
We thank both reviewers for their comments. We have revised the manuscript based on their 
comments and queries and provided a point-by-point response below. Reviewer comments are 
in italic, our response is in red and excerpts from the manuscript reflecting changes are in italic 
blue. 
 
Reviewer 1 
 
The manuscript by Jathar et al. summarizes results from a new modeling approach to 
characterize SOA formation in southern California. In this study, the volatility basis set along 
with updated VOC emission profiles and speciations are used in a chemical transport model to 
quantify SOA formation in the region and separate the contributions from diesel and gasoline 
sources. The topic is of high relevance given the interest in recent years in investigating SOA 
formation in urban areas from IVOCs and understanding the contribution of gasoline and diesel 
sources to SOA. The paper is well- written and organized, and the figures are of high quality. 
The only flaw in the structure of the manuscript is that the conclusion section is missing. I have 
a few technical and minor editorial comments listed below. Once these concerns are addressed, 
I support publishing the manuscript. 
We agree with the reviewer’s comment. To state the conclusions from the paper, we add a 
conclusion section to the manuscript:  
“Conclusions: 
In this work, we developed an updated version of the CMAQ model that included revised 
estimates of (i) VOC and IVOC SOA precursors from gasoline and diesel sources and (ii) 
experimentally constrained parameterizations for SOA production from IVOCs. Predictions of 
OA mass concentrations from the updated model (VBS-IVOC) slightly under-predicted daily-
averaged, filter-based measurements at CSN sites in California during May and June 2010 
(fractional bias=-23% and fractional error=43%) but were a factor of three lower than aerosol 
mass spectrometer-based measurements made at Pasadena as part of the CalNex campaign. 
The Pasadena site may have been influenced by local sources and transport not captured by 
the model at a 4 km resolution. We recommend future modeling studies to be performed at 
higher resolution. 
 
When compared to a Traditional model of OA in CMAQ that includes a non-volatile treatment of 
POA and no SOA from IVOCs, the VBS-IVOC model produced different spatial patterns of OA 
with lower (~50%) concentrations in source regions but higher (~20-40%) concentrations away 
from the sources. The VBS-IVOC model in comparison to the Traditional model improved 
predictions of the sources and composition of OA. These findings are consistent with previous 
comparisons between Traditional- and VBS- models and highlight the importance of the use of 
an OA model that includes semi-volatile and reactive POA and SOA formation from IVOCs.  
 
Predictions of OA from the VBS-IVOC model are similar to those from a recently released 
research version of CMAQ (VBS) that included semi-volatile POA and SOA formation from 
IVOCs (Woody et al., 2016). The predictions of these two models were similar for three reasons. 
First, the VOC and IVOC updates in this work, surprisingly, did not substantially alter the total 
emissions of SOA precursors in southern California (although the VOC-IVOC composition was 
different between the two models for gasoline sources). Second, mobile sources only accounted 
for slightly more than one-third of the total OA in southern California and hence updates to the 
emissions and SOA production from mobile sources had a limited influence on the total OA 
burden. And third, and most important, was that both models predicted that multigenerational 
aging of vapors in equilibrium with OA was a major source of SOA. Both models used similar 
aging mechanisms that are conceptually based on the work of Robinson et al. (2007), which 
assumed a constant reaction rate constant and only allowed for the formation of functionalized, 



lower-volatility products. However, reaction rates may vary with C* and O:C of the OA and 
fragmentation reactions can be increasingly important at longer time scales (Kroll et al., 2011). 
Existing aging mechanisms have not been constrained with laboratory data. This implies that 
the OA predictions, despite the substantial new data, are poorly constrained as one moves 
downwind of source regions. Murphy and Pandis (2009) report improved model performance 
when aging reactions are turned off for biogenic SOA. Recently, Jathar et al. (2016) proposed 
that laboratory chamber experiments that are used to parameterize SOA production may 
already include products from some aging reactions, raising concerns about double counting. 
Although some work has been done to understand the aging of biogenic SOA (Donahue et al., 
2012;Henry and Donahue, 2012)}, future laboratory work needs to be directed in understanding 
the role of aging of OA vapors formed from anthropogenic sources on the mass and properties 
of OA. 
 
For the first time, we compared model predictions to ambient measurements of IVOCs. The new 
VBS-IVOC model better predicted the ambient IVOC concentrations compared to the Traditional 
and VBS models. This suggests that the updated model reasonably simulated the emissions, 
transport and chemistry of IVOCs from mobile sources. However, the model representation of 
IVOCs from non-mobile sources remains poorly constrained and needs to be explored through 
future emissions, laboratory and modeling studies.  
 
Finally, the VBS-IVOC model predicted that mobile sources accounted for 30-40% of the OA in 
southern California, with half of the OA being SOA. The diurnal variation of OA in Pasadena 
supports the hypothesis that substantial OA is produced through photochemical reactions vs. 
primary emissions (Hayes et al., 2013). Gasoline-powered sources contributed 13 times more 
OA than diesel-powered sources and sensitivity simulations indicated that these findings were 
robust to changes in diesel emissions. Model predictions suggested that half of the mobile 
source SOA was formed from the oxidation of IVOCs, which demonstrates the importance of 
including IVOCs as an SOA precursor. However, the relative contribution of VOCs and IVOCs to 
SOA formation was sensitive to the inclusion of aging reactions. While both laboratory and field 
evidence indicate that aging is an important atmospheric process, it is unclear if and by how 
much aging enhances OA over regional scales and whether aging chemistry varies by precursor 
and source (Jathar et al., 2016). For these reasons, the relative importance of VOC and IVOC 
SOA precursors and the source apportionment presented here is a first estimate and will likely 
evolve as we develop better models to simulate the dependence of aging on SOA formation.”.  
 
2. P4, L22: Are the emission profiles of non-road gasoline sources assumed to be the same as 
on-road vehicles tested on the UC cycle? Also how are their emissions rates defined? 
Measurements in European cities in recent years have shown high amounts of SOA are formed 
from small (2- and 4-stroke gasoline engines). How are such emissions characterized for S. 
Cal? 
In this work, we only change the emissions profiles for mobile sources, not the magnitude of the 
emissions. The existing emissions inventory already accounts for the large differences in 
emissions rate between, for example 2-stroke and on-road gasoline sources. The NMOG 
speciation is assumed to be the same for on- and off-road gasoline sources. This assumption is 
supported by the results from May et al. (2014) who show that the NMOG speciation for 2-
stroke off-road gasoline engines was consistent with that of on-road gasoline engines but found 
that the 4-stroke off-road gasoline engines produced more IVOC emissions. We should note 
that May et al. (2014) only quantify the NMOG speciation from a set of eight lawn and garden 
equipment engines, which may not be representative of the diversity found across the off-road 
sector. The on- and off-road equivalence in terms of the NMOG speciation is not a bad 
assumption but may need to be examined in detail by future work.  



 
Emissions rates for off-road sources were calculated using MOVES (Baker et al., 2015). Platt et 
al. (2014) (the study the reviewer seems to be referring to) and Gordon et al. (2013) found that 
the production factors of SOA for 2- and 4-stroke gasoline engines were 2-3 orders of 
magnitude higher than those for light-duty vehicles. However, they showed that most of the 
SOA produced could be explained by the emissions and oxidation of aromatic compounds and 
did not find IVOCs to be an important precursor of SOA.  
 
We have made a note about the points raised in this discussion in the section that talks about 
the gasoline and diesel contributions to OA: “Platt et al. (2014) and Gordon et al. (2013) have 
recently argued that off-road sources, especially those powered using two-stroke engines, can 
be a large contributor to fine particle pollution in cities. In the inventory of Baker et al. (2015), 
which is used in this work, off-road sources contributed to ~40% of the NMOG and ~40% of the 
POA emissions from mobile sources. Given their substantial emissions, it is critical then that 
emissions rates from these sources be accurately represented in large-scale models. Only one 
study so far has reported VOC and IVOC emissions profiles from off-road engines. May et al. 
(2014) have found that two-stroke off-road gasoline engines had similar emissions profiles as 
on-road gasoline engines, but that the four-stroke off-road gasoline engines had much higher 
IVOC fractions than on-road gasoline engines. However, Platt et al. (2014) have shown that 
most of the SOA produced from two-stroke off-road gasolines engines can be explained by the 
emissions and oxidation of aromatic compounds and they did not find IVOCs to be an important 
precursor of SOA. In our work, we have assumed that the VOC speciation, IVOC fraction of 
NMOG, and the SOA parameterization for IVOCs were identical between the on- and off-road 
mobile sources. Given the uncertainties, these assumptions may need to be examined in detail 
in future work. ”. 
 
