Supplementary information for manuscript

Evaporation of sulphate aerosols at low relative humidity

Georgios Tsagkogeorgas¹, Pontus Roldin²,³, Jonathan Duplissy²,⁴, Linda Rondo⁵, Jasmin Tröstl⁶, Jay G. Slowik⁶, Sebastian Ehrhart⁵,a, Alessandro Franchin², Andreas Kürten⁵, Antonio Amorim⁷, Federico Bianchi², Jasper Kirkby⁵,⁸, Tuukka Petäjä², Urs Baltensperger⁶, Michael Boy², Joachim Curtius⁵, Richard C. Flagan⁹, Markku Kulmala²,⁴, Neil M. Donahue¹⁰, Frank Stratmann¹

¹Leibniz Institute for Tropospheric Research, 04318, Leipzig, Germany
²Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
³Division of Nuclear Physics, Lund University, P.O. Box 118, 221 00, Lund, Sweden
⁴Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
⁵Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
⁶Paul Scherrer Institute, CH–5232, Villigen, Switzerland
⁸CERN, CH–1211, Geneva, Switzerland
⁹California Institute of Technology, Pasadena, CA 91125, USA
¹⁰Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA

a now at: Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany
S1 AMS measurements

The evaporation of particles based on AMS measurements showed that the particles were composed almost exclusively of sulphuric acid. Calculations of the kappa value κ, based on the AMS measurements, yield a value close to the κ for pure sulphuric acid particles (see Fig. S2).

Figure S1. (a) Sulphate mass size distribution ug·m$^{-3}$ (from AMS data) and (b) gas–phase H$_2$SO$_4$ concentration (from CIMS data) increases until reaches a peak value during the aerosol particle evaporation experiment 2 performed at $T=288.8$ K.
Figure S2. Hygroscopicity kappa (κ), based on the AMS measurements, of mixed particles as a function of time for experiment 3. κ derived from the hygroscopicities of the components (assumed the lower and higher κ values for bases like ammonium sulphate, $\kappa_{(NH_4)_2SO_4}=0.47$, and ammonium bisulfate, $\kappa_{(NH_4)HSO_4}=0.56$ (Topping et al., 2005; Petters and Kreidenweis 2007), and organics with $O:C=0$, $\kappa_{Org}=0.0$ and $O:C=1$, $\kappa_{Org}=0.3$ (Massoli et al., 2010)) and their respective volume fractions by applying the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. For the calculation of the volume concentration of each compound assumed liquid phase density of SO$_4$, NH$_4$, NO$_3$, Chl, Org constituents (http://cires1.colorado.edu/jimenez-group/wiki). The difference in percentage of κ values calculated for the two extreme cases of $\kappa_{(NH_4)_2SO_4}=0.47$, $\kappa_{(NH_4)HSO_4}=0.56$ is 0.4 %, while for $\kappa_{Org}=0.0$ and $\kappa_{Org}=0.3$ is 1 %. The result shows a κ very close to that of pure sulphuric acid (Sullivan et al., 2010).
S2 Activity coefficients of H$_2$SO$_4$ and SO$_3$ and water activity

