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Abstract.

Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas- and

particle-phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion

has not been incorporated to regional atmospheric models. An analytical rather than numerical solution to diffusion through

organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current5

analytical models assume diffusion to be independent of composition, and therefore use a constant diffusion coefficient. To

realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that

plasticise, vitrify or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected

to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase

saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (< 10% discrepancy10

in estimated radius change). However, when the saturation ratio of the partitioning component varies a generally applicable

correction could not be found, indicating that existing methodologies are incapable of deriving a general solution. Until such

time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. The correction

was implemented in the polydisperse multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC),

and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising15

component onto viscous organic particles.

1 Introduction

The accurate simulation of atmospheric aerosol transformation has been identified as a key component of assessing aerosol

impact on climate and health (Jacobson and Streets, 2009; Fiore et al., 2012; Boucher et al., 2013; Glotfelty et al., 2016).

However, comprehensive modelling of the physicochemical processes that determine aerosol transformation across large spatial20

and temporal scales can be challenging due to the limitations of computer power (Zaveri et al., 2008). While the majority
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of processes in large-scale models are solved by numerical methods, analytical solutions offer less computational expense.

Particle-phase diffusion may be solved both analytically, under certain assumptions, or numerically (Crank, 1975).

The advantage of an analytical solution over a numerical one is the decreased computer expense (e.g. Smith et al., 2003;

Zobrist et al., 2011; Shiraiwa et al., 2012). The Euler forward step method of Zobrist et al. (2011) was observed to have

the shortest computer time of three published numerical methods for diffusion estimation (O’Meara et al., 2016). When a5

constant particle-phase diffusivity was assumed this method had a computer time approximately a factor of 20 greater than the

analytical method presented in Zaveri et al. (2014) (with the numerical method using the minimum spatial resolution (20 shells)

required for convergence of predicted equilibrium times, and the maximum change in component molecule number per time

step recommended by Zobrist et al. (2011), while the analytical method used a conservative temporal resolution of 1x103 time

steps). To rigorously investigate the role of composition-dependent particle-phase diffusion in particulates containing organic10

components a multi-process large-scale model is required. An analytical-solution to particle-phase diffusion would make this

much more practical than a numerical solution with respect to computer time.

To date particle-phase diffusion has not been included in regional-scale atmospheric models. Two outcomes of recent studies,

however, indicate that particle-phase diffusion may pose a limitation to mass transfer over the timescales relevant to these

models. The first is field and laboratory observations that indicate organic particulates existing in a glassy phase state (Zobrist15

et al., 2008; Virtanen et al., 2010; Vaden et al., 2011; Saukko et al., 2012). Second is the contribution of very low volatility

organic compounds (Ehn et al., 2014; Tröstl et al., 2016) to particulate matter, since volatility and diffusivity show positive

correlations (Kroll and Seinfeld, 2008; Koop et al., 2011).

Whether particle-phase diffusion exerts a significant influence on the transformation of organic particulate matter remains

an unanswered question. A major advance was the incorporation of an analytical solution to composition-independent particle-20

phase diffusion into a growth equation for a spherical particle by Zaveri et al. (2014). In examples of constant particle-phase

diffusion coefficients, it was shown that, with sufficiently low diffusivity, particle number size distributions could be greatly

perturbed, though there was also a dependency on reaction rate and volatility. Using both analytical and numerical solutions to

mass transfer equations, Mai et al. (2015) also report particle-phase diffusion being limiting under certain conditions, with a

dependency on accommodation coefficient, particle size, and volatility.25

While the results of Zaveri et al. (2014) and Mai et al. (2015) are highly beneficial, they have not accounted for the possibility

of composition-dependent diffusion (Vignes, 1966; Lienhard et al., 2014; Price et al., 2015; O’Meara et al., 2016). This is

particularly relevant when considering the role of water, which is important because of its comparatively high abundance and

high self-diffusion coefficient (Starr et al., 1999; O’Meara et al., 2016). The potential for water exerting a plasticising effect

on low diffusivity organic particles is particularly important because the constituent components are expected to be highly30

oxidised (Ehn et al., 2014; Tröstl et al., 2016) and therefore polar and likely water soluble (Zuend et al., 2008; Topping et al.,

2013). While numerical solutions to composition-dependent diffusion are available (Zobrist et al., 2011; Shiraiwa et al., 2012;

O’Meara et al., 2016), an analytical solution has not, to the author’s knowledge, yet been published. Indeed, Zaveri et al. (2014)

state that the analytical solution requires incorporation of further complexity in the particle-phase: heterogeneously distributed

reactant species, liquid-liquid phase separation and heterogenous (with regard to position) diffusivity.35
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How does radial heterogeneity of diffusivity arise? Atmospheric component concentrations and their partitioning coeffi-

cients will vary substantially in time and space (Donahue et al., 2006), leading to concentration gradients through particles.

With sufficient difference in the self-diffusivity of the component to the diffusivity of the particle bulk initially (in the case of

condensation) or at equilibrium state (in the case of evaporation), and sufficient abundance of the component in the vapour-

phase (condensation) or particle-phase (evaporation), diffusion is likely to occur at a rate dependent on particle composition.5

An example would be a particle predominately composed of secondary organic material with a low diffusivity that was formed

during a comparatively low relative humidity afternoon and present in the boundary layer. Relative humidity increases as

evening progresses and air temperature decreases. The resulting condensation of water onto the outside of the particle estab-

lishes a concentration gradient, thereby inducing diffusion. The increased concentration of water will act to increase diffusivity

near the surface, whilst diffusivity in the particle core remains low (Zobrist et al., 2011; Lienhard et al., 2014; Price et al., 2015;10

O’Meara et al., 2016).

The analytical solution is strictly valid under the following conditions: constant concentration of the diffusing component at

the particle surface, constant particle size and constant diffusion coefficient (diffusivity). In deriving a correction for varying

diffusion coefficient, therefore, corrections to variable surface concentration and particle size may be implicit, depending

on the scenario. Thus in the results below, the derivation of a correction is first studied for the relatively simple case of a15

constant surface mole fraction (determined through equilibration with a constant gas-phase saturation ratio). Second, the case

of variable surface mole fraction (due to equilibration with a variable gas-phase saturation ratio) is studied. In addition, the

effects of composition-dependent diffusion on number size distribution are demonstrated.

2 Method

In the first part of the method the model setup will be described, including all assumptions made. A simple two component20

system was assumed, comprising one semi-volatile (sv) and one non-volatile component (nv) that were nonreactive. Both

components were assigned a molecular weight of 100 g mol−1 and a density of 1x106 g m−3 (in the discussion it is shown that

the model is sensitive to the ratio of the component molar volumes rather than absolute values of molecular weight or density).

