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Abstract.  There are two fundamental mechanisms through which cirrus clouds form; homo- and heterogeneous ice 

nucleation (henceforth hom and het).  The relative contribution of each mechanism to ice crystal production often 

determines the microphysical and radiative properties of a cirrus cloud.   A new satellite remote sensing method is 

described in this study to estimate cirrus cloud ice particle number concentration and the relative contribution of 

hom and het to cirrus cloud formation as a function of altitude, latitude, season and surface type (e.g. land vs. 15 

ocean).  This method uses co-located observations from the Infrared Imaging Radiometer (IIR) and from the 

CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar 

and Infrared Pathfinder Satellite Observation) polar orbiting satellite, employing IIR channels at 10.6 μm and 12.05 

μm.  The method is applied here to single-layered clouds of visible optical depth between about 0.3 and 3.  Two 

years of Version 3 data have been analyzed for the years 2008 and 2013, with each season characterized in terms of 20 

532 nm cirrus cloud centroid altitude and temperature, the cirrus cloud ice particle number concentration, effective 

diameter, layer-average ice water content and visible optical depth.  Using a conservative criterion for hom cirrus, 

on average, the sampled cirrus clouds formed through hom occur about 43% of the time in the Arctic and 50% of the 

time in the Antarctic, and during winter at mid-latitudes in the Northern Hemisphere, hom cirrus occur 37% of the 

time.  Elsewhere (and during other seasons in the Northern Hemisphere mid-latitudes), this hom cirrus fraction is 25 

lower.  Processes that could potentially explain these observations are discussed, as well as the potential relevancy 

of these results to ice nucleation studies, climate modeling and jet-stream dynamics.   
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1    Introduction 

The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC 2013) states that 

“Climate models now include more cloud and aerosol processes, and their interactions, than at the time of AR4, but 

there remains low confidence in the representability and quantification of these processes in models.”  The largest 

single cause of uncertainty in anthropogenic radiative forcing is from the indirect effect of aerosols on clouds, and 5 

the dependence of the microphysical properties of cirrus clouds on natural and anthropogenic aerosols is perhaps the 

least understood of these indirect effects. 

Cirrus clouds are pure ice clouds that form at temperatures less than 235 K (where liquid water cannot exist).  They 

are different than liquid water clouds in that they can be formed in two different ways; through homogeneous and 

heterogeneous ice nucleation (henceforth hom and het, respectively).  Het requires an insoluble aerosol particle like 10 

mineral dust to serve as an ice nuclei (IN) that initiates the ice phase through direct deposition of water vapor onto 

the IN, or by the IN initiating freezing from within an aqueous medium (such as a cloud droplet).  Conversely, hom 

cirrus do not require a particle, with ice forming through the freezing of pure solution droplets such as in haze or 

cloud droplets (Koop, 2000).  Without understanding the relative contributions of these two mechanisms to cirrus 

cloud formation, and how this varies with temperature, latitude, season and surface type, the aerosol indirect effect 15 

for cirrus clouds will remain obscure.  Moreover, these two formation mechanisms can lead to major differences in 

cirrus cloud microphysical properties that determine their radiative properties, with the ice particle number 

concentration N generally being much higher in hom cirrus (e.g. Barahona and Nenes, 2009).  For purposes of 

climate impact, it may be useful to subdivide cirrus into two categories: hom cirrus and het cirrus, where hom 

dominates the microphysical properties in hom cirrus, and conversely for het cirrus. The factors that determine 20 

whether hom or het dominate may depend on the amplitude of atmospheric wave activity (which affect the air parcel 

cooling rate; e.g. Haag et al., 2003), the IN concentration at cirrus levels, and whether nucleation occurs in the 

presence of pre-existing ice (e.g. Shi et al., 2015), and these may be a function of surface topography (e.g. 

mountainous terrain vs. ocean or plains), latitude and season. 

Krämer et al. (2016a) evaluated cirrus cloud in situ data from many field campaigns using a detailed cirrus cloud 25 

model to infer the microphysical processes responsible for the observations.  They found that hom dominated in 

cirrus clouds that form in fast updrafts produced by atmospheric waves (e.g. leewave cirrus).  These cirrus may be 

associated with mountainous terrain.  Otherwise the cirrus tended to result from het. The “liquid origin cirrus” 

described in Krämer et al. (2016a) and Luebke et al. (2016) for ice clouds having T < 235 K, are formed primarily 

by the heterogeneous freezing of liquid droplets at temperatures T > -38°C (235 K), with possible contributions from 30 

the homogeneous freezing of cloud droplets that occurs only at ~ 235 K, and from hom (T < 235 K) if the updraft is 
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fast enough.  Ice produced at T > 235 K is lifted from these lower levels into the “cirrus zone” where T < 235 K.  

Liquid origin cirrus include anvil cirrus and some frontal cirrus fed by ascending “conveyer belts” of moisture. 

While these and other studies have advanced our understanding of how cirrus clouds form and thus their 

microphysical and radiative properties, they draw from a limited number of field campaigns that may not represent 

all the conditions in which cirrus clouds form, and may not provide a reliable understanding of the geographic and 5 

seasonal distribution of het and hom cirrus.  For example, there have been few cirrus cloud field campaigns in the 

Polar Regions and in the Southern Hemisphere where IN concentrations are predicted to be much lower relative to 

the Northern Hemisphere.  Without a global monitoring system capable of inferring cirrus cloud formation 

processes, global climate model (GCM) predictions of cirrus cloud radiative forcing may not be realistic, especially 

if the predicted geographic and seasonal dependence of hom and het cirrus clouds is flawed. 10 

This study describes a new approach for estimating cloud layer N, the ice particle size distribution (PSD) effective 

diameter De, and the layer-average ice water content (IWC) in selected semi-transparent cirrus clouds using co-

located observations from the 10.6 μm and 12.05 μm channels on the Imaging Infrared Radiometer (IIR) aboard the 

CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) polar orbiting satellite, augmented 

by the cloud layer 532 nm centroïd altitude, cloud geometric thickness and extinction profile from CALIOP (Cloud 15 

and Aerosol Lidar with Orthogonal Polarization) and by interpolated temperatures from a GMAO reanalysis.  

CALIOP and IIR are assembled in a near-nadir looking configuration. The cross-track swath of IIR is by design 

centered on the CALIOP track where observations from the two instruments are perfectly temporally collocated. 

The spatial co-location is nearly perfect, as CALIOP samples the same cloud as the 1-km IIR pixel, but with three 

laser beam penetrations per km having a horizontal footprint of 90 m.  While the IIR retrieves layer-average cloud 20 

properties, CALIOP retrieves vertical profiles within this layer, providing additional information to guide the 

retrievals and enhance the interpretation.  These retrieved cloud properties are compared with corresponding cloud 

properties measured in situ during several field campaigns conducted throughout the world.  Some initial IIR 

retrieval results are reported for 2008 and 2013 during each season for all latitudes.  These results are used to 

formulate working hypotheses that explain some mechanisms for the seasonal dependency of the global distribution 25 

of hom and het cirrus. 

Section 2 describes the rationale for developing retrieval results, Sect. 3 describes the retrieval physics and 

methodology, while comparisons between retrieved and measured cloud properties, as well as retrieval uncertainties, 

are discussed in Sect. 4.  Retrieval results and discussions thereof are given in Sect. 5, and other studies are related 

to this study in Sect. 6.  Conclusions are presented in Sect. 7. 30 
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2    Discrimination between het and hom 

This section describes the method for discriminating between hom and het cirrus clouds and the rationale for using 

this method.  As shown in Barahona and Nenes (2008), for a given value of the water vapor deposition coefficient, 

ice crystal production rates by hom are most sensitive to the cloud updraft (i.e. the cooling rate), then temperature 

and the near-cloud aerosol concentration (comparable sensitivities for both), and they are least sensitive to the mean 5 

aerosol particle size.  The cooling rate is a key factor determining the relative humidity with respect to ice (RHi) in a 

rising air parcel, and hom requires a RHi > 145%, depending on temperature.  Since N due to hom results from the 

freezing of haze and cloud solution droplets (the larger sizes in their PSDs), and their number concentrations are 

typically > 200 L-1, (reaching concentrations of 10,000 L-1 and higher), hom is generally associated with relatively 

high N.  Under very cold and unique conditions of weak and relatively short-lived updrafts (e.g. low-amplitude 10 

gravity waves), N resulting from hom may be < 100 L-1 (Sprichtinger and Krämer, 2013; Krämer et al., 2016a).  On 

the other hand, ice crystal production rates from het depend mostly on the IN concentration and composition 

(Pruppacher and Klett, 1997, Ch. 9), with IN comprising a very small subset of the total aerosol population.  Due to 

this, N resulting from het tends to be less than ~ 200 L-1 (Barahona and Nenes, 2009; Jensen et al., 2012a,b; Cziczo 

et al., 2013), although higher concentrations are possible under atypical conditions.  Moreover, the RHi required for 15 

het typically ranges from 100% to 140%, depending on IN composition (e.g. Kärcher and Lohmann, 2003; Kärcher 

et al, 2007). 

In theory, one could use either N or RHi to discriminate between hom and het.  But in practice, for satellite remote 

sensing to discriminate between hom and het conditions among cirrus clouds, the best distinguishing feature to 

exploit appears to be the generally observed differences in N.  In Barahona and Nenes (2009, Fig. 4), competition 20 

effects between het and hom are simulated in a parcel model using a broad spectrum of conditions (affecting 

nucleation) found in nature.  They find that het generally accounts for N < 200 L-1 and that either hom or het can 

account for N between 200 L-1 and 500 L-1, while hom generally accounts for N > 500 L-1.  Hence, in this study we 

use N > 500 L-1 as a conservative threshold for cirrus dominated by hom.  Although RHi differs between hom and 

het at the time of nucleation, RHi tends to rapidly decrease after the onset of hom due to vigorous competition for 25 

water vapor among the ice crystals occurring at relatively high N.  This may produce lower RHi under hom 

conditions relative to het conditions (e.g. Jensen et al., 2013), rendering RHi an uncertain means of discriminating 

between hom and het.  In addition to N, topography (related to cooling rates) can also be used to infer nucleation 

mechanisms based on the attributes noted above.  For example, mountainous terrain will induce relatively high 

amplitude atmospheric waves at cirrus cloud levels (Jiang et al., 2002; 2004; Wu and Jiang, 2002; Hoffmann et al., 30 

2016), resulting in higher cloud updrafts.  Thus mountainous terrain in association with relatively high N should be a 

strong indicator for hom cirrus.  Hom cirrus may also be more likely to occur in regions having relatively low IN 

concentrations, such as the Polar Regions.  To the best of our knowledge, a satellite remote sensing method sensitive 
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to N (which is dominated by the smallest ice crystals) has not been developed, and a critical objective of this study 

was to develop such a method. 

