrations, *Bull. Amer. Meteorol. Soc.*, 90, 1843-1863, 10.1175/2009BAMS2568.1, 2009.

2175 Weaver, S. J.: Factors Associated with Decadal Variability in Great Plains Summertime Surface
2176 Temperatures, *Journal of Climate*, 26, 343-350, 10.1175/JCLI-D-11-00713.1, 2013.

2177 Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining
2178 atmospheric sulfate concentrations over the past 15 years, *Nature Geosci.*, advance online
2179 publication, 10.1038/ngeo2665

2180 <http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo2665.html> - supplementary-
2181 information, 2016.

2182 West, J. J., Fiore, A. M., and Horowitz, L. W.: Scenarios of methane emission reductions to 2030:
2183 abatement costs and co-benefits to ozone air quality and human mortality, *Climatic Change*, 114,
2184 441-461, 10.1007/s10584-012-0426-4, 2012.

2185 Wolfe, G. M., Hanisco, T. F., Arkinson, H. L., Bui, T. P., Crounse, J. D., Dean-Day, J., Goldstein,
2186 A., Guenther, A., Hall, S. R., Huey, G., Jacob, D. J., Karl, T., Kim, P. S., Liu, X., Marvin, M. R.,
2187 Mikoviny, T., Misztal, P. K., Nguyen, T. B., Peischl, J., Pollack, I., Ryerson, T., St. Clair, J. M.,
2188 Teng, A., Travis, K. R., Ullmann, K., Wennberg, P. O., and Wisthaler, A.: Quantifying sources
2189 and sinks of reactive gases in the lower atmosphere using airborne flux observations, *Geophys.*
2190 *Res. Lett.*, 42, 8231-8240, 10.1002/2015GL065839, 2015.

2191 Wolfe, G. M., Kaiser, J., Hanisco, T. F., Keutsch, F. N., de Gouw, J. A., Gilman, J. B., Graus, M.,
2192 Hatch, C. D., Holloway, J., Horowitz, L. W., Lee, B. H., Lerner, B. M., Lopez-Hilfiker, F., Mao,
2193 J., Marvin, M. R., Peischl, J., Pollack, I. B., Roberts, J. M., Ryerson, T. B., Thornton, J. A., Veres,
2194 P. R., and Warneke, C.: Formaldehyde production from isoprene oxidation across NO_x regimes,
2195 *Atmos. Chem. Phys.*, 16, 2597-2610, 10.5194/acp-16-2597-2016, 2016.

2196 Woo, J. L., and McNeill, V. F.: simpleGAMMA v1.0 – a reduced model of secondary organic
2197 aerosol formation in the aqueous aerosol phase (aaSOA), *Geosci. Model Dev.*, 8, 1821-1829,
2198 10.5194/gmd-8-1821-2015, 2015.

2199 Wu, S., Mickley, L. J., Jacob, D. J., Logan, J. A., Yantosca, R. M., and Rind, D.: Why are there
2200 large differences between models in global budgets of tropospheric ozone?, *J. Geophys. Res.*, 112,
2201 D05302, 10.1029/2006jd007801, 2007.

2202 Xie, Y., Paulot, F., Carter, W. P. L., Nolte, C. G., Luecken, D. J., Hutzell, W. T., Wennberg, P. O.,
2203 Cohen, R. C., and Pinder, R. W.: Understanding the impact of recent advances in isoprene
2204 photooxidation on simulations of regional air quality, *Atmos. Chem. Phys.*, 13, 8439-8455,
2205 10.5194/acp-13-8439-2013, 2013.

2206 Xing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C. M., Wong, D. C., and Wei, C.: Can a coupled
2207 meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over
2208 the Northern Hemisphere?, *Atmos. Chem. Phys.*, 15, 9997-10018, 10.5194/acp-15-9997-2015,
2209 2015a.

2210 Xing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C. M., Wong, D. C., Wei, C., Gilliam, R., and
2211 Pouliot, G.: Observations and modeling of air quality trends over 1990–2010 across the Northern
2212 Hemisphere: China, the United States and Europe, *Atmos. Chem. Phys.*, 15, 2723-2747,
2213 10.5194/acp-15-2723-2015, 2015b.

