Supporting Information

Table 1. Pearson’s correlation coefficient (R²) between mass concentrations from ATOFMS (PM$_{2.5}$), TEOM (PM$_{10}$ & PM$_{1}$), ACSM (PM$_{1}$), PILS (PM$_{10}$) and MAAP (PM$_{2.5}$) measurements and OPS number concentrations (/cm³) for the full sampling period, and during specific periods.

<table>
<thead>
<tr>
<th>R²</th>
<th>ATOFMS total</th>
<th>ATOFMS EC-rich</th>
<th>ATOFMS K-rich</th>
<th>PM$_{10}$</th>
<th>PM$_{1}$</th>
<th>BC</th>
<th>ACSM total</th>
<th>ACSM SO$_{4}^{2-}$</th>
<th>ACSM NH$_{4}^{+}$</th>
<th>ACSM SV-OOA</th>
<th>ACSM LV-OOA</th>
<th>PILS-IC SO$_{4}^{2-}$</th>
<th>PILS-IC NH$_{4}^{+}$</th>
<th>OPS 0.3-0.579 µm particles</th>
<th>*PILS Oxalate</th>
<th>*WSOC</th>
<th>**ATOFS fresh sea salt</th>
<th>**OPS 0.579-2.156 µm particles</th>
<th>***PILS MSA</th>
<th>**ACSM NO$_{2}$</th>
<th>***PILS NO$_{3}^{+}$</th>
<th>***PILS SO$_{4}^{2-}$</th>
<th>***PILS MSA</th>
<th>**ACSM NO$_{2}$</th>
<th>***PILS NO$_{3}^{+}$</th>
<th>***PILS SO$_{4}^{2-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOFMS total</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATOFMS EC-rich</td>
<td>0.73</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATOFMS K-rich</td>
<td>0.48</td>
<td>0.28</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>0.21</td>
<td>0.20</td>
<td>0.09</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PM$_{1}$</td>
<td>0.44</td>
<td>0.46</td>
<td>0.30</td>
<td>0.17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>0.55</td>
<td>0.50</td>
<td>0.37</td>
<td>0.19</td>
<td>0.40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ACSM total</td>
<td>0.72</td>
<td>0.66</td>
<td>0.46</td>
<td>0.17</td>
<td>0.54</td>
<td>0.70</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ACSM SO$_{4}^{2-}$</td>
<td>0.66</td>
<td>0.61</td>
<td>0.38</td>
<td>0.14</td>
<td>0.46</td>
<td>0.48</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>ACSM NH$_{4}^{+}$</td>
<td>0.65</td>
<td>0.62</td>
<td>0.37</td>
<td>0.12</td>
<td>0.44</td>
<td>0.47</td>
<td>0.81</td>
<td>0.93</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ACSM SV-OOA</td>
<td>0.46</td>
<td>0.43</td>
<td>0.35</td>
<td>0.11</td>
<td>0.38</td>
<td>0.57</td>
<td>0.69</td>
<td>0.33</td>
<td>0.32</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ACSM LV-OOA</td>
<td>0.59</td>
<td>0.59</td>
<td>0.46</td>
<td>0.17</td>
<td>0.50</td>
<td>0.67</td>
<td>0.88</td>
<td>0.61</td>
<td>0.61</td>
<td>0.63</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PILS-IC SO$_{4}^{2-}$</td>
<td>0.58</td>
<td>0.52</td>
<td>0.25</td>
<td>0.12</td>
<td>0.41</td>
<td>0.41</td>
<td>0.61</td>
<td>0.81</td>
<td>0.75</td>
<td>0.21</td>
<td>0.42</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PILS-IC NH$_{4}^{+}$</td>
<td>0.44</td>
<td>0.43</td>
<td>0.23</td>
<td>0.08</td>
<td>0.30</td>
<td>0.30</td>
<td>0.46</td>
<td>0.53</td>
<td>0.53</td>
<td>0.33</td>
<td>0.68</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OPS 0.3-0.579 µm particles</td>
<td>0.73</td>
<td>0.69</td>
<td>0.49</td>
<td>0.24</td>
<td>0.54</td>
<td>0.57</td>
<td>0.82</td>
<td>0.71</td>
<td>0.70</td>
<td>0.54</td>
