
Authors’ comments in reply to the anonymous referee for “Evaluation of ACCMIP ozone 

simulations using a multi-constituent chemical reanalysis” by K. Miyazaki and K. Bowman 

 

 We want to thank the referee for the helpful comments. We have revised the manuscript according to 

the comments, and hope that the revised version is now suitable for publication. Below are the referee 

comments in italics, with our replies in normal font.  

 

Reply to Referee #1 

 

General remarks:  

 

The paper would benefit from a more stringent focus on the ozone sonde sampling biases and its impact 

on the evaluation because this is the actual novelty aspect of the paper. The ACCMIP models have been 

evaluated. So only the differences of the new evaluation approach with previous work is of interest. I 

would recommend to add to the title “- focus on ozone sonde sampling biases” or similar. The sampling 

biases should be mentioned and discussed in abstract and introduction more clearly.  

 

The title has been revised as follows: 

“Evaluation of ACCMIP ozone simulations and ozonesonde sampling biases using a satellite-based 

multi-constituent chemical reanalysis.” 

 

The abstract and introduction have been modified to mention the sampling biases. 

 

To get a better understanding of the sampling biases, i.e. the difference in the mean over area averages 

using all grid points at regular intervals or only the stations locations at the time of the observations, it is 

recommended to show the sampling biases not only for the differences between ACCMIP models and the 

reanalysis but also for the Re-analysis and the model runs, including the control run itself. It would be 

interesting to see to what extent they differ as the reanalysis may also be effected by the “sampling 

biases” of the assimilated observations. A strong sampling biases for model result will help to convince 

modellers to use reanalysis data for model evaluation.  

 

Table 9 has been added to discuss the impacts of the sampling biases in the reanalysis and control run 

comparisons. These results are discussed in Section 5.1 as follows: 

“Further, ozonesonde sampling bias is evaluated for the control run and reanalysis comparisons. As 

summarized in Table 9, at 500 hPa, there are large differences (> 30 %) between the two evaluations in 



many regions, especially in the NH mid latitude regions in winter and in the tropics throughout the year, 

as also found in the ACCMIP models and reanalysis comparisons (Table 8). The analysis increments 

introduced by data assimilation vary with space and time, reflecting the changes in coverage and 

uncertainty of assimilated measurements as well as in model errors. Nevertheless, observational 

information was propagated globally and integrated with time through forecast steps during the data 

assimilation cycles. This is true for ozone because of its relatively long lifetime in the free troposphere. 

Therefore, the spatial distribution is well constrained by data assimilation, and we do not expect large 

variations in the reanalysis quality within each analysis region.” 

 

The authors should aim to provide a better understanding of the reasons of the sampling biases. Do they 

come more from spatial heterogeneity or the variable temporal sampling. The latter can be estimated by 

comparing re-analysis means at a 2 hourly resolution or only at the ozone sonde observing times.  

For the sake of consistency the quantification of the sampling biases should be carried out for one set of 

latitude bands in the same way as in the more regional analysis presented in section 5.  

 

Table 8 has been revised to discuss the influences of temporal and spatial sampling errors separately. The 

following sentences have been added in Section 5.1: 

“Our analysis using monthly reanalysis fields sampled at the ozonesonde locations (brackets in Table 
8) suggests a greater impact of the spatial sampling bias than the temporal sampling bias for the NH 
polar east in DJF.” 
“At 500 hPa over Canada, the relative importance of the spatial and temporal sampling biases varies with 

season: the spatial (temporal) sampling bias is dominant in DJF (JJA), whereas both of them are 

important in MAM.” 

“Over the Western Pacific and East Indian Ocean, the sampling bias is not reduced by using monthly 

mean reanalysis fields (sampled at the ozonesonde locations) in DJF and JJA. This suggests that ozone 

varies with time and space in a complex manner, and a dense (in both space and time) network would be 

required to capture the regional and seasonally representative model biases in this region.” 

“The temporal sampling bias mostly dominates the difference in the SH high latitudes in MAM and JJA, 

whereas the spatial sampling bias is also important in the SH mid latitudes in DJF and MAM.” 

  

Table 8 has been modified to describe the sampling biases for four latitude bands. The following 

sentences have been added in Section 5.1:  

“Table 8 also shows the model evaluation results for four latitudinal bands at 500 hPa. The observations 

used are shown in bold in Table 2. The differences between the two evaluations are small in the NH 

extratropics (30-90N) in all seasons, because of the relatively large number of observations. There are 



large differences in the tropics of both hemispheres: the ozonesonde network reveals a large negative 

sampling bias in the model evaluation in the NH tropics (Eq-30N) in SON (-9 % in the complete 

sampling and -16 % in the ozonesonde sampling) and in the SH tropics (30S-Eq) in MAM (-14 % and 

-21 %) and a large positive sampling bias in the NH tropics in JJA (-7 % and -3 %).  Large sampling 

biases (> 60 %) also exist in the SH extratropics (90-30S) in DJF and MAM due to the sparse ozonesonde 

network.” 

 

Section 5 “Impact of Sampling on model evaluation” discusses the regional biases and the general 

problem in a lot of detail but sections 4.2 and 4.3 discuss already the sampling biases for the latitude 

bands. I recommend moving the introduction of the sampling biases to an earlier section (2).  