3. P5, L 38-39: Why are biogenic SOA not aged similarly to other species? 
The reason for not aging biogenic SOA is based on the modeling studies performed by Murphy 
and Pandis (2009) and Lane et al. (2008) where they observe that the aging of biogenic SOA 
results in the over-prediction of OA in the eastern United States. Additionally, Jathar et al. 
(2016) based on the extrapolation of chamber data suggest that aging reactions may double 
count SOA production and over-predict the importance of aging reactions in the atmosphere. 
The laboratory evidence for this is mixed. Donahue et al. (2012) show that OH oxidation of α-
pinene SOA enhances SOA production while Henry and Donahue (2012) show that the OH 
oxidation combined with photolysis of the SOA products can result in destruction of SOA. We 
acknowledge this uncertainty for aging of biogenic (and anthropogenic) SOA in the manuscript: 
“Murphy and Pandis (2009) report improved model performance when aging reactions are 
turned off for biogenic SOA. Recently, Jathar et al. (2016) proposed that laboratory chamber 
experiments that are used to parameterize SOA production may already include products from 
some aging reactions, raising concerns about double counting. Although some work has been 
done to understand the aging of biogenic SOA (Donahue et al., 2012;Henry and Donahue, 
2012)}, future laboratory work needs to be directed in understanding the role of aging of OA 
vapors formed from anthropogenic sources on the mass and properties of OA.”. 
 
4. P6, L2-3: It is mentioned that 10% of POA is shifted to SOA; is that because of POA aging or 
in addition to that? 
The transfer of 10% of the POA mass to the SOA basis set is done as part of the aging 
reactions. The text is edited as follows: “Finally, the aging reactions also shift a portion (~10%) 
of the POA vapors to the anthropogenic SOA basis set to maintain O:C ratios (Koo et al., 
2014).”. 
 



5. Sec 3.1 and Fig 2: How are “episodes” defined? Also are these data limited to the boundary 
layer? Please clarify. 
The word ‘episode’ is used here to define the time period for which the model simulations are 
run. The time period simulated is chosen to coincide with the CalNex measurements. Since the 
word ‘episode’ is not required (and may create confusion), we have dropped it from the 
manuscript and the supporting information. For instance, the caption for Figure 1is edited to: 
“Figure 1: Total emissions from May 4 to June 30, 2010 for POA, BTEX (aromatics), ALK5 (long 
alkanes) and IVOCs for gasoline and diesel sources in the Los Angeles and Orange Counties 
for the three OA models: Traditional, VBS and VBS-IVOC. ”. The data presented in this work in 
Figures 1 through 6 are all limited to the surface/boundary layer to be consistent with the 
measurements.  
 
6. P6, L29: Isn’t OM/OC ratio of 1.6 too low for SOA dominated regions and too high for POA 
dominated regions? Could uncertainties in this ratio also affect the comparison in Fig. 3a? 
We agree with the reviewer that the OM:OC ratio in the atmosphere spans a large range (~1.4-
2.3) and depends on the source, composition, and photochemical age of the OA. This 
uncertainty obviously affects the model-measurement comparison in Figure 3(a). Our choice of 
a value of 1.6 is based on typical values used in the literature to convert filter-based OC 
measurements. This value is consistent with the average OM:OC ratio of 1.7 (with an 
uncertainty of ±30%) calculated by Hayes et al. (2013) from a detailed comparison of AMS 
based OA measurements with filter based OC measurements at Pasadena. We edit the 
manuscript to improve the discussion around the use of the 1.6 value: “The CSN measurements 
need to be multiplied by an OM:OC ratio to account for the non-carbon species associated with 
organic carbon (Turpin and Lim, 2001). While ambient OM:OC ratio vary from 1.4 and 2.3 
(Aiken et al., 2008), we use a constant value of 1.6 in this work based on previous estimates 
used for filter-based measurements (e.g., (Cappa et al., 2016)). This value is consistent with the 
OM:OC ratio of 1.7±0.5 estimated by Hayes et al. (2013) in Pasadena.”.  
 
7. Fig 4. It is surprising the total POA from gasoline is more than that of diesel. Based on fuel-
based emission factors of POA (Ban Weiss et al. 2008) and fuel use data, one expects the 
reverse. Are the emission factors used in this study significantly different than Ban Weiss et al.? 
 
The reviewer is correct. If one uses the emission factor and POA:BC ratios for PM2.5 from Ban-
Weiss et al. (2008) for gasoline and diesel on-road sources (0.07 and 1.4 g kg-fuel-1 and 0.71 
and 2 respectively) and combines it with fuel use in the Los Angeles and Orange counties 
(46,000 tons day-1 of gasoline and 5,300 tons day-1 of diesel), we get POA emissions of 1.9 and 
2.5 tons day-1 for on-road gasoline and diesel sources respectively. In our work POA emissions, 
which are consistent with emissions from the EMFAC mobile source inventory for 2010, are 3.9 
and 2.0 tons day-1 for on-road gasoline and diesel sources respectively. This indicates that the 
on-road gasoline POA in our work is a factor of 2 higher than that estimated using the Ban-
Weiss et al. (2008) data. If we use the findings from Ban-Weiss et al. (2008), the mobile POA 
fraction in Figure 4 will be reduced and deteriorate the comparison with the measured HOA 
fraction. However, the Ban-Weiss et al. (2008) data will not dramatically change the conclusions 
made from Figure 6 about the gasoline and diesel contributions to OA. We add  the following 
sentence to address this comment: “Comparison of the POA predictions from the VBS-IVOC 
model to ambient measurements made by Ban-Weiss et al. (2008) suggests that the on-road 
gasoline POA in the model may be over-predicted by a factor of 2, although this under-
prediction does not significantly change the gasoline/diesel contribution to OA.”.  
 
 



8.P8, L20: Since absolute amounts of the predicted IVOCs are in fact half of the measured 
values, why the emission ratios of IVOCs were not adjusted to match the measurements? 
Couldn’t this also be the reason why the predicted OA is so much lower than the HR-AMS 
values in Pasadena (P7, L40)? Related to this, with the additional amounts of IVOCs in runs 
summarized in Figure 6a, how does the OA comparison with the Pasadena measurements 
look? 
We thank the reviewer for this comment since it led us to refine and simplify our analysis. Our 
initial thought was that the spatial resolution of the model at 4 km probably dispersed the 
pollutants too much and was insufficient to simulate the absolute concentrations at the 
Pasadena ground site where the CalNex measurements were made. We therefore ratioed the 
IVOC measurements with CO for the model evaluation to account for the effects of dispersion. 
However, the correct quantity to compare, as others have used in the past (Woody et al., 2016), 
is the ratio of IVOC to ΔCO. However, as Woody et al. (2016) have pointed out, the ΔCO 
predictions are a factor of two to low compared to the ΔCO measurements and could mean that 
the CO emissions in the model might be a factor of two too low. We should note however, that 
the daily-averaged CO mixing ratios are only about 25% lower than the measurements at 
Pasadena. Since the intent here is to evaluate the IVOC concentrations and not evaluate the 
model’s ability to predict CO (an under-prediction in CO does not necessarily suggest an under-
prediction in non-methane organic gas (NMOG) emissions, a fraction of which – for combustion 
sources – is assumed to be IVOCs), we replot Figure 5 (see below) with absolute 
concentrations of IVOCs. While the total IVOC concentrations are under-predicted by ~35%, the 
new presentation of the data does not change the conclusions made in the manuscript. The text 
is edited based on the above-mentioned changes as follows: “Gasoline and diesel IVOC 
concentrations (3.9 µg m-3) from the VBS-IVOC model were 35% lower when compared to the 
hydrocarbon IVOCs concentrations measured by Zhao et al. (2014) (6 µg m-3). In contrast 
predictions from the VBS model are a factor of 4 lower than the measurements, which highlights 
the improved representation of IVOCs in the VBS-IVOC model. The under-prediction of VBS-
IVOC could partly be a result of the inability of the model with a 4 km horizontal resolution to 
capture the location-specific concentrations at Pasadena. The model-measurement comparison 
suggests that the VBS-IVOC model reasonably simulates the emissions, transport and 
chemistry of IVOCs from mobile sources. Furthermore, the VBS-IVOC model predicts that the 
majority of the hydrocarbon IVOCs originate from gasoline sources. Coincidentally, the 
predicted IVOC sum for other anthropogenic sources and biomass burning (4.3 µg m-3) 
compared well with the measured oxygenated IVOCs (4.1 µg m-3).”.  
 
The additional amounts of IVOCs were only added for diesel-powered sources in Figure 6(a) to 
examine the sensitivity of IVOC emissions estimates on the gasoline-diesel OA split. Since all of 
these simulations only marginally change the diesel OA contribution, these would not have any 
effect on the model-measurement comparison in Figure 3b. This point is discussed in the 
Section Discussion on Gasoline versus Diesel OA: “A factor of 5 increase in IVOC emissions 
only results in a 0.025 µg m-3 increase in total OA mass concentration. Therefore, uncertainty in 
the diesel IVOC emissions does not appear to alter the model-measurement comparison 
discussed earlier.”. 
 



 
Figure 5: Comparison of predicted and measured campaign-averaged IVOC concentrations at 
the Pasadena ground site. Measured concentrations are from Zhao et al. (2014). Here, both 
model predictions and measurements only include primary IVOCs. The predictions of IVOCs 
also include primary vapors in equilibrium with POA.  
 