2214 Xing, J., Wang, J., Mathur, R., Pleim, J., Wang, S., Hogrefe, C., Gan, C.-M., Wong, D. C., and
2215 Hao, J.: Unexpected Benefits of Reducing Aerosol Cooling Effects, *Environ. Sci. Technol.*, 50,
2216 7527-7534, 10.1021/acs.est.6b00767, 2016.

2217 Xiong, F., McAvey, K. M., Pratt, K. A., Groff, C. J., Hostetler, M. A., Lipton, M. A., Starn, T. K.,
2218 Seeley, J. V., Bertman, S. B., Teng, A. P., Crounse, J. D., Nguyen, T. B., Wennberg, P. O., Misztal,
2219 P. K., Goldstein, A. H., Guenther, A. B., Koss, A. R., Olson, K. F., de Gouw, J. A., Baumann, K.,
2220 Edgerton, E. S., Feiner, P. A., Zhang, L., Miller, D. O., Brune, W. H., and Shepson, P. B.:
2221 Observation of isoprene hydroxynitrates in the southeastern United States and implications for the
2222 fate of NO_x, *Atmos. Chem. Phys.*, 15, 11257-11272, 10.5194/acp-15-11257-2015, 2015.

2223 Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-
2224 VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V.,
2225 de Gouw, J., Baumann, K., Lee, S.-H., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of
2226 anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern
2227 United States, *Proceedings of the National Academy of Sciences*, 112, 37-42,
2228 10.1073/pnas.1417609112, 2015a.

2229 Xu, L., Middlebrook, A. M., Liao, J., de Gouw, J. A., Guo, H., Weber, R. J., Nenes, A., Lopez-
2230 Hilfiker, F. D., Lee, B. H., Thornton, J. A., Brock, C. A., Neuman, J. A., Nowak, J. B., Pollack, I.
2231 Welti, A., Graus, M., Warneke, C., and Ng, N. L.: Enhanced formation of isoprene-derived
2232 organic aerosol in sulfur-rich power plant plumes during Southeast Nexus, *Journal of Geophysical*
2233 *Research: Atmospheres*, 121, 11,137-111,153, 10.1002/2016JD025156, 2016.

2234 Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L.: Aerosol characterization over the
2235 southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal
2236 variation of aerosol composition and sources with a focus on organic nitrates, *Atmos. Chem. Phys.*,
2237 15, 7307-7336, 10.5194/acp-15-7307-2015, 2015b.

2238 Yanowitz, J., McCormick, R. L., and Graboski, M. S.: In-Use Emissions from Heavy-Duty Diesel
2239 Vehicles, *Environ. Sci. Technol.*, 34, 729-740, 10.1021/es990903w, 2000.

2240 Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Cantrell, C., Mauldin, R. L.,
2241 Campos, T., Weinheimer, A., Hornbrook, R. S., Apel, E. C., Guenther, A., Kaser, L., Yuan, B.,
2242 Karl, T., Haggerty, J., Hall, S., Ullmann, K., Smith, J. N., Ortega, J., and Knote, C.: Rapid cycling
2243 of reactive nitrogen in the marine boundary layer, *Nature*, 532, 489-491, 10.1038/nature17195,
2244 2016.

2245 You, Y., Renbaum-Wolff, L., and Bertram, A. K.: Liquid–liquid phase separation in particles
2246 containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or
2247 sodium chloride, *Atmos. Chem. Phys.*, 13, 11723-11734, 10.5194/acp-13-11723-2013, 2013.

2248 Yu, H., Guenther, A., Gu, D., Warneke, C., Geron, C., Goldstein, A., Graus, M., Karl, T., Kaser,
2249 L., Misztal, P., and Yuan, B.: Airborne measurements of isoprene and monoterpene emissions
2250 from southeastern U.S. forests, *Sci. Total Environ.*, 595, 149-158,
2251 <https://doi.org/10.1016/j.scitotenv.2017.03.262>, 2017.