3    Developing a satellite remote sensing method sensitive to N 

It is widely recognized that the ratio of absorption optical depth from ice clouds, β, based on wavelengths at 12 μm 

and 11 μm (or similar wavelengths), is rich in cloud microphysical information (Inoue, 1985; Parol et al., 1991; 5 

Cooper et al., 2003; Dubuisson et al., 2008; Heidinger and Pavolonis, 2009; Pavolonis, 2010; Mitchell et al., 2010; 

Cooper and Garrett, 2010; Garnier et al., 2012; Mitchell and d’Entremont, 2012; Garnier et al., 2013).  These studies 

have used a retrieved β to estimate the effective diameter De, the ice water path (IWP), the mass-weighted ice fall 

speed (Vm), the average fraction of liquid water in a cloud field and the relative concentration of small ice crystals in 

ice PSDs.  However, the main reason for the emissivity differences in satellite remote sensing channels centered on 10 

these two wavelengths was not understood until after the development of the modified anomalous diffraction 

approximation (MADA) that, to a first approximation, allowed various scattering/absorption processes to be isolated 

and evaluated independently (Mitchell, 2000; Mitchell et al., 2001; Mitchell, 2002; Mitchell et al., 2006).  For 

wavelengths between 2.7 and 100 μm, the most critical process parameterized was wave resonance, also referred to 

as photon tunneling (e.g. Nussenzveig, 1977; Guimaraes and Nussenzveig, 1992; Nussenzveig, 2002).  It was this 15 

process that was found to be primarily responsible for the cloud emissivity difference between these wavelengths 

(12 μm and 11 μm) in ice clouds, as described in Mitchell et al. (2010).  The greatest tunneling contribution to 

absorption occurs when the ice particle size and wavelength are comparable and the real refractive index mr is 

relatively high (Mitchell, 2000).  Since mr at 12 µm is high relative to mr for the 11 µm wavelength, β is sensitive to 

the tunneling process and the relative concentration of small (D < 60 µm) ice crystals in cirrus clouds. 20 

It was originally thought that β resulted from differences in the imaginary index of ice, mi, at two wavelengths (λ) 

near 11 μm and 12 μm, but it is actually due to differences in the real index of refraction, mr.  At these λ, mi is 

sufficiently large so that most ice particles in the PSD experience area-dependent absorption (i.e. no radiation passes 

through the particle), and the absorption efficiency Qabs for a given ice particle will be ~ 1.0 for both λ when Qabs is 

based only on mi (i.e. the Qabs predicted by Beer’s law absorption or anomalous diffraction theory). The observed 25 

difference between Qabs(12 μm) and Qabs(11 μm) is due to differences in the photon tunneling contribution to 

absorption that primarily depends on mr (Mitchell, 2000).  That is, mr is substantial when λ = 12 μm but is relatively 

low when λ = 11 μm, producing a substantial difference between Qabs(12 μm) and Qabs(11 μm).  Figure 1 shows the 

size dependence of the tunneling contribution for hexagonal columns at 12 μm.  It is evident that this contribution 

becomes important only for the smallest ice crystal sizes where wavelength and crystal size are comparable (i.e. 30 

maximum dimension D < 50 μm), making β well suited for detecting recently nucleated (small) ice crystals that 

primarily determine N (Krämer et al., 2009). 
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In this study, we use CALIPSO IIR channels at 10.6 μm and 12.05 μm and define β as 

β = τabs(12.05 μm)/τabs(10.6 μm)          (1) 

where τabs is the retrieved absorption optical depth for a given λ retrieved from the effective emissivity.  However, 

what is retrieved is not exactly β, but a β that also includes the effects of scattering, defined as the effective β or βeff.  

βeff is described analytically in Parol et al. (1991).  For a given cirrus cloud, retrieved τabs(10.6 μm) may be slightly 5 

less than τabs(11 μm) since mi at 10.6 μm is less than mi at 11 μm, meaning that some Beer’s law type absorption 

may contribute to emissivity differences between the 10.6 μm and 12 μm channels when PSD are sufficiently 

narrow.  This acts to extend the dynamic range of retrievals relative to the 11 μm-12μm channel combination (e.g. 

the limiting maximum De retrieved will be greater using 10.6 and 12 μm relative to 11 and 12 μm).  The 

methodology for retrieving CALIPSO IIR effective emissivity and βeff from co-located CALIOP observations and 10 

IIR radiances is described in Garnier et al. (2012, 2013). IIR retrievals are from the CALIPSO IIR Version 3 Level 2 

track product (Vaughan et al., 2015).  In this product, the scene typing is built from the CALIOP Version 3 5-km 

cloud and aerosol layer products.  It has been refined for this study to account for additional dense clouds in the 

planetary boundary layer reported in the CALIOP Version 3 333-m layer product.   IIR retrievals are further 

corrected to reduce possible biases, as described in Sect. 3.2.  Version 3 CALIOP cloud extinction coefficient 15 

profiles are used for some of the corrections.  These improvements will be implemented in the next version 4 of the 

IIR products. 

3.1    Relating βeff to N/IWC and De based on aircraft PSD measurements 

Using aircraft data from the DOE ARM supported Small Particles in Cirrus (SPartICus) field campaign in the 

central United States and the NASA supported Tropical Composition, Cloud and Climate Coupling (TC4) field 20 

campaign near Costa Rica, βeff was related to cirrus cloud microphysical properties.  Regarding SPARTICUS, the 

data set described in Mishra et al. (2014) was used, and the TC4 data is described in Mitchell et al. (2011).  Details 

regarding field measurements, the flights analyzed and the microphysical processing are described in these articles.  

The PSDs were measured by the 2D-S probe (Lawson et al., 2006) where ice particle concentrations were measured 

down to 10 μm (5–15 μm size bin) and up to 1280 μm in ice particle length (when using “all-in” data processing 25 

criteria). The data in the smallest size bin (5–15 μm) has greater uncertainty. Indeed, Jensen et al. (2013) showed 

that the largest uncertainty in depth of field for this size bin results in an overestimation of number concentration for 

particles in this smallest size bin.  βeff was calculated from these PSDs using the method described in Parol et al. 

(1991) and Mitchell et al. (2010).  This method was tested in Garnier et al. (2013, Fig. 1b) where βeff calculated from 

a radiative transfer model (FASDOM; Dubuisson et al., 2005) was compared with βeff calculated analytically via 30 

Parol et al. (1991), with good agreement found between these two methods.  More specifically, to calculate βeff from 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-1062, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 8 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



7 
 

PSD in this study, the PSD absorption efficiencyQabs is given asQabs = βabs / APSD, where βabs is the PSD absorption 

coefficient (determined by MADA from measured PSD) and APSD is the measured PSD projected area.   The PSD 

effective diameter was determined from the measured PSD as described in Mishra et al. (2014), but in essence is 

given as De = (3/2) IWC/(ρi APSD), where ρi is the density of bulk ice (0.917 g cm-3).  The PSD extinction 

efficiencyQext was determined in a manner analogous toQabs.  The single scattering albedo ωo was calculated as ωo 5 

= 1 -Qabs/Qext and the PSD asymmetry parameter g was obtained from De using the parameterization of Yang et al. 

(2005).  KnowingQabs, ωo and g, βeff was calculated from the PSD as:   

βeff = Qabs,eff(12 µm)/Qabs,eff(11 µm) ,         (2) 

Qabs,eff = Qabs (1 – ωo g) / (1 – ωo).          (3) 

Note that β (i.e. βeff without scattering effects) is also equal toQabs(12 μm)/Qabs(10.6 μm). 10 

In order to retrieve N, a relationship between N/IWC and βeff is useful.  Figure 2 shows measurements of N/IWC 

from SPARTICUS flights over the central United States (blue) where some of the cirrus sampled (i.e. the “ridge 

crest cirrus”; see Muhlbauer et al., 2015) had high N (500-2200 L-1) for T < -60°C.  Also shown are N/IWC 

measurements from the TC4 field campaign for maritime “fresh” anvil cirrus (during active deep convection where 

the anvil is linked to the convective column) and for TC4 aged anvil cirrus (anvils detached from convective 15 

column).   Figure 2 relates βeff to the N/IWC ratio, where βeff was calculated from the same PSD measurements used 

to calculate N and IWC, based on the MADA method.  The PSD measurements include size-resolved estimates of 

ice particle mass concentration based on Baker and Lawson (2006), size-resolved measurements of ice projected 

area concentration, and the size resolved number concentration.  This PSD information is the input for the MADA 

method that yields the coefficients of absorption and extinction.  The tunneling efficiency Te used in MADA was 20 

estimated from Table 1 in Mitchell et al. (2006), where for 1 μm < D < 30 μm, droxtals and hexagonal columns are 

assumed and Te = 0.90; for 30 μm < D < 100 μm, budding bullet rosettes and hexagonal columns are assumed and 

Te = 0.50; for D > 100 μm bullet rosettes and aggregates are assumed and Te = 0.15.  This shape-dependence on ice 

particle size was guided by the ice particle size-shape observations reported in Lawson et al. (2006) and Baker and 

Lawson (2006). These ice particle shape assumptions affect only Te, and the cloud optical properties are primarily 25 

determined through the PSD measurements noted above (i.e. not the value of Te).  Due to βeff’s sensitivity to 

tunneling and small ice crystals, a tight and useful relationship is found between N/IWC and βeff for N/IWC > ~ 

107g-1.  As far as we know, this relationship was not known previously.  For βeff < 1.035, βeff is not sensitive to 

N/IWC and N/IWC cannot be estimated from βeff.  For purposes of discriminating hom cirrus from het cirrus, the βeff 

vs. N/IWC relationship appears ideal since the hom-het transition generally occurs in the region where βeff is 30 
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sensitive to changes in N/IWC (i.e. when N/IWC > 5×107 g-1, based on in situ PSD and the hom-het transition region 

described in Sect. 2). 

Using this same in situ data and methodology, βeff has also been related to 1/De as shown in Fig. 3.  De is defined as 

(3/2) IWC/(ρi APSD) where ρi is the density of bulk ice (Mitchell, 2002).  Accordingly, De was calculated from the 

measured PSD (see Mishra et al., 2014).  The relationship is only useful for De < 90 μm since βeff is only sensitive to 5 

the smaller ice particles.  βeff is a measure of the relative concentration of small ice crystals in a PSD (Mitchell et al., 

2010), and APSD and βeff (PSD integrated quantities) may be associated with a substantial portion of larger ice 

particles (D > 50 μm) before βeff loses sensitivity to changes in De. 

