
Authors’ comments in reply to the anonymous referee for “Evaluation of ACCMIP ozone 

simulations and ozonesonde sampling biases using a satellite-based multi-constituent chemical 

reanalysis” by K. Miyazaki and K. Bowman 

 

 We want to thank the referee for the helpful comments. We have revised the manuscript according to 

the comments, and hope that the revised version is now suitable for publication. Below are the referee 

comments in italics, with our replies in normal font.  

 

Reply to Referee #1 

 

Abstract:  

 

P1 L18: define better the relative sampling bias, i.e relative to what?)   

 

The sentences have been rewritten as follows: 

“To estimate ozonesonde sampling biases, we computed model bias separately for global coverage and 

the ozonesonde network. The ozonesonde sampling bias in the evaluated model bias for the seasonal 

mean concentration relative to global coverage…” 

 

P1L19: Also give information about typical sampling biases in other regions.   

 

The following sentences have been added: 

“…, and up to 80 % for the global tropics. In contrast, the ozonesonde sampling bias is typically smaller 

than 30 % for the Arctic regions in the lower and middle troposphere.” 

 

According to these changes, the abstract has been reformulated.  

 

P1 L8 better “emissions sources” 

 

Replaced. 

 

P1 L25 – add . after al 

 

Added. 

 



P1 L28 “data do” 

 

Corrected. 

 

P3 L2 add “strong” between not and enough  

 

Added. 

 

P3 L16 f. Inness et al. 2013 use a coupled system IFS-MOZART. Flemming et al. 2017 use C-IFS with 

CB05 chemistry in their re-analysis. 

 

Corrected. 

 

P5 l31, at . after al 

 

Added. 

 

P11L25 Define “seasonal amplitude” 

 

Already defined in P11L9. 

 

P17L33. Please discuss Fig. 11 in more detail, especially the analysis errors and their relation to the 

ACCMIP ensemble spread. Why is the ensemble spread at 200 hPa so much larger than the re-analysis 

error? How do the different tropopause definitions impact the ozone sampling error?  

 

The following sentences have been added to discuss the relationship between the analysis uncertainty and 

model spread: 

“Meanwhile, the magnitudes of the model spread and analysis uncertainty differ considerably for some 

regions. At 200 hPa and higher in the extratropics, the analysis uncertainty is smaller than the model 

spread, where the reanalysis fields are strongly constrained by MLS measurements. These results suggest 

that further improvements, for instance, on the representation of the tropopause and STE are required for 

some of the models, in order for the reanalysis and ensemble models to have similar levels of uncertainty. 

In the lower troposphere, in contrast, the larger analysis uncertainty than the ensemble spread suggests 

that further observational constraints are required for the reanalysis for a fair comparison.” 

 



The different representations of the tropopause and STE could affect model errors and thus the evaluated 

sampling bias, which have already been discussed in the manuscript.   

 

P19 L33: define sampling biases. Say what you did to get to relative numbers. Also summarise the 

sampling biases for the regions with low to moderate sampling biases (see Figure 9).  

 

The sentences have been rewritten as follows: 

“To estimate the sampling biases in the ACCMIP model evaluation, we compared two evaluation results 

of the mean model bias, using the chemical reanalysis based on the complete and ozonesonde samplings. 

For instance, the ozonesonde sampling bias in the evaluated model bias (relative to the model bias for the 

complete sampling) is…” 

 

The following sentence has been added to summarize low sampling biases: 

“The ozonesonde sampling bias is typically smaller than 30 % for the NH polar regions except in boreal 

winter and over the equatorial Americas, the Atlantic Ocean and Africa, and at the SH mid-latitudes in 

austral winter and spring from the lower to middle troposphere.” 

  

Table 2 

Should be Legionowo not Legionowa 

Spell out Hohenpbg 

 

Corrected. 

 

Figure 1:  

Mention in caption that you show relative errors, also relative to what  

 

Mentioned. 

 

Figure 5: 

Clarify if the models are shown at “complete” or “ozone-sonde” sampling 

 

The following sentence has been added: 

“The ACCMIP model results are shown for the average over all model grid points.” 

 

Figure 6:   



Please add also the seasonal amplitude from the ozone-sonde sampling as this is also done in the other 

figures (e.g. Figure 7). Explain averaging interval for the seasonal amplitude (i.e. monthly values) 

 

The seasonal amplitude from the ozonesonde sampling has been added. The time interval is explained in 

the revised manuscript. 
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Evaluation of ACCMIP ozone simulations and ozonesonde sampling biases using a satellite-1 

based multi-constituent chemical reanalysis 2 

 3 

\begin{abstract} 4 

 5 

The Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) ensemble 6 

ozone simulations for the present-day from the 2000 decade simulation results are evaluated 7 

by a state-of-the-art multi-constituent atmospheric chemical reanalysis that ingests multiple 8 

satellite data including the Tropospheric Emission Spectrometer (TES), the Microwave Limb 9 

Sounder (MLS), the Ozone Mapping Instrument (OMI), and the Measurements of Pollution in 10 

the Troposphere (MOPITT) for 2005--2009. Validation of the chemical reanalysis against 11 

global ozonesondes shows good agreement throughout the free troposphere and lower 12 

stratosphere for both seasonal and year-to-year variations, with an annual mean bias of less 13 

than 0.9 ppb in the middle and upper troposphere at the tropics and mid-latitudes. The 14 

reanalysis provides comprehensive spatio-temporal evaluation of chemistry-model 15 

performance that compliments direct ozonesonde comparisons, which are shown to suffer 16 

from significant sampling bias.comprehensive information on the weakness of the models, 17 

whereas we consider that the spatial and temporal coverage of individual measurements, such 18 

as ozonesonde measurements, is insufficient to capture the temporally and spatially 19 

representative model bias. The model evaluation using the reanalysis reveals that the 20 

ACCMIP ensemble mean overestimates ozone in the northern extratropics by 6--11 ppb while 21 

underestimating by up to 18 ppb in the southern tropics over the Atlantic in the lower 22 

troposphere. Most models underestimate the spatial variability of the annual mean lower 23 

tropospheric concentrations in the extratropics of both hemispheres by up to 70 \% in the 24 

lower troposphere. The ensemble mean also underestimates the seasonal amplitude by 25--70 25 

\% in the northern extratropics and overestimates the inter-hemispheric gradient by about 30 26 

\% in the lower and middle troposphere. A part of the discrepancies can be attributed to the 27 

five-year reanalysis data for the decadal model simulations. However, these differences are 28 

less evident with the current sonde network, which is shown to provide biased regional and 29 

monthly ozone statistics, especially in the tropics. To estimate ozonesonde sampling biases, 30 

we comparedcomputed model bias separately for global coverage and the ozonesonde 31 

networktwo evaluation results of model bias based on the complete and ozonesonde 32 
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samplings. The ozonesonde sampling bias in the evaluated model bias for the seasonal mean 1 

concentration relative to global coverage relative to model bias for the complete sampling is 2 

40--50 \% over the Western Pacific and East Indian Ocean and reaches 110 \% over the 3 

equatorial Americas, in the middle troposphere. and up to 80 \% for the global tropics in the 4 

northern hemisphere in the middle troposphere. In contrast, the ozonesonde sampling biases 5 

wereis typically smaller than 30 \% for the NH polarArctic regions except in boreal winter 6 

and at the SH mid latitudes in austral winter and spring fromin the lower toand middle 7 

troposphere. These systematic biases have implications for ozone radiative forcing and the 8 

response of chemistry to climate that can be further quantified as the satellite observational 9 

record extends to multiple decades.   10 

 11 

\end{abstract} 12 

 13 

\clearpage 14 

 15 

\introduction 16 

 17 

Tropospheric ozone is one of the most important air pollutants and the third most important 18 

anthropogenic greenhouse gases in the atmosphere (Forster et al., 2007; HTAP, 2010; Myhre 19 

et al., 2013; Stevenson et al., 2013) while also playing a crucial role in the tropospheric 20 

oxidative capacity through production of hydroxyl radicals (\chem{OH}) by photolysis in the 21 

presence of water vapor (Logan et al., 1981; Thompson, 1992). Global tropospheric ozone is 22 

formed from secondary photochemical production of ozone precursors including 23 

hydrocarbons or carbon monoxide (\chem{CO}) in the presence of nitrogen oxides 24 

(\chem{NO_x}) modulated by additional processes including in-situ chemical loss, deposition 25 

to the ground surface, and inflow from the stratosphere. These ozone precursors are largely 26 

controlled by anthropogenic and natural emission sources, e.g., transport, industry, lightning, 27 

biomass burning sources. Representation of tropospheric ozone in chemical transport models 28 

(CTMs) and chemistry climate models (CCMs) is also important in estimating its impact on 29 

the atmospheric radiative budget. A number of chemical transport models (CTMs) and 30 

chemistry climate models (CCMs) have been developed and used to study variations in 31 
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atmospheric environment and its impacts on climate (e.g. Bowman et al., 2013; Shindell et al, 1 

2006, 2013; Stevenson et al., 2006, 2013; Wild, 2007, Kawase et al., 2011; Young et al., 2 

2013). However, current tropospheric ozone simulations still have large uncertainties because 3 

of the incomplete representation of model processes, as well as the large uncertainty in 4 

precursor emissions. These in turn increase uncertainty in CCM projections.  5 

 6 

Climate model evaluation has primarily been achieved by comparisons with observed 7 

concentrations or related variables, which requires a precise description of their geographical, 8 

vertical, and temporal variations. Various measurements have been employed for evaluating 9 

simulated fields (e.g., Huijnen et al., 2010; Parrish et al., 2014; Stevenson et al., 2006, 2013; 10 

Young et al., 2013). However, information obtained from individual measurements is limited, 11 

and evaluation of global ozone fields with a suite of satellite measurements and in situ 12 

measurements is challenging because of limited vertical sensitivity profiles that differ among 13 

measurements, different overpass times, and mismatches in spatial and temporal coverage 14 

between the instruments. First, surface measurements have a spatial representativeness that is 15 

much smaller than that of global models over polluted areas. Second, ozone climatology data 16 

sets have been established based on ozonesonde measurements for use in model evaluation 17 

(Logan et al., 1999; Considine et al., 2008). Tilmes et al. (2012) generated an ozone 18 

climatology using ozonesonde measurements obtained between 1995 and 2011, which mostly 19 

consists of the same station data described by Logan (1999) and Thompson et al. (2003), but 20 

covering a longer time period. Using the compiled data of Tilmes et al. (2012), Young et al. 21 

(2013) conducted an intensive validation of tropospheric ozone from multiple model 22 

simulations in the Atmospheric Chemistry and Climate Model Inter-comparison Project 23 

(ACCMIP). However, the climatological data does not provide information on the temporal 24 

variability of the observed ozone. In addition, the current ozonesonde network does not cover 25 

the entire globe and is not homogeneously distributed between the hemispheres, ocean and 26 

land, and urban and rural areas, and its sampling interval is typically a week or longer. Model 27 

errors are also expected to vary greatly in time and space at various scales. Therefore, we 28 

consider that the spatial and temporal coverage of the ozonesonde network is insufficient to 29 

capture the temporally and spatially representative model bias. Third, satellite-retrieved 30 

measurements such as those from the Tropospheric Emission Spectrometer (TES) (Herman 31 

and Kulawik, 2013) and the Infrared Atmospheric Sounding Interferometer (IASI) (Clerbaux 32 
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et al., 2009) have great potential for evaluating global ozone fields (e.g., Aghedo et al., 2011). 1 