2252 Yu, K., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Miller, C. C., Travis, K. R., Zhu, L.,
2253 Yantosca, R. M., Sulprizio, M. P., Cohen, R. C., Dibb, J. E., Fried, A., Mikoviny, T., Ryerson, T.
2254 B., Wennberg, P. O., and Wisthaler, A.: Sensitivity to grid resolution in the ability of a chemical
2255 transport model to simulate observed oxidant chemistry under high-isoprene conditions, *Atmos.*
2256 *Chem. Phys.*, 16, 4369-4378, 10.5194/acp-16-4369-2016, 2016.

2257 Yu, S., Alapaty, K., Mathur, R., Pleim, J., Zhang, Y., Nolte, C., Eder, B., Foley, K., and Nagashima,
2258 T.: Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water
2259 vapor, *Scientific Reports*, 4, 6929, 10.1038/srep06929
2260 <http://www.nature.com/articles/srep06929 - supplementary-information>, 2014.

2261 Yu, S., Mathur, R., Sarwar, G., Kang, D., Tong, D., Pouliot, G., and Pleim, J.: Eta-CMAQ air
2262 quality forecasts for O₃ and related species using three different photochemical mechanisms (CB4,
2263 CB05, SAPRC-99): comparisons with measurements during the 2004 ICARTT study, *Atmos.*
2264 *Chem. Phys.*, 10, 3001-3025, 10.5194/acp-10-3001-2010, 2010.

2265 Yu, S., Mathur, R., Schere, K., Kang, D., Pleim, J., and Otte, T. L.: A detailed evaluation of the
2266 Eta-CMAQ forecast model performance for O₃, its related precursors, and meteorological

2267 parameters during the 2004 ICARTT study, *Journal of Geophysical Research: Atmospheres*, 112,
2268 D12S14, 10.1029/2006jd007715, 2007.

2269 Yuan, B., Kaser, L., Karl, T., Graus, M., Peischl, J., Campos, T. L., Shertz, S., Apel, E. C.,
2270 Hornbrook, R. S., Hills, A., Gilman, J. B., Lerner, B. M., Warneke, C., Flocke, F. M., Ryerson, T.
2271 B., Guenther, A. B., and de Gouw, J. A.: Airborne flux measurements of methane and volatile
2272 organic compounds over the Haynesville and Marcellus shale gas production regions, *Journal of*
2273 *Geophysical Research: Atmospheres*, 120, 6271-6289, 10.1002/2015JD023242, 2015.

2274 Zarzana, K. J., Min, K.-E., Washenfelder, R. A., Kaiser, J., Krawiec-Thayer, M., Peischl, J.,
2275 Neuman, J. A., Nowak, J. B., Wagner, N. L., Dubè, W. P., St. Clair, J. M., Wolfe, G. M., Hanisco,
2276 T. F., Keutsch, F. N., Ryerson, T. B., and Brown, S. S.: Emissions of Glyoxal and Other Carbonyl
2277 Compounds from Agricultural Biomass Burning Plumes Sampled by Aircraft, *Environ. Sci.
2278 Technol.*, 10.1021/acs.est.7b03517, 2017.

2279 Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J., Kleeman, M. J., and Seinfeld,
2280 J. H.: Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol,
2281 *Proceedings of the National Academy of Sciences*, 111, 5802-5807, 10.1073/pnas.1404727111,
2282 2014.

2283 Zhang, Y., and Wang, Y.: Climate-driven ground-level ozone extreme in the fall over the Southeast
2284 United States, *Proceedings of the National Academy of Sciences*, 113, 10025-10030,
2285 10.1073/pnas.1602563113, 2016.

2286 Zhu, J., and Liang, X.-Z.: Impacts of the Bermuda High on Regional Climate and Ozone over the
2287 United States, *Journal of Climate*, 26, 1018-1032, 10.1175/JCLI-D-12-00168.1, 2013.