Ideality was assumed, therefore particle-phase volume was calculated by the addition of the product of each components’ num-

ber of moles and molar volume. The initial particle-phase concentration was radially homogenous. For the purpose of deriving25

a solution to particle-phase diffusion independent of gas-phase diffusion the latter was assumed instantaneous. Therefore, in

combination with the assumption of ideality, changes to the particle-phase surface mole fraction of the partitioning component

implies equal changes to its gas-phase saturation ratio.

Fick’s second law was solved by a numerical method; for a sphere, with spherical coordinates and with the diffusion coeffi-

cient (D) dependent on composition, this is (Crank, 1975):30

∂Ci(r, t)

∂t
=

1

r2
∂

∂r

(
r2Di(Ci)

∂Ci(r, t)

∂r

)
, (1)
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for component i, where C is concentration, r is radius and t represents time. In this study D followed a logarithmic depen-

dence on the mole fraction of the semi-volatile component :

D(xsv) = (D0
sv)xsv (D0

nv)(1−xsv), (2)

where D0 is the self-diffusion coefficient and x is mole fraction. This equation fitted measurements reported in Vignes

(1966) for ideal mixtures. The model described below uses a stationary coordinate reference frame, which for an ideal binary5

system requires that each component have the same diffusivity, quantified by the diffusion coefficient. This is true regardless

of the component molecular size, and is physically necessary to attain volume continuity (Taylor and Krishna, 1993; Krishna

and Wesselingh, 1997). The mathematical proof for the necessity of symmetric diffusion coefficients in an ideal binary system

(e.g. comprising components 1 and 2) begins with:

−∇C1

∇C2
=
Vm,2

Vm,1
, (3)10

where Vm is the molar volume and ∇C is the concentration gradient at the boundary where flux is being considered. Next,

Fick’s first law (which is equivalent to Fick’s second law when flux is at steady state) can be expressed in terms of volumetric

flux (m3 s−1):

Ji =Di∇CiVm,iA, (4)

whereA is the area diffusion occurs over. The magnitude of volumetric flux has to be equivalent for both components in order15

to attain volume continuity. For a particle of finite volume this means mass continuity is also satisfied. With this stipulation and

eq. 3, it can be seen that symmetric diffusion coefficients are physically necessary.

Equation 1 can be solved by several numerical methods (e.g. Zobrist et al., 2011; Shiraiwa et al., 2012), but here we use

the initial-boundary problem approach (Fi-PaD) as presented in O’Meara et al. (2016). This model operates by splitting the

particle into concentric shells, each assumed to be homogeneously mixed. The shell representation allows the radial profile20

of concentration (C) and therefore diffusion coefficient (D) to be realised. Increased steepness of the D gradient requires

increased spatial resolution for accurate diffusion estimation. The volume of shells is revalued after every time step. Greater

model temporal resolution is required with increased rates of volume change to account for the effect of particle size on

diffusion rate. Therefore, as described in O’Meara et al. (2016), a maximum radius change of 0.1% was allowed over a single

time step, and the interval was iteratively shortened until this condition was met.25

The analytical solution to diffusion is presented and described in Zaveri et al. (2014). For a non-reactive component with

instantaneous gas-particle surface equilibration it is:

dCa,i,m

dt
= 4πR2

p,mNmKp,i,m(Cg,i−Ca,i,mSi,m), (5)
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where Kp,i,m is the overall mass transfer coefficient:

1

Kp,i,m
=
Rp,m

5Di

(
C∗g,i∑
jCa,j,m

)
, (6)

and Si,m is the saturation ratio:

Si,m =
C∗g,i∑
jCa,j,m

, (7)

where a represents the bulk of the particle-phase, g represents the gas-phase, j is the index for all components, m is the5

index for size-bin, Rp is particle radius, C∗g is the effective saturation vapour concentration (molm−3(air)), C is the con-

centration in the bulk part of a phase (molm−3(air)) and N is the particle number concentration (m−3(air)). In order to

compare results from eq. 1 and eq. 5, concentrations from the latter must be divided by the volume concentration of particles

(m3(particle)m−3(air)). Following this division, it can be seen that diffusion has an inverse square dependence on particle

radius in both solutions.10

The analytical solution treats the particle as a single body, i.e., it cannot resolve radial heterogeneity of concentration and

therefore diffusion coefficient (the D− r profile). In order for the diffusion coefficient in the analytical method to respond to

composition variation therefore, D was determined using eq. 2, which in turn used the bulk particle semi-volatile mole fraction

(xa,sv). Because D and the correction factor (derivation described below) varied with composition, the analytical solution was

sensitive to temporal resolution. Analytical estimates were compared for a given scenario when the time steps of the Fi-PaD15

simulation were used and when a temporal resolution twice as fine was used. Results were identical, therefore the Fi-PaD

resolution was considered sufficient for reliable analytical results.

Particles were assumed to initially have a radially homogenous concentration profile. Diffusion was then initiated by a

change to the semi-volatile mole fraction at the particle surface (∆xs,sv) to attain the equilibrium mole fraction xs,sv,eq .

The radial heterogeneity of D (in Fi-PaD) was therefore established through the setting of D0
sv and D0

nv and through the20

radial concentration gradient of the semi-volatile component resulting from diffusion. Since diffusion approaches equilibrium

asymptotically, it is necessary to define an effective equilibrium point prior to complete equilibrium. We chose the e-folding

state, which is when the absolute difference in component concentration at the surface and the bulk average (everything below

the surface) decreases by a factor of e from its initial value.

Fi-PaD estimates of the time required to reach the e-folding state (the e-folding time (te)) converged as its spatial resolution25

increased (O’Meara et al., 2016). The spatial resolution required to attain a satisfactory degree of convergence increased with

the gradient of the D−r profile, which in turn was proportional to ∆xs,sv and D0
nv/D0

sv
. The maximum acceptable change for

e-folding time following the addition of a further shell was set at 0.1 %. Based on this condition, fig. 1 shows the shell resolution

used for combinations of ∆xs,sv and log10(D0
nv /D0

sv
). The majority of scenarios used a conservative shell resolution, and only

where |∆xs,sv| and |log10(D0
nv /D0

sv
)| are both at a maximum for a given resolution was the convergence criteria neared.30

As mentioned in the introduction, the correction of the analytical solution was for variation of not only the diffusion co-

efficient, but also particle size and surface concentration of the diffusing component. Consequently, corrections were derived
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Figure 1. The shell resolution (given in the legend) distribution with ∆xs,sv and log10(D0
nv /D0

sv
) used, for: a) positive (+ve) ∆xs,sv and b)

negative (-ve) ∆xs,sv .

and assessed for three scenarios of increasing complexity and generality. In the list of these scenarios below, the assumptions

of ideality and instantaneous gas-phase diffusion mean that the condition of the surface mole fraction of the semi-volatile

component also represents that of its gas-phase saturation ratio:

i) constant xs,sv,eq , with initial/equilibrium xs,sv = 0 for positive (+ve, i.e. condensing case) ∆xs,sv/ negative (−ve, i.e.

evaporating case) ∆xs,sv5

ii) constant xs,sv,eq, with initial/equilibrium xs,sv 6= 0 for +ve ∆xs,sv/−ve ∆xs,sv

iii) variable xs,sv,eq

For all scenarios the shell resolution distributions in fig. 1 were used to estimate the appropriate Fi-PaD spatial resolutions.