 

The introduction and methodology of the sampling biases have been moved to Section 2.4 (Section title: 

Ozonesonde sampling bias estimation).  

 

The discussions section, in particular 6.3, does not discuss the direct results of the paper but gives an 

outlook on other potential aspect of the usefulness of the evaluation with chemical re-analyses. However, 

the positive impact on species not directly assimilated has not be demonstrated in the paper. Also, the 

four year comparison is not long enough to infer trends and longer re-analysis of atmospheric 

composition are likely to suffer from temporal artefacts because of the changing observational system. I 

would therefore not discuss in detail these aspects in the paper as there is not enough evidence given to 

support them.  

 

Because this is the first study to use chemical reanalysis for model evaluation, it is worthwhile discussing 

its possible application in future studies. The positive impacts on non-assimilated species have been 

discussed in our previous studies, and this is described in the revised manuscript as follows: 

“Miyazaki et al. (2012b, 2015) demonstrated that the multiple-species assimilation results in a strong 

influence on both assimilated and non-assimilated species.” 

 

The limitation of the evaluations using the five-year (2005-2009) reanalysis is discussed as follows in 

Section 5.1 of the revised manuscript: 

“The five-year reanalysis (2005-2009) may cause biases in the estimated model errors in the evaluation 

of the 2000 decade ACCMIP simulations that used decadal-averaged SST boundary conditions and 

biomass-burning emissions averaged over 1997--2006 (Lamarque et al., 2010). It may neglect the 

influences of interannual and decadal changes in both anthropogenic and biomass emissions and 

meteorology. Longer-term reanalysis and time-consistent validation are required to obtain more robust 



error estimations. 

 

To discuss remaining issues with a longer-term reanalysis, the following sentences have been added in 

Section 6.3:  

“However, any discontinuities in the availability and coverage of the assimilated measurement will affect 

the quality of the reanalysis and estimated interannual variability, which limit the usability of a long term 

reanalysis for model evaluation, as discussed in Miyazaki et al (2015) for chemical reanalyses and in 

Thorne and Vose (2010) for climate reanalyses. This also requires a bias-correction procedure for each 

assimilated measurement, in order to improve the reanalysis quality (Inness et al, 2013).” 

 

The used ozone sondes observations need to be clearer identified and their sampling discussed. A table of 

the used ozone sondes, their sampling frequency and outage in the period and mean should be 

summarised in a table not only for the regional areas but also for the latitude bands. It should be made 

clear which stations are used for global/hemispheric stratification in Figures 1 to 7 and the more 

regional stratification Figure 9-10.  

 

Table 2 has been added.  

 

Specific remarks,�  

 

PL1: 5 Please “the” before instrument names  

 

Added. 

 

P1L5: Please add a sentence on the advantages of using a 3D re-analysis rather than ozone sondes for 

the model evaluation.  

 

The following sentence has been added: 

“The reanalysis provides comprehensive information on the weakness of the models, whereas we 

consider that the spatial and temporal coverage of individual measurements, such as ozonesonde 

measurements, is insufficient to capture the temporally and spatially representative model bias.” 

 

P1L6: Please ad here or at L 12 the problem of the ozone sampling biases  

P1L12: Please state more clearly the differences in the evaluation results when using the re-analysis as 

complete field and on the the ozone sonde observation locations and times only.�  



 

The following sentence has been added: 

“The ozonesonde sampling bias in the evaluated model bias for the seasonal mean concentration is 

40-50 % over the Western Pacific and East India and reaches 110 % over the equatorial Americas in the 

middle troposphere.” 

 

P1L24: better “transport” 

 

Replaced. 

 

P2L8: Please add some references for these evaluation studies�  

 

Added. 

 

P2L13: there is a “First” and a “Third” (L19) but I did not find a “Second”  

 

Corrected. 

 

P2L18: The sentence starting with “However, . . .” is a strong motivation for the paper. Please elaborate 

and also mention that the climatologies do no capture the temporal variability of the observed ozone.  

 

The sentences have been rewritten as follows: 

“However, the climatological data does not provide information on the temporal variability of the 

observed ozone. In addition, the current ozonesonde network does not cover the entire globe and is not 

homogeneously distributed between the hemispheres, ocean and land, and urban and rural areas, and its 

sampling interval is typically a week or longer. Model errors are also expected to vary greatly in time and 

space at various scales.” 

 

P2L30: Please consider citing overview papers such as Bocquet et al. (ACP 2015) or Sandu et al. 

(Atmosphere, 2011)  

 

Added. 

 

P4L4: Please comment how this is related to resolution of the evaluated ACCMIP models.  

 



The following sentence has been added: 

“The horizontal model resolution is comparable to the resolution of ACCMIP models (ranging from 1.24° 

to 5°).” 

 

P4 L22: Please explain how the ensemble is constructed, i.e. what parameters are varied to get a 

different ensemble members in the EnKF. This information is important because you later use the 

ensemble spread partially as indicator of the analysis error.  

 

The following sentence has been added: 

“The ensemble perturbations were introduced to all the state vector variables as described below.” 

 

P4 L23: “satellite retrieval operator”? This implies radiances i.e. Level 1 were assimilated, which is 

perhaps not the case. Please clarify.  