Figure 4 compares βeff calculated from 2D-S probe measurements of TC4 and SPARTICUS PSDs based on MODIS 

channels at 11 and 12 μm with the mean value of MODIS retrievals of βeff from TC4 cirrus clouds (i.e. during the 10 

TC4 campaign) using the methodology and results described in Mitchell and d’Entremont  (2012; see their Fig. 5) 

whereby the cloud temperature is also retrieved.  The high in situ derived βeff values for TC4 near -70°C are 

characterized by lower IWCs, and thermal emissions from these cloud levels may have been below the detection 

threshold of MODIS.  In general there is good agreement between the TC4 measurement derived values and the 

retrieved mean values of βeff (dashed line) during TC4.  βeff derived from SPARTICUS data is also included to better 15 

illustrate the temperature dependence of βeff at warmer and colder temperatures.  Note that the range of βeff has 

changed due to the MODIS channels used here. 

It is noteworthy that retrieved βeff is often quasi-constant with T for TC4 cirrus when T < 235 K, as shown in Fig. 5 

of Mitchell and d’Entremont (2012).  This “flat” βeff behavior appears to result from the variation in ice crystal shape 

with D across the PSD. That is, tunneling contributions depend on the distribution of ice particle shape with ice 20 

particle size D across the PSD.   If the shape is not varied, then this flat behavior is not obtained, as shown in Fig. 12 

of Mitchell and d’Entremont (2012) for the Yang et al. (2005) scheme where shape is held constant.  This flat βeff 

signature provides some constraint for determining reasonable assumptions for the variation of ice crystal shape with 

D. 

These range restrictions (N/IWC > ~ 107 g-1 & De < 90 μm) are usually compatible with cirrus clouds (T < 235 K) 25 

since PSDs tend to be narrower at these temperatures, containing relatively small ice particles (e.g. Mishra et al., 

2014).  When calculating N/IWC from βeff, if the retrieved βeff is less than 1.035, then βeff is set to a value of 1.035 

and N/IWC corresponds to this value via the regression curve (N/IWC = 5.6×107g-1).  Similarly, when calculating De 

from βeff, if the retrieved βeff is less than 1.0, then βeff is set equal to 1.0 and De is calculated from that value (De ≈ 

122 μm).  As shown in Table 1 for the year 2013, this practice affected about 14% and 20% of the N/IWC retrievals 30 

over ocean and land, respectively, and affected about 6% and 11% of the De retrievals over ocean and land, 

respectively. This produces a line of constant valued N/IWC and De retrievals when βeff drops below these threshold 
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values (evident in Figs. 7, 8, 22 and 23).  To better estimate the mean and median values for N/IWC and De, these 

limiting values are taken into account when calculating these quantities. 

3.2    The retrieval equations 

These IIR layer-average N/IWC and De relationships are combined to retrieve the ice particle number concentration 

N, as shown in the equation: 5 

 
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where ρi is the bulk density of ice (0.917 g cm-3), τabs(12 μm) is the retrieved absorption optical depth from the IIR 

12 μm channel, and Δzeq is the effective cloud thickness.  The quantities De and N/IWC are retrieved from βeff, using 

the regression curves described above, in Figs. 4 and 5.  The quantity 2/Qabs(12 μm) is obtained from βeff via the 

regression equation described in Fig. 5, where 2 is the value ofQext for ice PSDs in the visible spectrum.   When βeff 10 

> 1.485, then 2/Qabs(12 μm) is set to 1.57.  This quantity converts τabs(12 μm) to an equivalent visible extinction 

optical depth (OD) .  The right hand side of (4), excepting the N/IWC term, is an expression for the layer-mean 

IWC, which was derived from the familiar equation: 

eext
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
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where in this circumstance αext is the effective layer-mean visible extinction coefficient, which was derived from the 15 

CALIPSO IIR as: 
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For each IIR channel, τabs is derived from the effective emissivity, ε, as  

τabs = - ln (1 – ε)            (7) 

with 20 
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where Rm is the measured calibrated radiance, RBB is the opaque (i.e. blackbody) cloud radiance evaluated at cloud 

temperature Tc, and RBG is the background radiance that would be observed in the absence of the studied cloud, as 

described in Garnier et al. (2012).  

The brightness temperature TBG associated to the background radiance RBG is derived from the FASt RADiative 

transfer model (Dubuisson et al., 2005) fed by atmospheric profiles and skin temperatures along with pre-defined 5 

surface emissivities (Garnier et al., 2012). For this study, remaining biases at 12.05 μm and 10.6 μm are corrected 

using monthly maps of mean differences between observed and computed brightness temperatures (called BTDoc) 

in clear sky conditions. The corrections are applied over ocean and over land with a resolution of 2 degrees in 

latitude and 4 degrees in longitude, by separating daytime and nighttime data.  After correction, BTDoc is equal to 

zero on average for both channels. 10 

In version 3 IIR products, RBB (and the associated blackbody temperature TBB) is derived from the cloud 

temperature, Tc, evaluated at the centroid altitude of the CALIOP 532 nm attenuated backscatter profile using 

GMAO reanalysis temperature (Garnier et al, 2012). In this study, a correction for residual biases is determined 

using CALIOP extinction profiles in the cloud layer as described in Sect. 3 of Garnier et al. (2015).  The CALIOP 

lidar 532 nm extinction profile in the cloud is used to determine a weighting profile that is used to compute RBB as 15 

the weighted averaged blackbody radiance.  The lidar vertical resolution is 60-m, and cloud emissivity is weighted 

in a similar way with the 532 nm extinction profile.  The weight of each 60-m bin is its emissivity at 12.05 μm 

attenuated by the overlying optical depth, normalized to the cloud emissivity.  

The effective cloud thickness Δzeq accounts for the fact that the IIR instrument does not sense equally all of the 

cloud profile that contributes to thermal emission.  Following the same approach as described above, the layer 20 

absorption coefficient αabs(12 μm) for the IIR 12 μm channel is computed from the  weighted averaged absorption 

coefficient profile.  This yields αabs(12 μm)  > αabs,mean(12 μm)  , where αabs,mean(12 μm) is the mean absorption 

coefficient, that is, the ratio of τabs(12 μm) to the CALIOP layer geometric thickness Δz.  Thus, an equivalent 

effective thickness is defined as Δzeq where αabs(12 μm) = τabs(12 μm)/ Δzeq , or alternatively, Δzeq = Δz (αabs,mean(12 

μm)  / αabs(12 μm) ).  In practice, Δzeq is found equal to 30% to 90 % of Δz. 25 

To summarize, the retrieval of τabs(12 μm) and τabs(10.6 μm) combined with the CALIOP extinction profile provides 

N/IWC, De, αext, and therefore layer-average IWC and finally N.  It also provides the ice water path (IWP) as  

  .)12()12(/2
3

eabsabs

i DmmQIWP  


      (9) 
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Since the IWP can also be expressed as (ρi/3) De OD where OD is visible optical depth, and since upper limits for De 

and OD are 122 μm and 3.0, respectively, the IWP upper limit is 112 g m-2.  Perhaps the most unique aspect of this 

retrieval method is its sensitivity to small ice crystals via βeff. 

4    Applying the retrieval method 

As mentioned, βeff is obtained from the Imaging Infrared Radiometer (IIR) aboard CALIPSO, and is based on 5 

effective absorption optical depths retrieved from the 12.05 μm and 10.6 μm channels.  IIR retrievals have a 

resolution of 1 km.  A number of selection criteria were applied for the robustness of the retrievals. 

Equation 1 was applied only to single-layered semi-transparent cirrus clouds (one cloud layer in an atmospheric 

column) that do not fully attenuate the CALIOP laser beam, so that the cloud base is detected by CALIOP. The 

cloud base is in the troposphere and its temperature is required to be smaller than 235 K to ensure that the cloud is 10 

entirely composed of ice.  Because the relative uncertainties in τabs and in βeff increase very rapidly as cloud 

emissivity decreases (Garnier et al., 2013), the lidar layer-integrated attenuated backscatter (IAB) was chosen 

greater than 0.01 sr-1 to avoid very large uncertainties at the smallest optical depths.  This resulted in a OD range of 

about 0.3 to 3.0.  Similarly, clouds for which the radiative contrast RBG -RBB between the surface and the cloud is less 

than 20 K in brightness temperature units are discarded.  Finally, IIR observations must be of good quality according 15 

to the quality flag. 

Our retrievals are related to cloud temperature through the CALIOP attenuated backscatter centroid Tc introduced 

earlier.  

4.1    Relationship between βeff, αext, IWC, and N 

 As seen from Eq. (4), (5) and (6), βeff and αext are the two key parameters retrieved from the CALIPSO IIR 20 

to derive N/IWC, IWC, and finally N.  The interrelationship between βeff, αext, IWC, and N is illustrated in Fig. 6 

(top row), which also shows the range encountered for these properties in the selected cloud population.  The red 

dashed lines are where N = 200 L-1, 500 L-1 (the liberal and conservative hom thresholds), and 1000 L-1.  From this 

we see that both hom and het contribute to cirrus cloud formation.  The pink dashed lines are where IWC = 0.5 mg 

g-3, 5 mg g-3, or 30 mg g-3.  Large values of N result from larger values of βeff (yielding smaller De and much larger 25 

N/IWC) and sufficiently large values of αext so that IWC is sufficiently large for these small values of De.  For our 

data selection, αext is mostly between 0.05 km-1 and 5 km-1.  The horizontal red dotted lines for βeff < 1.035 indicate 

where the retrieval is not sensitive to N/IWC.  For βeff <1.035, N/IWC is set to the maximum possible value (5.6 107 

g-1) so that N is a priori overestimated in these conditions. For βeff < 1, De is set to De = 122 μm, as denoted by the 

horizontal pink lines, and IWC is a priori underestimated for these conditions. 30 
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4.2    Retrieval uncertainties 

The approach to compute the uncertainty in N (ΔN) resulting from the estimated uncertainties in βeff and αext is 

described in the Appendix.  Fig. 6 (bottom row) shows ΔN/N against βeff for the same samples as in Fig. 6 (top row).  