To derive correction equations Rp− t profiles estimated by the analytical solution were fit to those of Fi-PaD. A least squares

fitting procedure was attempted and found to be under constrained, thus fitting was done by eye, and the quality of fit was10

objectively assessed through residuals, as described below. ∆xs,sv and log10(D0
nv /D0

sv
) values across the ranges shown in fig. 1

were used, and the specific combinations shown in fig. 1 were used for the simplest derivation scenario (i) above). The analytical

solution was found to have greater disagreement with the numerical solution for the condensation case than the evaporation

case. Consequently fits were found for more combinations of ∆xs,sv and log10(D0
nv /D0

sv
) for the condensation case, as shown

in fig. 1. An interpolation method was developed to estimate parameters for the correction equation between the values of15

∆xs,sv and log10(D0
nv /D0

sv
) used for the equation derivation.

Finally, the following were incorporated into the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)

(Zaveri et al., 2014): eq. 2, the correction equations and the interpolation method (eqs. 5-7 were already implemented). The

temporal evolution of number size distributions was found for the case of condensation of a plasticiser and compared against an

assumption of constant diffusivity. For elucidation of the effect on number size distribution of composition-dependent diffusion20

only the processes of gas/particle partitioning and particle-phase diffusion were modelled in MOSAIC.
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Figure 2. Ratio of Fi-PaD and analytical (analyt) estimated e-folding times (te) for: a) +ve ∆xs,sv and b) -ve ∆xs,sv .

3 Results

To begin, uncorrected analytical and Fi-PaD estimates of e-folding times were compared when D was dependent on compo-

sition (eq. 2). Estimates were made for the ∆xs,sv and log10(D0
nv /D0

sv
) combinations in fig. 1, and the discrepancy is shown

in fig. 2. For the case of +ve ∆xs,sv (condensation) (fig. 2a), the analytical solution tends to underestimate diffusion rate, a

result of being unable to resolve the plasticising effect of the semi-volatile component as it diffuses inward. Consequently, the5

discrepancy increases with increasing values of |∆xs,sv| and |D0
nv/D0

sv
|, which together determine the plasticising effect. For

-ve ∆xs,sv (evaporation) (fig. 2b), this trend is reversed for comparatively high values of |∆xs,sv| and |D0
nv/D0

sv
| because the

analytical solution is unable to resolve the solidifying effect of the non-volatile component as the semi-volatile component

diffuses outward. The solidifying effect decreases with decreasing |∆xs,sv| and |D0
nv/D0

sv
|, whereas the inaccuracy introduced

to the analytical by changing particle size is unaffected by |D0
nv/D0

sv
|, but increases with |∆xs,sv|. The competing effects of10

these sources of inaccuracy produce the irregular contour layout at higher values of |D0
nv/D0

sv
|.

Generally the analytical solution is much more accurate for -ve ∆xs,sv , reaching a maximum absolute disagreement around

0.6 orders of magnitude compared to 7.0 for +ve ∆xs,sv . This is attributed to the different characteristics of diffusion between

the -ve and +ve ∆xs,sv cases. In the former, diffusion in Fi-PaD is limited by D near the particle surface, with a surface

shell acting like a “crust”. During early stages, the plasticising effect of the semi-volatile component on this “crust” leads15

to comparatively rapid diffusion out of the particle, but the strength of this effect decreases with concentration of the semi-

volatile component, so that the majority of the e-folding time is characterised by a gradual, relatively slow diffusion outward

(see appendix for an example of the diffusion coefficient variation with radius for the evaporating case). The inability of the

analytical solution to resolve the limiting diffusion near the surface leads to a greater rate of initial diffusion, however the

consequent decrease in semi-volatile component concentration results in a D value that replicates the slow diffusion phase of20

Fi-PaD. In contrast, for +ve ∆xs,sv , diffusion is limited at the diffusion “front”, which is the shell boundary between shells

with the greatest radial gradient of concentration. Modelling movement of the “front” requires knowledge of the concentration
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gradient there, however the only information available to the analytical approach is the particle bulk concentration, leading to

the large discrepancies seen.

To bring the analytical and numerical solutions into agreement, a correction factor is proposed for the analytical solution.

This will act on the diffusion coefficient to correct the diffusion rate (and is therefore denoted by CD). Eq. 6 is thus modified

to:5

1

Kp,i,m
=

Rp,m

5CDDi

(
C∗g,i∑
jCa,j,m

)
. (8)

To derive a function for CD first the simplest scenario of a single and instantaneous change in xs,sv with the initial/final

xs,sv = 0 for +ve ∆xs,sv/-ve ∆xs,sv is investigated. The correction factor for D required to bring analytical Rp estimates into

agreement with those of Fi-PaD was found at each time step used by the latter model. The correction factor was then plotted

against proximity to equilibrium; here we use the absolute difference between surface and bulk average xsv . This process was10

done for the model inputs shown in fig. 1 to determine whether a general equation form could be found that described the

relationship between the D correction factor (CD) and proximity to equilibrium. Examples are shown in fig. 3. The resulting

general equation for both +ve and -ve ∆xs,sv is found to be:

CD = e((|xs,sv−xa,sv|)p1 )p2 − p3, (9)

where pn is a parameter value, dependent on ∆xs,sv and D0
nv/D0

sv
. Where the self diffusion coefficients of components15

are the same in fig. 3, the correction is required only for the changing particle size. Oscillations in CD occur for the case of

∆xs,sv =−0.88 and log10(D0
nv /D0

sv
) =−12. This is attributed to the competing effects of changing particle size, which for a

shrinking particle, acts to overestimate diffusion rate, and of a composition-dependent D, which for a solidifying particle acts

to underestimate diffusion time. As diffusion proceeds, slight variations in the relative strengths of these effects causes CD to

oscillate. Nevertheless, an overall trend is discernible and can be described by eq. 9.20

Parameter values for eq. 9 were found through fitting by eye analytical Rp− t profiles with those of Fi-PaD for the model

inputs shown in fig. 1 (values are provided in the appendix). To objectively test the goodness of fit, the following equation was

used:

% error =

(
Rp,Fi−PaD,t −Rp,analyt,t

|Rp,Fi−PaD,t=te −Rp,Fi−PaD,t=0 |

)
100, (10)

where analyt represents the corrected analytical model. Therefore, % error is the fraction of the total change in Rp com-25

prised by the disagreement in model estimates of Rp at t.