However, information obtained from currently available satellite measurements are still 2 

limited. Their vertical sensitivity is not strong enough to resolve detailed vertical structures in 3 

the troposphere as appeared in current global models, and they measure at only a particular 4 

overpass time, thus the diurnal variation information is missing. Meanwhile, the 5 

characteristics of each measurement, such as observational error, vary with observational 6 

condition, but their influence is rarely taken into consideration in model evaluations. 7 

 8 

Data assimilation is a technique for combining different observational data sets with a model, 9 

with consideration of the characteristics of individual measurements (e.g., Kalnay, 2003; 10 

Lahoz and Schneider, 2014). Advanced data assimilation allows the propagation of 11 

observational information in time and space and from a limited number of observed species to 12 

a wide range of chemical components, and provides global fields that are physically and 13 

chemically consistent and in agreement with individual observations (Sandu and Chai, 2011; 14 

Bocquet et al., 2015). Various studies have demonstrated the capability of data assimilation 15 

techniques in the analysis of chemical species in the troposphere and stratosphere (e.g. Stajner 16 

and Wargan, 2004; Jackson, 2007; Parrington et al., 2009; Kiesewetter et al., 2010; Flemming 17 

et al., 2011; Coman et al., 2012; Inness et al., 2013; Emili et al., 2014; Miyazaki et al., 2012a, 18 

2012b, 2013, 2014, 2015, 2016; van der A et al., 2015; Gaubert et al., 2016). 19 

 20 

Reanalysis is a systematic approach to creating a long-term data assimilation product. 21 

Meteorological reanalyses have been established at operational centers for many years and are 22 

widely used in climate and meteorological research (e.g., Hartmann et al., 2013). 23 

Tropospheric chemical reanalysis, however, is relatively new. Inness et al. (2013) performed 24 

an eight-year reanalysis of tropospheric chemistry for 2003--2010 using a coupled system 25 

Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers 26 

(IFS-MOZART) the integrated forecasting system with modules for atmospheric composition 27 

(C-IFS) with observations sensitive primarily to the upper troposphere, and highlighted the 28 

importance of estimating  surface emissions. This chemical reanalysis is recently updated by 29 

Flemming et al. (2017) using the integrated forecasting system with modules for atmospheric 30 

composition (C-IFS) with CB05 chemistry. Miyazaki et al. (2015) simultaneously estimated 31 

concentrations and emissions for an eight-year tropospheric chemistry reanalysis for 2005--32 



 5 

2012 obtained from an assimilation of multi-constituent satellite measurements, which had 1 

greater lower tropospheric sensitivity, using an ensemble Kalman filter (EnKF).  Chemical 2 

reanalysis using the EnKF has been used to provide comprehensive information on 3 

atmospheric composition variability and elucidate variations in precursor emissions and to 4 

evaluate bottom-up emission inventories (Miyazaki et al., 2014, 2015, 2016).  5 

 6 

In this study, we explore the new potential of chemical reanalysis for evaluation of 7 

tropospheric ozone profiles in multi-model chemistry climate simulations from ACCMIP 8 

(Lamarque et al., 2013). Model errors in precursors can also be evaluated using the reanalysis 9 

product, and this could help identify error sources in tropospheric ozone simulations. 10 

However, because no other study has shown the potential of reanalysis ozone for model 11 

evaluation, this study focuses on tropospheric ozone only. ACCMIP models have been used 12 

to calculate historic and future radiative and chemically important species and their coupling 13 

with the broader climate system (Bowman et al., 2013; Lee et al., 2013; Naik et al., 2013; 14 

Stevenson et al., 2013; Shindell et al., 2013; Voulgarakis et al., 2013; Young et al., 2013). We 15 

characterize ACCMIP models in simulating global distributions and the seasonal variation of 16 

ozone from the lower troposphere to the lower stratosphere. We further discuss the limitation 17 

of the current ozonesonde network for evaluating temporally and spatially representative 18 

model errors. To the best of our knowledge, this is the first study to apply chemical reanalysis 19 

to the evaluation of global chemistry-climate models and consequently offers a similar 20 

potential as meteorological reanalysis for evaluation of climate models (Ana4MIPS, 21 

https://esgf.nccs.nasa.gov/projects/ana4mips/Background). 22 

 23 

\section{Methodology} 24 

 25 

\subsection{Chemical data assimilation system} 26 

 27 

The data assimilation system is constructed based on a global CTM MIROC-Chem 28 

(Watanabe et al. 2011) and an EnKF described in Miyazaki et al. (2016), which can be 29 

consulted for more detailed information. We use the two-hourly global chemical reanalysis 30 

data for the period 2005--2009 when tropospheric ozone fields are strongly constrained by 31 
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TES tropospheric ozone measurements. The availability of TES measurements is strongly 1 

reduced after 2010, which led to a degradation of the reanalysis performance, as demonstrated 2 

by Miyazaki et al. (2015).  3 

 4 

A major update from the system used in Miyazaki et al. (2015) to the system used in this 5 

study is the replacement of forecast model from CHASER (Sudo et al., 2002) to MIROC-6 

Chem (Watanabe et al., 2011), which caused substantial changes in the a priori field and thus 7 

the data assimilation results of various species. Microwave Limb Sounder (MLS) retrievals 8 

have been updated from v3.3 in Miyazaki et al. (2015) to v4.2 in this study. In addition, we 9 

attempt to optimize the surface \chem{NO_x} emission diurnal variability using data 10 

assimilation of multiple \chem{NO_2} satellite retrievals obtained at different overpass times 11 

in the updated system (Miyazaki et al., 2016). 12 

 13 

\subsubsection{Forecast model} 14 

 15 

The forecast model, MIROC-Chem (Watanabe et al., 2011), considers detailed 16 

photochemistry in the troposphere and stratosphere by simulating tracer transport, wet and dry 17 

deposition, and emissions, and calculates the concentrations of 92 chemical species and 262 18 

chemical reactions (58 photolytic, 183 kinetic, and 21 heterogeneous reactions). Its 19 

tropospheric chemistry considers the fundamental chemical cycle of \chem{O_x}-20 

\chem{NOx}-\chem{HO_x}-\chem{CH_4}-\chem{CO} along with oxidation of non-21 

methane volatile organic compounds (NMVOCs) to properly represent ozone chemistry in the 22 

troposphere. Its stratospheric chemistry simulates chlorine and bromine containing 23 

compounds, CFCs, HFCs, OCS, \chem{N_2O}, and the formation of polar stratospheric 24 

clouds (PSCs) and associated heterogeneous reactions on their surfaces. The radiative transfer 25 

scheme considers absorption within 37 bands, scattering by gases, aerosols, and clouds, and 26 

the effect of surface albedo. Detailed radiation calculations are used for photolysis calculation. 27 

Methane concentrations were scaled on the basis of present-day values with reference to the 28 

surface concentration. MIROC-Chem has a T42 horizontal resolution (2.8$^\circ$) with 32 29 

vertical levels from the surface to 4.4 hPa. The horizontal model resolution is comparable to 30 

the resolution of ACCMIP models (ranging from 1.24$^\circ$ to 5$^\circ$). It is coupled to 31 
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the atmospheric general circulation model MIROC-AGCM version 4 (Watanabe et al., 2011). 1 

The simulated meteorological fields were nudged toward the six-hourly ERA-Interim (Dee et 2 

al., 2011) to reproduce past meteorological fields.  3 

 4 

The a priori values for surface emissions of \chem{NO_x} and \chem{CO} were obtained 5 

from bottom-up emission inventories. Anthropogenic \chem{NO_x} and \chem{CO} 6 

emissions were obtained from the Emission Database for Global Atmospheric Research 7 

(EDGAR) version 4.2 (EC-JRC, 2011). Emissions from biomass burning were based on the 8 

monthly Global Fire Emissions Database (GFED) version 3.1 (van der Werf et al., 2010). 9 

Emissions from soils were based on monthly mean Global Emissions Inventory Activity 10 

(GEIA) (Graedel et al., 1993). Lightning \chem{NO_x} (\chem{LNO_x}) sources in 11 

MIROC-Chem were calculated based on the relationship between lightning activity and cloud 12 

top height (Price and Rind, 1992) and using the convection scheme of MIROC-AGCM 13 

developed based on the scheme presented by Arakawa and Schubert (1974). For black 14 

carbon (BC) and organic carbon (OC) and other precursor gases, surface and aircraft 15 

emissions are specified from the emission scenarios for Greenhouse Gas and Air Pollution 16 

Interactions and Synergies (GAINS) model developed by International Institute for Applied 17 

System Analysis (IIASA) (Klimont et al., 2009; Akimoto et al., 2015). 18 

 19 

\subsubsection{Data assimilation method} 20 

 21 

Data assimilation used here is based upon on an EnKF approach (Hunt et al., 2007). The 22 

EnKF uses an ensemble forecast to estimate the background error covariance matrix and 23 

generates an analysis ensemble mean and covariance that satisfy the Kalman filter equations 24 

for linear models. In the forecast step, a background ensemble, $\vec{x}^b_i (i=1,...,k)$, is 25 

obtained from the evolution of an ensemble model forecast, where $\vec{x}$ represents the 26 

model variable, $b$ is the background state, and $k$ is the ensemble size (i.e., 32 in this 27 

study). The ensemble perturbations were introduced to all the state vector variables as 28 

described below. The background ensemble is then converted into the observation space, 29 

$\vec{y}^b_i=H(\vec{x}^b_i)$, using the observation operator $H$ which is composed of a 30 

spatial interpolation operator and an operator that converts the model fields into retrieval 31 



 8 

space, which can be derived from an a priori profile and an averaging kernel of individual 1 

measurements (e.g., Eskes and Boersam, 2003; Jones et al, 2003). Using the covariance 2 

matrices of observation and background error as estimated from ensemble model forecasts, 3 

the data assimilation determines the relative weights given to the observation and the 4 

background, and then transforms a background ensemble into an analysis ensemble, 5 

$\vec{x}^a_i (i=1,...,k)$. The new background error covariance is obtained from an ensemble 6 

forecast with the updated analysis ensemble.  7 

 8 

In the data assimilation analysis, a covariance localization is applied to neglect the covariance 9 

among unrelated or weakly related variables, which has the effect of removing the influence 10 

of spurious correlations resulting from the limited ensemble size. The localization is also 11 

applied to avoid the influence of remote observations that may cause sampling errors. The 12 

state vector includes several emission sources (surface emissions of \chem{NO_x} and 13 

\chem{CO}, and \chem{LNO_x} sources) as well as the concentrations of 35 chemical 14 

species. The emission estimation is based on a state augmentation technique, in which the 15 

background error correlations determines the relationship between the concentrations and 16 

emissions of related species for each grid point. Because of the simultaneous assimilation of 17 

multiple-species data and because of the simultaneous optimization of the concentrations and 18 

emission fields, the global distribution of various species, including \chem{OH}, is modified 19 

considerably in our system. Miyazaki et al. (2015) demonstrated that the Northern/Southern 20 