ΔN/N decreases as βeff increases, reflecting that the technique is sensitive to small crystals.  ΔN/N is found most of 

the time < 50% for βeff > 1.15.  For a given value of βeff, the variability of ΔN/N is due to the variability of Δβeff/βeff 5 

and of Δαext/αext.  ΔN/N is found to be larger over land in part because of the sometimes relatively weak radiative 

contrast.  Δβeff/βeff is mostly due to random measurement errors, because systematic errors associated with the 

retrieval of τabs(12 μm) and τabs(10.6 μm) tend to cancel when these are ratioed to calculate βeff.  The uncertainty in 

TBG contributes more importantly to Δαext/αext at the smallest emissivities.  Uncertainty in TBB is not a major 

contributor for semi-transparent clouds of small to medium emissivity. 10 

4.3   Comparison with in situ cirrus cloud measurements 

Krämer et al. (2009) compiled coincident in situ measurements of N and IWC from 5 field campaigns (10 flights) 

between 68N and 21S latitude where N was measured by the FSSP probe and IWC was directly measured by 

various probes as described in Schiller et al. (2008).  Krämer et al. (2009) estimated that the FSSP measurements 

accounted for at least 80% (but typically > 90%) of the total N in a PSD.  These measurements were made at T < 15 

240 K where PSD tend to be relatively narrow and ice particle shattering upstream of particle detection (i.e. the 

sample volume) is less of a problem (de Reus et al., 2009; Lawson et al., 2008).  Moreover, the FSSPs used did not 

use a flow-straightening shroud in front of the inlet; a practice that will reduce the amount of shattering.  The 

complete data set of in situ IWCs reported in Krämer et al. (2009) extends beyond the 10 field campaigns mentioned 

above, and this complete IWC data set is also described in Schiller et al. (2008). 20 

Since this retrieval is sensitive to the smallest ice crystal sizes, it has the advantage of being sensitive to ice 

nucleation processes, but this also poses certain challenges.  For example, the comparison of retrieved and measured 

N in cirrus clouds is necessarily ambiguous due to (1) the uncertainty in PSD probe measurements at the smallest 

sizes in a PSD [assuming the probe is capable of measuring N between roughly 5 μm and 50 μm], (2) the PSD size 

range used to create the retrieval relationships relative to the PSD size range of the measurements used to test the 25 

retrieval, (3) the size range of the retrieved PSD (which is unknown), (4) in situ measurements in optically thin 

layers below the retrieval limit of the IIR, and (5) the comparison of retrieved layer-averaged N to localized aircraft 

measurements of N (i.e. the variability in the aircraft measurements at a given temperature is higher than the 

corresponding variability in the layer averaged retrievals).  Regarding (2), since this retrieval was developed from 

2D-S probe in situ measurements, ideally it should be validated against 2D-S probe in situ measurements.  30 

Comparing with the Krämer et al. (2009) measurements introduces some ambiguity since the smallest size-bin of the 

2D-S is from 5-15 μm whereas the Krämer et al. (2009) N measurements are based on the FSSP 100/300 that 
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sampled particles in the size range 3.0–30/0.6–40 μm diameter, and ice crystals larger than this size range were not 

recorded.  Moreover, the amount of additional uncertainty in the FSSP measurements due to the possibility of 

shattering was not quantified. 

Krämer et al. (2016b) describe a new cirrus cloud data set of in situ measurements of N about a factor of 7 greater in 

the number of flights relative to the Krämer et al. (2009) N data set described above (10 flights), and these more 5 

recent PSD measurements were made with probes designed to minimize the problem of ice particle shattering, using 

knife-edge inlets or tips to minimize the area susceptible to shattering.  Post-processing analysis of ice particle 

interarrival times (Field et al., 2003) was also used to minimize errors due to shattering; for more details, see Luebke 

et al. (2016).  These results for N are very similar to the N results shown in Krämer et al. (2009), although the new 

results show somewhat lower values for N for T > 228 K (where PSDs tend to be broader making shattering more 10 

likely).  The new results for IWC (from 111 flights) were also very similar to the IWC-temperature measurements in 

Krämer et al. (2009). 

Finally, the N/IWC vs. βeff and the 1/De vs. βeff relationships shown in Figs. 2 and 3 are assumed to be universally 

valid.  Since they were developed from SPARTICUS and TC4 PSDs (i.e. a limited sampling of mid-latitude and 

tropical cirrus clouds), these relationships may not be representative for all cirrus clouds sampled world-wide by the 15 

IIR.  In future work, we will re-examine these relationships using more in situ data from additional field campaigns. 

Given the above ambiguities and uncertainties, close agreement between the median retrieved and in situ measured 

N(Tc) should not be expected, but the temperature-dependence of retrieved and in situ measured N should be similar 

if the retrieval is valid.  The curve fits describing the in situ data of Krämer et al. (2009) are shown in Figs. 7 and 8 

by the dashed red curves, and correspond to the maximum, minimum and middle (i.e. mid-point) value of a cloud 20 

property as a function of temperature.  They are compared with corresponding retrieved mean and median values 

(solid and dashed black curves, respectively) in these figures.  Although the cirrus cloud measurements in Krämer et 

al. (2009) occurred over both land and ocean, no distinction was made in this regard.  But since retrieval 

uncertainties are greater over land, Figs. 7 and 8 show our retrievals over ocean and land, respectively.  Retrieved 

values are averaged over all seasons for 2013 and over the latitude range roughly corresponding to the field 25 

measurements (70N to 25S).  Temperature intervals are 4°C.  The black dotted horizontal lines in the panel for N 

correspond to 200 L-1 and 500 L-1 (i.e. liberal and conservative thresholds for hom). 

Since the mass-weighted ice particle size Rice in Krämer et al. (2009) was derived from in situ measurements of 

IWC/N assuming ice spheres at bulk density (0.92 g cm-3), Rice can be inverted to yield in situ measurements of 

N/IWC.  These are compared against our retrieved N/IWC in Figs. 7 and 8.  The upper and lower red dashed curves 30 

regarding N/IWC in Figs. 7 and 8 were derived from the lower and upper Rice limiting curves in Krämer et al. 

(2009), respectively. 
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As shown in the upper left panel, βeff can be less than 1.035 or 1.0 (limiting values when calculating N/IWC or De, 

respectively) due to instrument noise.  In such cases N/IWC or De are calculated from these limiting values as 

described earlier, and this produces the higher sampling densities in the lower regions of Figs. 7 and 8 regarding 

N/IWC and N.  The fraction of samples subject to this procedure is small as indicated in Table 1. 

Regarding (4) above, the divergence between the retrieved median and in situ middle value for IWC and N for T < 5 

200 K in Fig. 7 and 8 may be due to the in situ sampled cirrus often having mean layer extinction coefficients 

smaller than the IIR retrieval limit of about 0.05 km-1 (see Fig. 6) resulting from the removal of optical depths below 

~ 0.3 from the sampling statistics.  Tropical tropopause layer (TTL) cirrus having OD < 0.3 are extensive in the 

tropics and these cirrus are generally characterized by lower N and IWC (Jensen et al., 2013; Spichtinger and 

Krämer, 2013). 10 

In general, the agreement between retrieved and in situ measured quantities in Figs. 7 and 8 is favorable despite the 

uncertainties involved.  Given this  agreement, it appears that relative differences in retrieved N, De and IWC should 

be meaningful, and from these relative differences, mechanistic inferences can be made and hypotheses explaining 

these inferences can be postulated. 

5    Retrieval results and discussion 15 

5.1   Frequency of occurrence of selected cirrus samples 

As presented in Sect. 4, the sampled 1-km2 IIR pixels are those for which the atmospheric column contains a single 

semi-transparent cloud layer of optical depth roughly between 0.3 and 3, of base temperature < 235 K, with a 

radiative contrast between surface and the cloud of at least 20 K.  

Cirrus clouds of optical depth between 0.3 and 3 are geographically widespread across all latitudes and are also in an 20 

OD range that makes them radiatively important (Hong and Liu, 2015). Frequency of occurrence is defined as the 

number of cirrus cloud pixels sampled divided by the number of available IIR pixels. To clarify, a cirrus cloud 

extending over 20 km horizontally along the lidar track is counted 20 times whereas a cirrus cloud extending over 5 

km is counted only 5 times. 

Two years of CALIPSO IIR data are considered: 2008 (Dec. 2007 to Nov. 2008) and 2013 (March 2013 to Feb. 25 

2014). It is noted that the version of the GMAO Met data used in the CALIPSO products is not the same in 2008 and 

in 2013. In 2008, it was GMAO GEOS 5.1 until Sept 2008 and GMAO GEOS 5.2 for Oct 2008 and Nov 2008. In 

2013, it is GMAO GEOS FP-IT for the whole period. Retrievals for each month of each year for all latitudes have 

been analyzed and organized into seasons, with winter as December, January, February (DJF); spring as March, 

April, May (MAM); summer as June, July, August (JJA); fall as September, October, November (SON). Figs. 9 and 30 
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10 show global maps of the occurrence frequency for all seasons during 2008 and 2013, respectively. The horizontal 

resolution of these maps is 2° in latitude and 4° in longitude.   Frequency of occurrence is also reported in Table 2 

for each season and each 30 degree latitude zone, and for the entire planet during 2008 and 2013. The selection 

criteria result in very few sampled pixels relative to the number of available IIR pixels, making the frequency of 

occurrence generally less than 2%.  Thus what is important in this analysis is not the actual frequency value but the 5 

relative differences in these values with respect to season and latitude. It is seen that despite our cloud subsampling, 

the geographical distribution of the occurrence frequencies is consistent with previous findings for ice clouds (T < 

0°C) of optical depth between 0.3 and 3 (Hong and Liu, 2015). The greatest occurrence frequencies are in the tropics 

(i.e. 30° S-30° N) and are associated with anvil cirrus from deep convection and relatively optically thick TTL 

cirrus. The occurrence frequency during Arctic (i. e. 60° N-82° N latitude zone ) winter is more than twice the 10 

frequency of other Arctic seasons.  In the Antarctic (i.e. the 60° S-82° S latitude zone), frequency of occurrence is 

greatest in the spring and second-greatest during winter, in agreement with previous studies (Nazaryan et al., 2008; 

Hong and Liu, 2015). This is important since at high latitudes, the net radiative effect of ice clouds is strongest 

during the “cold season” where solar zenith angles are relatively low and ice cloud amount is relatively high (Hong 

and Liu, 2015).  Therefore, the cirrus cloud formation mechanism that governs cirrus microphysical properties will 15 

be important at high latitudes during winter and also during spring for the Antarctic region.  

5.2   Seasonal maps of hom likelihood 

Figures 11 and 12 for years 2008 and 2013, respectively, show global maps of the fraction of the selected cirrus 

pixels having N > 500 L-1; indicated by the color bar, for each season. Each 2°×4° grid that is indicated as cloudy 

contains at least 15 1-km2 cirrus cloud samples to yield meaningful statistics.  These fractions are averaged zonally 20 

in Fig. 13 (left column) by separating land and ocean, for all four seasons in 2013. The vertical bars represent our 

uncertainty estimate, derived from the fractions of samples with N-ΔN >500 L-1 and N+ ΔN>500 L-1. As discussed 

in Sect. 4.2, the relative uncertainty, ΔN/N, is generally < 50% when βeff > 1.15.  This is illustrated in Fig. 13 (right 

column), which shows the fraction of samples with N ± ΔN > 500 L-1 and βeff > 1.15.  It is seen that the zonal 

fractions in the right and left column of Fig. 13 are similar despite the larger uncertainties when all values of βeff are 25 

included, lending greater confidence to the Fig. 11 and 12 results.  