For each marked ∆xs,sv value in fig. 1, the marked log10(D0
nv /D0

sv )
scenario with greatest % error was identified. Of these

scenarios, the four with greatest % error are shown in fig. 4 to demonstrate the cases of worst agreement. Fig. 4 shows that the

disagreement between analytical and Fi-PaD model estimates rarely exceeds ±6%, even for cases representing the extremes
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Figure 3. Examples of the correction factor for D in the analytical solution (CD) required to give agreement with radius estimates in Fi-PaD

as a function of proximity to equilibrium. a) and b) are for +ve ∆xs,sv and -ve ∆xs,sv , respectively. The model scenario is described in the

legend, which applies to both plots. Fits are plotted using eq. 9.
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Figure 4. Examples of % error (eq. 10) of the analytical model with corrected D when diffusion is composition-dependent (eq. 2), plotted

against time normalised by the e-folding time. a) and b) are for +ve ∆xs,sv and -ve ∆xs,sv , respectively, and scenarios are given in the

legend.

of model disagreement. Corrected analytical and numerical solution results were also compared beyond the e-fold time, until

the difference in concentration between surface and bulk had diminished to a factor of 16e. The agreement shown in fig. 4 was

maintained to this further equilibration point.

In order to have general applicability, such good agreement must be reproducible for intermediate values of ∆xs,sv and

log10(D0
nv /D0

sv
), i.e., when parameter values are interpolated between the points of fig. 1. Parameter relationships with ∆xs,sv5

9



0 0.2 0.4 0.6 0.8 1−8

−6

−4

−2

0

2

4

6

8

10

12

14

t/te

%
er
ro
r

 

 

0 0.2 0.4 0.6 0.8 1−6

−5

−4

−3

−2

−1

0

1

2

3

4

t/te

%
er
ro
r

 

 

∆xs ,sv = 0.12, log10(D 0
nv/D

0
sv) = −1

∆xs ,sv = 0.12, log10(D 0
nv/D

0
sv) = −11

∆xs ,sv = 0.50, log10(D 0
nv/D

0
sv) = −7

∆xs ,sv = 0.72, log10(D 0
nv/D

0
sv) = −1

∆xs ,sv = 0.72, log10(D 0
nv/D

0
sv) = −11

∆xs ,sv = −0.12, log10(D 0
nv/D

0
sv) = −2

∆xs ,sv = −0.12, log10(D 0
nv/D

0
sv) = −10

∆xs ,sv = −0.50, log10(D 0
nv/D

0
sv) = −6

∆xs ,sv = −0.76, log10(D 0
nv/D

0
sv) = −2

∆xs ,sv = −0.76, log10(D 0
nv/D

0
sv) = −10

a) b)

Figure 5. Examples of % error (eq. 10) of the analytical model with corrected D and composition-dependent on diffusion (eq. 2), plotted

against time normalised by the e-folding time. Parameter values for eq. 9 were found through the interpolation method presented in the

appendix (Tables A3 and A4). a) and b) are for +ve ∆xs,sv and -ve ∆xs,sv , respectively, and model setups are given in the legend.

and D0
nv/D0

sv
varied substantially, requiring separate interpolation methods for each parameter. The general method was to first

interpolate with respect to ∆xs,sv followed by D0
nv/D0

sv
. For most accurate results the interpolation equation was found to

be dependent on the independent variables as described in the appendix (Tables A3 and A4). The interpolation was tested at

∆xs,sv and D0
nv/D0

sv
comparatively far from those with known parameter values and spread across the variable space. Results

are shown in fig. 5, again using the % error metric presented in eq. 10. They show that the low error produced for known5

parameter values is maintained when the interpolation method is applied.

Next, the case of a single and instantaneous change to xs,sv with the initial/final xs,sv 6= 0 for +ve ∆xs,sv/−ve ∆xs,sv is

studied. For the +ve ∆xs,sv case, the correction method described above was found to be transferable to any starting xs,sv

through transformation of the D dependence on xsv . An effective self-diffusion coefficient of nv (D0
nv,eff ) is set as the D at

the starting xs,sv (eq. 2), and the starting xs,sv for the analytical is set to 0. D0
sv is constant, but the equilibrium xs,sv (xs,sv,eq)10

is changed to an effective value such that D at equilibrium gives the same change in D from the starting xs,sv as in the original

scenario. Consistent with eq. 2 this effective xs,sv,eq is given by:

xs,sv,eq,eff =
(logD0

nv,eff
((D0

nv )(1−xs,sv,eq)(D0
sv )(xs,sv,eq))− 1 )

(logD0
nv,eff

(D0
sv )− 1 )

, (11)

where xs,sv,eq and D0
nv are the original values. An example transformation to this effective model setup is shown in fig. 6.

It can be seen that, compared to the original setup, ∆xs,sv is increased. Although the transformed D gradient with xs,sv is15

shallower than the original, this is offset in terms of diffusion rate by the increased radial gradient in sv concentration.

A similar method can be applied to the evaporation scenario when the final xs,sv 6= 0. D0
nv,eff is set equal to that at the

final xs,sv , and the final xs,sv is set to 0. Whereas for the +ve ∆xs,sv case we found xs,sv,eq,eff , now an effective start xs,sv

10
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Figure 6. Example of the transformation of the D dependence on xsv when the starting xs,sv (for condensation) or final xs,sv (for evapora-

tion) 6= 0. In this example the original starting xs,sv was 0.2 and the equilibrium xs,sv was 0.6, while the original D0
nv was 1x10−14 m2s−1

and D0
sv was 1x10−2 m2s−1, as shown by the orange crosses. The effective starting and equilibrium xs,sv and effective D0

nv found by the

transformation described in the main text are shown with blue crosses.

(xs,sv,0,eff ) is required. The equation for this is the same as eq. 11, but with xs,sv,eq,eff replaced by xs,sv,0,eff and with

xs,sv,eq replaced by xs,sv,0. With regard to the transformed D−xsv profile (e.g. fig. 6), for a given pair of original start and

finish xs,sv and a given pair of original self-diffusion coefficients, the transformation is the same for +ve and -ve ∆xs,sv .

To exemplify the deviation in analytical (with correction) estimates of diffusion rate from those of Fi-PaD when this transfor-

mation is applied, the cases of ∆xs,sv = 0.2 and = 0.5, and a comparatively large log10(D0
nv /D0

sv
) of -12 were used. Estimates5

were compared using eq. 10. Results for +ve and -ve ∆xs,sv are given in fig. 7, and demonstrate that the deviations are

comparable to those when the transformation is not required (fig. 4).

Before moving onto a correction for the case of variable xs,sv , the correction for constant xs,sv was implemented in MO-

SAIC to investigate the effect of composition-dependent diffusion on number size distribution. The same initial number size

distribution as presented in Zaveri et al. (2014) (their fig. 11) was used. Reactions, coagulation, nucleation, emission and10

deposition were all turned off to gain the clearest demonstration of the diffusion effect. To maintain xs,sv , the gas-phase con-

centration of the semi-volatile component was held constant and low particle-phase self-diffusion coefficients were used to

ensure that partitioning was not limited by diffusion in the vapour-phase. The model was run in Langrangian mode to prevent

numerical error due to rebinning and resultant loss of information about the initial particle size.