Figure S3. Modelled activity coefficient of (a) H$_2$SO$_4$ (γ_{H2SO4}) with equilibrium constant $K_{H2SO4}=2.40 \cdot 10^9$ mol·kg$^{-1}$, and (b) SO$_3$ (γ_{SO3}) with equilibrium constant $K_{SO3}=1.43 \cdot 10^{10}$, at $T=288.8$ K, as a function of the water activity, a_w, on the y-axis and N:S on the x-axis. The colour coded contours on x–y axes represent constant activity coefficient for a) $\gamma_{H2SO4}=0.8–2.2$ and b) $\gamma_{SO3}=0.8–1.8$.
Figure S4. (a) Modelled water activity curves and b) degree of dissociation of HSO$_4^-$ as a function of water mass fraction in aqueous solutions of H$_2$SO$_4$ and mixtures of (NH$_4$)$_2$SO$_4$ and H$_2$SO$_4$. The model simulations and measurements were performed at 298 K. The modelled water activity curves are lines colour coded. The purple curve corresponds to pure sulphuric acid, blue and cyan curves to 1:2 and 1:1 molar ratio of (NH$_4$)$_2$SO$_4$:H$_2$SO$_4$ and red curve to pure ammonium sulphate. The measured water activity curve is symbol coded. The purple circle symbol corresponds to H$_2$SO$_4$(aq) (Staples 1981). (b) the modelled degree of dissociation, $\alpha_{HSO_4^-}$, curves are lines colour coded (corresponding to same aqueous solutions as the curves in Fig. S4.a. The measured degree of dissociation is symbol colour coded (purple squares corresponds to H$_2$SO$_4$(aq), Myhre et al. (2003), cyan triangles to the 1:1 (NH$_4$)$_2$SO$_4$:H$_2$SO$_4$ mixture, Dawson et al. (1986)). The model results can be compared with analogous results in Fig. 10 from Zuend et al., 2011.
Figure S5. Saturation vapour pressures for H$_2$SO$_4$ and SO$_3$. Comparison among two different pure liquid saturation vapour pressure parameterizations (a) for H$_2$SO$_4$ and (b) for SO$_3$. In panel (a) the blue curve corresponds to the parameterization from the work of Kulmala and Laaksonen (1990), which was optimized by Noppel et al., 2002 (N–K–L). The black curve corresponds to the parameterization from Que et al., 2011 (original Aspen Plus Databank). In panel (b) the blue curve corresponds to the parameterization from the work of Nickless (1968) and the black curve to the parameterization from Que et al., 2011 (original Aspen Plus Databank).
Figure S6. The Kelvin effect for experiment 2 at $T=288.8 \text{ K}$ for Case 2a ($K_{\text{H}_2\text{SO}_4}=2.40 \cdot 10^9 \text{ mol} \cdot \text{kg}^{-1}$ and $x_{\text{SO}_3}=1.43 \cdot 10^{10}$) illustrates the increase in (a) the water (white contours correspond to $S_{\text{Kelvin,H}_2\text{O}}=1.02$–1.38) and (b) the H_2SO_4 (white contours represent the Kelvin terms $S_{\text{Kelvin,H}_2\text{SO}_4}=1.2$–6.0) saturation vapour pressure. The minimum particle size for experiment 2 is \sim40 nm, so the maximum value of the Kelvin term is \sim1.44 for sulphuric acid.
S5 Saturation concentration of H_2SO_4 and SO_3

We can calculate the saturation concentration of H_2SO_4 ($C_{H2SO4,S}$, Eq.S1) and SO_3 ($C_{SO3,S}$, Eq.S2) in $\mu g \cdot m^{-3}$ (supplement Fig. S7) with the H_2SO_4 dissociation equilibrium coefficients, $K_{H2SO4}=2.4 \cdot 10^9$ $mol \cdot kg^{-1}$, and $K_{SO3}=1.43 \cdot 10^{10}$, based on the mole fractions (Fig. 2), the modelled activity coefficients (Fig. S3), the pure liquid saturation vapours pressure parameterizations (Eq. 10 and 11), and the Kelvin effect (Eq. 13).

\[
C_{H2SO4,S} = \frac{P_{0,H2SO4} \cdot x_{H2SO4} \cdot \gamma_{H2SO4} \cdot C_{H2SO4}}{R \cdot T \cdot M_{H2SO4}}
\]
\[
C_{SO3,S} = \frac{P_{0,SO3} \cdot x_{SO3} \cdot \gamma_{SO3} \cdot C_{SO3}}{R \cdot T \cdot M_{SO3}}
\]

(S1)

(S2)

For almost dry conditions ($a_w=3.7 \cdot 10^{-4}$) and $N:S=0$, $C_{H2SO4,S}\approx 2.6$ $\mu g \cdot m^{-3}$ and $C_{SO3,S}\approx 8.8$ $\mu g \cdot m^{-3}$. However, as long as a_w is larger than $1.3 \cdot 10^{-3}$, $C_{H2SO4,S}$ becomes larger than $C_{SO3,S}$. Thus, for the conditions during the experiments ($RH>0.3 \%$) this thermodynamic setup can be categorized as Case 2a.