2288 Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Yantosca, R.
2289 M., Sulprizio, M. P., De Smedt, I., González Abad, G., Chance, K., Li, C., Ferrare, R., Fried, A.,
2290 Hair, J. W., Hanisco, T. F., Richter, D., Jo Scarino, A., Walega, J., Weibring, P., and Wolfe, G.
2291 M.: Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of
2292 six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft
2293 observations over the southeast US, *Atmos. Chem. Phys.*, 16, 13477-13490, 10.5194/acp-16-
2294 13477-2016, 2016.

2295 Zotter, P., El-Haddad, I., Zhang, Y., Hayes, P. L., Zhang, X., Lin, Y.-H., Wacker, L., Schnelle-
2296 Kreis, J., Abbaszade, G., Zimmermann, R., Surratt, J. D., Weber, R., Jimenez, J. L., Szidat, S.,
2297 Baltensperger, U., and Prévôt, A. S. H.: Diurnal cycle of fossil and nonfossil carbon using
2298 radiocarbon analyses during CalNex, *Journal of Geophysical Research: Atmospheres*, 119, 6818-
2299 6835, 10.1002/2013JD021114, 2014.

2300

2301

2302 Table 1 A subset of model evaluations for SAS observations (till 2017)

Model name	Model -type	References	Targeted species	Major findings
F0AM	0-D	Feiner et al. (2016)	OH, HO ₂ , OH reactivity	Measured and modeled OH agree well.
Box model	0-D	Lee et al. (2016a)	Speciated organic nitrates	Particle-phase organic nitrates are an important component in organic aerosols, but could have a short particle-phase lifetime.
F0AM	0-D	Wolfe et al. (2016)	HCHO	Current models accurately represent early-generation HCHO production from isoprene but under-predict a persistent background HCHO source.
F0AM	0-D	Kaiser et al. (2016)	OH reactivity	Missing OH reactivity is small.
F0AM	0-D	Marvin et al. (2017)	HCHO	Model HCHO-isoprene relationships are mechanism-dependent. Condensed mechanisms (esp. CB6r2) can perform as well as explicit ones with some modifications.
ISORROPIA	0-D	Weber et al. (2016); Guo et al. (2015)	Aerosol Acidity	Submicron aerosols are highly acidic in Southeast US.
MXLCH	1-D	Su et al. (2016)	Isoprene, HCHO, MVK, MACR, organic nitrates, OH, HO ₂	Diurnal evolution of O ₃ is dominated by entrainment. Diurnal evolution of isoprene oxidation products are sensitive to NO:HO ₂ ratio.
GEOS-Chem	3-D	Fisher et al. (2016)	Organic nitrates	Updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO _x . RONO ₂ production accounts for 20% of the net regional NO _x sink in the Southeast in summer.
GEOS-Chem	3-D	Travis et al. (2016)	NO _x , ozone	NEI NO _x emissions from mobile and industrial sources reduced by 30–60%. The model is still biased high by 6–

				14 ppb relative to observed surface ozone.
GEOS-Chem	3-D	Zhu et al. (2016)	HCHO	GEOS-Chem used as a common intercomparison platform among HCHO aircraft observations and satellite datasets of column HCHO. The model shows no bias against aircraft observations.
GEOS-Chem	3-D	Kim et al. (2015)	Organic and inorganic aerosols	GEOS-Chem used as a common platform to interpret observations of different aerosol variables across the Southeast. Surface PM _{2.5} shows far less summer-to- winter decrease than AOD.
GEOS-Chem	3-D	Chan Miller et al. (2017)	Glyoxal, HCHO	New chemical mechanism for glyoxal formation from isoprene. Observed glyxal and HCHO over the Southeast are tightly correlated and provide redundant proxies of isoprene emissions.
GEOS-Chem	3-D	Marais et al. (2016)	IEPOX, organic aerosols	New aqueous-phase mechanism for isoprene SOA formation. Reducing SO ₂ emissions in the model decreases both sulfate and SOA by similar magnitudes.
GEOS-Chem	3-D	Silvern et al. (2017)	Aerosol acidity	Sulfate aerosols may be coated by organic material, preventing NH ₃ uptake.
GFDL AM3	3-D	Li et al. (2016)	Glyoxal, HCHO	Gas-phase production of glyoxal from isoprene oxidation represents a large uncertainty in quantifying its contribution to SOA.
GFDL AM3	3-D	Li et al. (2017)	Organic nitrates, ozone	Reactive oxidized nitrogen species, including NO _x , PAN and HNO ₃ decline proportionally with decreasing NO _x emissions in Southeast U.
CMAQ	3-D	Pye et al. (2015)	Terpene nitrates	Monoterpene + NO ₃ reactions responsible for significant NO _x -dependent SOA.