To test the effect on the timescale of number size distribution change during condensation of a plasticising semi-volatile15

component, ∆xs,sv was set to +0.88, from an initial particle-phase mole fraction of 0. The number size distribution following

diffusion was found for log10(D0
nv /D0

sv
) values of 0, -2 and -4, with D0

nv held constant at 1.0x10−26 m2s−1. Simulations were

run until diffusion was underway in large particles. The distributions after one hundredth and at the end of the run time (1.2x108

s) for the log10(D0
nv /D0

sv
)=-4 case are shown in fig. 8a and fig. 8b, respectively, along with the initial distribution.

As expected, fig. 8 shows that the condensing component can significantly increase the rate of diffusion and therefore the20

rate at which the number size distribution evolves. The development of the number size distribution shows no dependence

11
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Figure 8. Number size distributions for log10(D0
nv /D0

sv
) = 0, -2 and -4, represented by D0

sv,1, D0
sv,2 and D0

sv,3 respectively (D0
nv constant

at 1.0x10−26 m2s−1). te,3 is 1.2x108 s. a) is the distribution at one tenth of te,3 and b) is that at te,3. xs,sv was increased instantaneously

from 0.00 to 0.88 and then held constant.

on log10(D0
nv /D0

sv
) since any change in the plasticising strength of the condensate effects the same factor change in diffusion

rate for all particle sizes . For each self-diffusion coefficient ratio there is preferential growth of smaller particles first due to

the square dependence of diffusion rate on particle radius, leading to a narrowing of the distribution. This is followed by a

widening as smaller particles equilibrate and larger particles grow (consistent with Zaveri et al. (2014)).

It is possible to set a constant diffusion coefficient in the analytical solution without correction that attains the same e-5

folding time as when the analytical solution with correction is used with a variable diffusion coefficient. For the case of
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Figure 9. In a), the discrepancy (found using eq. 10) in estimated radius with model run time normalised to the e-folding time (te) when xs,sv

is increased instantaneously from 0.00 to 0.88 for two diffusion coefficient treatments: i) corrected analytical solution with D0
nv = 1x10−26

and D0
sv = 1x10−22 m2s−1 (D0

sv,3) and ii) using the analytical without correction whenD is constant at 4.4x10−23 m2s−1 (Dcon). In later

plots are the number size distributions for the same diffusion coefficient treatments, with red representing the former treatment (variable D)

and blue the latter one (constant D)). In b) t= 2.4x104 s, c) t= 4.8x104 s and in d) t= 1.2x105 s since simulation start.

D0
nv = 1.0x10−26 and D0

sv = 1.0x10−22 m2s−1 and ∆xs,sv = 0.88 , the required constant diffusion coefficient was found to

be Dcon = 4.4x10−23 m2s−1. The % error (eq. 10) when the constant D treatment and the corrected analytical solution are

used is shown in fig. 9a. This figure shows that although the constant D simulation does give the same e-fold time (agreement

in radius estimate at t/te = 1), diffusion estimates about this point are different between the treatments of diffusion coefficient.

In the constant case, slower diffusion relative to the numerical solution and corrected analytical solution is initially estimated,5

followed by quicker diffusion after e-fold time.

To test the effect of using a constant D on a polydisperse population, this treatment is used to estimate number size distri-

butions from MOSAIC and compared to estimates using the variable D treatment. Using the same model setup as for fig. 8,

the comparison is shown in fig. 9b-d . Results are shown for three times since run start as described in the figure. As expected

from fig. 9a, if one focusses on the smaller particle sizes it can be seen that growth is initially quickest in the variable D case10

(fig. 9b) but that growth in the constant D case catches and exceeds that for variable D, leading to increased narrowing of

the distribution (fig. 9d). Note that while this demonstration focuses on the smallest sizes, the same effect is true for all sizes.

These discrepancies demonstrate the requirement for a correction to the analytical solution that is dependent on the proximity

to equilibrium rather than a correction based on a constant D.

For the analytical solution to be generally applicable a correction when xs,sv varies prior to particle phase equilibration is15

required. If the rate of xs,sv change is very low compared to particle-phase diffusion (particle-phase equilibration reached with

negligible change of xs,sv), or very high compared to particle-phase diffusion (no diffusion in the particle-phase before the

surface concentration reaches a constant value), no correction is needed. In between, however, a further correction dependent

on the rate of xs,sv change is required. Changes to xs,sv may result from changes to the saturation ratio of the semi-volatile

component. This may occur through a variety of ways, but in general is due to the sum of emission and production being20

13



different to that of deposition and destruction. Processes controlling gas-phase component concentrations occur at rates varying

by several orders of magnitude (e.g. reaction rate with OH radicals (Ziemann and Atkinson, 2012)). The rate of particle-phase

diffusion may also vary by orders of magnitude, as it is dependent on the concentration and diffusivity of the diffusant as well

as the diffusivity of the initial particle and the particle size (O’Meara et al., 2016).

Results shown to this point have been for a constant xs,sv (implying instantaneous particle surface-gas equilibration and a5

constant gas phase saturation ratio). Application of the correction presented above (eq. 9) to the variable case is not straightfor-

ward as it is based on the difference between initial and equilibrium mole fractions and the particle is assumed to initially have

a radially homogenous concentration profile. In the following passage is a description of a method to overcome this constraint

for a given time profile of xs,sv . This serves as a basis to explain the limits of this method to general application.

xs,sv was decreased from 0.88 to 0.00 with a sinusoidal profile, as shown in fig. 10a (curve prof1). The initial particle radius10

was 1x10−4 m, D0
nv = 1x10−14 and D0

sv = 1x10−10 m2s−1. The resulting Rp− t profile using Fi-PaD is shown in fig. 10b.

A new correction equation was required that could accommodate a variable surface mole fraction and give agreement with

Fi-PaD estimates. Through fitting by eye this was found to be:

CD = e((p4)
p1 )p2 − p3, (12)

where15

p4 =
xa,sv

(sin(log10(xrat,tn
− xrat,tn−1

)/1.3− 2.4)/4.6 + 1.1)
, (13)

where xrat is the ratio of xsv in the particle bulk to that at the surface. The ratios at the start of the time step being solved

for (tn) and at the start of the previous time step (tn−1) are used. p1, p2 and p3 are the same as used for the original equation

(eq. 9) and ∆xs,sv was set equal to the particle bulk xsv .