Over land, there is a marked increase in the fraction of samples with N>500 L-1 poleward of 30°N and 30°S latitude, 

especially during the winter season, and it appears associated with mountainous terrain (see Fig. 14, which is an 

elevation map of the Earth).  This is supporting our classification of cirrus having N> 500 L-1 as hom cirrus. Indeed, 

this is consistent with our knowledge regarding hom since hom is most sensitive to the cooling rate (i.e. the updraft) 30 

and also depends on the concentration of IN.  Mineral dust concentrations (a principal IN) at these latitudes at 200 

hPa are predicted to be low during winter relative to other seasons (Storelvmo and Herger, 2014), and mountain 
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induced wave clouds can provide relatively strong updrafts.  Perhaps less expected is the broad coverage of hom 

cirrus associated with mountainous terrain.  While lenticular wave clouds are quite limited in areal extent and hence 

relatively insignificant to cloud radiative forcing globally (e.g. Krämer et al., 2016a), the hom cirrus associated with 

mountains in Figs. 11 and 12 exhibit broad areal coverage and thus may have an impact on climate, as will become 

more apparent in Sect. 5.3. The Upper Atmosphere Research Satellite Microwave Limb Sounder (UARS MLS) has 5 

been used to detect stratospheric gravity waves over Antarctica (Wu and Jiang, 2002) and mountain waves over the 

Andes of South America (Jiang et al., 2002) and over specific mountainous terrain in the Northern Hemisphere (see 

Jiang et al., 2004).  The Northern Hemisphere MLS variance enhancements associated with these mountain-induced 

waves peak during the winter season, while in the Southern Hemisphere they peak during the spring (SON).  The 

locations and seasonality of these wave perturbations coincide well with the locations/seasons associated with 10 

widespread hom cirrus in Figs. 11 and 12.  Brightness temperature perturbations and variations detected using the 

AIRS/Aqua 4.3 µm channel have also been used to study gravity wave activity at gravity wave hotspots in the 

Southern Hemisphere (Hoffmann et al., 2016).  These results strongly support the above noted studies regarding 

Antarctica and the Andes. 

One might argue that the relatively high N in eastern Asia results from mineral dust transported from known dust 15 

sources; the Kara-Kum Desert just east of the Caspian Sea, the Taklimakan Desert in extreme western China and the 

Mongolian desert.  However, N in this region is highest during winter and lowest during summer, which is out-of-

phase with predicted dust concentrations at 200 hPa (Storelvmo and Herger, 2014).  Moreover, these regions receive 

precipitation mainly in winter and early spring, often in the form of snow, thus limiting the production of mineral 

dust during winter. 20 

Regarding the location of het cirrus, small fractions of samples with N > 500 L-1 indicate a predominance of het 

cirrus. Het cirrus appear most abundant over the oceans, in the tropics and over low-elevation land regions poleward 

of 30° N and 30° S latitude.  Outside the tropics, these are relatively flat regions where atmospheric wave 

amplitudes are likely to be low relative to mountain-induced wave amplitudes.  Within the tropics-dominated ±30° 

zone, het cirrus associated with deep convection appear to dominate over both oceans and mountains as observed 25 

over the Andes Mountains of South America in Figs. 11 and 12.   

As discussed in Krämer et al. (2016a) and Luebke et al. (2016) and in Sect. 1, anvil cirrus can be described as liquid 

origin cirrus.  Liquid origin cirrus are associated with larger ice crystals and higher IWC relative to in situ cirrus.  

Moreover, liquid origin or anvil cirrus clouds form in the presence of pre-existing ice particles.  With pre-existing 

ice, het is strongly favored since a substantial amount of ice surface area is already present, usually precluding the 30 

RHi needed for hom to occur (Shi et al., 2015; Zhou et al., 2015).  This may be a primary reason for the relatively 

low N in the tropics where anvil cirrus clouds prevail.  Another factor is that boundary layer air, potentially rich in 
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IN, is advected to cirrus levels during deep convection.  The combined effect of pre-existing ice and IN enrichment 

from deep convection appears to prevent the RHi from reaching the hom threshold, even under the high updraft 

conditions expected over the Andes Mountains in the tropics that abruptly rise as high as 6000 m or more.  To 

summarize, anvil cirrus are considered liquid origin cirrus having pre-existing ice that produces conditions favoring 

heterogeneous nucleation processes. 5 

The impact of IN on N may be evident over the southern oceans (30° S-60° S) where IN concentrations are 

predicted to be low (Storelvmo and Herger, 2014).  Figures 11 and 12 show higher N fractions over the southern 

oceans relative to the tropics (including tropical oceans), and this may indicate that hom is more active over the 

southern oceans (due to lower IN at cirrus levels) relative to the tropics. 

5.3   Quantitative analysis as a function of altitude and latitude 10 

To evaluate the fraction of N > 500 L-1 as a function of altitude we look at the distribution of CALIOP centroid 

altitudes for our selected cloud population.  This section is dedicated to characterizing the vertical distribution of IIR 

retrieval clouds for the tropics, mid-latitudes and the high latitudes, and for all four seasons at each latitude zone, by 

averaging the years 2008 and 2013.  This information is given in Figs. 15-18, where each figure represents one 

season showing all six latitude zones (60° N-82° N, 30° N-60° N, 0° N-30° N, 30° S-0° S, 60° S-30° S, and 82° S-15 

60° S).  The left column of each figure is for ocean only, the middle column is for land only, and the right column is 

for ocean and land area combined.  Within each panel there are four histograms of IIR 1-km2 pixel counts as a 

function of the CALIOP 532 nm layer centroid altitude, with ½ km vertical increments. The black histogram shows 

the number of sampled cirrus cloud. The number of sampled pixels having N > 500 L-1 is shown by the orange 

histogram.    The red histogram gives the number of samples having N > 500 L-1 and βeff > 1.15, which indicates 20 

uncertainty ΔN/N is generally < 50% and that De < 45 µm.  Finally, the blue histogram gives the number of samples 

having βeff > 1.15 (i.e. De < 45 µm). The area under each colored histogram divided by the area under the black 

histogram yields the corresponding overall fraction. Thus, the fraction of cirrus  having N > 500 L-1, N > 500 L-1 and 

βeff > 1.15, and βeff > 1.15 is indicated by the orange, red, and blue numbers under “Fraction”, respectively.  

Following our convention that N > 500 L-1 corresponds to hom cirrus, the hom cirrus histogram (orange) closely 25 

tracks the red histrogram, indicating relatively low N uncertainties and small ice particle sizes are associated with 

hom cirrus.  Outside the tropics (±30°), the blue histogram tracks the orange histogram fairly closely, indicating that 

cirrus PSDs having De < 45 µm tend to be associated with hom cirrus. 

In the Northern Hemisphere high latitudes (60° N-82° N), sampled cirrus occur mostly over land, with a peak during 

winter.  The fraction of hom cirrus is generally greater over land than ocean, although this reverses during summer, 30 

and the fraction over ocean is greater than at lower latitudes.  Averaging over all seasons and both years, the hom 
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cirrus fraction for land and ocean combined is 0.433±0.046 (± standard deviation), a fractional variability of only 

11%.  This relatively high hom fraction and low variance may be due to lower IN concentrations in the Arctic 

throughout the year. 

In the Northern Hemisphere mid-latitudes (30° N-60° N), sampled cirrus also occur more frequently over land, but 

since more of the Earth is covered by ocean at these latitudes, cirrus are sampled more frequently over ocean here 5 

relative to oceans at 60° N-84° N.  Cirrus cloud coverage peaks during the spring.  The fraction of hom cirrus is 

considerably greater over land than ocean during all seasons, peaking during the winter (DJF) with values of 0.43 

for land only, 0.25 for ocean only, and 0.37 for land and ocean combined.  At these latitudes mountains appear 

responsible for the greater hom cirrus fraction over land, as discussed earlier. Gravity waves could also be 

responsible for most of the hom cirrus over ocean, albeit generated from adjustments in unbalanced flows in jet-10 

streams and frontal systems (Fritts and Alexander, 2003; Wu and Zhang, 2004; Plougonven and Zhang, 2014) or 

convection (e.g. Alexander and Pfister, 1995; Vincent and Alexander, 2000). 

In the tropics and subtropics between 30° N and 30° S, sampled cirrus occur mostly over the ocean with less 

seasonal dependence in their coverage relative to the Arctic.  The fraction of hom cirrus is slightly greater over land, 

and for land and ocean combined, the mean fraction for both years and all seasons is 0.117±0.015.  In addition to the 15 

hom fraction, this region also differs from the mid- and high latitudes in that the number of hom cirrus samples tends 

to peak at lower altitudes (relative to the altitude range for cirrus occurrence) while the blue histogram for cirrus 

having De < 45 µm does not track the hom cirrus histogram at higher altitudes but rather contributes more and more 

to the total sampled cirrus with increasing altitude.  At the highest altitudes in the TTL region, most of the cirrus 

samples have De < 45 µm. Note that most of the TTL cirrus are not detected by this retrieval method (0.3 ≤ OD ≤ 20 

3.0). 

These results may be detailed enough to test some of our ideas on cirrus cloud formation.  For example, based on 15 

flights measuring cirrus clouds over the continental USA, Diao et al. (2015) found that the ice nucleation zone was 

generally near cloud top near the thermal tropopause.  They point out that this may occur for two reasons: (1) abrupt 

changes of temperature and humidity near the tropopause, and (2) frequent occurrence of clear-air turbulence around 25 

the jet-stream.  Regarding (1), the Clausius-Clapeyron equation predicts that a small perturbation of the moisture or 

temperature field near the thermal tropopause will generally produce a higher RHi than would occur at lower levels.  

Thus, as temperatures decrease, the RHi threshold for hom is more likely to be reached.  In the northern mid-

latitudes during winter over land, there appears to be evidence of this, where the orange histogram indicates that 

hom cirrus generally contribute to the total in greater percentages at the highest altitudes. 30 

During summer over land at these mid-latitudes, just the opposite is evident, with the number of hom cirrus samples 

and the number of small De cirrus samples peaking at lower altitudes (relative to the altitude range for cirrus 
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occurrence).  Due to the close correspondence of the orange and blue histograms, it appears that hom or another 

process that produces high N (like ice multiplication processes associated with deep convection; see Lawson et al., 

2015) is primarily responsible for De < 45 µm.  At higher altitudes (above these peaks), ice particle sizes and 

concentrations appear to increase and decrease, respectively. 