Hemisphere \chem{OH} ratio became closer to an observational estimate of Patra et al. 21 

(2014) due to the multiple-species assimilation. This propagates the observational information 22 

between various species and modulates the chemical lifetimes of many species (Miyazaki et 23 

al., 2012b; 2015; 2016). 24 

 25 

\subsubsection{Assimilated measurements} 26 

 27 

Assimilated observations were obtained from multiple satellite measurements (Table 1). 28 

Tropospheric \chem{NO_2} column retrievals used are the version-2 Dutch Ozone 29 

Monitoring Instrument (OMI) \chem{NO_2}  (DOMINO) data product (Boersma et al., 2011) 30 

and version 2.3 TM4NO2A data products for Scanning Imaging Absorption Spectrometer for 31 
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Atmospheric Cartography (SCIAMACHY) and Global Ozone Monitoring Experiment-2 1 

(GOME-2) (Boersma et al., 2004) obtained through the TEMIS website (www.temis.nl). The 2 

TES ozone data and observation operators used are version 5 level 2 nadir data obtained from 3 

the global survey mode (Bowman et al, 2006; Herman and Kulawik, 2013). This data set 4 

consists of 16 daily orbits with a spatial resolution of 5--8 km along the orbit track. The MLS 5 

data used are the version 4.2 ozone and \chem{HNO_3} level 2 products (Livesey et al., 6 

2011). We used data for pressures of less than 215 hPa for ozone and 150 hPa for 7 

\chem{HNO_3}. The Measurement of Pollution in the Troposphere (MOPITT) CO data used 8 

are version 6 level 2 TIR products (Deeter et al., 2013). 9 

 10 

\subsection{ACCMIP models} 11 

 12 

The Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) focuses on 13 

chemistry-climate interactions needed to compute the proper climate forcing for Climate 14 

Model Intercomparison Project (CMIP5) climate simulations (Taylor et al., 2012) as well as 15 

the impact of climate change on chemical species. The ACCMIP consists of a series of time 16 

slice experiments for the long-term changes in atmospheric composition between 1850 and 17 

2100, as described by Lamarque et al. (2013). The experimental design was based on decadal 18 

time-slice experiments driven by decadal mean sea surface temperatures (SST). This study 19 

uses the 2000 decade simulation results from 15 models (1. CESM-CAM, 2. CICERO-20 

OsloCTM2, 3. CMAM, 4. EMAC, 5. GEOSCCM, 6. GFDL-AM3, 7. GISS-E2-R, 8. GISS-21 

E2-TOMAS, 9. HadGEM2, 10. LMDzOR-INCA, 11. MIROC-CHEM, 12. MOCAGE, 13. 22 

NCAR-CAM3.5, 14. STOC-HadAM3, 15. UM-CAM). The number of years that the 23 

ACCMIP models simulated for the 2000 decadal simulation mostly varied between 4 and 12 24 

years for each model. Each model simulation was averaged over the simulated years. 25 

 26 

Meteorological fields were obtained from analyses in CICERO-OsloCTM2 and from climate 27 

model fields in MOCAGE. UM-CAM and STOC-HadAM3 simulated meteorological and 28 

chemical fields, but chemistry did not affect climate. In all other models, simulated chemical 29 

fields were used in the radiation calculations and hence provide a forcing effect on the general 30 
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circulation of the atmosphere. Lamarque et al. (2013) indicated that most models overestimate 1 

global annual precipitation and have a cold bias in the lower troposphere. 2 

 3 

Different models vary greatly in complexity. The calculated chemical species vary from 16 to 4 

120 species. Photolysis rates are computed with offline or online methods, depending on the 5 

model. Many models include a full representation of stratospheric ozone chemistry and the 6 

heterogeneous chemistry of polar stratospheric clouds, but several models specify 7 

stratospheric ozone. Methane concentration is prescribed for the surface or over the whole 8 

atmosphere in many models. Ozone precursor emissions from anthropogenic and biomass 9 

burning sources were taken from those compiled by Lamarque et al. (2010). Natural emission 10 

sources such as isoprene emissions, and lightning and soil \chem{NO_x} sources were not 11 

specified and were accounted for differently between models. There is a large range in soil 12 

\chem{NO_x} emissions from 2.7 to 9.3 \unit{TgNyr^{-1}} and in \chem{LNO_x} sources 13 

from 1.2 to 9.7  \unit{TgNyr^{-1}} for the 2000 conditions. The range of natural emissions is 14 

a significant source of model-to-model ozone differences (Young et al. 2013). A complete 15 

description of the models along with the experiment design can be found in Lamarque et al. 16 

(2013). 17 

 18 

Both the ACCMIP models and chemical reanalysis are interpolated to at 2$^\circ 19 

\times$2.5$^\circ$ spatial resolution and 67 levels, following Bowman et al. (2013), and then 20 

compared each other. Spatial correlations are computed with consideration of weighting for 21 

the latitude.  22 

 23 

\subsection{Ozonesonde data} 24 

 25 

Ozonesonde observations were taken from the World Ozone and Ultraviolet Radiation Data 26 

Center (WOUDC) database (available at http://www.woudc.org). All available data from the 27 

WOUDC database are used for the evaluation of reanalysis data (Section 3), as listed in Table 28 

2. For the evaluation of ACCMIP models and ozonesonde sampling biases (Section 4 and 5), 29 

we use the ozonesonde sampling based on the compilation by Tilmes et al. (2012), which is 30 

shown in bold in Table 2. Because there is no observation after 2003 in Scoresbysund, this 31 
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location has been removed from the compilation in this study. The accuracy of the 1 

ozonesonde measurement is about $\pm$5 \% in the troposphere (Smit and Kley, 1998). 2 

 3 

To compare ozonesonde measurements with the data assimilation and ACCMIP models, all 4 

ozonesonde profiles have been interpolated to a common vertical pressure grid, with a bin of 5 

25 hPa. The two-hourly reanalysis and forecast model (i.e., control run) fields were linearly 6 

interpolated to the time and location of each measurement, with a bin of 25 hPa, and then 7 

compared with the measurements. For the ACCMIP models, the monthly model outputs were 8 

compared with the measurements at the location of each measurement. The averaged profile 9 

is computed globally and for four latitudinal bands, SH extratropics (90--30{\degree}\,S), SH 10 

tropics (30{\degree}\,S--Equator), NH tropics (Equator--30{\degree}\,N), and NH 11 

extratropics (30--90{\degree}\,N). 12 

 13 

\subsection{Ozonesonde sampling bias estimation} 14 

 15 

The current ozonesonde network does not cover the entire globe and is not homogeneously 16 

distributed between the hemispheres, ocean and land, and urban and rural areas. Also, the 17 

sampling interval of ozonesonde observations is typically a week or longer, which does not 18 

reflect the influence of diurnal and day-to-day variations. Model errors are also expected to 19 

vary greatly in time and space at various scales. Therefore, the implications of model 20 

differences at ozonesonde locations to regional and seasonal processes is uncertain. Thus, we 21 

evaluate how changes in evaluated model performance could be obtained by using the 22 

complete sampling chemical reanalysis fields instead of the existing ozonesonde network on 23 

simulated regional ozone fields.  24 

 25 

Sampling bias is an error in a computed quantity that arises due to unrepresentative (i.e., 26 

insufficient or inhomogeneous) sampling, which induces spurious features in the average 27 

estimates (e.g., Aghedo et al., 2011; Foelsche et al 2011; Toohey et al., 2013; Sofieva et al., 28 

2014) and long-term trends (Lin et al., 2016). Sampling bias may occur when the atmospheric 29 

state within the time-space domain over which the average is calculated is not uniformly 30 

sampled. In regions where variability is dominated by short-term variations, limited sampling 31 
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may lead to a random sampling error. The primary technique for sampling bias estimation is 1 

to subsample model or reanalysis fields based on the sampling patterns of the measurements 2 

and then to quantify differences between the mean fields based on the measurement sampling 3 

and those derived from the complete fields. Sampling bias cannot be negligible, even for 4 

satellite measurements (Aghedo et al. 2011; Toohey et al., 2013; Sofieva et al., 2014). 5 

 6 

To estimate sampling biases of the ozonesonde network in the ACCMIP model evaluation, 7 

two evaluation results of mean model bias are compared using the chemical reanalysis. The 8 

first evaluation was conducted based on the complete sampling; the second evaluation used 9 

the ozonesonde sampling (in both space and time) that is based on the compilation by Tilmes 10 

et al. (2012). By using the two-hourly reanalysis fields, we can address possible biases due to 11 

the limited model sampling (i.e., monthly ACCMIP model outputs were used). Note that the 12 

relatively coarse horizontal resolution of the reanalysis may lead to an underestimation of the 13 

sampling bias in the model evaluation, because the variability of a sampled field depends on 14 

the resolution of the measurement. Tilmes et al. (2012) stated that regional aggregates of 15 

individual ozonesonde measurements with similar characteristics are more representative for 16 

larger regions; however, this may not mean that evaluation results using the compiled data 17 

generate model errors that are representative of actual monthly mean for a surrounding area.  18 

 19 

\section{Consistency between chemical reanalysis and ozonesonde observations}  20 

 21 

Miyazaki et al. (2015) validated an older version of the reanalysis 22 

(http://www.jamstec.go.jp/res/ress/kmiyazaki/reanalysis/) and showed good agreement with 23 

independent observations such as ozonesonde and aircraft measurements on regional and 24 

global scales and for both seasonal and year-to-year variations from the lower troposphere to 25 

the lower stratosphere for the 2005-2012 period. The mean bias against the ozonesonde 26 

measurements in the older dataset is -3.9 ppb at the NH high-latitudes (55--90{\degree}\,N), -27 

0.9 ppb at the NH mid-latitudes (15--55{\degree}\,N), 2.8 ppb in the tropics (15{\degree}\,S--28 

15{\degree}\,N), -1.0 ppb at the SH mid-latitudes (55--15{\degree}\,S), -1.7 ppb at the SH 29 

high-latitudes (90--55{\degree}\,S) between 850 and 500 hPa (Miyazaki et al., 2015). Since 30 

the updated reanalysis ozone fields used in this study have not yet been validated in any 31 
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publication, we first present the evaluation results of the chemical reanalysis using global 1 

ozonesonde observations for 2005--2009. 2 

 3 

Figs 1 and 2 compare the reanalysis and the global ozonesonde observations, and the 4 

comparison result is summarized in Table 3. In order to confirm improvements in the 5 

reanalysis, results from a model simulation without any chemical data assimilation (i.e., a 6 

control run) is also shown. The control run shows systematic biases, such as positive biases in 7 

the upper troposphere and lower stratosphere (UTLS) throughout the globe and negative 8 

biases in the lower and middle troposphere in the extratropics of both hemispheres. The 9 

positive bias in the UTLS is larger in the Southern Hemisphere (SH) than in the Northern 10 