 

The sentence has been rewritten as: 

“and an operator that converts the model fields into retrieval space” 

 

P5L4: Please mention if it could be shown that the modulation of the lifetimes was an improvement.  

 

The following sentence has been added: 

“Miyazaki et al. (2015) demonstrated that the Northern/Southern Hemisphere OH ratio became closer to 

an observational estimate of Patra et al (2014) due to the multiple-species assimilation.” 

 

P5 L14: Please provide a table with the assimilated retrievals and additional information such as 

assimilated height range, temporal data coverage and an indication of observation errors statistics.  

 

Table 1 has been added.  

 

P5L21: Please elaborate on the period and the meteorological input for this time-slice setup. It is 

important to know what sort of realism can be expected from the simulation if they are compared against 

observations.  

 

The following sentences have been added: 

“The number of years that the ACCMIP models simulated for the 2000 decadal simulation mostly varied 

between 4 and 12 years for each model. Each model simulation was averaged over the simulated years.” 



“Meteorological fields were obtained from analyses in CICERO-OsloCTM2 and from climate model 

fields in MOCAGE. UM-CAM and STOC-HadAM3 simulated meteorological and chemical fields, but 

chemistry did not affect climate. In all other models, simulated chemical fields were used in the radiation 

calculations and hence provide a forcing effect on the general circulation of the atmosphere. Lamarque et 

al. (2013) indicated that most models overestimate global annual precipitation and have a cold bias in the 

lower troposphere.”  

 

P6L9: Please clarify which station were used for the comparison. The ones listed in table 4 ? If so 

mention it here. Provide information about station numbers and individual temporal coverage as this 

may vary greatly and contribute to the ozone sonde sampling bias.  

 

The sentences have been rewritten as: 

“All available data from the WOUDC database are used for the evaluation of reanalysis data (Section 3), 

as listed in Table 2. For the evaluation of ACCMIP models and ozonesonde sampling biases (Section 4 

and 5), we use the ozonesonde sampling based on the compilation by Tilmes et al. (2012), which is 

shown in bold in Table 2. Because there is no observation after 2003 in Scoresbysund, this location has 

been removed from the compilation in this study.” 

 

Table 2 has been added to summarize the ozonesonde measurements. 

 

P6 L17-23: This description of the model changes may better put in the model description section.  

 

Moved. 

 

P6L30: Please clarify what the differences in the assimilated observations are between this data set and 

the previous one.  

 

The following sentence has been added: 

“MLS retrievals have been updated from v3.3 in Miyazaki et al. (2015) to v4.2 in this study.” 

 

P7L10: Please clarify what temporal averaging the temporal correlation is based on (i.e. monthly means, 

annual means, instantaneous values etc.). It is good practise to de-seasonalize the time series to get a 

more meaningful information about the temporal correlation. On the other hand, 5 years might be too 

short to obtain a robust information about seasonality and year-to-year variability.  

 



The sentence has been rewritten as follow: 

“The tropospheric concentrations show distinct seasonal and year-to-year variations, for which the 

temporal correlation based on the monthly and regional mean concentrations is increased by the data 

assimilation globally, except at high latitudes in the lower troposphere.” 

 

Because the seasonal pattern varies with year especially in the tropics, we did not apply 

de-seasonalization.  

 

The limitations of the five-year reanalysis data are discussed in the revised manuscript as follow:   

“The reanalysis can be extended to a longer-term validation that will provide more information on 

seasonality and year-to-year variability.” 

 

The numbers in figure 1 indicate a very good reduction in biases but far less so for variability measures. 

(The reduction in RMSE seems dominated by the bias component and temporal correlation is less 

improved). This seems to contradict the theoretical basis of data assimilation, which is meant to reduce 

the error variance assuming bias free model. A further discussion would be helpful.  

 

We confirmed that both the bias and RMSE are largely reduced compared with assimilated 

measurements (e.g., TES) due to data assimilation, as demonstrated in our previous study (Miyazaki et al., 

2015). In the comparison against independent ozonesonde measurements in this study, spatial gaps 

between the model/analysis and observations (i.e., representativeness error) result in large RMSE even 

after data assimilation.  

 

The relevant sentence has been rewritten as follows: 

“Root-Mean-Square-Errors (RMSEs) are also reduced above the middle troposphere, although the 

reduction rate is relatively small compared to the bias, probably due to representativeness errors between 

the ozonesonde measurements and data assimilation analysis.” 

 

P7L14: As you also show the ozone sondes in the sections on seasonal variation and hemispheric 

gradient, it seems odd not to show the ozone sondes observations in Figure 3. Please add a further panel 

with colour dots at the station location.  

 

Added. 

 

P7L18: It is confusing that you choose a different latitude bands for table 1 and table 2. Please use the 



same selection of latitude bands through the paper.  

 

Corrected.  

 

P7L18: Please, clarify how spatial r was calculated (only using the 5 year mean, based on lat-long grid 

points or area-weighted grid-points etc. Consider filtering small scale noise by averaging over areas 

corresponding to the resolution of the reanalysis.  

 

The sentence has been rewritten as: 

“As summarized in Table 4, the global spatial distributions are similar between the five-year mean 

reanalysis field and the ensemble mean when estimated at 2º×2.5º spatial resolution, with a spatial 

correlation (r) greater than...”. 