This correction gives excellent agreement with the Fi-PaD estimate (fig. 10b). However, when used for a slightly different20

temporal profile of xs,sv (curve prof2 in fig. 10a), poorer agreement is attained. This indicates that the correction described

in eqs. 12-13 is over fitted. This is unsurprising as it is dependent on the rate of change of the surface mole fraction of the

semi-volatile component (through xrat,tn−xrat,tn−1). Consequently, we suggest that a generally applicable correction is only

possible with an a priori estimate of the rate of change of bulk to surface mole fraction ratio. However, the bulk mole fraction

is the value being estimated, making a solution intractable using this methodology.25

Also shown in fig. 10 is the expected range in rate of change of particle surface mole fraction of a semi-volatile component

assumed to be in equilibrium with the gas-phase due to three processes: chemical reaction, dry deposition and condensation

onto particles. The rates of change cover several orders of magnitude depending on the rate constants (given in the caption).

Comparing these rates to the e-folding times for particle phase diffusion given in O’Meara et al. (2016), it is clear that under

certain scenarios the surface mole fraction change rate is similar to particle-phase diffusion rate. In this instance, the corrections30

presented above break down. In contrast, when the particle-phase diffusion rate is much slower than the change in surface mole

fraction of semi-volatile, a constant surface mole fraction may be assumed and the correction applied with the high accuracy
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Figure 10. Plots demonstrating the limitation of the correction to cases of varying xs,sv . In a) are the two temporal profiles of xs,sv used

to test accuracy, while b) and c) show Fi-PaD and analytical (analyt) estimates of radius (the latter corrected using eqs. 12 and 13) for xs,sv

temporal profiles p1 and p2, respectively. D0
nv = 1x10−14 and D0

sv = 1x10−10 m2s−1. In the lower row of plots are the range in rates of

surface mole fraction change of a semi-volatile component assuming instantaneous equilibration with the gas-phase due to three processes:

d) gas-phase chemical reaction with OH, with k1 = 1.0x10−5 m3 molecule−1 s−1 and k2 = 1.0x10−8 m3 molecule−1 s−1 (Ziemann and

Atkinson, 2012); e) dry deposition to land surface, with vd,1 = 1.0x10−2 ms−1 and vd,2 = 1.0x10−4 ms−1 (Sehmel, 1980); f) condensation

onto particles, with kt,1 = 1.0x10−1 s−1 and kt,2 = 1.0x10−4 s−1 (Sellegri et al., 2005; Whitehead et al., 2012).

presented above. This scenario is more likely to arise for particles with low diffusivity, and therefore of interest to particle-phase

diffusion studies.

4 Discussion

As mentioned in the introduction, for a simple case of diffusion independent of composition, the computer time for the numeri-

cal solution is approximately 20 times as long as the analytical. However, this factor difference is expected to rise by 2-3 orders5

of magnitude for very steep gradients of diffusion coefficient with radius (O’Meara et al., 2016). Therefore, implementation of

composition-dependent diffusion into a polydisperse multi-process aerosol model like MOSAIC through an analytical solution

is highly preferable to a numerical one. Here, equilibration between the gas- and particle-phase was assumed instantaneous, so

that the surface mole fraction of the partitioning component was equal to its gas-phase saturation ratio.

For the limiting case of constant surface mole fraction of a semi-volatile component, here a correction to the analytical10

solution for when diffusivity is composition-dependent has been derived and validated against estimates from the numeri-

cal solution. The correction was required to account not only for variable diffusivity but also varying particle size as the

semi-volatile component partitions between phases, since the uncorrected analytical solution assumes constant particle size.

A method to interpolate correction parameters between values of ∆xs,sv (change to surface mole fraction that initiates diffu-
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sion) and D0
nv/D0

sv
(ratio of component self-diffusion coefficients) was also derived and validated. A similar derivation was

attempted for the case of variable surface mole fraction, however this was found to be of narrow applicability. This issue, along

with the limitations of the correction for constant xs,sv are discussed below.

In favour of the correction is its independence of particle size. In both solutions (numerical and analytical), diffusion rates

have a square dependence on particle size, therefore the ratios of estimated diffusion rate are constant across sizes (all else being5

equal), as is the correction. Similarly, the correction is independent of absolute values of D0
nv and D0

sv and only dependent on

the ratio of component self-diffusion coefficients: log10(D0
nv /D0

sv
).

Although the correction is applicable across particle sizes and values ofD0
nv andD0

sv , it is specific to the ratio of component

molar volumes used here, which is 1:1. The change in particle size due to partitioning depends on the molar volumes of

components. The response of diffusion rate to a change in molar volume is different between the models and is non-linear in10

each. For quantifying model sensitivity to molar volume, a further complication is the variation of diffusivity with both molar

mass and density (Koop et al., 2011).

To gain an indication of the model disagreement arising from changing molar volume when the corrected analytical model is

used, expected ranges of molar mass (M) and density (ρ) for atmospheric organic components were found. Barley et al. (2011)

show that M is likely to be in the range 1x102 to 3x102 g mol−1 and Topping et al. (2011) demonstrate that ρ is likely to15

be between 1.2x106 to 1.6x106 g m−3. The maximum expected molar volume for the semi-volatile component was therefore

given by using M = 3x102 g mol−1 and ρ= 1.2x106 g m−3. A relatively large effect from the changed molar volume was

gained through using ∆xs,sv =±0.88. Furthermore, the proportion of the correction attributed to particle size change rather

than D composition dependence, is greatest for log10(D0
nv /D0

sv
) = 0, therefore this was used to maximise the effect of varying

molar volume on model agreement. For the +ve and -ve ∆xs,sv cases, the maximum observed % error (eq. 10) was -58.0 and20

29.0 %, respectively.

The presented parameter values are therefore unable to reliably estimate diffusion when the molar volume ratio of compo-

nents does not equal 1:1 (a value we chose arbitrarily). Parameter values account for changes to the diffusivity and diffusing

distance due to partitioning of a semi-volatile component. The diffusing distance is dependent on component molar volume

ratios, therefore when these are varied new parameters are required. For such systems, however, the presented parameterisation25

for the correction is valid. With different parameter values the parameterisation would be applicable to, for example, the case

of diffusion in a mixture of water and organic material.

A further limitation of the presented correction is its specificity to theD dependence on composition. Here we have assumed

a logarithmic dependence on xsv , however, measurements have reported sigmoidal and irregular dependencies resulting from

changes to phase state and/or non-ideality (e.g. Vignes, 1966; Lienhard et al., 2014; Price et al., 2015). An indication of model30

disagreement generated by varying the D dependence was found by calculating the % error for several dependencies; all were

based on a sigmoidal function, however, the steepness at the “cliff-edge” was varied, as shown in fig. 11a. Also shown here

is the logarithmic dependence used to find the presented correction. A log10(D0
nv /D0

sv
) =−12 and ∆xs,sv =±0.88 were used

because these provide the most stringent test of estimation capability. The dependencies were used in both the Fi-PaD and
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Figure 11. Plot a) shows the logarithmic dependency of diffusion coefficient on mole fraction on which the presented correction is derived

and the sigmoidal dependencies for which it was tested. In b) and c) are the analytical model errors (eq. 10) when the sigmoidal dependencies

given in a) were used. b) +ve ∆xs,sv and c) -ve ∆xs,sv , and for both plots |∆xs,sv|= 0.88 and log10(D0
nv /D0

sv
) =−12.

analytical model, with the latter using the correction method for the logarithmic dependence. The resulting discrepancies in

estimated particle radius are shown in figs. 11b and 11c.