Over oceans in the tropics (±30°), the histogram behavior differs from mid-latitude summer over land (also 5 

characterized by deep convection), with samples having De < 45 µm contributing progressively higher percentages 

to the total with increasing altitude.  Conversely, samples having N > 500 L-1 peak at lower altitudes.  The following 

discussion offers a possible explanation for the anti-correlation between the orange and blue histogram curves that 

begins ~ 13.5 km.  This behavior might have nothing to do with hom, but rather ice multiplication processes as 

described in Lawson et al. (2015).  In that study it was found that for deep convection over ocean with updrafts 10 

typically on the order of 7 to 10 m s-1, rapid glaciation occurs from well documented ice multiplication processes 

between -12° and -20°C that are capable of producing N > 500 L-1.  These ice particles can be easily advected from 

the “glaciation zone” into the “cirrus zone” and detrained at a strong inversion layer to form anvil cirrus.  Not all 

deep convection in the tropics reaches the tropopause, with anvils forming well below the tropopause.  Widespread 

in situ cirrus typically form above the anvils in the TTL region and these cirrus are characterized by relatively low N 15 

and low IWCs (Spichtinger and Krämer, 2013; Krämer et al, 2016a).  Moreover, observed frequency distributions of 

N in these TTL cirrus can be explained through the superposition of high-frequency internal gravity waves with very 

slow large-scale motions, with hom accounting for ~ 79% of N and a combination of het and hom accounting for ~ 

20% of N.  The relatively low N predicted is due to the shortness of the gravity waves, which stalls freezing events 

before a higher ice crystal concentration can be formed.  This, along with very low water vapor concentrations, may 20 

also limit the size of the ice crystals, possibly explaining the higher abundance of samples having De < 45 µm at the 

higher altitudes.  This transition from anvil to TTL cirrus can be seen in CALIOP extinction measurements 

(Gasparini et al., 2016, Fig. 7e), where a strong extinction maximum exists ~ 203 K (13.5 km) indicating the top-

level for anvil cirrus.  Above this level, cirrus extinction is much weaker, extending up to the tropopause near 193 K.  

Evidently the cirrus between 203 K and 193 K correspond to in situ cirrus, and this may account for the anti-25 

correlation we observe ~ 13.5 km regarding the orange and blue histogram curves. 

Over land in the tropics (±30°), the noted anti-correlation between the orange and blue histograms is less 

pronounced, and the fraction of samples having N > 500 L-1 is slightly greater than over oceans. 

In the Southern Hemisphere mid-latitudes (30° S-60° S) there is mostly ocean and thus most cirrus are found over 

the ocean.  However, over land during winter (JJA), the histogram patterns resemble those of the Northern 30 

Hemisphere mid-latitudes, with hom cirrus prevailing at the highest altitudes.  Again, this supports the cirrus 

formation mechanisms suggested by Diao et al. (2015).  During summer (DJF) over land, the pattern is again similar 
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to that found in the Northern Hemisphere mid-latitudes during summer.  On average, the hom fraction for the 

southern oceans is 0.267±0.026, whereas in the Northern Hemisphere over ocean, it is 0.216±0.024.  This difference 

might result from lower IN concentrations in the Southern Hemisphere. 

In the Southern Hemisphere high latitudes (60° S-82° S) the amount of cirrus clouds sampled over the ocean is 

almost negligible, and cirrus are most abundant over land during winter (JJA) and spring (SON).  On average, the 5 

fraction of hom cirrus for land and ocean combined is 0.501±0.062, which seems consistent with the lower IN 

concentrations and mountainous terrain.  During spring and sometimes other seasons, the histogram patterns 

resemble those of the Northern Hemisphere mid-latitudes, with hom cirrus contributing the most to cloud coverage 

at the highest altitudes.  During winter and spring some cirrus clouds over Antarctica extended into the stratosphere 

up to 25 km altitude (although their centroid altitude was much lower).  Their elevated centroid altitudes are shown 10 

by the extended tail of the histograms in Figs. 17 and 18. 

5.4   Effective diameter 

The radiative impact of the above noted changes in cloud properties with season, latitude and surface condition will 

depend in part on their temperature dependence.  Cloud radiative properties in climate models are generally 

determined by the cloud IWC and De. As discussed in Sect. 4.1, hom nucleation (N> 500 L-1) will manifest 15 

primarily through βeff, and therefore through De, providing that IWC is sufficiently large. However, no coherent 

relationship was consistently found between IWC and the apparent nucleation mechanism for the cirrus sampled 

here. 

Figures 19 and 20 show global maps of the median De for the CALIOP centroid Tc interval 206-218 K during 2008 

and 2013, respectively.  Over land during winter, poleward of 30° N and 30° S latitude, De is often less than ~ 45 20 

μm.  This is consistent with hom being common there during winter since hom tends to produce many small ice 

crystals relative to het.  This also occurs during spring and fall to a lesser extent.  During summer De is not much 

different in this region than it is in the tropical regions, except for the tip of South America, Antarctica and perhaps 

poleward of 60° N latitude (where relatively few cirrus samples are available in this temperature zone).  This may be 

due to deep convection moving to higher latitudes during summer. 25 

In the tropics over land and ocean, De tends to be largest.  As mentioned, this may be due to anvil cirrus being a type 

of liquid origin cirrus associated with pre-existing ice that suppresses RHi. 

Over the southern oceans, De appears slightly smaller than De over the tropics, especially during the winter season.  

This is consistent with the slightly higher N fraction over the southern oceans, as noted above. 
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The De(Tc) profiles are shown for the winter and summer of 2013 in the Northern Hemisphere for different latitude 

zones over ocean and land in Figs. 21 and 22.  The mean and median De are given by the solid and dashed curves, 

respectively, and the vertical lines are standard deviations.  The color bar gives the sampling density normalized by 

the maximum number of samples in log scale.  The band of high sampling density near De = 120 μm is due to 

retrievals of βeff < 1.0 (partially due to measurement uncertainties and IIR instrument noise). 5 

Comparing De profiles north of 30° N latitude in winter over land with De profiles during summer for these same 

latitudes, it is evident that significant seasonal changes in De occur over the entire cirrus temperature domain.  These 

De changes due to changes in the contribution from hom cirrus can be on the order of 15 to 20 μm and thus may 

have a significant impact on cirrus radiative properties and climate (taking into account the seasonal changes in 

cirrus cloud coverage in this region).  10 

5.5   Working hypotheses for global cirrus cloud formation 

Sect. 5.2, 5.3, and 5.4 show a pronounced seasonal cycle in the Northern Hemisphere mid-latitudes over land in 

terms of the fraction of hom cirrus, with higher N and smaller De during the winter season.  We postulate that this is 

partially due to the seasonal cycle of deep convection, with deep convection (1) replenishing the supply of IN at 

cirrus levels, and (2) producing anvil cirrus that form in the presence of pre-existing ice (which suppress 15 

supersaturations).  This should favor het cirrus when cirrus are formed in situ, and the pre-existing ice associated 

with anvil cirrus should result in anvil cirrus characterized by relatively low N and high De.  Hom cirrus are 

common over mountainous terrain during the boreal winter north of 30° N since deep convection is relatively 

absent, the troposphere is more stratified with lower IN concentrations at cirrus levels, and mountain-induced waves 

yield strong and sustained updrafts at cirrus cloud levels (allowing RHi to reach the hom threshold).  Such waves 20 

during summer may be diminished due to a weaker jet-stream and calmer cirrus-level winds.  In addition, much of 

the land at high latitudes during winter is covered by snow, resulting in lower mineral dust IN. 

Over oceans outside the tropics, het appears to prevail.  Due to the relatively smooth ocean surface, lower amplitude 

atmospheric waves (relative to mountain-induce waves) at cirrus cloud levels are expected.  This may limit the RHi 

within these waves, making it more difficult to attain values needed to initiate hom. 25 

Within the latitude zone of 30° N to 30° S, the ice nucleation mechanism (Figs. 11 and 12) does not appear to be 

sensitive to surface conditions (i.e. land vs. ocean).  This could be largely due to the dominance of anvil cirrus from 

deep convection in this region, where pre-existing ice generally keeps RHi below the hom threshold during anvil 

formation.  Deep convection will also replenish the IN at cirrus levels so that in situ cirrus tend to be het cirrus. 
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There is relatively little land between 30° S and 60° S, with most of it associated with South America and Australia 

(a rich source of mineral dust; Gasparini and Lohmann, 2016).  Land in this latitude zone appears to exhibit a similar 

hom-het annual cycle to North America but with a stronger hom signature in South America probably due to (1) 

mountain-induced waves from the Andes Mountains and (2) lower IN concentrations in the Southern Hemisphere. 

Over pristine Antarctica, the terrain is high and often mountainous near the coast, and IN concentrations are 5 

expected to be minimal (Storelvmo and Herger, 2014), with both factors favoring hom cirrus.  Accordingly, over 

Antarctica cirrus clouds exhibit relatively high N and small De throughout the year. 

6    Connections with other studies 

6.1    Ice nucleation studies 

As several GCM modeling studies that use the pre-existing ice assumption have convincingly shown (Shi et al., 10 

2015; Penner et al., 2015; Zhou et al., 2015; Gasparini and Lohmann, 2016), pre-existing ice often prevents the RHi 

in a cirrus cloud updraft from reaching the hom threshold, thus resulting in het cirrus or “liquid origin cirrus” such as 

anvil cirrus (Krämer et al., 2016a; Luebke et al., 2016).  In these GCM studies, this assumption was applied to all 

cirrus clouds worldwide.  In our remote sensing study, the fraction of N > 500 L-1 is lowest in the tropics (Fig. 11 

and 12) and primarily corresponds to anvil cirrus with pre-existing ice (see Sect. 1).  In regions where hom prevails 15 

(fraction exceeds 0.5), N is much higher than in these tropical regions, which is unlikely to occur in the presence of 

pre-existing ice over a moderate range of updraft speeds (Shi et al., 2015; Zhou et al., 2016).  In addition to this 

study, the observational findings of Diao et al. (2015) described in Sect. 5.3 suggest that the pre-existing ice 

assumption may not be appropriate for in situ cirrus since the nucleation zone is near cloud top where little ice 

surface area exists to reduce RHi. 20 

Other observational studies (Diao et al., 2013; Diao et al., 2014) have shown that in situ cirrus clouds evolve in 

stages that can be described as nucleation, early ice crystal growth, later growth and sedimentation/sublimation, with 

the nucleation stage preceded by a clear-sky region of supersaturation with respect to ice (ice supersaturation region 

or ISSR).  While the ISSR and sedimentation stages are long-lived, the ice nucleation stage is relatively short-lived.  

This implies that in situ cirrus initially form without the presence of pre-existing ice, but rather result from a clear-25 

sky ISSR.  Thereafter the cirrus can exist for long periods during their sedimentation stage.  To summarize, with 

regards to in situ cirrus clouds at mid-latitudes, our results appear consistent with the findings of Diao et al. (2013, 

2014, 2015) and do not imply the existence of pre-existing ice. 