 

In addition, the following sentence has been added in Section 2.2: 
“Both the ACCMIP models and chemical reanalysis are interpolated to at 2º×2.5º spatial resolution 
and 67 levels, following Bowman et al. (2013), and then compared each other. Spatial correlations 
are computed with consideration of weighting for the latitude.” 
 

The spatial correlation coefficient presented here seems less suited to express agreement in spatial 

patterns, which would be meaningful for the understanding of the model performance. Spatial r might be 

too much effected by the underlying spatial variability of the actual fields, thereby penalizing fields with 

greater more random variability i.e. standard deviation.  

 

Because all model and reanalysis fields were interpolated into the same spatial resolution (2º×2.5º) before 

the comparisons, the estimated spatial correlation can provide information on the model performance on 

the spatial pattern at that spatial scale. Although more thorough evaluations would be required for more 

careful discussions of the spatial pattern, the present evaluation method has been widely used and is 

valid.  

 

P7L19: The lower spatial correlation coefficient at p=500 hPa in NH could simply be caused by a 

different transport patterns (winds) and larger heterogeneity than in SH. Good correlation at the surface 

could be simply because a good match of emission patterns. High correlation at 200hPa in extra-tropics 

could mean that the transition in to the stratosphere agreed reasonably well. So are the different spatial r 

really helpful to distinguish model performance?  

 



The different reasons for each region raised by the reviewer are discussed in the manuscript. Because the 

spatial correlation varies significantly among the models as discussed in Section 4.1, it is a useful 

diagnostic of model performance. Please also see our reply above. 

 

P8L4: Please clarify again how the statistical variables shown in the Taylor diagram were computed. 

Given my scepticism about the meaning of the spatial correlation, I would consider omitting Figure 4 

and shortening the discussion.  

 

The following sentence has been added in Section 2.2: 

“Both the ACCMIP models and chemical reanalysis are interpolated to at 2º×2.5º spatial resolution and 

67 levels, following Bowman et al. (2013), and then compared each other. Spatial correlations are 

computed with consideration of weighting for the latitude.”  

 

We think the Taylor diagram plots are useful to measure the general performance of each model and are 

widely used in the climate model evaluation. Please also see our reply on the spatial correlation estimates 

above. 

 

P9L6: Please clarify how the seasonal amplitude was calculated. How was made sure that “noise”, i.e. 

unstructured variability, was not attributed to the seasonal amplitude.  

 

The seasonal amplitude was estimated from the difference between maximum and minimum monthly 

mean concentrations, which could reflect noise in the seasonal variation. This is described in the revised 

manuscript. 

 

P9L12: In section5 you discuss the sampling bias with respect to the regional areas. You should also 

discuss the sampling biases w.r.t to the selected latitude bands. This is needed because you also discuss 

model performance for the latitude bands. As mentioned in the general remarks, please also indicate the 

difference between the model results sampled at ozone locations and observation times and the area 

averages.  

 

Please see our reply above. 

 

P9L13: Please confirm that the average is area weighted and not based simply on lat-long grid boxes, 

which decrease in size towards the poles.  

 



The average is area weighted, as described in the revised manuscript.  

 

P10L8: Please clarify how you exactly calculate the hemispheric gradient both for the gridded fields and 

for the ozone sonde observations.  

 

The following sentence has been added: 

“For the estimation of the gradient using the ozonesonde observations, we made a gridded dataset from 

the ozonesonde observations based on the completion by Tilmes et al (2012) at 2ºx2.5º spatial resolution, 

and then calculated area-weighted hemispheric mean concentrations using the gridded data.” 

 

P10L15: add missing “At” before “Around ”  

 

Added. 

 

P10L18: How do these value compare to values from the literature?  

 

To the best of our knowledge, there is no literature that shows an inter-hemispheric ozone gradient for 

different altitudes of the troposphere.  

 

P10L26: As you already discuss sampling biases it a bit inconsistent to put the section at this place. This 

very good introduction to sampling biases (p10L27 – p11L15) should come earlier in the paper, i.e. in 

the part when you discuss the methods (section2)  

 

Moved to Section 2.4. 

 

P10L15: The sampling biases depends on the averaging area and the selection of ozone sondes. The 

sampling biases estimated by using your re-analysis should be presented for the Tilmes regions as well 

as for the latitude bands (choose one set only) in and uniform way. As model results are often evaluated 

for the latitude bands, this information would be very interesting for the scientific community.  

 

Table 8 has been modified to include the results for four latitudinal bands.  

 

P10L24 Please add also the stations used for the latitude bands averages in table 3.  

 

This is mentioned in Section 2.3 and Table 2 in the revised manuscript. 



 

P12L1: I think there is would be very good to compute the sampling biases also directly for the 

re-analysis i.e. the difference between the re-analysis sampled as ozone and as area-time averages. This 

information would be in my opinion of more general meaning than the values for the ACCMIP error.  