				Magnitude of SOA dependent on assumptions regarding hydrolysis.
Box model with CMAQ/Simple -GAMMA algorithms	0-D	Budisulistiorini et al. (2017); Budisulistiorini et al. (2015)	IEPOX, SOA	Sulfate, through its influence on particle size (volume) and rate of particle-phase reaction (acidity), controls IEPOX uptake at LRK.
CMAQ	3-D	Pye et al. (2017a)	Aerosol liquid water, water soluble organic carbon(WSOC)	Aerosol water requires accurate organic aerosol predictions as models considering only water associated with inorganic ions will underestimate aerosol water. Gas-phase WSOC, including IEPOX+glyoxal+methylglyoxal, is abundant in models.
CMAQ	3-D	Fahey et al. (2017)	Cloud-mediated organic aerosol	Cloud-processing of IEPOX increased cloud-mediated SOA by a modest amount (11 to 18% at the surface in the eastern US)
CMAQ	3-D	Murphy et al. (2017)	Organic aerosol from combustions sources	CTR organic aerosol predictions are not very sensitive to assumptions (volatility, oxidation) for combustion-derived organic aerosol.
CMAQ	3-D	Baker and Woody (2017)	Ozone, PM2.5	Single-source impacts of a coal fired power plant, including the contribution to secondary pollutants, can be estimated from a 3-D CTM.
AIOMFAC, CMAQ	0-D/3-D	Pye et al. (2017b)	Inorganic aerosol, semivolatile species	Thermodynamic models are consistent with SEARCH and MARGA measured ammonium sulfate at CTR. Organic-inorganic interactions can cause small decreases in acidity and increased partitioning to the particle for organic species with O:C>0.6.
WRF-Chem	3-D	McDonald et al. (in preparation)	NO _x , CO, Ozone	Mobile source NO _x and CO emissions overestimated by 50% and factor of 2.2, respectively. Model surface O ₃

				improves with reduced mobile source NO _x emissions.
NCAR LES	3-D	Kim et al. (2016)	Isoprene, OH	Turbulence impacts isoprene-OH reactivity, and effect depends on NO _x abundance.