With the Aspen Plus Databank pure–liquid saturation vapour pressure parameterization and $K_{H2SO4}=4.00 \cdot 10^9$ $mol \cdot kg^{-1}$ and $K_{SO3}=4.55 \cdot 10^{10}$ $C_{H2SO4,S}$ is always higher than $C_{SO3,S}$ ($C_{H2SO4,S}=3.33$ $\mu g \cdot m^{-3}$ and $C_{SO3,S}=2.28$ $\mu g \cdot m^{-3}$ at $a_w=2 \cdot 10^{-4}$ and $N:S=0$) (Fig. S7). Thus, this model setup can be also classified as Case 2a.
Figure S7.I. (a) The saturation concentration of H$_2$SO$_4$ ($C_{H2SO4,S}$) and (b) SO$_3$ ($C_{SO3,S}$) in μg·m$^{-3}$ as a function of a_w and N:S at $T=288.8$ K. The H$_2$SO$_4$ dissociation equilibrium coefficients are $K_{H2SO4}=2.4\cdot10^9$ mol·kg$^{-1}$, and $K_{SO3}=1.43\cdot10^{10}$. For the pure liquid saturation vapour pressures used the N–K–L and Nickless parameterisations.
Figure S7.II. (a) The saturation concentration of $\text{H}_2\text{SO}_4 (\text{C}_{\text{H}_2\text{SO}_4\text{,S}})$ and (b) $\text{SO}_3 (\text{C}_{\text{SO}_3\text{,S}})$ in $\mu\text{g} \cdot \text{m}^{-3}$ as a function of a_w and $N:S$ at $T = 288.8 \text{ K}$. The H_2SO_4 dissociation equilibrium coefficients are $K_{\text{H}_2\text{SO}_4} = 4.00 \cdot 10^9 \text{ mol kg}^{-1}$, and $K_{\text{SO}_3} = 4.55 \cdot 10^{10}$. For the pure liquid saturation vapour pressures used the parameterisations from Aspen Plus Databank.
Figure S8. Modelled and measured GMD evolution as a function of (a) time and (b) RH for experiments 1 and 2 performed at $T=288.8 \, K$. The model results are from simulations 8–11 and 20–23 with NH$_3$ as a particle phase contaminant listed in Table 2 (Case 1 ($K_{H_2SO_4}=3.80\cdot10^9 \, mol\cdot kg^{-1}$), Case 2a ($K_{H_2SO_4}=4.00\cdot10^9 \, mol\cdot kg^{-1}$ and $^*K_{SO_3}=4.55\cdot10^{10}$), Case 2b ($K_{H_2SO_4}=5.00\cdot10^9 \, mol\cdot kg^{-1}$ and $^*K_{SO_3}=5.00\cdot10^{10}$) and Case 3 ($K_{H_2SO_4}=1.00\cdot10^{11} \, mol\cdot kg^{-1}$ and $^*K_{SO_3}=5.00\cdot10^{10}$)). The pure liquid saturation vapour pressures of H$_2$SO$_4$ and SO$_3$ are calculated with the parameterizations from Que et al. (2011) (originally from the Aspen Plus Databank).
Figure S9. Modelled and measured GMD evolution as a function of (a) time and (b) RH for experiments 1 and 2 performed at $T=288.8 \text{ K}$. The model results presented are from simulation 2, 6, 14 and 17 listed in Table 2 (Case 2a, $K_{\text{H}_2\text{SO}_4} = 2.40 \times 10^9 \text{ mol} \cdot \text{kg}^{-1}$ and $K_{\text{SO}_3} = 1.43 \times 10^{19}$). The pure liquid saturation vapour pressures of H_2SO_4 and SO_3 are taken from Kulmala and Laaksonen (1990) (Eq. 10) and Nickless (1968) (Eq. 11), respectively. The only difference between the model simulations is the assumed particle contaminant (NH$_3$ or non-volatile and non-water-soluble organics).
Figure S10. Modelled and measured GMD evolution as a function of (a) time and (b) RH for experiments 1 and 2 performed at $T=288.8 \, K$. The model results presented arise from Case 1 simulations ($K_{H_2SO_4}=2.00 \cdot 10^9 \, mol\cdot kg^{-1}$) without any particle phase contaminant. The pure liquid saturation vapour pressures of H$_2$SO$_4$ was calculated with Eq. 10, N–K–L parameterisation, (Kulmala and Laaksonen (1990) and Noppel et al., 2002).
Supplementary references