9. P11, L10-13: Is the low-NOx regime expected to be present downwind, i.e., in Inland Empire 
or just over the ocean? Measurements over the land in S. Cal usually show NO levels at �100s 
of pptv which is much higher than the threshold for low-NOx conditions, given typical HO2 
mixing ratios. Because of this, I don’t think low-NOx conditions are common in S. Cal and 
therefore applying only the high-NOx SOA yields to VOCs/IVOCs should not change total SOA 
formation. 
We agree with the reviewer that when considering the precursor contributions at Pasadena, the 
NOx dependence probably does not help explain differences between the 3D model predictions 
from this work and the box model predictions from (Jathar et al., 2014). This is because the NO 
levels are probably high enough that most of the SOA formation proceeds through the high NOx 
pathway. We thank the reviewer for this comment and we edit the text to only consider the effect 
of aging to explain the difference in the 3D and box model results: “Figure 6(a) resolves the OA 
contributions based on the precursor class at the Pasadena site. The VBS-IVOC model predicts 
that IVOCs, particularly from gasoline vehicles, form almost as much SOA as VOCs (long 
alkanes and single-ring aromatics). This is in contrast to Jathar et al. (2014), who found that 
unspeciated precursors (or IVOCs) were approximately a factor of 4 larger than VOCs in 
forming SOA in chamber experiments. One possible explanation for this difference is that Jathar 
et al. (2014) did not account for the effects of continued aging of IVOC oxidation products on OA 
concentrations”. 
 
10. Minor comments: P3, line 9 and P5, L31 miss references  
Those references were accidently added by EndNote. They have been removed.  
 
P6, L28: Mention that HR- AMS measurements were made in Pasadena.  
We modify the sentence to mention Pasadena: “Figure 3(b) compares predictions of daily-
averaged OA concentrations to measurements made using a high-resolution aerosol mass 
spectrometer (HR-AMS) in Pasadena (Hayes et al., 2013)”.  
 
Fig 3: Define in the caption what f.b. and f.e refer to.  



The following text is added to the caption: “f.b. is the fractional bias (!"
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"
*+! ); P is the predicted value, M is the measured value and N is the 

sample size.”.  
 
11. P7, L27-28: remove “in” from “note that in the VBS model. . ..” and remove () around Woody 
et al. 
The text is corrected. 
 
12. P7, L31-33: sentence is unclear and needs to be rephrased 
We revise the sentence to: “It is unclear if the predicted non-mobile, non-cooking and non-
biomass burning POA (which in Pasadena accounts of ~9% of the OA) should be added to the 
SOA predictions before being compared with the OOA factor derived from the ambient tdata. 
The non-mobile, non-cooking and non-biomass burning POA (or anthropogenic (other) POA) 
category here includes sources such as stationary fuel combustion (e.g., natural gas 
combustion), surface coatings (e.g., metal coating), mineral processes (e.g., concrete 
production), road dust and managed burning (e.g., prescribed burns).”.  
 
13. P9, L 19: add on: “. . .limited effect ON the SOA burden “. 
The text is corrected. 
 
Reviewer 2 
 
This manuscript incorporated new experimentally derived inputs to improve the simulation of OA 
in southern California in the CMAQ model. The authors focused primarily on treatments of 
intermediate volatility organic compounds (IVOC) from gasoline and diesel sources, 
implementing updated estimates of emissions and updated parameterizations of SOA formation. 
They evaluated the simulated results against measurements during the CalNex campaign. 
Overall, the authors found the updated model performed well at reproducing the (CSN) 
observed bulk OA concentrations at several locations in S. California. The updated model 
significantly underestimated OA concentrations when compared to HR-AMS measurements at 
Pasadena. However, the updated model showed significant improvement at reproducing the OA 
composition and IVOC compositions at Pasadena. Model simulations showed that gasoline 
sources contribute about much more OA then diesel sources do due to the former’s much larger 
SOA production. They showed that this conclusion is robust, even when the uncertainty in 
diesel IVOC emissions is considered. In my view, this paper represents a good step in 
improving model representation of SOA formation under the VBS framework. Many current 
models use VBS, but the inputs to these models are highly uncertain, particularly for IVOC 
emissions and chemistry. I think the authors did a nice job at incorporating as much new 
experimentally-derived inputs as possible into their VBS model. The result is an updated, useful, 
and at least partially validated, model that the community can continue to build on. I recommend 
publication after minor revision. 
 
1. Abstract: "The updated model, despite substantial differences in emissions and chemistry, 
performs similar to a recently released research version of CMAQ." This sentence is unclear. 
What is the "research version of CMAQ"? I assume it is the CMAQ used by Woody et al., 
without updated treatments to IVOC? 
Yes, the reviewer is correct and we edit the abstract to be more clear: “The updated model, 
despite substantial differences in emissions and chemistry, performed similar to a recently 



released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC 
and IVOC emissions and SOA data.”.  
 
2. Figure 3: Are there CSN measurements at Pasadena that can be compared to the HR- AMS 
measurements? Also, why not compare model results to PMF analysis of the AMS 
measurement? I see this is done as a campaign average in Figure 4. But perhaps doing this 
comparison in Figure 3b would shed lights on why the high concentration days were more 
severely underestimated by the model. Might be worth a try. 
Unfortunately, there are no CSN sites in or near Pasadena. However, there were co-located 
filter measurements performed by research groups other than those using the HR-AMS at 
Pasadena. Hayes et al. (2013) perform a comprehensive comparison of the HR-AMS data 
against the filter measurements (described in the supporting information) and find that the HR-
AMS data were generally consistent with the filter measurements and there was no indication 
that the HR-AMS data are over-estimating OA mass concentrations. Woody et al. (2016) 
compare hourly-averaged model predictions from CMAQ against PMF factors from the HR-AMS 
data and make the following conclusions: (i) cooking OA concentrations compare well with 
AMS-COA during the morning but are under-predicted in the afternoon and late night, (ii) non-
cooking POA concentrations compare well with AMS-HOA but are under-predicted during the 
afternoon, and (iii) predicted SOA concentrations capture diurnal trends in OOA but are 
consistently a factor of 5 lower during all times of the day. Since the model predictions of OA 
mass concentrations and diurnal profiles in this work did not change dramatically when 
compared to Woody et al. (2016), the findings described earlier apply here. We add a short 
discussion about this in the text: “Before discussing the normalized composition predicted by the 
VBS-IVOC model, we briefly describe the findings from Woody et al. (2016) who carefully 
compared the predictions of absolute concentrations of the VBS model to the PMF factors 
estimated from the ambient HR-AMS measurements. Woody et al. (2016) found that (i) the 
predicted cooking-related OA concentrations compared well with the COA factor during the 
morning but were low in the afternoon and late night, (ii) non-cooking POA concentrations 
compared well with the HOA factor except during the afternoon when it was underpredicted, and 
(iii) predicted SOA concentrations match the diurnal profile of the OOA factor but were but was 
a factor of 5 lower during all times of the day.”.  
 
3. Minor comments: There seems to be problems with the insertion of some citations (e.g., page 
5, line 31 ’ENREF_20’). 
The citations is fixed in the revised manuscript. 
 
4. Figure S3: The caption should read "Comparison of campaign-averaged predictions of the 
VBS model of Woody et al. (2016) and VBS-IVOC model". 
The text is corrected in the revised supporting information.  
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Abstract. Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. 10 

They emit both primary particulate matter and precursor gases that react to form secondary particulate matter 

in the atmosphere. In this work, we updated the organic aerosol module and organic emission inventory of a 

three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using 

recent, experimentally-derived inputs and parameterizations for mobile sources.  The updated model includes 

revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol 15 

(SOA) formation from unspeciated intermediate volatility organic compounds (IVOC).  The updated model 

was used to simulate qualityin southern California during May and June 2010 when the California Research 

at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the traditional 

version of CMAQ, which is commonly used for regulatory applications, the updated model did not 

significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve 20 

predictions of OA sources and composition (e.g., POA-SOA split), and ambient IVOC concentrations. The 

updated model, despite substantial differences in emissions and chemistry, performed similarly to a recently 

released research version of CMAQ (Woody et al., 2016) that did not include VOC and IVOC updates. 

Mobile sources are predicted to contribute 30-40% of the OA in southern California (half of which is SOA), 

making mobile sources the single largest source contributor to OA in southern California. The remainder of 25 

the OA is attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic 

sources contributing less than 5% to the total OA. Gasoline sources are predicted to contribute about thirteen 

times more OA than diesel sources; this difference is driven by differences in SOA production. The model 

predictions highlight the need to better constrain multi-generational oxidation reactions in chemical transport 

models. 30 
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1 Introduction 

Organic aerosol (OA) is a major component of atmospheric fine particulate matter (Jimenez et al., 2009). 

Source apportionment studies have historically attributed the majority of ambient OA in Southern California 

to motor vehicles emissions (Schauer et al., 1996), but analysis of data from the California Research at the 

Nexus of Air Quality and Climate Change (CalNex) study has led to conflicting conclusions about the overall 5 

contribution of motor vehicles to OA in southern California and the relative importance of gasoline versus 

diesel sources. Bahreini et al. (2012) hypothesized that the majority of OA in southern California was 

secondary organic aerosol (SOA) formed from emissions from gasoline powered-sources based on 

differences in weekday and weekend pollutant concentrations; Hayes et al. (2013) and Zotter et al. (2014) 

reached the same conclusion based on analysis of mass spectrometer and radiocarbon data respectively. In 10 

contrast, Gentner et al. (2012) concluded that diesel vehicles contributed more OA than gasoline vehicles 

based on a comprehensive speciation of SOA precursors present in gasoline and diesel fuels. Ensberg et al. 