 

Table 7 has been added to discuss the sampling bias for the reanalysis fields. The following discussion, 

regarding this table, has been added in Section 5: 

“Table 7 demonstrates the regional and seasonal mean differences of the reanalysis concentrations 

between the complete sampling and the ozonesonde sampling. The ozonesonde sampling results have 

higher concentrations (by about 3 %) in the two NH polar regions for most cases, whereas the difference 

is smaller in NH polar west than in NH polar east. Among the NH mid-latitude regions, a large difference 

(about 14 %) exists between the two cases over the eastern United States in June-August (JJA), where the 

comparison using monthly reanalysis fields sampled at the ozonesonde locations (brackets in Table 7) 

suggests that the sampling bias is dominated by temporal variations. The tropical and subtropical regions 

exhibit large sampling biases, 4-12.3 % over the NH subtropics, -3.2-5.0 % over the Western Pacific and 

East Indian Ocean, 0--7.8 ¥% over the equatorial Americas, and -3.8-7.5 % over the Atlantic Ocean and 

Africa. In most of the tropical and subtropics regions, both the spatial and temporal sampling biases are 

important, because of large spatial and temporal variability of ozone and the sparse observation network. 

For the global tropics, the sampling bias reaches 13 % in the NH (Eq-30N) and 8 % in the SH (30S-Eq). 

Thus, the ozonesonde network has a major limitation when it comes to capturing ozone concentrations 

that are representative of seasonal and regional means for the entire tropical region. The sampling bias 

may not be negligible even in the SH (0.3-3.9 % in the SH mid-latitudes and 0.8-4.2 % in the SH high 

latitudes), and it is large (up to 13 %) when estimations are done for a large area (90-30S). The large 

sampling bias in 90-30S is primarily attributed to spatial variability. The impact of the sampling bias on 

the model evaluation is discussed in the following section.” 

 

P12L1: Why does table 5 show the median whereas otherwise only the ensemble mean is discussed or 

shown. (Using only the median would be perhaps a better option overall)  

  

We present mean values in other estimates because we also discuss the standard deviation to the mean. 

Medians are shown only in this table (Table 8 in the revised manuscript), in order to provide more robust 

estimates of the model error and sampling bias for each region. The following sentence has been added to 

clarify this point:  

“The sampling bias is evaluated using the median of the multiple models to provide robust estimates of 

the model performance.” 



 

P13L8: The ozone network in SH high-latitudes is actually quite high because of the need to monitor the 

ozone hole. The launch frequency varies for some stations a lot because more sondes are launched 

during the ozone hole season.  

 

Yes, I agree. However, because only three stations were considered in the comparison following Tilmes 

et al. (2012), the ozonesonde network is not sufficient to capture the ozone variations. Our results suggest 

that the temporal sampling bias mainly causes the sampling bias in the SH high latitudes in MAM and 

JJA. This is discussed in the revised manuscript.  

 

P13L24: Please add also the sampling biases for the latitude bands.  

 

Added in Table 10. The following sentences have been added to discuss the results: 

“Because the seasonal variations differ among different regions, the seasonal amplitude estimated for the 

entire NH extratropics (30-90N) is largely different between the two estimates throughout the 

troposphere.”  

“The sampling bias in the seasonal amplitude estimated for the entire tropics is larger than 60 % 

throughout the troposphere both in the NH (Eq-30N) and SH (30S-Eq).” 

 

P14 L14: Please clarify how much of the analysis ensemble spread depends on some-times arbitrary 

choices to cause spread between the ensemble members.  

 

The following sentence has been added: 

“Note that the data assimilation setting influences the analysis uncertainty estimation in the reanalysis. In 

particular, the analysis spread was found to be sensitive to the choice of ensemble size (Miyazaki et al., 

2012b). A large ensemble size is essential to capture the proper background error covariance structure 

(i.e., analysis uncertainty).” 

 

P14L15: Please clarify to what extent the analysis uncertainty is controlled by the uncertainty of the 

assimilated observations.  

 

The sentences have been rewritten as follows: 

“Miyazaki et al (2015) investigated that the analysis spread is caused by errors in the model input data, 

model processes, and assimilated measurements, and it is reduced if the analysis converges to a true state. 

The analysis spread is smaller in the extratropical lower stratosphere than in the tropical upper 



troposphere at 200 hPa, because of the high accuracy of the MLS measurements. In contrast, in the 

middle troposphere, the analysis spread is generally smaller in the tropics than the extratropics because of 

the higher sensitivities in the TES retrievals.”  

 

P14L21: How does the ensemble spread relate to the spread of the ensemble in the EnKF. Could the 

ACCMIP ensemble spread be used to verify the EnKF ensemble spread?  

 

The simultaneous enhancement of the analysis uncertainty and the model spread indicates low robustness 

of the validation results, as discussed in the manuscript. Verification of EnKF ensemble spread using 

ACCMIP ensemble model spread would be an interesting research topic but requires careful discussion 

and is clearly out of the scope of the present study. 

 

P15L3: Please see my general comment on this chapter. Improvement on species not directly assimilated 

needs to be demonstrated. Long-term reanalysis could suffer from artificial jumps because of the change 

in the observing system (for example degradation of TES after 2010).  

 

Corrections have been made. Please see our reply above. 

 

P15L29: I don’t understand this conclusion at all. Re-analysis are only valid for present day conditions 

when observations are available. They cannot be used to for pre- industrial estimates nor the differences 

with today’s values.  

 

Assuming that the persistent systematic bias from the pre-industrial to present day can be attributed to 

time-independent model errors in chemical and transport processes, as suggested by previous studies (e.g., 

Young et al., 2013), the validation results using the reanalysis for the present day has the potential to 

evaluate preindustrial to present-day ozone radiative forcing. This is discussed in the manuscript. 