2303

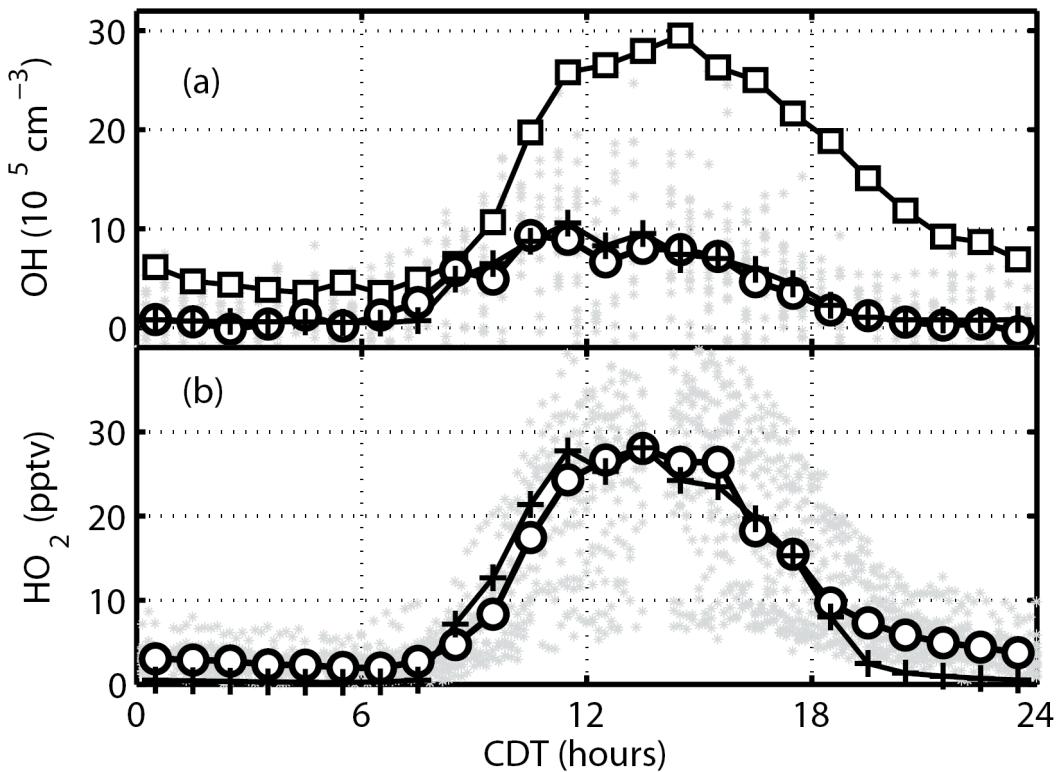
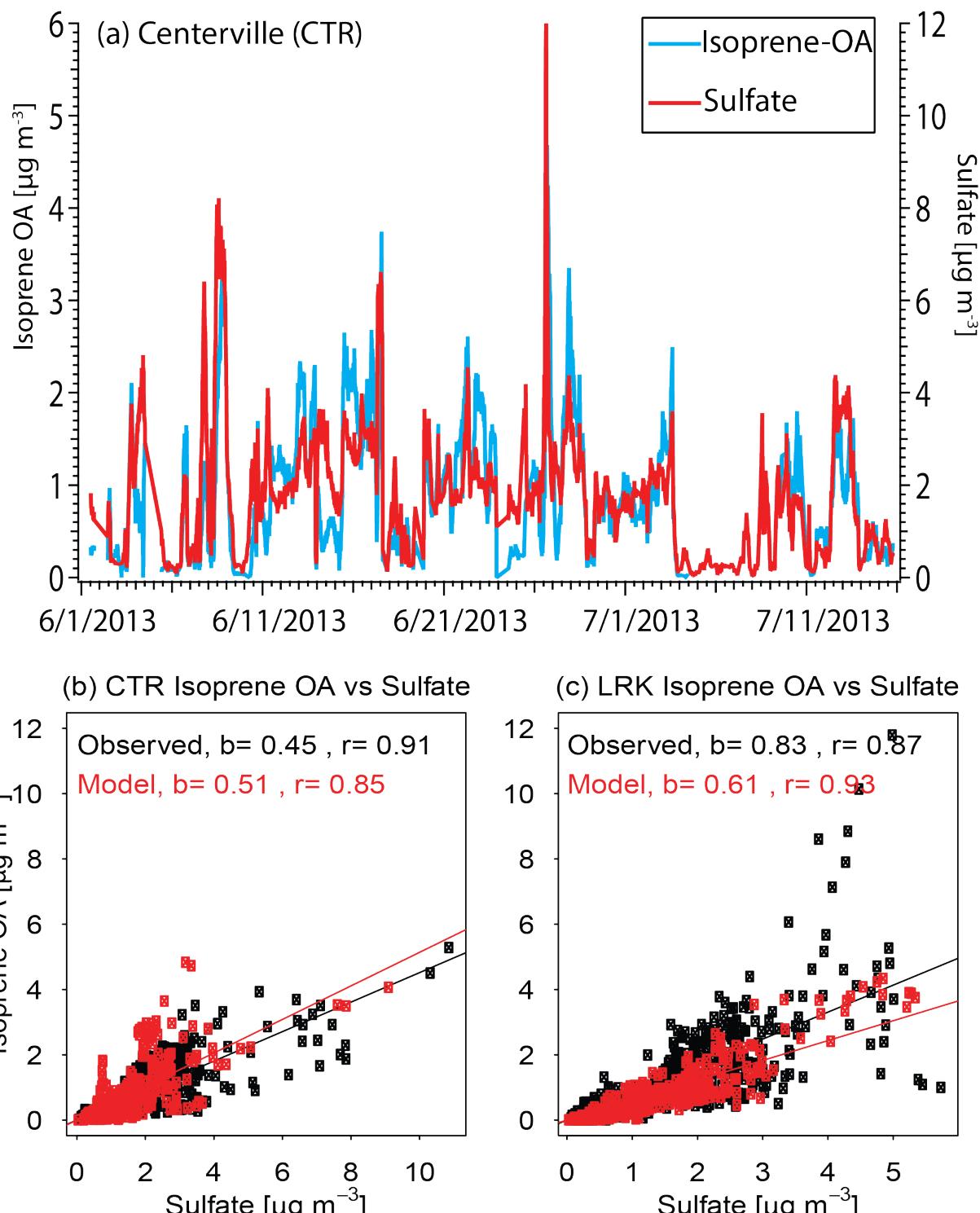
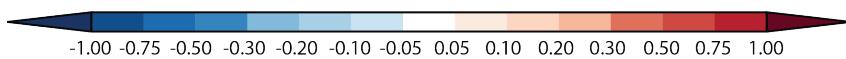