(2014) proposed that observed levels of OA could be explained only if vehicle emissions were a minor source 

of SOA or that the SOA formation potential of vehicle emissions was significantly higher than that measured 

in laboratory studies. Finally, source-resolved chemical transport model (CTM) simulations predict that 15 

gasoline sources contribute approximately twice as much POA as diesel sources in southern California 

(Woody et al., 2016).  

 

Research and regulatory efforts have historically focused on emissions of primary organic aerosol (POA) but 

recently the attention has shifted to secondary organic aerosol (SOA) since appears to dominate OA mass 20 

concentrations even in urban areas. Typical CTM treatments of OA assume non-volatile POA emissions and 

formation of SOA from “traditional” precursors (Carlton et al., 2010), which are speciated volatile organic 

compounds (VOCs) such as alkanes smaller than C12,single-ring aromatics, isoprene and mono- and 

sesquiterpenes. Robinson et al. (2007) proposed a new conceptual model for emissions and evolution of OA 

from combustion sources. Robinson et al. (2007) and subsequent work has demonstrated that: (1) POA 25 

emissions are semi-volatile and reactive (Grieshop et al., 2009;Huffman et al., 2009;May et al., 2013a;May 

et al., 2013b, c), (2) combustion sources emit substantial amounts of intermediate volatility organic 

compounds (IVOCs) that are efficient SOA precursors (IVOCs are higher carbon number species (C12+) that 

are difficult to speciate using traditional gas-chromatography mass-spectrometry techniques due to the very 

large number of constitutional isomers and/or polarity of partially oxidized species (Jathar et al., 2014;Presto 30 

et al., 2011;Zhao et al., 2015;Hatch et al., 2015)) and (3) semi-volatile organic vapors in equilibrium with 

OA photo-chemically react or “age” in the atmosphere to form additional SOA (Miracolo et al., 2010). Recent 

state-of-the-science OA models have included these three processes, which improve model performance 
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(Murphy and Pandis, 2009;Koo et al., 2014). These improvements, however, require simultaneous inclusion 

of all the above-mentioned processes; for example, inclusion of semi-volatile POA without SOA formation 

from IVOCs and aging reactions degrades model performance vis-à-vis total OA mass.  However, the inputs 

required to represent these three processes are poorly constrained. For example, IVOC emissions from all 

sources are often assumed to be 1.5 times the POA emissions (Robinson et al., 2007;Shrivastava et al., 5 

2008;Koo et al., 2014;Woody et al., 2016), based on measurements from two medium duty diesel vehicles 

(Schauer et al., 1999). New experimental data are needed to better constrain these processes. 

 

Recently, a series of experiments investigated the SOA formation from gasoline vehicles, diesel vehicles and 

small off-road engines recruited from the California in-use fleet (Gordon et al., 2014a;Gordon et al., 10 

2014b;Gordon et al., 2013). Jathar et al. (2014) analyzed these data to derive quantitative estimates of the 

IVOC emissions and their potential to form SOA after several hours of atmospheric oxidation. Here, we use 

the term IVOCs to represent the class of intermediate-volatility SOA precursors that remain unresolved at 

the molecular level using conventional GC-MS techniques; Jathar et al. (2014) referred to these as 

unspeciated organic compounds. We use the term VOCs to include the class of SOA precursors typically 15 

speciated using conventional GC-MS techniques (e.g., alkanes smaller than C12 and single-ring aromatics). 

Jathar et al. (2014) derived separate parameterizations to account for SOA formation from IVOC emissions 

from gasoline and diesel sources for use in CTMs.  

 

In this work, we use an updated version of CMAQ to simulate ambient OA from gasoline and diesel sources 20 

in southern California.  The updates include new mobile source emissions profiles for VOCs (based on May 

et al. (2013b) and May et al. (2013c)) and include emissions and parameterizations for SOA production from 

IVOCs (based on Jathar et al. (2014)).  . Model predictions are evaluated using data collected during CalNex, 

compared to predictions of other models, and used to investigate the contribution of gasoline and diesel 

sources to ambient OA concentrations. This is the first time that a comprehensive set of gasoline and diesel 25 

source data have been used to develop source-specific IVOC inputs for a three-dimensional CTM. Earlier 

modeling efforts have relied on data that are almost a decade old (e.g., Koo et al. (2014)) and/or have used 

box models that may not accurately simulate horizontal and vertical transport and deposition (e.g., Hayes et 

al. (2015)). Hence, our work presents a step forward in improving the representation of sources, emissions 

and photochemical production of OA in large-scale models.  This paper builds upon recent work by Baker et 30 

al. (2015) and Woody et al. (2016) who used different versions of CMAQ to simulate OA in California during 

May and June 2010. 
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2 Methods 

In this section, we provide a brief overview of CMAQ followed by more detailed descriptions of the OA 

model and emissions. 

2.1 Chemical Transport Model 

The CMAQ model version 5.0.2 was used to simulate air quality in California from May 4 to June 30, 2010, 5 

which coincides with the CalNex campaign (May–July 2010). Details about the application of this version to 

CalNex can be found in Baker et al. (2015) and Woody et al. (2016). Briefly, the model domain covered 

California and Nevada with a 4-km (317 x 236) grid resolution (Figure S.1). The vertical domain included 

34 layers and extended to 50 mbar. Atmospheric gas-phase chemistry was simulated with the Carbon Bond 

2005 (TUCL05) chemical mechanism (Yarwood et al., 2005;Whitten et al., 2010;Sarwar et al., 2012). 10 

Aerosol chemistry and partitioning was simulated using the aerosols 6 (AERO6) module with different 

models to represent OA (described below). United States anthropogenic emissions were based on the EPA’s 

2011v1 modeling platform (http://www.epa.gov/ttnchie1/net/2011inventory.html) and biogenic emissions 

were estimated using the Biogenic Emission Inventory (BEIS) version 3.14 model (Carlton and Baker, 2011). 

Gridded meteorological inputs for CMAQ and SMOKE were generated using version 3.1 of the WRF model 15 

(Skamarock et al., 2008). The first 11 days of the simulation were excluded from the analysis to minimize 

the influence of initial conditions. Boundary conditions were provided by a 36-km continental U.S. CMAQ 

simulation from the same time period.  

2.2 OA Model 

The OA model used here builds on the volatility basis set (VBS) implementation in CMAQ (Koo et al., 2014) 20 

and is referred to as the VBS-IVOC model. The novel aspects of this work are the implementation of updated 

organic emissions profiles that explicitly account for IVOC emissions from gasoline and diesel sources and 

experimentally constrained parameterizations of Jathar et al. (2014) for the SOA production from these 

emissions. 

 25 

In the VBS-IVOC model, we extend the work of Baker et al. (2015) and Woody et al. (2016), both of which 

evaluated different OA models in CMAQ using the CalNex data. Baker et al. (2015) evaluated the standard 

OA module in CMAQ (Carlton et al., 2010). Woody et al. (2016) evaluated the VBS version of CMAQ as 

implemented by Koo et al. (2014), which treats POA emissions as semi-volatile and reactive treatment and 

accounts for SOA production from VOCs and IVOCs and their multigenerational oxidation or aged products. 30 

The VBS-IVOC model is the same as the VBS model of Woody et al. (2016) except for the treatment of 

gasoline and diesel sources. To facilitate direct comparison between the different models, all three studies 
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(this work, Baker et al. (2015) and Woody et al. (2016)) use the same CTM (CMAQ v5.02), emissions 

inventory (except for the modifications described below) and meteorology inputs.  However, Baker et al. 

(2015) used a different gas-phase chemical mechanism (SAPRC07b). We refer to the Baker et al. (2015) 

treatment of OA and the model results as the ‘Traditional’ model and we refer to the Woody et al. (2016) 

treatment of OA and the model results as the ‘VBS’ model. 5 

 

The VBS version of CMAQ includes four distinct volatility basis sets to separately track different classes of 

OA: anthropogenic POA, anthropogenic SOA, biogenic SOA, and biomass burning POA (Koo et al., 2014). 

The VBS-IVOC model extends CMAQ with three additional basis sets for POA from gasoline sources, diesel 

sources, and cooking activities to provide POA source apportionment (Woody et al., 2016). Each basis set 10 

has five volatility bins with different effective saturation concentrations (C*): non-volatile and 

logarithmically distributed bins from 100 to 103 µg m−3 at 298 K. The gas-particle partitioning of semi-volatile 

organic compounds in each basis set is assumed to be in equilibrium and to form a quasi-ideal solution with 

all of the OA. 

 15 

Emissions: In the VBS-IVOC model, we use emission inventories developed by Baker et al. (2015) and 

modified by Woody et al. (2016) for use with the VBS model. In this section we briefly describe the VBS 

inventory of Woody et al. (2016), focusing on the updates to gasoline and diesel organic emissions used in 

the VBS-IVOC model.  