 

P16L4: Please mention that you (only) consider ozone sondes as reference in this paper.  

 

The following sentence has been added: 

“The evaluation results are also used to quantify the ozonesonde network sampling bias.” 

 

P16L6: Please mention the advantage of using a re-analysis, i.e. a gridded field. Please mention that the 

biases of the re-analysis against ozone sondes are small.  

 



The sentences have rewritten as follows: 

“The reanalysis product provides comprehensive and unique information on global ozone distributions 

for the entire troposphere and on the weakness of the individual models and multi-model mean. 

Validation of the chemical reanalysis using global ozonesondes shows good agreement throughout the 

free troposphere and lower stratosphere for both seasonal and year-to-year variations.” 

 

P16L17: Please add a statement if these finding are consistent with other evaluation studies, i.e. the 

Young et al. paper.  

 

The following sentence has been added: 

“The performance of the ACCMIP model when compared with the reanalysis is qualitatively similar for 

most cases from that shown by Young et al. (2013) using the ozonesonde measurements but 

quantitatively different because of the ozonesonde network sampling bias.” 

 

P16L20-30: Please give some numbers for the sampling biases. Also include the sampling bias w.r.t to 

latitude bands.  

 

The following sentences have been added: 

“For the global tropics, the ozonesonde sampling bias is largely negative by 80 % in the NH (Eq-30N) in 

SON and by 50 % in the SH (30S-Eq) in MAM.” 

“Large sampling biases (> 60 %) exist in the SH extratropics (90-30S) in DJF and MAM” 

 

p17L4: Please add a statement that it will be a challenge to combine all these observations in a 

consistent way in a more long term re-analysis.  

  

The following sentence has been added: 

“Combining many observations requires a bias correction procedure for each assimilated measurement to 

improve the reanalysis quality but needs to be carefully checked.” 

 



Authors’ comments in reply to the anonymous referee for “Evaluation of ACCMIP ozone 

simulations using a multi-constituent chemical reanalysis” by K. Miyazaki and K. Bowman 

 

 We want to thank the referee for the helpful comments. We have revised the manuscript according to 

the comments, and hope that the revised version is now suitable for publication. Below are the referee 

comments in italics, with our replies in normal font.  

 

Reply to Referee #2 

 

Specific Comments:  

 

Abstract: Please mention that a 4-year reanalysis data is used to compare ACCMIP time-slice 

simulations, and that the evaluation itself can be biased because of this inconsistency. 

  

The abstract has been rewritten to describe the time period of the reanalysis and ACCMIP simulations. 

 

P1L17: Insert anthropogenic between “...important greenhouse..”  

 

Inserted. 

 

P2L1: There are several studies highlighting the use of CTMs/CCMs to assess the radiative impacts of 

tropospheric ozone prior to Bowman et al (2013). Please acknowledge those.  

 

Several studies are cited in the following sentence.  

 

P2: 2nd and 3rd paragraphs discuss uncertainties in measurements for evaluating chemistry-climate 

models. I think they can be combined and modified for clarity.  

 

Combined and modified. 

 

P3L12: Please provide motivation for evaluating only tropospheric ozone and not its precursors (e.g., 

NO2, CO). Presumably biases in ozone are driven by biases in its precursors.  

 

The following sentences have been added: 

“Model errors in precursors can also be evaluated using the reanalysis product, and this could help 



identify error sources in tropospheric ozone simulations. However, because no other study has shown 
the potential of reanalysis ozone for model evaluation, this study focuses on tropospheric ozone 
only.” 
 

P4. How is photolysis calculated in the forecast model? Does the model represent methane - prescribed 

concentrations or emissions? Since the ACCMIP models used different emissions inventory for ozone 

precursors compared to what is used in this reanalysis product, how would the comparison be affected by 

this difference?  

 

The following sentences have been added: 

“The radiative transfer scheme considers absorption within 37 bands, scattering by gases, aerosols, and 

clouds, and the effect of surface albedo. Detailed radiation calculations are used for photolysis calculation. 

Methane concentrations were scaled on the basis of present-day values with reference to the surface 

concentration.”  

 

Because the surface emissions of NOx and CO are optimized using data assimilation in the chemical 

reanalysis, the difference in the emission inventory should not affect the comparison. In our previous 

studies (Miyazaki et al., 2012, 2015, 2017), it was confirmed that the a priori emissions do not largely 

influence the a posteriori emissions through long data assimilation cycles. 

 

P4L13: What is the convection scheme of MIROC-AGCM? Please describe it in a sentence.  

 

The sentence has been rewritten as follows: 

“Lightning NOx (LNOx) sources in MIROC-Chem were calculated based on the relationship 
between lightning activity and cloud top height (Price and Rind, 1992) and using the convection 
scheme of MIROC-AGCM developed based on the scheme presented by Arakawa and Schubert 
(1974).” 
 

P5L7: What is DOMINO data? What does the acronym stand for?  

 

DOMINO stands for Dutch OMI NO2. This is described in the revised manuscript. 

 

P5L21: According to Lamarque et al (2013), models were run for several years (up to 10 years) for each 

time slice. How are the model results for 2000 time-slice handled for comparison with the reanalysis?  