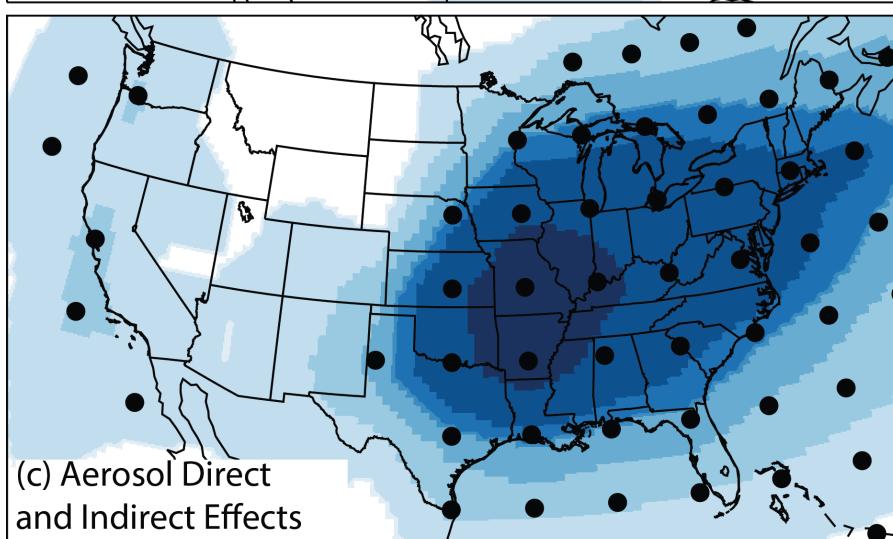
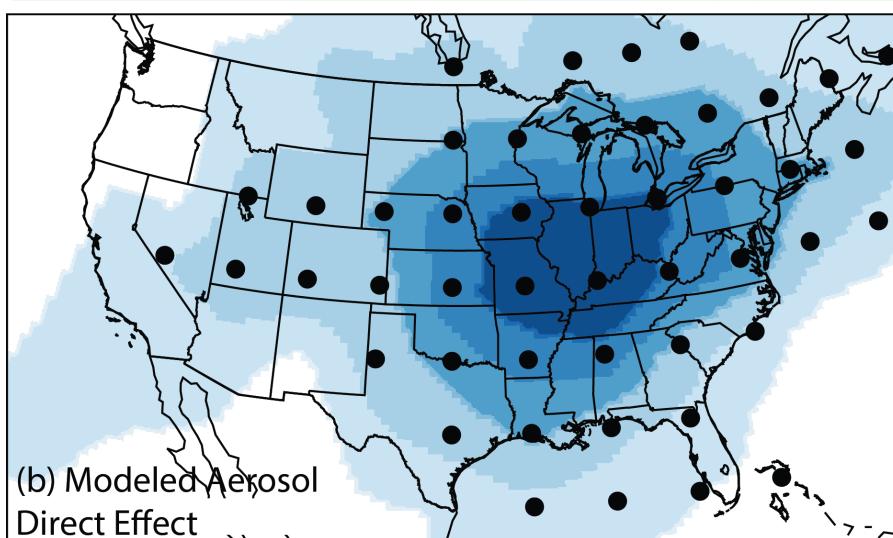
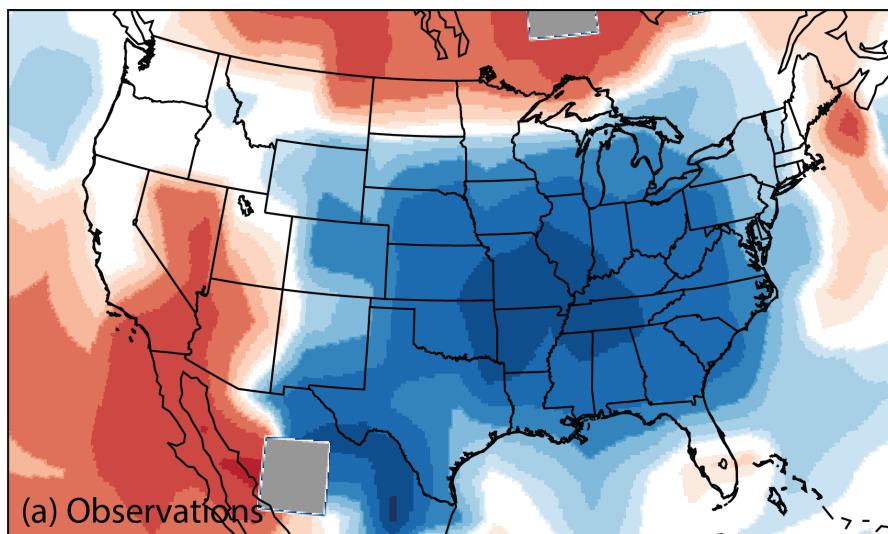