The findings of this study are also consistent with the findings of Cziczo et al. (2013) which, based on the four field 

campaigns studied, showed that het was the freezing mechanism in 94% of their cirrus cloud encounters.  This 30 
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agreement can be understood if one considers the locations and seasons during which the field campaigns studied by 

Cziczo et al. took place.  Two campaigns were near Costa Rica; one during January-February and one during July-

August, while another was in southern Florida during July and another was in the south-central USA during March-

April.  Figures 11 and 12 show that het cirrus conditions appear common in the regions/seasons during which these 

field campaigns were conducted. 5 

A recent field study by Voigt et al. (2016) has sampled mid-latitude cirrus over Europe using a sampling method 

similar to that used by Cziczo et al. (2013).  Both natural and contrail cirrus were present during sampling, with 

results indicating a predominance of hom cirrus.  The sampling method provides detailed mechanistic evidence 

corroborating our inferences of hom and het cirrus in this region. 

6.2   GCM studies 10 

At least two GCMs predict the supersaturation of water vapor with respect to ice; the Community Atmosphere 

Model version 5 (CAM5; see Gettelman et al., 2010) and the ECHAM-HAM GCM (Zhang et al., 2012; Kuebbeler 

et al., 2014).  These models realistically treat competition effects between het and hom (e.g. Liu and Penner, 2005; 

Kärcher et al., 2006; Barahona and Nenes, 2009) and have the ability to predict the geographic locations of hom- 

and het-dominated cirrus clouds.  Many factors determine the relative roles of hom and het in cirrus formation (e.g. 15 

Liu et al., 2012; Zhang et al., 2013; Zhou et al, 2015), and various configurations of these “ice nucleation factors” in 

CAM5 and ECHAM5/6 will yield various predictions for het and hom contributions.  One example is illustrated in 

Fig. 3 of Penner et al. (2015) where pre-existing ice is assumed, and where IN contributions include mineral dust 

and 0.1% of the secondary organic aerosol.  In this case hom dominates in the tropics (especially the tropical 

Pacific) and in most of the Southern Hemisphere, whereas het dominates outside the tropics in the Northern 20 

Hemisphere.  These results differ from this CALIPSO study in both the tropics and mid-latitudes as shown in Figs. 

11 and 12, and in Sect. 5.3. 

Gasparini and Lohmann (2016) used the ECHAM6 GCM to produce a global map at 200 hPa showing annual 

averages of the percent contribution of het, hom and detrainment (from deep convection) to ice crystal production 

(their Fig. 2) and to produce zonal means as a function of latitude and temperature of these percent contributions 25 

(their Fig. 3).  Pre-existing ice was assumed worldwide and mineral dust was the primary IN.  Their results agree 

well with our results in the tropics where virtually all ice was produced through detrainment or het.  Outside the 

tropics at 200 hPa there is also qualitative agreement with our results in that hom cirrus are associated with 

mountainous terrain in approximately the same places.   However, below 200 hPa, this agreement is lost as detrained 

ice and het dominate (their Fig. 3).  A more detailed comparison between this GCM study and our results is difficult 30 

since seasonal variations were not reported in this ECHAM6 study.  For example, during winter, Figs. 11 and 12 

show that hom cirrus outside the tropics extend over a much broader geographical area than shown by the ECHAM6 
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results at 200 hPa.  This is especially evident over Greenland and Antarctica where het cirrus in ECHAM6 dominate 

everywhere except along the coastline where there is an abrupt change in altitude.  Moreover, Fig. 3 in Gasparini 

and Lohmann indicates that detrained ice and het strongly dominate ice formation in cirrus clouds (T < -35°C) 

below the 200 hPa level at middle- and high-latitudes, whereas this study (Sect. 5.3) shows that hom contributes 

significantly even at relatively low cirrus levels.  Overall, the Gasparini and Lohmann study concludes that het and 5 

detrained ice strongly dominate the cirrus cloud net radiative forcing, even at high latitudes, whereas the results of 

this CALIPSO study indicate that hom should have a greater radiative impact at high latitudes (recall that the N > 

500 L-1 threshold for hom cirrus is a conservative threshold, and that a liberal threshold for hom cirrus is N > 200 L-

1.  Thus the fraction of hom cirrus in the polar regions could exceed 50%). 

While some limitations of these studies have been addressed (Penner et al., 2015; Gasparini and Lohmann, 2016), 10 

the CAM5 GCM studies by Storelvmo and Herger (2014) and Storelvmo et al. (2014) used predicted concentrations 

of mineral dust to estimate the seasonal and latitude dependence of hom cirrus, resulting in the prediction that hom 

cirrus prevail at high latitudes.  Their findings are supported by this remote sensing study. 

7    Summary and conclusions 

This research was born out of recognition that a practical understanding of ice nucleation in cirrus clouds was being 15 

hampered by an inability to globally observe the cirrus cloud ice particle number concentration (N) as a function of 

temperature (or altitude), latitude, season and surface type.  A new satellite remote sensing method, which is 

sensitive to N over the range that typically characterizes a transition from het to hom, was developed to address this 

need.  This was made possible by exploiting the fact that most of the cloud emissivity difference between the split-

window channels at 11 and 12 µm is due to wave resonance absorption; a process sensitive to the smallest ice 20 

crystals that dominate N (Mitchell et al., 2010).  Due to this process, a tight relationship between N/IWC and βeff 

was obtained over the region where a transition between het and hom generally occurs (see Fig. 2).  This 

relationship, and a similar tight relationship between De and βeff, are the unique aspects of this retrieval and make it 

self-consistent through the shared dependence on βeff.  Although the retrieval is restricted to single-layer cirrus cloud 

optical depths between about 0.3 and 3.0, this optical depth range is likely to be the most radiatively significant 25 

range due to the lower cirrus cloud frequency of occurrence at higher OD and a much lower cirrus cloud mean 

emissivity at the lower ODs (Hong and Liu, 2015).  In other words, for the sampled single layer clouds, the cirrus 

clouds that the IIR senses best in the window channels will also have the most influence on the Earth’s longwave 

radiation budget. 

A two-year global and seasonal analysis of these CALIPSO observations that uses N to discriminate between hom 30 

and het cirrus indicates that hom cirrus are common during winter north of 30° N latitude over mountainous terrain.  

The same is true in the Southern Hemisphere although there is much less land mass south of 30° S.  Over the oceans 
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at all latitudes, het cirrus are dominant to varying degrees, and in the tropics (±30°lat.), het cirrus prevail over land.  

On average, hom cirrus are found 43% of the time in the Arctic and 50% of the time in the Antarctic.  Hypotheses 

were proposed to explain these results. 

Future work will continue retrieval validation efforts, and will investigate the radiative implications of these 

retrievals, including the potential impact of Arctic winter cirrus on the meridional temperature gradient as discussed 5 

below in Sect. 7.1. 

7.1    A potential link between Arctic cirrus and mid-latitude weather 

These retrieval results indicate that at high latitudes there tends to be the greatest cirrus cloud coverage during 

winter in the Arctic and during spring (SON) in the Antarctic (where relatively high N and small De occur 

throughout the year in both regions).  While this study only considers a subset of cirrus clouds and two years of 10 

retrievals, our findings on the seasonal dependence of cirrus cloud coverage are consistent with other satellite cirrus 

cloud studies that consider a broader range of conditions over longer periods (e.g. Nazaryan et al., 2008; Hong and 

Liu, 2015).  Independent of the macro- and microphysical cirrus cloud attributes found in this study, at high latitudes 

there are important seasonal changes to the cirrus cloud shortwave (SW) and longwave (LW) radiative forcing due 

to a changing solar zenith angle, with the SW and LW components almost cancelling during summer but during 15 

winter, the LW component strongly prevails, producing a strong net warming at the top of atmosphere (TOA) and at 

the surface (Hong and Liu, 2015; Storelvmo et al., 2014).  This indicates that the strongest net radiative forcing by 

cirrus clouds on Arctic (Antarctic) climate occurs during winter (spring).  This seasonal cycle of the solar zenith 

angle combined with the unique macro- and microphysical properties of Arctic cirrus during winter suggests that 

wintertime Arctic cirrus may have a significant warming effect on Arctic climate.  A satellite remote sensing study 20 

of ice clouds (T < 0°C) by Hong and Liu (2015) found that at high latitudes, ice cloud net radiative forcing at the 

TOA and at the surface during the cold season is > 2 W m-2 for a cirrus cloud OD of 1.5.  Since the most severe 

effects of global warming occur at high latitudes, it is critical to understand the factors controlling the occurrence of 

het and hom cirrus in this region as well as cirrus cloud coverage in this region. 

A potential link to mid-latitude winter weather is the possible impact of the winter Arctic cirrus on the meridional 25 

(north-south) temperature gradient between the Arctic and mid-latitudes.  The cirrus-induced winter warming 

described above will occur throughout the troposphere (Chen et al., 2000; Hong and Liu, 2015), and will thus act to 

reduce this temperature gradient in the upper troposphere (UT).  While it is not clear how this would impact 

weather, some type of impact is likely if the warming is significant, and several possible scenarios are described in 

Cohen et al. (2014) and Barnes and Screen (2015).  While many papers have been published recently regarding 30 

potential effects of Arctic Amplification (henceforth AA; the observation that the mean Arctic temperature rise due 

to greenhouse gases is at least a factor of two greater relative to the adjacent mid-latitudes) on mid-latitude weather, 
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it is important to note that AA due to the loss of sea ice and snow cover primarily affects low-level temperatures 

while AA due to winter cirrus strongly affects the UT.  A theoretical link between AA and the jet-stream is found in 

the thermal wind balance, which states that a reduced meridional temperature gradient tends to produce a reduced 

vertical gradient in the zonal-wind field, depending on other factors like changes in surface winds, storm tracks and 

the tropopause height (Barnes and Screen, 2015).  Thus AA could lead to a weaker jet-stream having more amplified 5 

Rossby waves and associated extreme weather events as hypothesized by Francis and Vavrus (2012; 2015), but it is 

currently not clear whether such a phenomenon is occurring or will be occurring (Barnes and Screen, 2015). 