 20 

We (in the VBS-IVOC model) and Woody et al. (2016) use the same semi-volatile POA emissions. These 

were estimated by redistributing the non-volatile POA emissions of Baker et al. (2015) into the VBS. For 

gasoline and diesel exhaust and biomass burning, this redistribution is done using the source-specific 

volatility distributions of May and coworkers (May et al., 2013b, c;May et al., 2013a). Cooking emissions 

were redistributed using an approximation developed by Woody et al. (2016) based on thermodenuder 25 

measurements made with cooking emissions and ambient measurements made during MILAGRO (Huffman 

et al., 2009). For all other sources, the volatility distribution of Robinson et al.(Robinson et al., 2007) was 

used to map the existing POA emissions into the VBS.  

 

In the VBS-IVOC model, we use new VOC speciation profiles for tailpipe emissions from gasoline and diesel 30 

sources (Table S.1). These speciation profiles are applied to the emissions inventory of Baker et al. (2015). 

Therefore, the VBS-IVOC model has the same mobile source emission rates as Baker et al. (2015) but with 

different organic speciation. For all gasoline sources (on and off-road), the VOC speciation is based on fleet-
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averaged data from May et al. (2014), which reports emissions of 202 unique species measured during chassis 

dynamometer testing of 68 light-duty gasoline vehicles operated over the Cold Unified Cycle (UC) using 

gasoline that met California summertime specifications (five of the vehicles were also run on the Freeway, 

Arterial and Hot UC cycles). For on- and off-road diesel vehicles, the VOC speciation is derived from the 

EPA SPECIATE profile for on-road heavy-duty diesel vehicles (Profile number 8774); the same diesel 5 

emissions profile is used in Baker et al. (2015) and Woody et al. (2016). All VOCs are mapped to CB05 

model species using EPA’s speciation tool, which lumps unique organic compounds to a representative model 

species that are similar in terms of  based on reactivity and reaction chemistry (Eyth et al., 2006;Carter, 2008). 

 

For gasoline and diesel sources, we estimate the IVOC emissions in the VBS-IVOC model based on the gas-10 

phase carbon-balance analysis of Jathar et al. (2014), who found that unspeciated organic compounds 

(assumed to be mainly IVOCs) contributed, on average, 25% and 20% of the non-methane organic gas 

(NMOG) emissions from gasoline and diesel vehicles respectively. IVOCs are included in the VBS-IVOC 

model by reapportioning the existing non-methane organic gas (NMOG) emissions between VOCs and 

IVOCs (effectively renormalizing the VOCs described above). Therefore, unlike previous VBS models such 15 

as Woody et al. (2016) where IVOC emissions are added to the NMOG emissions, no new NMOG emissions 

are added to the model for the gasoline and diesel sources. In addition, gasoline and diesel POA emissions in 

the C* bins of 103 and 104 µg m-3 (organic compounds that exist in the vapor phase in the atmosphere; 32% 

of gasoline and 35% of diesel POA emissions) are reclassified as IVOCs, consistent with the parameterization 

of Jathar et al. (2014).  20 

 

Following Robinson et al. (2007), IVOC emissions for all other sources (non-gasoline and diesel) were 

assumed to be 1.5 times the POA emissions (Woody et al. (2016) assumed this for all sources). Some of the 

IVOCs, as defined here, may already be included in the original emissions profile as ALK5 and UNK, 

however, Pye and Pouliot (2012) show that these emissions are very likely underestimated and, therefore, do 25 

not pose a serious problem of double counting SOA precursors.  

 

To illustrate the effects of these changes, Figure 1 plots the POA and SOA precursor emissions (BTEX (all 

aromatics), ALK5 (long alkanes) and IVOCs) from all gasoline and diesel sources in Los Angeles and Orange 

counties aggregated over the entire simulation period (May 4 to June 30, 2010). Table S.2 in the 30 

supplementary material lists the emissions for on- and off-road gasoline and diesel use, all other sources, and 

biogenic sources. Here, gasoline and diesel sources include both on- and off-road applications. 
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The magnitude of the POA emissions is identical between all three models with the exception that some of 

the POA emissions are reclassified as IVOCs in the VBS-IVOC model as described earlier. The BTEX 

emissions are identical between the Traditional and VBS models, but lower in the VBS-IVOC model because 

we have renormalized the NMOG emissions to account for IVOCs. The Traditional model does not include 

IVOC emissions. The IVOC emissions in the VBS-IVOC model are a factor of four higher for gasoline 5 

sources than in the VBS model of Woody et al. (ref), but 20% lower for diesel sources. Taken together, the 

BTEX, ALK5 and IVOC emissions (sum of all anthropogenic SOA precursors) are somewhat higher (40%) 

in the VBS-IVOC model compared to the VBS model for gasoline sources and slightly lower (5%) for diesel 

sources. Therefore, discounting for differences in reaction rate constants and SOA mass yields, we expect 

roughly similar SOA production from gasoline and diesel sources between the VBS and VBS-IVOC 10 

simulations. In all models, gasoline sources have substantially larger organic emissions than diesel sources 

(e.g. 3.7, 42, 35 and 16 times more POA, BTEX, ALK5 and IVOC for the VBS-IVOC model, respectively); 

therefore we anticipate much higher SOA production from gasoline sources than from diesel sources. 

 

SOA formation: SOA production from VOCs is simulated using the parameterizations of Murphy and 15 

Pandis (2009) except for toluene (Hildebrandt et al., 2009). SOA production from aromatics (toluene, xylene, 

and benzene), isoprene, and monoterpenenes have high- and low-NOx yields; there is no NOx dependence in 

the SOA yield from sesquiterpenes and IVOCs. Emissions profiles for VOCs, IVOCs and their SOA yields, 

specific to gasoline and diesel tailpipe emissions, are presented in Table S.1.  

 20 

IVOC emissions from gasoline and diesel sources are represented separately using two (one for gasoline and 

one for diesel) gas-phase species in the chemical mechanism (CB05-TUCL) and the parameterizations of 

Jathar et al. (2014) are used to estimate the SOA production from the IVOC oxidation. Briefly, the IVOCs 

react with the OH to form a set of semi-volatile products distributed in the VBS (Table S.1). The 

stoichiometric mass yields for each product were determined by fitting the SOA production measured in 25 

smog chamber experiments performed with diluted vehicle exhaust (Jathar et al., 2014). Following Woody 

et al. (2016), for all other sources (i.e. not gasoline and diesel) SOA production from IVOCs is based on the 

published yields for the SAPRC ARO2 model species from Murphy and Pandis (2009). 

 

SOA formed from VOCs and IVOCs is aged via reactions of the organic vapors with OH using a rate constant 30 

of 2 x 10-11 cm3 molecules-1 s-1. These aging reactions form products with a vapor pressure reduced by one 

order of magnitude. Biogenic SOA is not aged. Semi-volatile POA vapors from all sources are aged using 

the scheme of Robinson et al. (2007) – gas-phase reactions with the hydroxyl radical (OH) using a rate 
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constant of 4 x 10-11 cm3 molecule-1 s-1, which lowers volatility by an order of magnitude (Robinson et al., 

2007).  Finally, the aging reaction also shift a portion (~10%) of the particle-phase POA mass to the 

anthropogenic SOA basis set to maintain O:C ratios (Koo et al., 2014).  OH is artificially recycled in the 

IVOC oxidation and all aging reactions to prevent double counting and impacts to the gas-phase chemistry 

of the underlying chemical mechanism (Koo et al., 2014).  The rate constants used for the aging reactions is 5 

not well constrained and likely with C* and O:C.   

3 Results 

Although the simulation domain covers the entire state of California, we focus our analysis on model 

predictions over southern California and the metropolitan area of Los Angeles. This region is the second most 

populated area in the US, has historically had severe air pollution problems, and was the focus of a major air 10 

quality campaign (CalNex) during the simulation period.  

3.1 Spatial distribution of OA 

Figure 2 shows maps of average predicted concentrations of total OA (POA+SOA) from the VBS-IVOC 

model for the following sources: (a) all, (d) gasoline, (e) diesel, (f) biogenic and (g) other. In addition, Figure 

2 also plots the predicted ratios of (b) POA to OA and (c) SOA to OA. Average predicted concentrations of 15 

OA in southern California range between 1.5 and 3 µg m-3 with POA accounting for slightly more than half 

of the OA in source regions such as downtown Los Angeles (a ‘source’ region is defined as one with high 

anthropogenic emissions of species such as POA) and SOA dominating in non-source regions and off the 

coast.  

 20 

Gasoline sources are predicted to contribute ~35% of the inland OA while diesel sources contribute less than 

3% (for details see Section 4). The predicted gasoline OA exhibits a slightly different spatial pattern than 

total OA, with higher downwind concentrations near Riverside than those near central Los Angeles, reflecting 

the importance of atmospheric production of SOA. As expected, biogenic SOA is more important outside of 

the urban areas contributing 5% of total OA in urban areas versus 10-20% in non-urban. Other OA contributes 25 

slightly more than half of all OA in the urban areas. Other OA is dominated by cooking POA, biomass 

burning POA and other anthropogenic SOA (see Figure 4 for contributions of these sources in Pasadena).  