Hemisphere (NH). The a priori systematic bias in this study is larger than that in our previous 11 

study (Miyazaki et al., 2015) in the UTLS, because of different model settings, such as the 12 

upper boundary conditions of \chem{NO_y}, \chem{Cl_y}, and \chem{Br_y}. However, the 13 

reanalysis fields were less sensitive to the a priori profiles in the UTLS than in the lower and 14 

middle troposphere because of strong constraints by MLS measurements and long chemical 15 

lifetime of ozone in the UTLS. 16 

 17 

The reanalysis shows improved agreements with the ozonesonde observations over the globe 18 

for most cases. The data assimilation removed most of the positive bias in the UTLS 19 

throughout the year and reduced the negative bias in the lower and middle troposphere in the 20 

extratropics. In the NH extratropics in the lower and middle troposphere, the data assimilation 21 

reduced the annual mean negative bias of the forecast model by 55 \%, which is attributed to 22 

the reduced bias in boreal spring--summer. The mean bias in the new reanalysis dataset is 23 

smaller than that in the older reanalysis dataset (Miyazaki et al., 2015) for most cases (e.g., 24 

from -3.9 to -2.9 ppb at the NH high-latitudes (55--90{\degree}\,N), -0.9 to -0.1 ppb at the 25 

NH mid-latitudes (15--55{\degree}\,N), -1.0 to -0.1 ppb at the SH mid-latitudes (55--26 

15{\degree}\,S) between 850 and 500 hPa). The mean bias in the new dataset is less than 0.9 27 

ppb at the tropics and mid-latitudes between 500 and 200 hPa (not shown). The simultaneous 28 

optimization of concentrations and emissions played important roles in improving the lower 29 

tropospheric ozone analysis, associated with the pronounced ozone production caused by 30 

\chem{NO_x} increases, as demonstrated by Miyazaki et al. (2015). This advantage increases 31 

the ability of the chemical reanalysis to evaluate the simulated tropospheric ozone profiles, 32 
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including the lower tropospheric ozone concentrations. Root-Mean-Square-Errors (RMSEs) 1 

are also reduced above the middle troposphere, although the reduction rate is relatively small 2 

compared to the bias, probably due to representativeness errors between the ozonesonde 3 

measurements and data assimilation analysis. The tropospheric concentrations show distinct 4 

seasonal and year-to-year variations, for which the temporal correlation based on the monthly 5 

and regional mean concentrations is increased by the data assimilation globally, except at high 6 

latitudes in the lower troposphere (Table 3). The reanalysis can be extended to a longer-term 7 

validation that will provide more information on  seasonality and year-to-year variability. 8 

 9 

\section{Evaluation of ACCMIP models}  10 

 11 

\subsection{Global distribution} 12 

 13 

We use the global chemical reanalysis to evaluate the global ozone profiles in ACCMIP 14 

simulations. Fig. 3 compares the global distribution of the annual mean ozone concentration 15 

between the five-year mean reanalysis and the ensemble mean of the ACCMIP models. The 16 

average over the multiple models can be expected to improve the robustness of the model 17 

simulation results, because some parts of the model errors may cancel each other out. As 18 

summarized in Table 4, the global spatial distributions are similar between the five-year mean 19 

reanalysis field and the ensemble mean when estimated at 2$^\circ \times$2.5$^\circ$ spatial 20 

resolution, with a spatial correlation (r) greater than 0.94 from the lower troposphere to the 21 

lower stratosphere, except for the NH extratropical middle troposphere (r=0.57). The 22 

reanalysis and multi-model mean commonly reveal distinct inter-hemispheric differences, 23 

associated with a stronger downwelling across the tropopause and stronger emission sources 24 

of ozone precursors in the NH. The wave-1 pattern in the zonal ozone distribution in the 25 

tropics, with a minimum over the Pacific Ocean and maximum over the Atlantic (Thompson 26 

et al., 2003; Bowman et al, 2009; Ziemke et al., 2011), can also be commonly found in the 27 

reanalysis and the multi-model mean and was also suggested by Young et al. (2013). 28 

 29 

Large errors between the reanalysis and the multi-model mean in the troposphere are found in 30 

the NH extratropics and SH tropics (right panel in Fig. 3). The multi-model mean 31 
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overestimates the zonal and annual mean concentrations by 6--11 ppb at 800 hPa and by 2--9 1 

ppb at 500 hPa in the NH extratropics. The overestimation is larger over the oceans than over 2 

land at the NH mid-latitudes at 800 hPa. Both the mean RMSE and bias are larger at 800 hPa 3 

than at 500 hPa in the NH extratropics, whereas they are larger at 500 hPa in the NH tropics 4 

(Table 4). In the SH tropics, the multi-model mean underestimates the concentration over the 5 

eastern Pacific by up to 9 ppb, over the Atlantic by up to 18 ppb, and over the Indian Ocean 6 

by up to 8 ppb at 500 hPa. These negative biases are larger in the middle troposphere than in 7 

the lower troposphere for most places and also for the zonal means in the SH tropics (-15 \% 8 

in the middle troposphere and -10 \% in the lower troposphere) (Table 4). Young et al. (2013) 9 

consistently revealed the positive bias in the NH and negative bias in the SH using OMI/MLS 10 

tropospheric ozone column measurements. At 200 hPa, the multi-model mean underestimates 11 

the zonal mean concentration by 20--30 ppb at high latitudes in both hemispheres, with a 12 

larger error in the SH than in the NH (Table 4). 13 

 14 

Fig. 4 shows the Taylor diagram of the ACCMIP models against the reanalysis for three 15 

latitudinal bands for three levels. The relevant statistics at 500 hPa are summarized in Table 5, 16 

for which the tropics is separated into two hemispheres. In the NH extratropics at 800 hPa, 17 

most models reproduced the spatial distribution (r = 0.8--0.95), while underestimating the 18 

spatial standard deviation (SD) by up to 50 \%. Three exceptional models (1, 7, 8) show 19 

relatively poor agreements (r = 0.45--0.6 and SD underestimations by 50--60 \%). At 500 hPa, 20 

there is a large diversity in the agreement. Only a few models (2, 4, 9, 11) show close 21 

agreement with the reanalysis (r > 0.8, SD error < 20 \%). Notably, two models (12, 15) 22 

reveal too large spatial variabilities (SD error > 80 \%), and five models (1, 6, 7, 8, 12) reveal 23 

small spatial correlation (r < 0.15). The regional mean bias is largely positive (> 10 ppb) in 24 

several models (7, 8, 12) (Table 5). In the NH extratropics in the lower and middle 25 

troposphere, ozone distributions are modified by various processes, including vertical 26 

transport by convection and along conveyor belts, inflow from the stratosphere, long-range 27 

transports, and photochemical production (e.g, Lelieveld and Dentine, 2000; Oltmants et al., 28 

2006; Sudo and Akimoto, 2007; Jonson et al., 2010). The evaluation results indicate that these 29 

processes occur differently among models. At 200 hPa, all the models  simulate well the 30 

spatial distribution (r > 0.95), whereas the spatial variability differs between the models (SD 31 

error ranges from -50 \% to +30 \%). There is relatively large variation in the stratospheric 32 
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concentration, which results in the diversity in the UTLS, as also discussed by Young et al. 1 

(2013). 2 

 3 

In the tropics, the spatial correlation is greater than 0.8 at all levels for most models (except 4 

for 12, 15), as they capture the wave-1 structure. When dividing the tropics into two 5 

hemispheres (Table 5), only a few models (4, 12) reveal low spatial correlation (r < 0.8) for 6 

the SH tropics (30$^\circ$S--EQ) at 500 hPa. The spatial correlation in the tropics is lower at 7 

500 hPa than at 800 hPa for most models. The SD error is less than 40 \% for all the models at 8 

800 and 500 hPa, while mostly overestimating the spatial variability at 800 hPa by up to 30 9 

\%. The mean bias is negative for most models at 500 hPa in the tropics in both hemispheres, 10 

with larger negative biases in the SH tropics (Table 5). Young et al (2013) noted that 11 

correlations between the biases for the NH and SH tropical tropospheric columns are strong. 12 

Similarly, our analysis using the reanalysis reveal a high correlation (0.91) between the NH 13 

and SH tropical biases at 500 hPa, suggests that similar processes are producing the model 14 

biases in the tropical middle troposphere between the hemispheres. For instance, biomass 15 

burning emissions are handled differently across the models, which may lead to differences in 16 

ozone simulations in the tropics (Anderson et al., 2016). At 200 hPa in the tropics, the SD 17 

error differs among models, which could primarily be associated with the different 18 

representations of convective transports and ozone production by \chem{LNO_x} sources 19 

(e.g., Lelieveld and Crutzen, 2007; Wu et al., 2007). 20 

 21 

In the SH extratropics at 800 hPa, most models reproduce the spatial distribution (r > 0.9), 22 

while underestimating the SD by 15--70 \%, except for model 15. The model performance is 23 

similar between 800 hPa and 500 hPa, with a smaller SD error at 500 hPa for most models. 24 

These high spatial correlations may be related to a lack of local precursor emissions in the SH. 25 

At 500 hPa, a majority of the models underestimate the mean concentration (Table 5), with 26 

large negative biases (< -8 ppb) in several models (1, 2, 12, 14). At 200 hPa, the SD error 27 

varies from -80 \% to + 65 \%. The large diversity at 200 hPa may be related to the different 28 

representation of the tropopause and stratosphere--troposphere exchange (STE) among 29 

models.  30 

\subsection{Seasonal variation} 31 
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 1 

Fig. 5 compares the seasonal variation of zonal mean ozone concentration between the 2 

ACCMIP models, the reanalysis, and ozonesonde observations. The comparison between the 3 

reanalysis concentrations sampled at ozonesonde sites/time (black dashed line) and the 4 

ozonesonde observations (blue solid line) shows that the reanalysis is in close agreement with 5 

the ozonesonde observations over the globe, as described in Sec. 3. However, in the NH 6 

extratropics at 800 hPa, the reanalysis concentration is too low from boreal spring to summer 7 

by up to 4 ppb, which leads to an underestimation of the seasonal amplitude (as estimated 8 

from the difference between maximum and minimum monthly mean concentrations). In the 9 

NH tropics at 500 hPa, the reanalysis overestimates the concentration except in April. In the 10 

SH tropics at 500 and 800 hPa, the reanalysis slightly overestimates the concentrations 11 

throughout the year by up to 5 ppb. In the SH extratropics at 800 hPa, the reanalysis 12 

concentration is too low by up to 5 ppb from austral autumn to winter. The reanalysis 13 

concentration and seasonal variation differs largely between the complete sampling (black 14 

bold line, where the concentrations were averaged over all grid points) and the ozonesonde 15 

sampling (black dashed line) for the globe. The impact of using the reanalysis instead of the 16 

ozonesonde network in characterizing the ozone seasonal variation is discussed in Section 5. 17 

 18 

The global ozone concentrations averaged over all grid points with area weights are compared 19 

between the ACCMIP models and the reanalysis (black solid line vs. red solid line for the 20 

multi-model mean and thin colored lines for individual models). There is considerable 21 

interannual variability in both the reanalysis and the ACCMIP models. We confirmed that the 22 