 



The following sentence has been added: 

“The number of years that the ACCMIP models simulated for the 2000 decadal simulation mostly 
varied between 4 and 12 years for each model. Each model simulation was averaged over the 
simulated years.” 
 
To discuss the limitation of the short period of the chemical reanalysis used for the validation, the 
following sentences have been added in Section 6.1: 
“The five-year reanalysis (2005-2009) may cause biases in the estimated model errors in the 
evaluation of the 2000 decade ACCMIP simulations that used decadal-averaged SST boundary 
conditions and biomass burning emissions averaged over 1997-2006 (Lamarque et al., 2010). It may 
neglect the influences of interannual and decadal changes in anthropogenic and biomass emissions 
and meteorology. Longer-term reanalysis and time-consistent validation are required to obtain more 
robust error estimations.” 
 

P5L29: Young et al. (2013) note that although the models used the same anthropogenic and biomass 

burning emissions, model-to-model diversity in the implemented chemical scheme resulted in differences 

in precursor (especially VOCs) emissions across the models. So, the statement “same emissions were 

used in all the models” is not accurate. Please modify.  

 

Removed. 

 

P6L7: Please provide details on how the ACCMIP model monthly ozone concentrations were 

interpolated to 2 hour temporal resolution? What diagnostics from the reanalysis were used to compare 

with observations - monthly or hourly ozone? Some clarification is needed here.  

 

The sentences have been rewritten as: 

“The two-hourly reanalysis and forecast model (i.e., control run) fields were linearly interpolated to 
the time and location of each measurement, with a bin of 25 hPa, and then compared with the 
measurements. For the ACCMIP models, the monthly model outputs were compared with the 
measurements at the location of each measurement.” 
 

P6L29: Can you please elaborate on the model setting that caused this significant degradation of the 

representation of ozone in the UTLS?  

 

The clause has been rewritten as follows: 



“because of different model settings, such as the upper boundary conditions of NOy, Cly, and Bry” 
 

P7L3: The terminology to refer to model output is somewhat confusing making it difficult to keep track of 

observations versus model output. Suggest referring to output from the forecast model and ACCMIP as 

“forecast model output” and “ACCMIP model output”, respectively, and observations as “data”.  

 

Corrected throughout the paper. 

 

P7L22-24: The simulation of the “wave-1” pattern by ACCMIP models has already been highlighted by 

Young et al. (2013). This reference needs to be cited.  

 

Cited. 

 

P7L32: It is not clear what “common reported” means here. Please clarify.�  

 

Replaced by “Young et al. (2013) consistently revealed the positive bias in the NH and negative bias in 

the SH using OMI/MLS tropospheric ozone column measurements.” 

 

P8L10: Which region is “In this region. . .” referring to? 

 

Replaced by “In the NH extratropics in the lower and middle troposphere”. 

 

P8L14-15: These results are consistent with those discussed in Young et al. (2013).  

 

Young et al. (2013) is cited. 

 

P8L24: The differences could also be associated with the way biomass burning emissions are handled 

across models - whether they are emitted at the surface layer or distributed vertically in the model, as a 

larger role for biomass burning in the tropical mid to upper troposphere has been suggested recently 

(Anderson et al., 2016).  

 

The following sentence has been added: 

“For instance, biomass burning emissions are handled differently across the models, which may lead 
to differences in ozone simulations in the tropics (Anderson et al., 2016).” 
 



P8L33-34: Why are results from a specific model highlighted? Is it because model 8 is driving the large 

model diversity at 200hPa? Please provide a figure to support this statement if this is indeed the case.  

 

The sentence has been removed. 

 

P9L3: It took me a while to understand the meaning of “reanalysis concentrations from the ozonesonde 

sampling”. Please rephrase this to indicate that reanalysis output is sampled at ozonesonde sites instead 

of averaging the reanalysis at all grid cells.  

 

Replaced. 

 

P929-31: Here again the results are consistent with Young et al. (2013) - see their Figure 4 and its 

discussion.  

 

Cited. 

 

P10L23-25: Please clarify what is meant by “radiative heating distribution in chemistry-climate 

simulations are largely uncertain.” Are you referring to the radiative heating due to tropospheric ozone? 

Please elaborate on how the O3 NH/SH ratio provides information on the radiative heating distribution.  

 

The sentence has been replaced by 

“The large systematic error in the NH/SH ratio suggests that, for instance, the inter-hemispheric 
distribution of radiative heating due to tropospheric ozone in chemistry--climate simulations are 
largely uncertain in most models” 
 

P11L17: replace “completion” with compilation.�  

 

Replaced. 

 

P11L19: By coarse resolution, do you mean the coarse horizontal resolution?  

 

Yes. Replaced. 

 

P11L29: Did you mean - “...less variabilities in the SH than in the NH”?  

 



Yes. Corrected. 

 

P12L9-11: Please quantify large in “Large negative model biases...” and larger in “...errors are larger 

than those. . .”  

 

The sentences have been rewritten as: 

“Large negative model biases against the ozonesonde observations have been reported by Young et al. 
(2013) for 250 hPa (by about -13 % for the NH polar west and -18 % for the NH polar east for the 
annual mean concentration), whereas results from this study suggest that these errors based on the 
ozonesonde sampling (by -14 % for the NH polar west and -18 % for the NH polar east in DJF in our 
estimates) are larger than those from regional and seasonally representative model bias (by -3 % and 
+5 %, respectively).” 
 