3.2 Model Evaluation Using OA Mass and Composition Measurements 

The VBS-IVOC model was evaluated using measurements made at the Chemical Speciation Network (CSN) 

and the CalNex Pasadena ground sites. Figure 3(a) compares predicted daily-averaged OA mass 30 
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concentration to measurements of organic carbon (OC) made at six CSN sites in California (Fresno, 

Bakersfield, Central Los Angeles, Riverside, El Cajon and Simi Valley). Figure 3(b) compares predicted 

daily-averaged OA concentrations to measurements made using a high-resolution aerosol mass spectrometer 

(HR-AMS) in Pasadena (Hayes et al., 2013). The CSN measurements need to be multiplied by an OA:OC 

ratio to account for the non-carbon species associated with organic carbon (Turpin and Lim, 2001). While 5 

ambient OA:OC ratios can range between 1.4 and 2.3 (Aiken et al., 2008), we use a value of 1.6 in this work 

based on previous estimates used for filter-based measurements (e.g., (Cappa et al., 2016)). This value is 

consistent with the OA:OC ratio of 1.7±0.5 estimated by Hayes et al. (2013) in Pasadena.  

 

Predictions from the VBS-IVOC model are slightly lower than the filter-based measurements at the CSN 10 

sites, similar to other studies (Simon et al., 2012). The fractional bias and fractional error versus CSN sites 

are -23% and 43%, respectively. At the CSN sites, predictions from the VBS-IVOC model are marginally 

better at the southern California sites (Central LA, Riverside, El Cajon, Simi Valley, Pasadena) than the 

central California sites (Fresno, Bakersfield). This may be due to sources related to oil and gas production 

and agricultural activity being more important in central California (Gentner et al., 2014). 15 

 

Figure 3(b) indicates predictions from the VBS-IVOC model are a factor of three lower than the HR-AMS 

OA data at the Pasadena site. It is unclear why the model performs much better at numerous CSN sites than 

the Pasadena site. One possibility is that the Pasadena site is influenced by local sources and transport that is 

not captured by the model at a 4 km resolution.  20 

 

OA mass concentrations are only one measure for evaluating model performance. Given the myriad sources 

of and complexity in SOA production, a model can predict the right absolute OA concentration for the wrong 

reason. Therefore, it is important to evaluate the model against OA composition. Figure 4 compares predicted 

POA and SOA mass fractions to results from a positive matrix factorization (PMF) analysis of HR-AMS 25 

measurements made in Pasadena (Hayes et al., 2013). Since the absolute OA concentrations as measured 

with the HR-AMS are under-predicted (Figure 3(b)), we  focus on OA mass fractions. Mass fractions only 

allow for a qualitative comparison of the OA composition and any differences in the modeled and measured 

mass fractions cannot be interpreted as an under- or over-prediction in the absolute mass concentration.  

 30 

Figure 4 compares model predictions to hydrocarbon-like OA (HOA), cooking OA (COA) and oxygenated 

OA (OOA) factors derived from the ambient HR-AMS data (Hayes et al., 2013). The AMS HOA factor is 

typically associated with POA from motor vehicles and other fossil fuel sources. Therefore, in this work, it 
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is compared against predictions of POA from gasoline and diesel sources. The AMS COA factor is associated 

with primary cooking emissions and is compared against predictions of POA from cooking sources. The 

AMS OOA factor is associated with SOA and is compared against predictions of total SOA; the model did 

not resolve SOA by degree of oxygenation and hence we have not compared predictions to the individual 

HR-AMS-derived semi-volatile OOA (SV-OOA) and low-volatility OOA (LV-OOA) factors.  5 

 

Before discussing the normalized composition predicted by the VBS-IVOC model, we briefly describe the 

findings from Woody et al. (2016) who carefully compared the predictions of absolute concentrations of the 

VBS model to the PMF factors estimated from the ambient HR-AMS measurements. Woody et al. (2016) 

found that (i) the predicted cooking-related OA concentrations compared well with the COA factor during 10 

the morning but were low in the afternoon and late night, (ii) non-cooking POA concentrations compared 

well with the HOA factor except during the afternoon when it was underpredicted, and (iii) predicted SOA 

concentrations match the diurnal profile of the OOA factor but were but was a factor of 5 lower during all 

times of the day. 

 15 

Figure 4 shows that the VBS-IVOC model better predicts the POA-SOA split than the Traditional model. 

For the VBS-IVOC model, the POA-SOA split is 1:1 versus ~20:1 for the traditional model. The 

measurement-based factor analysis estimates a POA-SOA split of 1:2. For the Traditional model, SOA 

contributes less than 3% of the total OA.  

 20 

In Figure 4, we show that the predicted gasoline+diesel POA fraction compares well with the HR-AMS HOA 

fraction while the predicted cooking POA fraction is over-predicted compared to the HR-AMS COA fraction; 

Woody et al. (2016) hypothesized that the VBS model (which has the same treatment for cooking OA as the 

VBS-IVOC) likely under-predicts cooking POA emissions based on a comparison of absolute cooking OA 

concentrations. For the VBS-IVOC model, about 6% of the OA is from biomass burning while Hayes et al. 25 

(2013) were unable to determine a biomass burning factor in their PMF analysis of ambient data. The SOA 

fraction predicted by the VBS-IVOC model is about 35% lower than the estimated OOA fraction. It is unclear 

if the predicted non-mobile, non-cooking and non-biomass burning POA (which in Pasadena accounts of 

~9% of the OA) should be combined with SOA before being compared with ambient OOA factor. The non-

mobile, non-cooking and non-biomass burning POA (or anthropogenic (other) POA) category here includes 30 

sources such as stationary fuel combustion (e.g., natural gas combustion), surface coatings (e.g., metal 

coating), mineral processes (e.g., concrete production), road dust and managed burning (e.g., prescribed 
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burns). Unfortunately, the composition of the POA emitted from these sources is not well understood and 

needs to be investigated by future work. 

 

Although predictions from the VBS-IVOC model are much better than the Traditional model for the POA-

SOA split and the fractional source contribution/composition of OA, in Figure 3(b) we show that predictions 5 

from the VBS-IVOC model are substantially lower than the absolute concentrations measured by the HR-

AMS. Future research should explore higher resolution simulations (<1 km) for the Los Angeles area, in 

addition to improving estimates of POA emissions (e.g., cooking) and improved representations for SOA 

formation (e.g., higher SOA yields when accounting for vapor wall-losses in chambers). 

3.3 Model Evaluation Using IVOC Measurements 10 

A novel aspect of the VBS models (VBS and VBS-IVOC) is that they track IVOCs, an important class of 

SOA precursors (Jathar et al., 2014). Campaign-averaged predictions of IVOC concentrations are compared 

in Figure 5 against IVOC measurements at the Pasadena ground site made by Zhao et al. (2014).  This is the 

first time 3-D model predictions of IVOCs have been compared against ambient measurements.. The VBS-

IVOC model does not simulate secondary production of IVOC species (for lack of data) and hence the model 15 

predictions in Figure 5 only include primary emissions of IVOCs. The IVOC measurements shown in Figure 

5 are split into two categories: primary and oxygenated. Zhao et al. (2014) attribute the measured primary 

IVOCs to emissions from mobile sources (gasoline+diesel) and oxygenated IVOCs to primary sources and 

those formed in the atmosphere.  

 20 

 Predicted gasoline and diesel IVOC concentrations (3.9 µg m-3) from the VBS-IVOC model are 35% lower 

than the primary IVOC concentrations measured by Zhao et al. (2014) (6 µg m-3).  This suggests that the 

VBS-IVOC model provides a reasonable representation of the emissions, transport and chemistry of IVOCs 

from mobile sources. Furthermore, the VBS-IVOC model predicts that the majority of the primary IVOCs 

originate from gasoline sources.  The under-prediction could partly be a result of the inability of the model 25 

with a 4 km horizontal resolution to capture the location-specific concentrations at Pasadena.  Coincidentally, 

the predicted IVOC for other anthropogenic sources and biomass burning (4.3 µg m-3) compared well with 

the measured oxygenated IVOC (4.1 µg m-3). Given the uncertainty in the model emissions of IVOCs for 

non-mobile sources (POAx1.5), the comparison with oxygenated IVOCs need to be explored in future work. 

 30 

In contrast, predicted IVOC concentrations from the VBS model are a factor of 4 lower than the 

measurements, which highlights the improved representation of IVOCs in the VBS-IVOC model.  The 

traditional model predicts essentially no IVOCs.   
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3.4 Model Inter-comparison for OA 

We compared predictions from the VBS-IVOC model to OA predictions from Baker et al. (2015) and Woody 

et al. (2016) who simulated air quality in California during CalNex. Figure S.2 presents maps of averaged 

concentrations and ratios of POA, SOA and total OA (POA+SOA) from the Traditional and VBS-IVOC 

models. The results are qualitatively similar to earlier VBS implementations (Fountoukis et al., 2014;Hodzic 5 

et al., 2010;Ahmadov et al., 2012;Shrivastava et al., 2011;Tsimpidi et al., 2009) and previous comparisons 

between VBS and Traditional-like models (Robinson et al., 2007;Shrivastava et al., 2008;Woody et al., 

2016;Jathar et al., 2011). In the VBS-IVOC simulation, total OA concentrations are lower in source regions 

(~50%) but ~20-40% higher away from sources than the Traditional model. The decrease in source regions 

is due to POA evaporation while an increase away from sources results from enhanced SOA production. The 10 

OA predicted by the Traditional model is dominated by POA (1-3 µg m-3) with very little SOA (0.2-0.4 µg 

m-3) while the OA predicted by the VBS-IVOC model has equal proportions of POA and SOA.  