As described in Barnes and Screen (2015), GCM simulations from the fifth Coupled Model Intercomparison Project 

(CMIP5) show that while the lower troposphere during Arctic winter is projected to warm substantially by 2100, this 

is not happening in the Arctic UT where little warming is projected.  Moreover, in the tropics the models predict the 10 

strongest warming in 2100 occurs in the UT.  These effects decrease the meridional temperature gradient at low 

levels and increase the temperature gradient in the UT.  These low- and high-level gradients have competing effects 

on the jet-stream, with a decreasing low-level gradient acting to weaken the jet-stream and shift it towards the 

equator, while an increasing UT gradient acts to strengthen the jet-stream and shift it poleward (Barnes and Screen, 

2015).  An interesting question to ask here is whether the CMIP5 GCMs adequately describe the changes in winter 15 

Arctic cirrus that satellite remote sensing studies observe.  If they do not, and the winter heating from Arctic cirrus 

clouds is underestimated in the models, then the meridional UT temperature gradient may be overestimated during 

winter.  If this were the case, then increasing Arctic cirrus coverage during winter in the models would tend to 

weaken the simulated jet-stream and shift it further towards the equator.  Future GCM research should determine 

whether predicted cirrus cloud coverage and microphysics is consistent with the results from satellite studies such as 20 

this one, and strive for consistency with these remote observations.  Then it could be determined whether the UT 

heating from the winter Arctic cirrus would be enough to produce significant changes in the simulated Northern 

Hemisphere mid-latitude circulation.   

A related question is whether wintertime Arctic cirrus are increasing, causing a change in jet-stream behavior.  

Screen et al. (2012; 2015), as well as other studies (Ding et al., 2014; Perlwitz et al., 2015), give evidence that AA is 25 

due to both local and remote effects.  Remote effects outside the Arctic include changes in tropical (Ding et al., 

2014) and mid-latitude (Screen and Francis, 2016) SSTs and Rossby waves that enhance the transport of energy and 

moisture northwards into the Arctic, such as storm systems along the storm track.  Both Screen et al. (2012) and 

Francis and Vavrus (2015) found evidence of increased remote energy transport into the Arctic, especially after 

2000.  This occurred mostly during the fall (Francis and Vavrus, 2015).  This transport may have contributed to the 30 

observed buildup of Arctic cirrus clouds during winter when temperatures plummet.  In this way remote effects may 

enhance Arctic winter cirrus and their associated heating rates, which may affect jet-stream dynamics.  Future work 

will report on seasonal trends in Arctic cirrus frequency of occurrence. 
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Appendix:  Retrieval uncertainty analysis 

We begin this analysis with our retrieval equation for the ice particle number concentration: 
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with ρi = 0.917×106 g m-3.  The quantities De and N/IWC are retrieved from βeff using the regression curves in Figs. 2 

and 3, respectively.  By writing x= βeff, N/IWC is expressed as  5 
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so that Eq. (A1) can be re-written as: 
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Assuming a negligible error in ∆Zeq, and writing τabs(12 μm) as τ12 and τabs(10.6 μm) as τ10 for more clarity, so that 15 

x=τ12/τ10, the derivative of N can be written:  
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Errors in τ12 and in τ10 are computed by propagating errors in i)the measured brightness temperatures Tm, ii) the 

background brightness temperatures TBG, and iii)the blackbody brightness temperatures TBB (Garnier et al., 2015). 

The uncertainties in Tm10 at 10.6 μm and in Tm12 at 12.05 μm are random errors set to 0.3 K according to the IIR 

performance assessment established by the Centre National d’Etudes Spatiales (CNES) assuming no systematic bias 

in the calibration.  They are statistically independent.  5 

Because the same cloud temperature is used to compute τ12 and τ10, the uncertainty ΔTBB is the same at 10.6 and at 

12.05 μm.  A random error of +/-2K is estimated to include errors in the atmospheric model.   

After correcting for systematic biases based on differences between observations and computations (BTDoc) in 

cloud-free conditions, the random error ΔTBG in TBG is set from the standard deviation of the resulting distributions 

of BTDoc.  Over ocean, nighttime and daytime standard deviations at 12.05 μm are similar, and found smaller than 10 

over land, where the deviations tend to be larger during daytime than at night.  For simplicity, ΔTBG at 12.05 μm is 

set to ± 1K over ocean, and to ± 3K over land for both night and day.  Standard distributions of BTDoc(10) - 

BTDoc(12) indicate whether the errors in TBG at 10.6 and 12.05 μm are canceling out or not, after accounting for the 

contribution from the observations, which is estimated to √2x0.3 = 0.45 K.  Standard deviations of [BTDoc(10) - 

BTDoc(12)] are found smaller than 0.5 K over ocean and over land during nighttime, which indicates that the errors 15 

in TBG at 12.05 μm and at 10.6 μm can be considered identical. They are found locally up to 1 K during daytime over 

land, which could reflect a variability of the 10-12 difference in surface emissivity, but also the presence of residual 

clouds. As a result, ΔTBG10 is assumed always equal to ΔTBG12. 

Finally, the relative uncertainty ΔN/N is written as:  
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Table 1.  Fraction of viable samples per season, over ocean and over land. 

 

Fraction of viable 

samples - 2013 

βeff > 1 

βeff > 1.035 

DJF MAM JJA SON 

Sea 0.94 

0.85 

0.93 

0.84 

0.92 

0.82 

0.93 

0.83 

Land 0.90 

0.81 

0.89 

0.79 

0.87 

0.78 

0.91 

0.82 
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Table 2.  Sampled cirrus cloud frequency of occurrence for each 30-degree latitude zone, and also for the entire globe (last 

line) during 2008 and 2013. 

 

Occurrence of selected conditions (%) during 2008 (Dec 2007 to Nov 2008) 

 DJF MAM JJA SON 

60N-82N 0.49 0.2 0.21 0.22 

30N-60N 0.74 0.96 0.60 0.73 

0N-30N 1.58 1.90 2.02 1.70 

30S-0S 1.58 1.46 0.75 1.07 

60S-30S 0.25 0.39 0.47 0.36 

82S-60S 0.16 0.19 0.31 0.72 

Full globe 0.81 0.86 0.73 0.80 

 

Occurrence of selected conditions (%) during 2013  (March 2013 to Feb 2014) 

 DJF MAM JJA SON 

60N-82N 0.61 0.31 0.16 0.24 

30N-60N 0.90 0.98 0.56 0.65 

0N-30N 1.43 1.82 1.86 1.76 

30S-0S 1.58 1.47 0.79 1.05 

60S-30S 0.30 0.36 0.46 0.35 

82S-60S 0.09 0.20 0.42 0.61 

Full globe 0.82 0.86 0.71 0.78 
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Figure 1:  Percent contribution of wave resonance absorption to the overall absorption efficiency at 12 μm wavelength as 30 
a function of maximum dimension D for hexagonal columns, as estimated by the MADA. 
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Figure 2:  Dependence of N/IWC on the effective absorption optical depth ratio βeff as predicted from the method of Parol 

et al. (1991), based on PSD from SPARTICUS and TC4.  The curve-fit equation is given with variance (R2) and root mean 

square error indicated. 
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Figure 3:  Dependence of the PSD effective diameter De on the effective absorption optical depth ratio βeff as predicted 

from the method of Parol et al. (1991), based on PSD from SPARTICUS and TC4.  The curve-fit equation is given with 30 
variance (R2) and root mean square error indicated. 
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Figure 4:  Comparison of the mean value of MODIS retrievals of βeff during TC4 with βeff calculated from PSD obtained 

during TC4 and SPARTICUS.  Note that the range of βeff has changed due to the MODIS channels used here. 
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Figure 5:  The βeff dependence of the term that converts τabs into visible optical depth in Eq. 4.   
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Figure 6:  Top: The interrelationship between βeff (X-axis), layer extinction coefficient αext (km-1)(Y-axis, log10 scale), 

IWC, and N. The red dashed lines are where N is equal to 200, 500, or 1000 L-1. The pink dashed lines are where IWC is 

equal to 0.5, 5, or 30 mg.m-3. Bottom: 2D-distribution of βeff  (X-axis) and relative uncertainty estimate ΔN/N. The color 5 
bar gives the log of number of samples normalized to the maximum value.  Relative uncertainty tends to be considerably 

smaller at larger βeff values.  Left: ocean; right: land; all latitudes; based on December 2013, January and February 2014. 
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Figure 7:  Comparisons of the means (solid curves) and medians (black dashed) of retrieved N/IWC, IWC and N with 

corresponding in situ measurements from Krämer et al. (2009) shown by the red dashed curves; top and bottom being 

minimum and maximum values and middle red curve being the middle value.  The original retrievals of βeff are shown in 5 
the upper left panel where the lower dotted line denotes 1.035.  Retrievals are over the ocean and were averaged over all 

seasons and the indicated latitudes during 2013.  Tc is the representative cloud temperature.  The dotted lines regarding 

log(N) vs. T indicate 200 L-1 and 500 L-1.  Color code: number of samples were normalized to the maximum value on a 

decimal log scale. 
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Figure 8:  Same as Fig. 7 except for retrievals over land. 
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Figure 9:  Frequency of occurrence (indicated by legend in center) of sampled cirrus clouds for 2008 for each season. 
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Figure 10:  Same as Fig. 9 but for 2013. 
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Figure 11:   Fraction of sampled cirrus clouds (indicated by legend in center) having N > 500 L-1 for 2008 for each season. 5 
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Figure 12:  Same as Fig. 11 except for 2013.   5 
 

 

  

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-1062, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 8 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



51 
 

 
 

Figure 13: Left column: Fraction of sampled cirrus with N > 500 L-1 for each 2-degree latitude point (comprised of at least 

15 samples) with uncertainties (±ΔN) for land (red) and ocean (blue) for each season during 2013. Right column: same as 

left column, but for fraction of sampled cirrus having N > 500 L-1 and βeff >1.15. 5 
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Figure 14:  Elevation map for the Earth.  Over land, green is lowest and greyish-brown is highest.  Source: Wikipedia. 
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Figure 15:  Histograms for the number of DJF 1-km2 selected cirrus cloud samples (black), the number of samples having 

N > 500 L-1 (orange), the number having N > 500 L-1 and βeff > 1.15 (red), and the number having βeff > 1.15 (blue) as a 

function of cloud centroid altitude.  The fraction of these last 3 quantities relative to the number of selected samples is 5 
given under “Fraction” by the corresponding color.  This is done for 6 latitude zones (rows) and for ocean only (left 

column), land only (middle column) and ocean + land (right column), and averaged for 2008 and 2013. 
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Figure 16: Same as Fig. 15 but for MAM. 
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Figure 17: Same as Fig. 15 but for JJA. 
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Figure 18: Same as Fig. 15 but for SON. 
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Figure 19:  Median value of retrieved effective diameter (De) for 2008 for each season over the temperature range of 206 5 
K to 218 K.  The color bar gives De in microns. 
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Figure 20:  Same as Fig. 19 except for 2013. 5 
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Figure 21:  Temperature dependence of the retrieved effective diameter (De in microns) for three latitude zones in the 

Northern Hemisphere over both ocean and land during the winter of 2013-2014. 5 
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Figure 22:  Same as Fig. 21, but for the summer of 2013. 

 5 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-1062, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 8 December 2016
c© Author(s) 2016. CC-BY 3.0 License.