Figure 1 Diel variation of measured and modeled OH/HO₂ during SOAS (Feiner et al., 2016). In panel (a), measured OH by a traditional laser induced fluorescence technique is shown in squares and by a new chemical scavenger method is shown in circles. The latter one is considered as the “true” ambient OH. Simulated OH from a photochemical box model with Master Chemical Mechanism (MCM) v3.3.1 is shown in pluses. In panel (b), measured HO₂ is shown in circles and modeled HO₂ is shown in pluses. For both panels, gray dots are individual 10-minute measurements.

2315

2316

2317

2318 Figure 2. Time series and correlation between Isoprene OA and sulfate during SOAS (Pye et al.,
 2319 2016; Xu et al., 2015). Panel (a) shows the time series of both Isoprene OA and sulfate at
 2320 Centreville site during SOAS. Panel (b) and (c) shows the correlation plot between Isoprene OA

2321 and sulfate from both measurements and model results at two sites (Centreville and Little Rock)
2322 during SOAS.
2323

2325 Figure 3 Observed difference in surface air temperature between 1930 and 1990 (a) and modeled
2326 effect of US anthropogenic aerosol sources on surface air temperatures for the 1970–1990 period
2327 when US aerosol loading was at its peak (b and c) (Leibensperger et al., 2012a). Observations are
2328 from the NASA GISS Surface Temperature Analysis (GISTEMP;
2329 <http://data.giss.nasa.gov/gistemp/>). Model values represent the mean difference between 5-
2330 member ensemble GCM simulations including vs. excluding US anthropogenic aerosol sources,
2331 and considering the aerosol direct only (b) and the sum of direct and indirect effects (c). In (b) and
2332 (c), dots indicate differences significant at the 95th percentile.
2333