 

Figure S.3 compares predictions of the VBS and VBS-IVOC models, including average concentrations and 

ratios of POA, SOA and total OA (POA+SOA). The results are surprisingly similar. POA concentrations in 15 

the VBS-IVOC model are slightly lower (~10%) in source regions and lower still in non-source regions 

(~20%) than the VBS model. The SOA concentrations are nearly identical and both models predict more 

spatially uniform OA concentrations compared to the Traditional model. The modest differences in POA and 

SOA likely result from a combination of the following three reasons: (1) the magnitude of the total SOA 

precursor emissions in the VBS and VBS-IVOC models are basically the same (see BTEX, ALK5 and IVOC 20 

emissions data in Table S.2 for all sources), (2) gasoline and diesel sources contribute only 30%-40% of the 

predicted OA concentrations in southern California (see Section 5 for a detailed discussion) and (3) a majority 

of the SOA predicted in southern California arises from aging reactions. 

 

Although the VBS and VBS-IVOC models contain very different representations of mobile source emissions, 25 

these emissions contribute, on average, slightly more than one-third of the total OA in southern California 

(see Section 4). Therefore, the updates used in the VBS-IVOC model had a limited influence in affecting the 

overall OA burden. Strict regulations have dramatically reduced emissions from motor vehicles over the past 

three decades, which has both improved air quality and increased the relative importance of other sources 

(McDonald et al., 2015). For example, compared to mobile sources, cooking remains a possibly important, 30 

yet understudied, source of fine particle pollution in urban airsheds. 
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The similarity between predictions from the VBS and VBS-IVOC models is also due to the importance of 

aging reactions. Both models use the same aging scheme applied to POA and SOA vapors (for more details, 

see Koo et al. (2014)) To quantify its contribution to predicted SOA concentrations, we ran the VBS-IVOC 

model with aging reactions turned off; these results are plotted in Figure S.4. Without aging, total predicted 

OA is nearly halved and SOA concentrations are significantly reduced (more than a factor of five in source 5 

regions, factor of 10 to 20 in terrestrial non-source regions and up to a factor of 40 over the ocean). Given 

that mobile sources contribute only about one-third of the total OA and that aging reactions significantly 

enhance OA concentrations, it appears that modest differences in the emissions and yield potential of SOA 

precursors between the VBS and VBS-IVOC models have a limited effect on the OA burden. 

 10 

4 Gasoline versus Diesel Source Contributions to OA 

Recent analyses of the CalNex data have led to conflicting conclusions about the contribution of gasoline 

and diesel sources to OA in southern California (Bahreini et al., 2012;Gentner et al., 2012;Ensberg et al., 

2014;Hayes et al., 2013;Zotter et al., 2014;Hayes et al., 2015). The source-resolution implemented in the 

VBS-IVOC model allows for an assessment of the absolute and relative importance of gasoline and diesel 15 

sources to OA in southern California. In Figure 6, we plot the campaign-averaged OA concentrations 

attributable to gasoline and diesel use. The SOA production from VOCs emitted by gasoline and diesel 

sources was not tracked separately in the model. Here, the SOA from VOCs is estimated based on the 

contribution of gasoline and diesel sources to the emissions of VOC precursors (BTEX and ALK5) in Los 

Angeles and Orange counties.  20 

 

In Pasadena, predictions from both VBS models show that gasoline sources contribute ~7 to 8 times more 

OA than diesel sources (Figure 6(a)), which is somewhat lower than other inland locations in southern 

California (Figure 6(b)). Domain-wide, the predicted gasoline contribution to OA is 10 to 20 times that of 

diesel. At Pasadena, predictions from the VBS-IVOC model show that gasoline contributes 20 times more 25 

SOA than diesel. Both VBS models predict that the combined (gasoline and diesel) POA-to-SOA split is 

~1:3 implying that the contribution of gasoline and diesel sources to ambient OA strongly depends on SOA 

production and not directly-emitted POA. Based on results from the VBS-IVOC model, gasoline sources 

produce more SOA than POA (SOA~3.6xPOA) while diesel sources produce less SOA than POA 

(SOA~0.5xPOA). 30 
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Our predictions of the large contribution of gasoline vehicle exhaust to SOA are consistent with the 

weekday/weekend analysis of Bahreini et al. (2012) and qualitatively similar to the findings of Zotter et al. 

(2014) and Hayes et al. (2013). However, Hayes et al. (2015) predict a much larger contribution of diesel 

sources to SOA than this work (only1.5 to 2 times lower than gasoline), which can mostly be attributed to 

the differences in emissions inputs for S/IVOC emissions. (Hayes et al. (2015) estimate that 44-92% of the 5 

SOA arises from S/IVOCs). Hayes et al. (2015) estimated S/IVOC emissions by scaling POA emissions 

based on Schauer et al. (1999) and using the volatility distribution from Robinson et al. (2007). The POA 

scaling data are from two medium duty vehicles manufactured more than two decades ago and the volatility 

data are from a single diesel engine manufactured a decade ago. In contrast, our work uses a much more 

comprehensive dataset to determine S/IVOC emissions from gasoline and diesel sources. Finally, the 10 

emissions inventory (see Table S.1) suggests that the Traditional model (with a non-volatile POA and little 

SOA productions) would predict that gasoline sources contributes four times more OA than diesel sources. 

 

We also investigated the sensitivity of the VBS-IVOC predictions to uncertainty in diesel IVOC emissions. 

Zhao et al. (2015) recently directly measured the IVOCs from emissions of on-road diesel engines. They 15 

found that IVOCs could contribute up to 60% of the NMOG emissions, which is much greater than the 20% 

used here. To explore the implications of the findings of Zhao et al. (2015), we performed two additional 

sensitivity simulations with the VBS-IVOC model where we scale IVOC emissions from diesel sources by a 

factor of 3 and 5, which are effectively equivalent to IVOC-to-NMOG ratios of 0.6 and 1.0 respectively. For 

these simulations, additional IVOC mass is added to the inventory.  20 

 

Results from the IVOC sensitivity simulations are also shown in Figure 6(a). We find that increasing the 

IVOC emissions proportionally increases the OA contribution from diesel sources. However, even if all of 

the NMOG emissions from diesel are IVOCs (an upper bound estimate), gasoline-related OA still dominates 

OA from diesel sources. A factor of 5 increase in IVOC emissions only results in a 0.025 µg m-3 increase in 25 

total OA mass concentrations and hence does not alter the previously discussed model-measurement 

comparison (Figure 3).  

 

Figure 6(c) shows the cumulative distribution for the fractional contribution of gasoline and diesel sources 

to total OA across southern California. Gasoline sources contribute much more to the total OA (median 30 

contribution of 35%) than diesel sources (median contribution of 2.6%) over southern California (Figure 

6(c)). Together, mobile sources (gasoline and diesel use) contribute ~30-40% (10th-90th percentile) of the 

predicted OA concentration in southern California.  Therefore, mobile sources remain the single most 
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important source despite decades of increasingly strict emissions controls. The balance of the OA is from 

cooking POA (median contribution of 10%), biogenic SOA (median contribution of 10%) and all other 

anthropogenic sources (median contribution of 40%, which includes SOA from cooking sources). Gasoline 

sources are still predicted to be the largest single source category. This finding partially supports the 

conclusion of Ensberg et al. (2014) that mobile sources do not contribute the majority of OA in southern 5 

California and potentially explains why the updates only modestly changed the overall model predictions. 

 

Figure 6(a) resolves the predicted OA concentration into POA and SOA precursor class at the Pasadena site. 

The VBS-IVOC model predicts that IVOCs, particularly from gasoline vehicles, form almost as much SOA 

as VOCs (long alkanes and single-ring aromatics). This is in contrast to Jathar et al. (2014), who found that 10 

IVOCs (referred to as unspecaited organics by Jathar et al.) were approximately a factor of 4 larger than 

VOCs in forming SOA in chamber experiments. One possible reason for this difference is that Jathar et al. 

(2014) did not account for the effects of atmospheric aging of IVOC oxidation products on OA 

concentrations. Simulations with the VBS-IVOC model with aging reactions turned off (discussed in Section 

4.4) indicate that aging enhances VOC SOA by a factor of 14 but enhances IVOC SOA only by a factor of 15 

3-5. The different enhancements is caused by different product distributions for VOC and IVOC SOA in 

volatility space. This underscores the uncertainty in the treatment of aging reactions.  

 

Platt et al. (2014) recently argued that off-road sources, especially those powered using two-stroke engines, 

can be a large contributor to fine particle pollution in cities.  In the inventory of Baker et al. (ref) used here, 20 

off-road sources contributed ~40% of the NMOG and ~40% of the POA emissions from mobile sources. 