ACCMIP ensemble mean is mostly within the standard deviation (i.e., year-to-year variation) 23 

of the reanalysis (not shown). In the NH extratropics, the multi-model mean overestimates the 24 

monthly mean concentrations by 6--9 ppb at 800 hPa and by 3--6.5 ppb at 500 hPa. The 25 

multi-model mean reproduces the seasonal variation, whereas there is large diversity among 26 

the models. The increase from winter to spring differs among models at 500 hPa, which is 27 

probably associated with different representations of downwelling from the stratosphere. Fig. 28 

6 compares the seasonal amplitude. Most models overestimate the seasonal amplitude in the 29 

NH lower and middle troposphere, with a mean overestimation of 50--70 \% at 800 hPa and 30 

25--40 \% at 500 hPa at NH high latitudes.  At 200 hPa, the multi-model annual mean 31 

concentration is in good agreement with that of the reanalysis, whereas the seasonal amplitude 32 
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is underestimated by most models at NH high latitudes, with a mean underestimation of 15--1 

25 \%. 2 

 3 

In the NH tropics at 500 hPa, the multi-model mean underestimates the concentration by 1--4 4 

ppb throughout the year, which can be attributed to the anomalously low concentrations in 5 

several models. There is a large diversity among the models in this region. In the SH 6 

subtropics, the multi-model mean is lower by up to 5 ppb at 800 hPa and by up to 11 ppb at 7 

500 hPa, with the largest errors occurring in austral spring. A majority of models overestimate 8 

the seasonal amplitude in the NH subtropics at 800 hPa (by about 10--40 \%), whereas they 9 

mostly underestimate the amplitude in the SH tropics at 800 and 500 hPa. In the tropical 10 

upper troposphere in both hemispheres, a few models reveal anomalously high or low 11 

concentrations. Both the ozonesondes and reanalysis reveal a sharp increase in ozone between 12 

March and April in the NH subtropics, which is not captured in the multi-model mean, as 13 

suggested by Young et al. (2013).  14 

 15 

In the SH extratropics, the multi-model mean and the reanalysis are in good agreement at 800 16 

hPa, whereas it largely underestimates the peak concentration in austral winter--spring at 500 17 

hPa (by up to 7 ppb) and 200 hPa (by up to 35 ppb). The large diversity among the models 18 

and the large underestimation in the multi-model mean at 500 hPa in spring could be 19 

attributed to the differing influence of stratospheric air. The seasonal amplitude is 20 

overestimated at 800 and 200 hPa by most models at SH high-latitudes. 21 

 22 

\subsection{Inter-hemispheric gradient} 23 

 24 

Fig. 7 compares the inter-hemispheric gradient (NH/SH ratio) of the annual mean ozone 25 

concentration. We calculated the gradient of area-weighted ozone concentrations across the 26 

equator; however, recognize a more careful definition of the boundary between two 27 

hemispheres would be required to isolate air masses originated from each hemisphere (e.g., 28 

Hamilton et al., 2008). For the estimation of the gradient using the ozonesonde observations, 29 

we made a gridded dataset from the ozonesonde observations based on the completion by 30 

Tilmes et al (2012) at 2$^\circ \times$2.5$^\circ$ spatial resolution, and then calculated area-31 
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weighted hemispheric mean concentrations using the gridded dataset. The gradient is similar 1 

between the ozonesonde observations (blue solid line) and the reanalysis concentration from 2 

the ozonesonde sampling (black dashed line) throughout the troposphere. In these estimates, 3 

the NH mean concentration is higher than the SH mean by 60--70 \% in the lower troposphere, 4 

by 30--40 \% in the middle troposphere, and by 55--60 \% around 200 hPa. Near the surface, 5 

the reanalysis slightly overestimates the NH/SH ratio, mainly because of overestimated 6 

concentrations at the NH mid-latitudes.   7 

 8 

By taking a complete sampling in the reanalysis (i.e., averaging over all model grid points for 9 

each hemisphere) (black solid line), the NH/SH ratio becomes smaller by about 25--30 \%, 7--10 

10 \%, and 15--25 \% in the lower troposphere, the middle troposphere, and around 200 hPa, 11 

respectively, compared to the average at the ozonesonde sampling sites (black dashed line). 12 

The difference is a consequence of ozonesonde stations located near large cities at NH mid-13 

latitudes, and therefore tend to observe higher ozone concentration than the hemispheric 14 

average. At around 200 hPa, the difference could also be attributed to the presence of 15 

atmospheric stationary waves and Asian monsoon circulation in the NH, which result in 16 

substantial spatial ozone variations in the UTLS (e.g., Wirth, 1993; Park et al., 2008) (c.f., Fig. 17 

3). The annual mean NH/SH ratio based on the global reanalysis field estimated at the surface, 18 

800 hPa, 500 hPa, and 200 hPa are 1.36, 1.42, 1.30, and 1.35, respectively. 19 

 20 

Most models overestimate the NH/SH ratio compared with the reanalysis, with a mean 21 

overestimation (black solid line  vs. red solid line) of 34 \% at the surface and 22--30 \% in 22 

the free troposphere, attributing to both too-high concentrations in the NH extratropics and 23 

too-low concentrations in the SH subtropics in most models (c.f., Figs. 3 and 5). The multi-24 

model mean reveals annual mean NH/SH ratios of 1.71, 1.73, 1.54, and 1.49 at the surface, 25 

800 hPa, 500 hPa, and 200 hPa, respectively. The large systematic error in the NH/SH ratio 26 

suggests that, for instance, the inter-hemispheric distribution of radiative heating due to 27 

tropospheric ozone in chemistry--climate simulations are largely uncertain in most models, 28 

and such comprehensive information for different altitudes in the troposphere cannot be 29 

obtained using any individual measurements, as is further discussed in Section 6.3. 30 

 31 
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\section{Impact of sampling on model evaluation} 1 

 2 

As presented in the previous section, the chemical reanalysis provides comprehensive 3 

information on global ozone distributions for the entire troposphere which is useful for 4 

validating global model performance. It was also demonstrated that the inter-hemispheric 5 

gradient of ozone measured with the ozonesonde and complete sampling method produced 6 

different results, and the model-reanalysis difference strongly depended on the choice of the 7 

sampling method. As these networks have been the primary basis for CCM evaluation (e.g., 8 

Stevenson et al., 2006; Huijnen et al., 2010; Young et al., 2013), the implications of this 9 

sampling bias need to be quantified.  10 

This section evaluates how changes in evaluated model performance could be obtained by 11 

using the complete sampling chemical reanalysis fields instead of the existing ozonesonde 12 

network on simulated regional ozone fields.  13 

 14 

 15 

The model evaluation results are shown for the 11 regions illustrated in Fig. 8 and 16 

summarized in Table 6. Japan was excluded from the evaluation because data from only one 17 

station was available for the reanalysis period. The 11 areas surrounding the ozonesonde 18 

stations were considered for complete atmospheric sampling (rectangles in  Fig. 8), for which 19 

small margins were considered around the stations to prevent overestimation of the 20 

ozonesonde network limitation. It was confirmed that the discrepancy between the two 21 

evaluations generally increases with the size of the area. In contrast, for the SH mid- and high 22 

latitudes, the defined areas cover the entire range of longitudes, because of generally less 23 

variabilities in the SH than in the NH. Four latitude bands (90--30{\degree}\,S, 24 

30{\degree}\,S--Equator, Equator--30{\degree}\,N, 30--90{\degree}\,N) were also considered 25 

in the sampling bias evaluation. 26 

 27 

The reality of the reanalysis fields is important for reasonable estimates of the true sampling 28 

bias of the real atmosphere. As discussed in Section 3, there is good agreement in the 29 

evaluated model performance using the reanalysis and the ozonesonde measurements at the 30 

ozonesonde sampling, except for the lower troposphere. This result supports the use of the 31 
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reanalysis data at the ozonesonde locations. The performance of the ACCMIP model as 1 

compared with the ozonesonde measurements is mostly consistent with that shown by Young 2 

et al. (2013), although the ozonesonde data periods differ -- 1997-2011 was used by Young et 3 

al (2013) and 2005-2009 was used in this study. 4 

 5 

Table 7 demonstrates the regional and seasonal mean differences of the reanalysis 6 

concentrations between the complete sampling and the ozonesonde sampling. The 7 

ozonesonde sampling results have higher concentrations (by about 3 \%) in the two NH polar 8 

regions for most cases, whereas the difference is smaller in NH polar west than in NH polar 9 

east. Among the NH mid-latitude regions, a large difference (about 14 \%) exists between the 10 

two cases over the eastern United States in June--August (JJA), where the comparison using 11 

monthly reanalysis fields sampled at the ozonesonde locations (brackets in Table 7) suggests 12 

that the sampling bias is dominated by temporal variations. The tropical and subtropical 13 

regions exhibit large sampling biases, 4--12.3 \% over the NH subtropics, -3.2--5.0 \% over 14 

the Western Pacific and East Indian Ocean, 0--7.8 \% over the equatorial Americas, and -3.8--15 

7.5 \% over the Atlantic Ocean and Africa. In most of the tropical and subtropics regions, 16 

both the spatial and temporal sampling biases are important, because of large spatial and 17 

temporal variability of ozone and the sparse observation network. For the global tropics, the 18 

sampling bias reaches 13 \% in the NH (Eq--30{\degree}\,N) and 8 \% in the SH 19 

(30{\degree}\,S--Eq). Thus, the ozonesonde network has a major limitation when it comes to 20 

capturing ozone concentrations that are representative of seasonal and regional means for the 21 

entire tropical region. The sampling bias may not be negligible even in the SH (0.3--3.9 \% in 22 

the SH mid-latitudes and 0.8--4.2 \% in the SH high latitudes), and it is large (up to 13 \%) 23 

when estimations are done for a large area (90--30{\degree}\,S). The large sampling bias in 24 

90--30{\degree}\,S is primarily attributed to spatial variability. The impact of the sampling 25 

bias on the model evaluation is discussed in the following section. 26 

 27 

\subsection{Mean error and its distribution} 28 

 29 

The model evaluation results differ greatly for many regions between the complete sampling 30 

and the ozonesonde sampling, as shown by Fig. 9 and summarized in Table 8. The sampling 31 
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bias is evaluated using the median of the multiple models to provide robust estimates of the 1 

model performance. For the NH Polar Regions, Tilmes et al. (2012) stated that separating the 2 

regions into eastern and western sectors reduces the variability in ozone within each region 3 

because long-range transports of pollution from low and mid-latitudes into high latitudes 4 

shows longitudinal variations in the NH (e.g., Stohl, 2006). Comparisons further suggest that, 5 

except for the UTLS in winter (December--February (DJF)), the evaluated model 6 

performance using the ozonesonde measurements are representative of the surrounding 7 

regional and seasonal mean model performance. For the two NH polar regions at 200 hPa in 8 

DJF, the validation based on the ozonesonde sampling reveals a large negative sampling bias 9 

in the model bias as compared with regional and monthly means. Large negative model biases 10 

against the ozonesonde observations have been reported by Young et al. (2013) for 250 hPa 11 

(by about -13 \% for the NH polar west and -18 \% for the NH polar east for the annual mean 12 

concentration), whereas results from this study suggest that these errors based on the 13 

ozonesonde sampling (by -14 \% for the NH polar west and -18 \% for the NH polar east in 14 