<td>0.60</td>
<td>0.46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>*PILS Oxalate</td>
<td>0.35</td>
<td>0.41</td>
<td>0.25</td>
<td>0.14</td>
<td>0.36</td>
<td>0.37</td>
<td>0.50</td>
<td>0.28</td>
<td>0.29</td>
<td>0.41</td>
<td>0.54</td>
<td>0.27</td>
<td>0.23</td>
<td>0.42</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>*WSOC</td>
<td>0.44</td>
<td>0.37</td>
<td>0.29</td>
<td>0.24</td>
<td>0.42</td>
<td>0.46</td>
<td>0.50</td>
<td>0.19</td>
<td>0.18</td>
<td>0.60</td>
<td>0.58</td>
<td>0.19</td>
<td>0.09</td>
<td>0.44</td>
<td>0.55</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>**ATOFS fresh sea salt</td>
<td>0.04</td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
<td>0.12</td>
<td>0.07</td>
<td>0.05</td>
<td>0.15</td>
<td>0.16</td>
<td>0.06</td>
<td>0.18</td>
<td>0.02</td>
<td>0.01</td>
<td>N/A</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**PILS SSA</td>
<td>0.11</td>
<td>0.01</td>
<td>0.02</td>
<td>0.35</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>0.05</td>
<td>0.06</td>
<td>0.13</td>
<td>0.17</td>
<td>0.02</td>
<td>0.25</td>
<td>0.01</td>
<td>0.04</td>
<td>N/A</td>
<td>0.81</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**OPS 0.579-2.156 µm particles</td>
<td>0.42</td>
<td>0.03</td>
<td>0.02</td>
<td>0.24</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.07</td>
<td>0.01</td>
<td>0.08</td>
<td>0.03</td>
<td>0.00</td>
<td>N/A</td>
<td>0.81</td>
<td>0.88</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>***PILS MSA</td>
<td>0.18</td>
<td>0.19</td>
<td>0.06</td>
<td>0.05</td>
<td>0.16</td>
<td>0.06</td>
<td>0.21</td>
<td>0.35</td>
<td>0.37</td>
<td>0.001</td>
<td>0.17</td>
<td>0.48</td>
<td>0.54</td>
<td>0.20</td>
<td>0.08</td>
<td>0.03</td>
<td>0.06</td>
<td>0.00</td>
<td>0.02</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>***ACSM NO$_{2}$</td>
<td>0.24</td>
<td>0.34</td>
<td>0.34</td>
<td>0.25</td>
<td>0.41</td>
<td>0.75</td>
<td>0.57</td>
<td>0.35</td>
<td>0.37</td>
<td>0.36</td>
<td>0.66</td>
<td>0.55</td>
<td>0.63</td>
<td>0.35</td>
<td>0.28</td>
<td>0.05</td>
<td>0.02</td>
<td>0.04</td>
<td>0.46</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>***PILS NO$_{3}^{+}$</td>
<td>0.07</td>
<td>0.06</td>
<td>0.02</td>
<td>0.10</td>
<td>0.04</td>
<td>0.00</td>
<td>0.04</td>
<td>0.13</td>
<td>0.14</td>
<td>0.02</td>
<td>0.03</td>
<td>0.34</td>
<td>0.33</td>
<td>0.13</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
<td>0.24</td>
<td>0.36</td>
<td>0.33</td>
<td>0.20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Correlations calculated from 21st June-4th August.

**Correlations calculated from 20-27th June.

***Correlations calculated from 23rd July-5th August.
Figure 1. Individual HYSPLIT 120-hour back trajectories for each cluster for Period 1 during ADRIMED and SAF-MED.
Figure 2. Daytime average aerosol optical depth at 550 nm (AOD$_{550}$) derived from MSG/SEVIRI (Thieuleux et al., 2005) from 17th to 20th June 2013 showing a dust plume transport over the western Mediterranean basin (produced by http://www.icare.univ-lille1.fr). Land and cloudy pixels in dark and light grey, respectively.