Fig. 11b shows that for +ve ∆xs,sv , the analytical method increasingly overestimates initial diffusion with increasing sig-

moidal function steepness, indicating the correction is too great when the difference in surface and bulk xsv is high. The reason

is that, with the dependencies used, increased steepness causes increased resistance to inward semi-volatile diffusion at low5

xsv . As the difference in surface and bulk xsv decreases in the analytical, so does the correction factor (fig. 3a), allowing Fi-

PaD estimates to approach those of the analytical (the upward part of curves). For the least steep sigmoidal dependence (sig1)

this effect continues and Fi-PaD diffusion actually overtakes the analytical. For the intermediate sigmoidal profile (sig2) this

effect occurs until the analytical system reaches a semi-volatile mole fraction where the profile curves sharply upward. Now

the effect of increasing diffusion coefficient in the analytical surpasses the effect of a relatively small correction factor that had10

allowed Fi-PaD diffusion estimates to accelerate relative to the analytical, causing a relative acceleration of diffusion in the

analytical. The result is the downward curve for the intermediate profile towards equilibrium time. The same process would

arise for the steepest sigmoidal profile shown here (sig3) if sufficient diffusion occurred to allow the system to enter the mole

fraction region where the diffusion coefficient curves upward.

Results for -ve ∆xs,sv are shown in fig. 11c, which shows that the analytical solution initially underestimates diffusion. This15

is attributed to the increasing plasticising effect of the semi-volatile on the surface crust of the particle with increasing steepness

of the sigmoidal “cliff-edge”. Once xsv has decreased however, the analytical shows a tendency to overestimate diffusion.

The plasticising effect can quickly decrease (fig. 11a), and the surface crust imposes a greater impediment to diffusion. The

correction factor (which acts to decelerate diffusion (fig. 3b)) found from the logarithmic dependence is insufficient to replicate

this for the steepest dependency.20

17



As fig. 11 shows, the presented correction is limited in its generality with regards to diffusion coefficient dependence on

composition. Along with the effect of component molar volume ratios on diffusion, however, this could be overcome through

refitting of parameter values. In contrast, results indicate that improving the accuracy of the correction for the case of changing

particle surface mole fraction is not attainable, since this requires a priori knowledge of the particle-phase diffusion rate (the

value being estimated). Nevertheless, for studies into particle-phase diffusion limitation on particle transformation, it is possible5

that the surface mole fraction will vary quickly compared to particle-phase diffusion, allowing the assumption of a constant

surface mole fraction and therefore accurate application of the correction presented here.

Without a general analytical solution (e.g. allowing for varying surface mole fraction), thorough evaluation of particle-

phase diffusion influence on particulate transformation remains limited. The correction for constant surface mole fraction of

the semi-volatile component, however, offers improved computer efficiency (compared to numerical methods) of evaluating10

particle-phase diffusion effects, such as in Berkemeier et al. (2013) and Mai et al. (2015). It may also be of use for the inference

of diffusivity from laboratory studies, if the rates of semi-volatile gas-phase saturation ratio change and gas-phase diffusion

are much greater than the particle-phase diffusion rate (Zobrist et al., 2011; Lienhard et al., 2014; Steimer et al., 2015). In

modelling studies where composition-dependent diffusion occurs and gas-phase saturation ratios of partitioning components

vary over similar timescales to particle-phase diffusion, we recommend the numerical solutions mentioned above in preference15

to the assumption of constant diffusivity.

5 Conclusions

For accurate simulation of the transformation of particulates containing organic components, the analytical solution to diffusion

must account for composition-dependent diffusion rate. To do this, a correction to the analytical solution was investigated

based on estimates from the numerical solution of the partial differential equation for diffusion. A correction was derived for20

the limiting case of a constant surface mole fraction of the diffusing component (equal to a constant gas-phase saturation ratio

when assuming equilibration between the gas- and particle-phase). The corrected analytical solution shows good agreement

with the numerical one, rarely exceeding 8 % deviation in estimated particle radius change.

The verified correction is currently limited to conditions of similar molar volume between the partitioning component and

the particle average, and of a logarithmic dependence of diffusion coefficient on partitioning component mole fraction. These25

limitations may be overcome through refitting of parameters. However, a correction for the more general case of variable

surface mole fraction of the diffusing component (e.g., due to varying gas-phase saturation ratio) was found to depend on the

rate of change of the ratio of bulk to surface mole fraction. A correction based on the analytical approach presented here is

therefore not viable because it requires a priori knowledge of the value to be estimated: the particle bulk mole fraction. A

different approach to modifying the analytical solution to diffusion is thus required to make it generally applicable.30

To determine whether an expression for particle-phase diffusion is required in a regional model, an evaluation of the sensitiv-

ity of organic particle properties to diffusion is desirable. This study builds on previous investigations toward allowing such a

sensitivity analysis, and enables it for the limiting case of particles with sufficiently low diffusivity that changes to the particle

18



surface mole fraction of the partitioning component occur much more quickly than particle-phase diffusion. Work remains,

however, to create a generally applicable realistic and efficient diffusion model for particulates containing organic components.

Until this is achieved, studies of aerosol kinetic regimes conducted under limiting scenarios such as diffusion independent

of composition, should be interpreted cautiously because of their limited applicability to the real atmosphere. In particular,

the comparatively high abundance and high self-diffusion coefficient of water means that its role in plasticising or vitrifying5

particles through condensation and evaporation, respectively, must be accounted for when assessing the effect of particle-phase

diffusion on partitioning.
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Nomenclature

a particle-phase bulk

A area (m2)

con denotes a constant value

C concentration (molm−3 (particle))

C concentration in bulk part of a phase (molm−3 (air))

C∗ effective saturation vapour concentration (molm−3 (air))

CD diffusion coefficient correction

D diffusion coefficient (m2 s−1)

eff denotes an effective value

eq equilibrium state

Fi−PaD Fick’s Second Law solved by partial differential equation

g gas-phase

i a component

j all components

kn chemical reaction rate (m3 molecule−1 s−1)

kt condensation sink rate (s−1)

K mass transfer coefficient (ms−1)

m index for size-bin

M molar mass (gmol−1)