DJF in our estimates) are larger than those from regional and seasonally representative model 15 

bias (by -3 \% and +5 \%, respectively). At 500 hPa, the ozonesonde network reveals a 16 

negative sampling bias for the NH polar east in DJF. Thus, the positive bias reported in 17 

Young et al. (2013) for the NH polar east at 500 hPa may be lower than regional and 18 

seasonally representative model biases. Our analysis using monthly reanalysis fields sampled 19 

at the ozonesonde locations (brackets in Table 8) suggests a greater impact of the spatial 20 

sampling bias than the temporal sampling bias for the NH polar east in DJF. The large 21 

discrepancy between the two estimates in the UTLS model performance can be attributed to 22 

the large variability of ozone distribution and associated model errors on a regional and 23 

seasonal scale. 24 

 25 

For Canada, large differences (>30 \%) exist in the two evaluations in the lower troposphere 26 

and for the UTLS in DJF and for the middle troposphere in March--May (MAM). The 27 

ozonesonde measurements reveal a large negative sampling bias in the model evaluation in 28 

DJF at 200 hPa (-4 \% in the complete sampling and -25 \% in the ozonesonde sampling), 29 

while they reveal a negative sampling bias (by about 50 \%) at 500 hPa in MAM. At 500 hPa 30 

over Canada, the relative importance of the spatial and temporal sampling biases varies with 31 

season: the spatial (temporal) sampling bias is dominant in DJF (JJA), whereas both of them 32 
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are important in MAM. Similar differences between the two evaluations are found for 1 

Western Europe at 500 hPa and at 200 hPa in DJF. These results suggest that, for instance, the 2 

positive bias for Western Europe estimated by Young et al (2013) may be lower than regional 3 

and seasonally representative model bias, even for such a small area. The smaller discrepancy 4 

between the two estimates for Western Europe as compared for Canada for most cases could 5 

be associated with the better coverage of the ozonesonde measurements for Western Europe. 6 

Even for the small area of the eastern United States, the two validations differ largely in the 7 

UTLS (e.g., -9 \% in the ozonesonde sampling and +6 \% in the complete sampling at 200 hPa 8 

in MAM) and at 500 hPa in MAM, JJA, and September--November (SON). In the NH 9 

subtropics, the two evaluations disagree largely in the middle and upper troposphere in JJA 10 

and SON. 11 

 12 

The tropical stations were separated into the three sub-regions: Western Pacific and East 13 

Indian Ocean, equatorial America, and the Atlantic Ocean and Africa. These regions reflect 14 

the different dominant tropical processes including biomass burning and lightning over the 15 

Atlantic and Africa. The large variability of tropical ozone and its associated model error, 16 

together with the sparse ozonesonde network in these regions, results in large discrepancies 17 

between the two evaluations in the tropical regions.  At 500 hPa, the ozonesonde 18 

measurements reveal a large (by 40--50 \%) negative sampling bias in MAM and a positive 19 

sampling bias in DJF over the Western Pacific and East Indian Ocean, whereas it shows a 20 

large negative sampling bias (by 110 \%) in MAM over the equatorial Americas. Over the 21 

Western Pacific and East Indian Ocean, the sampling bias is not reduced by using monthly 22 

mean reanalysis fields (sampled at the ozonesonde locations) in DJF and JJA. This suggests 23 

that ozone varies with time and space in a complex manner, and a dense (in both space and 24 

time) network would be required to capture the regional and seasonally representative model 25 

biases in this region. The probability distribution function (PDF) estimated using monthly 26 

mean reanalysis and model fields also differs largely between the two samplings (Fig. 10). 27 

Over the Western Pacific and East Indian Ocean in SON at 500 hPa, the multi-model mean 28 

shows a sharp peak around 54--58 ppb, in contrast to the broad distribution seen in the 29 

reanalysis with two peaks around 65 ppb and 35--45 ppb for the complete sampling (left 30 

bottom panel in Fig. 10). This information is useful to characterize model errors and for 31 

process-oriented model validation. On the other hand, the validation based on the ozonesonde 32 
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sampling (left top panel) does not show any clear pattern and does not support model 1 

evaluation. Note that the influence of inter-annual variability was not considered in the 2 

analysis because the monthly climatological data were used by averaging over ten years for 3 

the models and five years for the reanalysis.  4 

 5 

Although the variability of ozone is generally smaller in the SH than in the NH because of 6 

smaller local precursor emissions, large sampling biases exist even at SH mid- and high-7 

latitudes due to the sparse ozonesonde network. In the SH mid latitudes, for example, the sign 8 

of the evaluated bias is opposite between the two cases at 200 hPa in DJF (-2.8 ppb in the 9 

complete sampling and +25.1 ppb in the ozonesonde sampling). In the SH high latitudes, 10 

evaluation results differ largely throughout the year in the middle troposphere. The temporal 11 

sampling bias mostly dominates the difference in the SH high latitudes in MAM and JJA, 12 

whereas the spatial sampling bias is also important in the SH mid latitudes in DJF and MAM. 13 

Based on the complete sampling, the ozone PDF is broadly distributed with a peak around 38 14 

ppb at 500 hPa in SON at the SH high latitudes (right bottom panel in Fig. 10), while the 15 

multi-model mean underestimates high concentrations (>47 ppb) and shows a sharp peak of 16 

about 35 ppb. The PDF generated by the ozonesonde sampling does not provide a strong 17 

information on the distribution of the ozone (right top panel). These results highlight the 18 

advantage of using the reanalysis data for evaluating regional and seasonally representative 19 

model performance, and for characterizing these distributions. 20 

 21 

Table 8 also shows the model evaluation results for four latitudinal bands at 500 hPa. The 22 

observations used are shown in bold in Table 2. The differences between the two evaluations 23 

are small in the NH extratropics (30--90{\degree}\,N) in all seasons, because of the relatively 24 

large number of observations. There are large differences in the tropics of both hemispheres: 25 

the ozonesonde network reveals a large negative sampling bias in the model evaluation in the 26 

NH tropics (Eq--30{\degree}\,N) in SON (-9 \% in the complete sampling and -16 \% in the 27 

ozonesonde sampling) and in the SH tropics (30{\degree}\,S--Eq) in MAM (-14 \% and -21 28 

\%) and a large positive sampling bias in the NH tropics in JJA (-7 \% and -3 \%).  Large 29 

sampling biases (> 60 \%) also exist in the SH extratropics (90--30{\degree}\,S) in DJF and 30 

MAM due to the sparse ozonesonde network.  31 

 32 



 25 

Further, ozonesonde sampling bias is evaluated for the control run and reanalysis comparisons. 1 

As summarized in Table 9, at 500 hPa, there are large differences (> 30 \%) between the two 2 

evaluations in many regions, especially in the NH mid latitude regions in winter and in the 3 

tropics throughout the year, as also found in the ACCMIP models and reanalysis comparisons 4 

(Table 8). The analysis increments introduced by data assimilation vary with space and time, 5 

reflecting the changes in coverage and uncertainty of assimilated measurements as well as in 6 

model errors. Nevertheless, observational information was propagated globally and integrated 7 

with time through forecast steps during the data assimilation cycles. This is true for ozone 8 

because of its relatively long lifetime in the free troposphere. Therefore, the spatial 9 

distribution is well constrained by data assimilation, and we do not expect large variations in 10 

the reanalysis quality within each analysis region. 11 

 12 

\subsection{Seasonal variation} 13 

 14 

The seasonal cycle of tropospheric ozone is determined by various factors such as local 15 

photochemical production and atmospheric transport (e.g., Monks, 2000). Carslaw (2005), 16 

Bloomer et al. (2010), and Parrish et al. (2013) found multi-decadal changes in the amplitude 17 

and phase of the seasonal cycle at NH mid-latitudes. It was suggested that these changes can 18 

be attributed to changes in atmospheric transport patterns combined with spatial and temporal 19 

changes in emissions. CTMs have been used to explore the causal mechanisms; however, they 20 

failed to simulate several important features of the observed seasonal cycles (e.g., Ziemke et 21 

al., 2006; Stevenson et al., 2006; Parrish et al. 2014; Young et al., 2013). Accurate validation 22 

of the seasonal cycle is thus important for evaluating general model performance.  23 

 24 

 25 

Table 10 compares the relative error in the seasonal amplitude obtained from the multi-mean 26 

model with that of the reanalysis for the complete and ozonesonde samplings. The evaluation 27 

based on the ozonesonde sampling results in a larger overestimation of the seasonal amplitude 28 

in the NH lower troposphere for most regions (+13.4--+63.4 \% in the sonde sampling and -29 

19.0--+40.2 \% in the complete sampling). The large discrepancies can be attributed to large 30 

spatial variability in the seasonal variations of ozone and its model errors within each defined 31 



 26 

region and also the existence of short-term variability that is not completely captured by the 1 

ozonesonde sampling. For the Eastern US and Western Europe at 800 hPa, the sign of the bias 2 

is opposite between the two estimates. In contrast, at 200 hPa in the NH, results between the 3 

two evaluations are similar, suggesting spatial homogeneity in the seasonal cycle and its 4 

model errors within each region in the NH. Because the seasonal variations differ among 5 

different regions, the seasonal amplitude estimated for the entire NH extratropics (30--6 

90{\degree}\,N) is largely different between the two estimates throughout the troposphere.  7 

 8 

In the tropics, the estimated errors of the seasonal amplitude largely differ between the two 9 

samplings throughout the troposphere, suggesting that information obtained from the sparse 10 

ozonesonde network cannot be applied to characterize regional model errors in the seasonal 11 

cycle, even within the small defined area. The sampling bias in the seasonal amplitude 12 

estimated for the entire tropics is larger than 60 \% throughout the troposphere both in the NH 13 

(Eq--30{\degree}\,N) and SH (30{\degree}\,S--Eq). Because of the large spatial variability, 14 

detailed validations using the chemical reanalysis (e.g., for each grid point) would be helpful. 15 

Also, in the SH high latitudes, large disagreements in the seasonal amplitude exist at 800 and 16 

200 hPa. 17 

 18 

\section{Discussions} 19 

 20 

\subsection{Reanalysis uncertainty} 21 

 22 

Although the reanalysis dataset provides comprehensive information for global model 23 

evaluations, its performance still needs to be improved, especially for the lower troposphere, 24 

as also discussed by Miyazaki et al. (2015). Performance can be improved by ingesting more 25 

datasets including meteorological sounders such as IASI (Clerbaux et al., 2009), AIRS 26 

(Chahine et al., 2006), and CrIS (Glumb et al., 2002). Application of a bias correction 27 

procedure for multiple measurements, which is common in numerical weather prediction (e.g., 28 

Dee, 2005),  is needed to improve reanalysis accuracy. Recently developed retrievals with 29 

high sensitivity to the lower troposphere (e.g. Deeter et al., 2013; Fu et al., 2016) and the 30 

optimization of additional precursor emissions would be helpful to improve analysis of the 31 