Given their substantial emissions, it is critical that these sources be accurately represented in large-scale 

models. Unfortunately, only one study so far has reported VOC and IVOC emission profiles from off-road 

engines. May et al. (2014) found that two-stroke off-road gasoline engines have similar emissions profiles as 

on-road gasoline engines, but that the four-stroke off-road gasoline engines produced higher IVOC fractions 25 

than on-road gasoline engines. In our work, we have assumed that the VOC speciation, IVOC fraction of 

NMOG, and the SOA parameterization for IVOCs were identical between the on- and off-road mobile 

sources. This assumption may need to be examined in detail in future work.  

5 Conclusions 

In this work, we developed an updated version of the CMAQ model that included revised estimates of (i) 30 

VOC and IVOC SOA precursors from gasoline and diesel sources and (ii) experimentally constrained 

parameterizations for SOA production from IVOCs. Predictions of OA mass concentrations from the updated 
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model (VBS-IVOC) slightly under-predicted daily-averaged, filter-based measurements at CSN sites in 

California during May and June 2010 (fractional bias=-23% and fractional error=43%) but were a factor of 

three lower than aerosol mass spectrometer-based measurements made at Pasadena as part of the CalNex 

campaign. We do not know why the model performs so much better at the CSN sites then the Pasadena site. 

One possibility is that the Pasadena site is influenced by local sources and transport not captured with a 4 km 5 

resolution. We recommend future modeling studies to be performed at higher resolution.  

 

When compared to a Traditional model of OA in CMAQ that includes a non-volatile treatment of POA and 

no SOA from IVOCs, the VBS-IVOC model produced different spatial patterns of OA with lower (~50%) 

concentrations in source regions but higher (~20-40%) concentrations away from the sources. In comparison 10 

to the Traditional model, the VBS-IVOC model better predicted the sources and composition of OA. These 

findings are consistent with previous comparisons between Traditional- and VBS- models and highlight the 

importance of the use of an OA model that includes semi-volatile and reactive POA and SOA formation from 

IVOCs.  

 15 

Predictions of OA from the VBS-IVOC model are similar to those from a recently released research version 

of CMAQ (VBS) that included semi-volatile POA and SOA formation from IVOCs (Woody et al., 2016). 

The predictions of these two models were similar for three reasons. First, the VOC and IVOC updates in this 

work, surprisingly, did not substantially alter the total emissions of SOA precursors in southern California 

(although the VOC-IVOC composition was different between the two models for gasoline sources). Second, 20 

mobile sources only accounted for slightly more than one-third of the total OA in southern California and 

hence updates to the emissions and SOA production from mobile sources had a limited influence on the total 

OA burden. And third, and most important, is that both models predict that multigenerational aging of vapors 

in equilibrium with OA is a major source of SOA.  In addition, both models used similar aging mechanisms 

that are conceptually based on the work of Robinson et al. (2007), which assumed a constant reaction rate 25 
constant and only allowed for the formation of functionalized, lower-volatility products. . However, reaction 

rates may vary with C* and O:C of the OA and fragmentation reactions can be increasingly important at 

longer time scales (Kroll et al., 2011). Existing aging mechanisms have not been constrained with laboratory 

data. This implies that the OA predictions, despite the substantial new data, are poorly constrained as one 

moves downwind of source regions. Murphy and Pandis (2009) report improved model performance when 30 
aging reactions are turned off for biogenic SOA. Recently, Jathar et al. (2016) proposed that laboratory 

chamber experiments that are used to parameterize SOA production may already include products from 

some aging reactions, raising concerns about double counting. Although some work has been done to 

understand the aging of biogenic SOA (Donahue et al., 2012;Henry and Donahue, 2012), future laboratory 
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work needs to be directed in understanding the role of aging of OA vapors formed from anthropogenic 

sources on the mass and properties of OA. 
 

 

For the first time, we compared model predictions to ambient measurements of IVOCs. The new VBS-IVOC 5 

model better predicted the ambient IVOC concentrations compared to the Traditional and VBS models,  This 

suggests that the updated model reasonably simulated the emissions, transport and chemistry of IVOCs from 

mobile sources. However, the model representation of IVOCs from non-mobile sources remains poorly 

constrained and needs to be explored through future emissions, laboratory and modeling studies.  

 10 

Finally, the VBS-IVOC model predicted that mobile sources accounted for 30-40% of the OA in southern 

California, with half of the OA being SOA. Gasoline-powered sources contributed 13 times more OA than 

diesel-powered sources and sensitivity simulations indicated that these findings were robust to changes in 

diesel emissions. . The diurnal variation of OA in Pasadena supports the hypothesis that substantial OA is 

produced through photochemical reactions vs. primary emissions.  Model predictions suggested that half of 15 

the mobile source SOA was formed from the oxidation of IVOCs, which demonstrates the importance of 

including IVOCs as an SOA precursor. However, the relative contribution of VOCs and IVOCs to SOA 

formation was sensitive to the inclusion of aging reactions. While both laboratory and field evidence indicate 

that aging is an important atmospheric process, it is unclear if and by how much aging enhances OA over 

regional scales and whether aging chemistry varies by precursor and source (Jathar et al., 2016). For these 20 

reasons, the relative importance of VOC and IVOC SOA precursors and the source apportionment presented 

here is a first estimate and will likely evolve as we develop better models to simulate the dependence of aging 

on SOA formation. 
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Figure 1: Total emissions from May 4 to June 30, 2010 for POA, BTEX (aromatics), ALK5 (long alkanes) and IVOCs for gasoline and 
diesel sources in the Los Angeles and Orange Counties for the three OA models: Traditional, VBS and VBS-IVOC.  

 

 5 
Figure 2: Averaged predictions from the VBS-IVOC model for (a) total OA (µg m-3), (b) POA fraction, (c) SOA fraction, (d) total gasoline 
OA (µg m-3), (e) total diesel OA (µg m-3), (f) biogenic SOA (µg m-3) and (g) other OA (µg m-3) over southern California.  
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Figure 3: Scatter plot of VBS-IVOC OA predictions versus 24-hr measurements from (a) filters collected at sites in the Chemical 
Speciation Network (CSN) and (b) HR-AMS measurements at the Pasadena ground site during the CalNex campaign. In panel (a) the 
model-measurement comparison is for six sites in California (Fresno, Bakersfield, Central Los Angeles, Riverside, El Cajon and Simi 
Valley). f.b. is the fractional bias (!"

#$%
#&%
'

"
()! ) and f.e. is the fractional error (!"

#$%
#&%
'

"
()! ); P is the predicted value, M is the measured 5 

value and N is the sample size. 

 

 
Figure 4: Averaged, normalized composition of OA at the Pasadena ground site as predicted by the Traditional and VBS-IVOC models. 
Predictions are compared to PMF factors derived from ambient HR-AMS data collected in Pasadena Hayes et al. (2013).  10 
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Figure 5: Comparison of predicted and measured average IVOC concentrations at the Pasadena ground site. Measured concentrations 
are from Zhao et al. (2014). The predicted IVOCs include primary vapors in equilibrium with POA. The data have been normalized by 
carbon monoxide (CO) concentrations to correct for any differences in mixing. 5 

 

 
Figure 6: (a) VBS-IVOC predicted campaign-averaged OA concentrations attributable to gasoline and diesel sources at the ground site 
in Pasadena; the IVOCx1 result for diesel use is from the VBS-IVOC simulation, the IVOCx3 and IVOCx5 results are from separate 
sensitivity simulations where IVOC emissions from diesel are scaled by a factor of 3 and 5 respectively as described in the text.   (b) Ratio 10 
of gasoline OA to diesel OA over southern California and (c) cumulative distribution functions that show the fractional contribution of 
gasoline plus diesel OA to total OA in southern California. 
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reason could be attributed to the representation of aging reactions in the models, which  

The aging reactions simulated the multigenerational gas-phase oxidation of vapors in equilibrium 

with OA. The aging mechanism used here iwas conceptually based on the work of Robinson et al. 

(2007), which assumed a constant reaction rate constant and only allowsed for the formation of 

functionalized, lower-volatility products. In essence, aging reactions, with enough time, will 

convert all semi-volatile vapors into particles. However, the mechanism assumes a constant 

reaction rate constant,However, reaction rates  which may vary with C* and O:C of the OA and 

does not account for fragmentation reactions, which should become can be increasingly important 

at longer time scales (Kroll et al., 2011). The reaction rate for aging and the effects of aging at 

longer time scales Neither of these have  not been constrained against laboratory data. This implies 

that the OA predictions, despite the substantial new data, becomeare poorly constrained as one 

moves downwind of source regions. Murphy and Pandis (2009) have found that model predictions 

agree better with measurements when aging reactions are turned off for biogenic SOA. Recently, 

Jathar et al. (2016) have shown that aging reactions similar to those suggested in Robinson et al. 

(2007) might not be necessary since the laboratory chamber experiments that are used to 

parameterize SOA production already include products from the aging reactions happening inside 

the chamber. The work of Murphy and Pandis (2009) (for biogenics) and Jathar et al. (2016) 

suggests that including aging reactions in CTMs may double count SOA production and over-

predict the importance of multigenerational gas-phase chemistry in the atmosphere. Although 

some work has been done to understand the aging of biogenic SOA (Donahue et al., 2012;Henry 

and Donahue, 2012), future laboratory work needs to be directed in understanding the role of aging 

of OA vapors formed from anthropogenic sources on the mass and properties of OA. 
 

 