MOSAIC Model for Simulating Aerosol Interactions and Chemistry

N particle number concentration (m−3 air)

nv non-volatile component

ρ density (gm−3)

pn correction equation parameter

p subscript denotes particle-phase

r radius (m)

rat denotes a ratio

Rp total particle radius (m)

s particle-phase surface

sv semi-volatile component

t time (s)

te e-folding time (s)

tn a time after n number of time steps (s)

vd deposition velocity (ms−1)

Vm molar volume (m3 mol−1)

x mole fraction 20



Appendix A

log10(
D0

nv /
D0

sv
) 0 -2 -4 -6 -8 -10 -12

∆xs,sv p1

0.05 1.50 1.55 1.60 1.65 1.70 1.75 1.80

0.20 1.75 1.80 1.85 1.90 1.95 2.00 2.05

0.35 2.00 2.00 2.00 2.00 1.90 1.80 1.67

0.65 2.00 2.00 1.70 1.50 1.40 1.30 1.25

0.80 2.00 1.70 1.30 1.23 1.19 1.14 1.13

0.88 2.60 1.35 1.22 1.10 1.08 1.07 1.13

p2

0.05 150.00 185.00 228.00 285.00 352.00 450.00 580.00

0.20 30.00 40.00 57.00 77.00 105.00 135.00 180.00

0.35 15.00 24.00 36.00 51.00 56.00 61.00 61.00

0.65 6.00 12.00 16.00 19.20 23.50 26.50 29.30

0.80 5.30 10.20 12.40 16.20 20.20 23.30 25.90

0.88 4.00 7.40 11.40 16.00 19.90 22.60 25.30

p3

0.05 0.70 0.70 0.70 0.70 0.70 0.70 0.70

0.20 0.40 0.40 0.40 0.4 0 0.40 0.4 0 0.40

0.35 0.10 0.10 0.10 0.10 0.10 0.10 0.10

0.65 -0.30 -0.40 -0.40 -0.40 0.20 0.20 0.20

0.80 -2.30 -2.50 -1.50 -1.20 -0.80 -0.30 0.10

0.88 -2.50 -2.80 -1.50 -1.50 -1.50 -1.50 0.00

Table A1. Eq. 9 parameter values found for +ve ∆xs,sv .

log10(
D0

nv /
D0

sv
) 0 -4 -8 -12

∆xs,sv p1

-0.05 2.81 2.86 2.92 3.00

-0.20 3.23 3.53 3.46 2.00

-0.35 3.65 4.40 4.00 2.00

-0.65 5.00 8.00 5.00 2.00

-0.88 6.00 11.0 7.00 1.90

p2

-0.05 8000.00 8000.00 8000.00 8000.00

-0.20 350.00 300.00 100.00 -1.60

-0.35 100.00 50.00 -1.00 -1.60

-0.65 23.00 12.00 -1.00 -0.40

-0.88 7.00 3.00 0.55 -0.20

p3

-0.05 0.40 0.42 0.40 0.42

-0.20 0.32 0.41 0.50 0.52

-0.35 0.25 0.40 0.58 0.62

-0.65 0.00 0.50 0.67 0.76

-0.88 -0.10 0.58 0.78 0.85

Table A2. Eq. 9 parameter values found for -ve ∆xs,sv .
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log10(
D0

nv /
D0

sv
) 0 -2 -4 -6 -8 -10 -12

pi Method Code

p1 00S 00S 00S 00S 00S 00S 00S

p2 11L 11L 11L 11L 11L 11L 11L

p3 00S 00S 00S 00L 00S 00S 00S

∆xs,sv ≥ 0.00 < 0.27 ≥ 0.27 < 0.65 ≥ 0.65

pi Method Code

p1 01L (D0
r ≥ −3)

01S (D0
r < −3)

01L (D0
r ≥ −3)

01S (D0
r < −3)

01L (D0
r ≥ −3)

01S (D0
r < −3)

p2 01S (D0
r < −8)

01L (D0
r ≥ −8)

11L (D0
r < −4)

01L (D0
r ≥ −4)

11L

p3 01S 01S 01S

Table A3. Interpolation method for parameters in eq. 9 (for +ve ∆xs,sv). Interpolation is done with respect to ∆xs,sv first, followed by

log10(D0
nv /D0

sv
); the method for the former is given in the upper part of the table and the method for the latter is in the lower part. Note

the method is dependent on the independent variable. Methods are represented by codes. The first number in each code is 1 if interpolation

is done with respect to the log10 of parameter values, in which case the interpolation result must be raised to the power 10, and is 0 if no

logarithm is taken. The second number in each code is 1 if the interpolation is done with respect to the log10 of the independent variable, and

is 0 if no logarithm is taken. The final letter represents the form of the interpolation: L and S for linear and spline, respectively. For p2, when

interpolating with respect to log10(D0
nv /D0

sv
), the interpolation method depends on the value of this variable, which is denoted D0

r .

log10(
D0

nv /
D0

sv
) 0 -4 -8 -12

pi Method Code

p1 00L 00L 00L 00L

p2 11L 11L 1(2)1L 1(2)0L

p3 00L 00L 00L 00L

∆xs,sv > −0.27 ≤ 0.00 > −0.65 ≤ −0.27 ≤ −0.65

pi Method Code

p1 01L 01L 01L

p2 1(2.0)1S (D0
r < −8)

01L (D0
r ≥ −8)

1(2.0)1S (D0
r < −4)

01L (D0
r ≥ −4)

1(1.1)1S (D0
r ≥ −6, D0

r ≤ −4)

1(2.0)1L (D0
r > −4, D0

r < −6)

p3 1(2.0)1S 1(2.0)1S 1(2.0)1S

Table A4. Interpolation method for parameters in eq. 9 (for -ve ∆xs,sv). Interpolation is done with respect to ∆xs,sv first, followed by

log10(D0
nv /D0

sv
); the method for the former is given in the upper part of the table and the method for the latter is in the lower part. Note

the method is dependent on the independent variable. Methods are represented by codes. The first number in each code is 1 if interpolation

is done with respect to the log10 of parameter values, in which case the interpolation result must be raised to the power 10, and is 0 if no

logarithm is taken. Because parameters are sometimes negative, to gain a real result from the logarithm, a constant must be added to the

parameters first, if this is the case this constant is given in brackets beside the first code number (once interpolation is complete this constant

is subtracted from the result after it has been raised to the power 10). The second number in each code is 1 if the interpolation is done with

respect to the log10 of the independent variable, and is 0 if no logarithm is taken. The final element represents the form of the interpolation:

L and S for linear and spline, respectively. For p2, when interpolating with respect to log10(D0
nv /D0

sv
), the interpolation method depends on

the value of this variable, which is denoted D0
r .
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Figure A1. The logarithm of the ratio of the diffusion coefficient throughout an example particle to the self-diffusion coefficient of the

non-volatile component, from the particle centre (at 0 m) to its surface. In this example, log10(D0
nv/D

0
sv )=-12, and xs,sv,eq = 0, and initial

xs,sv = 0.88.
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