 27 

lower troposphere. The relatively coarse resolution of the model could cause large differences 1 

between the simulated and observed concentrations at urban sites and may degrade the 2 

reanalysis. 3 

 4 

The statistical information obtained from the reanalysis and the multi-model simulations can 5 

be used to suggest further developments for the models and observations. The analysis 6 

ensemble spread from EnKF can be regarded as uncertainty information about the analysis 7 

mean fields, indicating requirements for additional observational constraints. As shown in Fig. 8 

11 (left panels), the relative reanalysis uncertainty is large over the tropical areas of the 9 

oceans at 800 hPa (>20 \%), over the Southern Ocean at 500 hPa (10--20 \%), and over the 10 

tropics of the Pacific Ocean and the Antarctic at 200 hPa (>16 \%). Conversely, the reanalysis 11 

uncertainty is small from the tropics to mid-latitudes in both hemispheres at 500 hPa (<11 \%). 12 

Miyazaki et al (2015) investigated that the analysis spread is caused by errors in the model 13 

input data, model processes, and assimilated measurements, and it is reduced if the analysis 14 

converges to a true state. The analysis spread is smaller in the extratropical lower stratosphere 15 

than in the tropical upper troposphere at 200 hPa, because of the high accuracy of the MLS 16 

measurements. In contrast, in the middle troposphere, the analysis spread is generally smaller 17 

in the tropics than the extratropics because of the higher sensitivities in the TES retrievals. 18 

Note that the data assimilation setting influences the analysis uncertainty estimation in the 19 

reanalysis. In particular, the analysis spread was found to be sensitive to the choice of 20 

ensemble size (Miyazaki et al., 2012b). A large ensemble size is essential to capture the 21 

proper background error covariance structure (i.e., analysis uncertainty).  22 

 23 

The five-year reanalysis (2005--2009) may cause biases in the estimated model errors in the 24 

evaluation of the 2000 decade ACCMIP simulations that used decadal-averaged SST 25 

boundary conditions and biomass burning emissions averaged over 1997--2006 (Lamarque et 26 

al., 2010). It may neglect the influences of interannual and decadal changes in both 27 

anthropogenic and biomass emissions and meteorology. Longer-term reanalysis and time-28 

consistent validation are required to obtain more robust error estimations. 29 

 30 

\subsection{Model uncertainty} 31 



 28 

 1 

The variability across the ensemble models (i.e., ensemble spread) identifies where the 2 

models are most consistent or uncertain (center panels in Fig. 11). As discussed by Young et 3 

al. (2013), the relative spread among the ACCMIP models is large over the tropical areas of 4 

the oceans in the lower and middle troposphere, a reflection of the important differences 5 

among the models in various processes such as convective processes, lightning sources, 6 

biogenic emission sources with related chemistry. The large relative spread (>20\%) at the 7 

NH mid-latitudes and in the SH at 200 hPa may be associated with the different 8 

representations of the tropopause and STE among models. In contrast, the relative spread is 9 

small around 20--40$^\circ$N at 500 hPa (< 10 \%).  10 

 11 

The simultaneous enhancement of the analysis uncertainty (c.f., Section 6.1), together with 12 

the model spread, indicates low robustness of the validation results for some tropical regions 13 

over the oceans in the lower troposphere, and over the tropics in the Pacific Ocean as well as 14 

the Antarctic at 200 hPa. Meanwhile, the magnitudes of the model spread and analysis 15 

uncertainty differ considerably for some regions. At 200 hPa and higher in the extratropics, 16 

the analysis uncertainty is smaller than the model spread, where the reanalysis fields are 17 

strongly constrained by MLS measurements. These results suggest that further improvements, 18 

for instance, on the representation of the tropopause and STE are required for some of the 19 

models, in order for the reanalysis and ensemble models to have similar levels of uncertainty. 20 

In the lower troposphere, in contrast, the larger analysis uncertainty than the ensemble spread 21 

suggests that further observational constraints are required for the reanalysis for a fair 22 

comparison. 23 

 24 

 25 

On the other hand, tThe ACCMIP model standard deviation with respect to the reanalysis 26 

could be used to identify the averaged uncertainty of ACCMIP models (right panels in Fig. 27 

11). The standard deviation is large at NH high latitudes and over the tropical ocean areas at 28 

800 hPa, over the SH tropics at 500 hPa, and in the SH extratropics at 200 hPa (> 25 \%). 29 

 30 

\subsection{Implications into model improvements and climate studies} 31 



 29 

 1 

Numerous studies have identified decadal-scale changes in global tropospheric ozone using 2 

observations, such as the shift in the seasonal cycle at NH mid-latitudes and trends observed 3 

over many regions (e.g., Parrish et al., 2014; Cooper et al., 2014). A long-record of the 4 

reanalysis will allow detailed structures in simulated inter-annual and long-term variations to 5 

be evaluated in association with changes in human activities and natural processes. However, 6 

any discontinuities in the availability and coverage of the assimilated measurement will affect 7 

the quality of the reanalysis and estimated interannual variability, which limit the usability of 8 

a long term reanalysis for model evaluation, as discussed in Miyazaki et al (2015) for 9 

chemical reanalyses and in Thorne and Vose (2010) for climate reanalyses. This also requires 10 

a bias-correction procedure for each assimilated measurements, in order to improve the 11 

reanalysis quality (Inness et al, 2013). It is noted that the influence of ENSO was not 12 

considered in ACCMIP due to a decadal-averaged SST boundary condition, which limits the 13 

evaluation of inter-annual variations and could lead to bias in the ACCMIP models and 14 

reanalysis comparisons. 15 

 16 

Process-oriented validations using the reanalysis would be useful for understanding the 17 

uncertainty in simulated ozone fields and associated mechanisms. The ACCMIP models 18 

reveal large variations in short-lived species such as \chem{OH} and ozone precursors (Naik 19 

et al., 2013; Voulgarakis et al., 2013), whereas information obtained from direct in-situ 20 

measurements cannot be applied for investigating global distributions because of the limited 21 

coverage of the measurements and the large spatial variability of concentrations. Miyazaki et 22 

al. (2012b, 2015) demonstrated that the multiple-species assimilation results in a strong 23 

influence on both assimilated and non-assimilated species. Validation of various species using 24 

the chemical reanalysis product can be used to identify potential sources of error in the 25 

simulated ozone fields. Meanwhile, the global monthly products of precursor emissions from 26 

the chemical reanalysis calculations (Miyazaki et al., 2012a, 2014, 2016) can be used to 27 

validate emission inventories and \chem{LNO_x} source parameterizations used in model 28 

simulations. As changes in tropospheric ozone burden associated with different future 29 

scenarios show a broadly linear relation to changes in \chem{NO_x} emissions (Stevenson et 30 

al., 2006), evaluations using up-to-date estimated emissions (Miyazaki et al., 2016) may 31 

prove useful to partly validate emissions for each scenario.  32 



 30 

 1 

The performance of the simulated radiative forcing is largely influenced by representation of 2 

ozone in model simulations (Bowman et al., 2013; Shindell et al., 2013; Stevenson et al., 3 

2013). Bowman et al (2013) suggested that overestimation of the OLR in the tropical seas of 4 

the east Atlantic Ocean and over Southern Africa is associated with model ozone errors, a 5 

persistent feature in all ACCMIP models, which was also found in this study using the 6 

reanalysis. Validation of short-lived species is also important for evaluating the radiative 7 

forcing because simulated \chem{OH} fields influence simulated climates through for 8 

instance their influences on methane (Voulgarakis et al., 2013). Thus, detailed information on 9 

model errors in ozone and other short-lived species could be used to improve estimates of 10 

radiative forcing in climate studies. Meanwhile, model biases for present-day ozone may be 11 

correlated with biases in other time periods. Young et al. (2013) showed that ACCMIP 12 

models with high, present day ozone burdens also had high burdens for the other periods of 13 

time, including the preindustrial period. Thus, the validation of present-day ozone fields using 14 

the reanalysis has the potential to evaluate preindustrial to present day ozone radiative forcing. 15 

 16 

\conclusions 17 

 18 

We conducted a eight-year tropospheric chemistry reanalysis by assimilating multiple 19 

chemical species from the OMI, MLS, TES, MOPITT, SCIAMACHY, and GOME-2 to 20 

provide a gridded, chemically consistent estimate of concentrations and precursor emissions. 21 

This study explores the potential of atmospheric chemical reanalysis to evaluate global 22 

tropospheric ozone of multi-model chemistry-climate model simulations. The evaluation 23 

results are also used to quantify the ozonesonde network sampling bias. Validation of the 24 

chemical reanalysis using global ozonesondes shows good agreement throughout the free 25 

troposphere and lower stratosphere for both seasonal and year-to-year variations. 26 

 27 

The reanalysis product provides comprehensive and unique information on global ozone 28 

distributions for the entire troposphere and on the weakness of the individual models and 29 

multi-model mean.  We found that the ACCMIP multi-model mean overestimates ozone 30 

concentration in the NH extratropics throughout the troposphere (by 6--11 ppb and 800 hPa 31 



 31 

and by 2--9 ppb at 500 hPa for the zonal and annual mean concentration), and underestimates 1 

it in the SH tropics in the lower and middle troposphere by about 9 ppb over the eastern 2 

Pacific, by up to 18 ppb over the Atlantic, and by up to 8 ppb over the Indian Ocean. Most 3 

models underestimate the spatial variability of the annual mean concentration in the NH 4 

extratropics at 800 hPa (by up to 50 \%) and in the SH extratropics at 800 and 500 hPa (by up 5 

to 70 \%). The multi-model mean overestimates the seasonal amplitude in the NH by 50--70 6 

\% in the lower troposphere and by 25--40 \% in the middle troposphere, whereas the seasonal 7 

amplitude is underestimated by 15--25 \% at 200 hPa in the NH extratropics. The seasonal 8 

amplitude in the NH extratropics shows great diversity among models. The NH/SH ratio is 9 

overestimated by 22--30 \% in the free troposphere in the multi-model mean; this can be 10 

attributed to both a concentration high bias in the NH and a concentration low-bias in the SH 11 

in most models. The performance of the ACCMIP model when compared with the reanalysis 12 

is qualitatively similar for most cases from that shown by Young et al. (2013) using the 13 

ozonesonde measurements but quantitatively different because of the ozonesonde network 14 

sampling bias. 15 

 16 

We quantified the ozonesonde network sampling bias and how reanalysis can help extend the 17 

range of that network as a kind of "transfer standard". To estimate the sampling biases in the 18 

ACCMIP model evaluation, we compared two evaluation results of the mean model bias, 19 

using the chemical reanalysis based on the complete and ozonesonde samplings. For instance, 20 

the ozonesonde sampling bias in the evaluated model bias (relative to the model bias for the 21 

complete sampling) is largely negative (positive) in MAM (in DJF) by 40--50 \% over the 22 

Western Pacific and East Indian Ocean and largely negative by 110 \% in MAM over the 23 

equatorial Americas at 500 hPa. For the global tropics, the ozonesonde sampling bias is 24 

largely negative by 80 \% in the NH (Eq--30{\degree}\,N) in SON and by 50 \% in the SH 25 

(30{\degree}\,S--Eq) in MAM. The ozonesonde sampling bias is typically smaller than 30 \% 26 

for the NH polar regions except in boreal winter and over the equatorial Americas, the 27 

Atlantic Ocean and Africa, and at the SH mid-latitudes in austral winter and spring from the 28 

lower to middle troposphere. Although the spatial and temporal variability is generally 29 

smaller in the SH than in the NH, the ozonesonde sampling bias cannot be negligible for 30 

capturing the regionally and monthly representative model errors even in the SH. Large 31 

sampling biases (> 60 \%) exist in the SH extratropics (90--30{\degree}\,S) in DJF and MAM. 32 



 32 

The evaluation of the seasonal cycle of tropospheric ozone is also largely limited by the 1 

ozonesonde sampling bias. The evaluation based on the ozonesonde sampling introduces a 2 

larger overestimation of the seasonal amplitude than that based on the complete sampling for 3 

most of the surrounding areas in the NH lower troposphere, whereas the two estimates are 4 

largely different for the entire tropical regions. Therefore, there is an advantage of the 5 

reanalysis data for evaluating actual regionally and seasonally representative model 6 

performance required for model improvements. However, the network provides critical 7 

independent validation of the reanalysis, which can provide a much broader spatial constraint 8 

on chemistry-climate model performance.  9 

 10 

The proposed model validation approach provides regionally and temporally representative 11 

model performance; this could ensure more accurate predictions for the chemistry--climate 12 

system. In future studies, validation of multiple species concentrations and precursor 13 

emissions from reanalysis would be useful in identifying error sources in model simulations. 14 

In particular, the response of tropospheric composition to changing emissions over decadal 15 

time scales is still not captured in CCMs relative to a few remote sites (Parrish et al, 2014). 16 

Recent increases in emissions from China have been linked to changes in tropospheric ozone 17 

concentrations (Verstraeten et al, 2015). Over the next decade, a new constellation of of low 18 

Earth Orbiting  sounders, e.g., IASI, AIRS, CrIS, Sentinel-5p (TROPOMI), Sentinel-5 and 19 

geostationary satellites (Sentinel-4, GEMS, and TEMPO) will provide even more detailed 20 

knowledge of ozone and its precursors (Bowman, 2013).  Assimilating these datasets into a 21 

decadal chemical reanalysis will be a more direct means of quantifying the response of 22 

atmospheric composition to emissions at climate relevant time scales, which should be a more 23 

direct test on chemistry-climate change scenarios. Combining many observations requires a 24 

bias correction procedure for each assimilated measurement to improve the reanalysis quality 25 

but needs to be carefully checked. In order for reanalysis to be more effective in evaluating 26 

performance, chemistry-climate model simulations that represent year-specific ozone 27 

distributions over the contemporary period are urgently needed. We also plan to apply the 28 

proposed evaluation approach to a more recent model inter-comparison project, the 29 

Chemistry-Climate Model Initiative (CCMI). 30 

 31 
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 8 

Table 1: Measurements used for data assimilation in the chemical reanalysis.  9 

 10 

Table 2: Ozonesonde observation sites used in this study. All the data are used for the 11 

evaluation of reanalysis data (Section 3), whereas selected observations (shown in bold) based 12 

on the compilation by Tilmes et al. (2012) are used for the evaluation of ACCMIP models and 13 

to investigate ozonesonde sampling biases (Section 4 and 5). 14 

 15 

Table 3: Chemical reanalysis (or control run in brackets) minus ozonesonde comparisons of 16 

mean ozone concentrations in 2005--2009. RMSE is the root-mean-square error. Units of bias 17 

and RMSE are ppb. T-Corr is the temporal correlation. 18 

 19 

Table 4: ACCMIP model mean minus reanalysis comparisons of the mean ozone 20 

concentrations. Units of bias and RMSE are ppb. S-Corr is the spatial correlation coefficient. 21 

 22 

Table 5: ACCMIP models minus reanalysis comparisons of the mean ozone concentrations at 23 

500 hPa. Units of bias are ppb. 24 

 25 

Table 6: Regions and observation sites used in model evaluation in Section 5. The 11 regions 26 

are defined following Tilmes et al. (2012). See also Fig. 8. 27 

 28 



 34 

Table 7: The reanalysis ozone concentration differences between the ozonesonde sampling 1 

(for both time and space using two-hourly reanalysis fields) and the complete sampling at 500 2 

hPa (in \% relative to the complete sampling). Results using monthly reanalysis fields 3 

sampled at the ozonesonde locations are also shown in brackets. 4 

 5 

Table 8: Median of the ACCMIP models minus reanalysis at 500 hPa (in \% relative to the 6 

reanalysis concentrations). Results presented include the regional averages (Regional), for the 7 

ozonesonde temporal/spatial sampling using two-hourly reanalysis fields (Sonde), and for the 8 

ozonesonde spatial sampling using monthly reanalysis fields (in brackets). Relative 9 

differences between the two estimates larger than 30 \% are shown in bold. 10 

 11 

Table 9: The control run minus reanalysis comparison of the mean ozone concentration at 500 12 

hPa (in \% relative to the reanalysis concentrations). Results are the regional averages 13 

(Regional) and at the ozonesonde temporal/spatial sampling (Sonde). Relative differences 14 

between the two estimates larger than 30 \% are shown in bold. 15 

 16 

Table 10: ACCMIP multi-model mean minus reanalysis comparisons of the seasonal 17 

amplitude of regional mean ozone concentration (in \%) for the regional average (Regional) 18 

and at the ozonesonde sampling (Sonde). The seasonal amplitude is estimated as a difference 19 

between maximum and minimum monthly mean concentrations. 20 

 21 

Figure 1: Comparison of vertical ozone profiles from ozonesondes (black), control run (blue), 22 

and reanalysis (red) averaged for the period 2005--2009. Top row shows mean profile; middle 23 

and bottom rows show mean difference and RMSE between control run and observations 24 

(blue) and between the reanalysis and the observations (red) relative to the mean ozonesonde 25 

concentrations (in \%). From left to right, results are shown for SH extratropics (30--26 

90$^\circ$S), SH tropics (30$^\circ$S--Eq), NH tropics (Eq--30$^\circ$N), and NH 27 

extratropics (30--90$^\circ$N). All ozonesonde observations taken from the WOUDC 28 

database were used in the comparison. 29 

 30 



 35 

Figure 2: Time series of monthly mean ozone concentrations obtained from ozonesondes 1 

(black), control run (blue), and reanalysis (red) averaged between 850 and 500 hPa (top), 500 2 

and 200 hPa (middle), and 200 and 90 hPa (bottom) for 2005--2009. From left to right the 3 

results are shown for SH extratropics (30--90$^\circ$S), SH tropics (30$^\circ$S--Eq), NH 4 

tropics (Eq--30$^\circ$N), and NH extratropics (30--90$^\circ$N). 5 

 6 

Figure 3: Global distributions of annual mean ozone concentrations obtained from reanalysis 7 

(left), ACCMIP model mean (2nd left), difference between ACCMIP model mean and 8 

reanalysis (3rd left), and the ozonesonde measurements used for the evaluation of ACCMIP 9 

models and ozonesonde sampling biases (right). From top to bottom, results are shown for 10 

global distributions at 200 hPa, 500 hPa, and 800 hPa. Units are ppb. 11 

 12 

Figure 4: Taylor diagrams showing standard deviation normalized with respect to that of 13 

reanalysis (x-axis) and spatial correlation coefficient (y-axis) for the comparison of annual 14 

mean ozone concentrations between ACCMIP models and reanalysis for SH extratropics 15 

(90$^\circ$S--30$^\circ$S, left), tropics and subtropics (30$^\circ$S--30$^\circ$N, center), 16 

and NH extratropics (30$^\circ$N--90$^\circ$N, right) at 200 hPa (top), 500 hPa (middle), 17 

and 800 hPa (bottom). 18 

 19 

Figure 5: Comparison of seasonal variation of ozone concentration between the reanalysis 20 

(black lines), individual ACCMIP models (thin colored lines), ACCMIP ensemble mean (red 21 

solid line), and ozonesonde observations (blue solid line) averaged between 90$^\circ$S--22 

30$^\circ$S (1st column from left), 30$^\circ$S--Eq (2nd column), Eq--30$^\circ$N (3rd 23 

column), and 30$^\circ$N--90$^\circ$N (4th column). From top to bottom, results are shown 24 

for concentrations at 200 hPa, 500 hPa, and 800 hPa. Individual model results are shown by 25 

colored thin lines. The reanalysis result is shown for the average over all model grid points 26 

(black solid line) and over the ozonesonde sampling sites/time (black dashed line). The 27 

ACCMIP model results are shown for the average over all model grid points. 28 

 29 

Figure 6: Seasonal amplitude (peak-to-peak difference based on monthly data) estimated from 30 

the reanalysis (black solid line) and ACCMIP models (thin colored lines). The $\pm 1 31 
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\sigma$ deviation among ACCMIP models (i.e., model spread) is shown in pink. The 1 

seasonal amplitude derived from the multi-model mean fields (red solid line) and, the multi-2 

model mean of the seasonal amplitude from each model (red dashed line), and ozonesonde 3 

observations with a bin of 5 degrees (black diamonds) are also shown. From top to bottom, 4 

results are shown for 200 hPa, 500 hPa, and 800 hPa. 5 

 6 

Figure 7: Vertical profile of inter-hemispheric gradient of annual mean ozone concentrations 7 

estimated from the reanalysis (black lines), ACCMIP ensemble mean (red solid line), 8 

ACCMIP models (thin colored lines), and ozonesonde observations (blue solid line). The 9 

reanalysis result is shown for the average over all model grid points (black solid line) and 10 

over the ozonesonde samplings (black dashed line). The $\pm 1 \sigma$ deviation among the 11 

ACCMIP models is shown in pink. 12 

 13 

Figure 8: Regions and observation sites used in model evaluation. The 11 regions are defined 14 

following Tilmes et al. (2012). See also Table 3. 15 

 16 

Figure 9: Box plots of relative model--reanalysis difference for seasonal mean concentration 17 

for DJF (left) and MAM (right) at 200 hPa (top), 500 hPa (middle), and 800 hPa (bottom). 18 

Results are shown for ACCMIP model simulations for 11 regions (c.f., Table 3 and Fig. 8). 19 

Black box shows model minus reanalysis difference for regional mean concentration 20 

(averaged over all model grid points); red box shows model minus reanalysis at the 21 

ozonesonde samplings. 22 

 23 

Figure 10: Probability distribution functions (PDFs) of ozone concentration obtained from the 24 

ACCMIP multi-model mean (blue) and the reanalysis (red) at 500 hPa for W. Pacific/E. India 25 

in SON (left) and for the SH high latitudes in MAM (right). The plots are shown for all model 26 

and reanalysis grid point (bottom) and for the ozonesonde sampling (top) within each defined 27 

region. 28 

 29 



 37 

Figure 11: Global distributions of relative value (in \%) of reanalysis uncertainty (left), 1 

standard deviation among the ACCMIP models (center), and ACCMIP model standard 2 

deviation with respect to the reanalysis for the annual mean concentration (right). From top to 3 

bottom, results are shown for global distributions at 200 hPa, 500 hPa, and 800 hPa. 4 