Section 5.1 Please elaborate on how the comparisons discussed here may be influenced by inconsistency 

in the time period of the reanalysis and the ACCMIP simulations. The reanalysis output is for the 

2005-2009 whereas the ACCMIP simulations are representative of 2000. Additionally, the precursor 

emissions used in ACCMIP simulations were decadal means and not specific to the year of simulation. 

For example, year 2000 biomass burning emissions were calculated as average over 1997–2006 

(Lamarque et al., 2010), so they encompass the high emissions over Southeast Asia in 1998, an El Nino 

year. One would expect that biases due to sampling in time would occur similar to the biases due to 

sampling in space. How significant are the biases due to spatial sampling errors (highlighted here) 

compared to temporal sampling errors. The issue of temporal and spatial sampling was recently 

highlighted by Lin et al. (2016) in the context of tropospheric ozone trends.  

 

The limitation of the evaluation based on the 2005-2009 reanalysis fields is discussed in the revised 

manuscript. Please see our reply above. 

 

The spatial and temporal sampling errors are separately evaluated in the revised paper, and the results are 

presented in Table 7 and discussed in Section 5.1. Lin et al. (2016) is cited in the revised paper. 

 

P14L24: Replace biogenetic with biogenic.  

 

Replaced. 

 

P15L6: I am not sure if the 2005-2009 can be considered a “long-record” Are the authors referring to 



the possibility of a long-record reanalysis sometime in the future when observations have accumulated in 

time.  

 

In this sentence, we are referring to the possibility in the future. The sentence has been replaced by 

“A long-record of the reanalysis will allow....” 
 

P15L7-9: From Lamarque et al. (2013): “This averaging was designed to reduce the effect of 

interannual variability and therefore provide optimal conditions from which average composition 

changes and associated forcings can be more readily computed.” The ACCMIP simulations were 

designed to remove interannual variability, therefore, it is unjustified to state that “the influence of 

ENSO was not well-simulated in ACCMIP. . .”  

 

The sentence has been replaced by  

“It is noted that the influence of ENSO was not included...” 
 

P33 Figure 5. Please provide statistics such as mean bias and correlation for the comparisons here.  

 

These statistics are provided in Table 4.  
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Evaluation of ACCMIP ozone simulations and ozonesonde sampling biases using a satellite-1 

based multi-constituent chemical reanalysis 2 

 3 

\begin{abstract} 4 

 5 

The Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) ensemble 6 

ozone simulations for the present-day from the 2000 decade simulation results are evaluated 7 

by a state-of-the-art multi-constituent atmospheric chemical reanalysis that ingests multiple 8 

satellite data including the Tropospheric Emission Spectrometer (TES), the Microwave Limb 9 

Sounder (MLS), the Ozone Mapping Instrument (OMI), and the Measurements of Pollution in 10 

the Troposphere (MOPITT) for 2005--2009. Validation of the chemical reanalysis against 11 

global ozonesondes shows good agreement throughout the free troposphere and lower 12 

stratosphere for both seasonal and year-to-year variations, with an annual mean bias of less 13 

than 0.9 ppb in the middle and upper troposphere at the tropics and mid-latitudes. The 14 

reanalysis provides comprehensive information on the weakness of the models, whereas we 15 

consider that the spatial and temporal coverage of individual measurements, such as 16 

ozonesonde measurements, is insufficient to capture the temporally and spatially 17 

representative model bias. The model evaluation using the reanalysis reveals that the 18 

ensemble mean overestimates ozone in the northern extratropics by 6--11 ppb while 19 

underestimating by up to 18 ppb in the southern tropics over the Atlantic in the lower 20 

troposphere. Most models underestimate the spatial variability of the annual mean 21 

concentration in the extratropics of both hemispheres in the lower troposphere. The ensemble 22 

mean also underestimates the seasonal amplitude by 25--70 \% in the northern extratropics 23 

and overestimates the inter-hemispheric gradient by about 30 \% in the lower and middle 24 

troposphere. A part of the discrepancies can be attributed to the five-year reanalysis data for 25 

the decadal model simulations. However, these differences are less evident with the current 26 

sonde network, which is shown to provide biased regional and monthly ozone statistics, 27 

especially in the tropics. The ozonesonde sampling bias in the evaluated model bias for the 28 

seasonal mean concentration is 40--50 \% over the Western Pacific and East Indian Ocean and 29 

reaches 110 \% over the equatorial Americas in the middle troposphere. These systematic 30 

biases have implications for ozone radiative forcing and the response of chemistry to climate 31 

that can be further quantified as the satellite observational record extends to multiple decades.   32 
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\end{abstract} 2 

 3 

\clearpage 4 

 5 

\introduction 6 

 7 

Tropospheric ozone is one of the most important air pollutants and the third most important 8 

anthropogenic greenhouse gases in the atmosphere (Forster et al., 2007; HTAP, 2010; Myhre 9 

et al., 2013; Stevenson et al., 2013) while also playing a crucial role in the tropospheric 10 

oxidative capacity through production of hydroxyl radicals (\chem{OH}) by photolysis in the 11 

presence of water vapor (Logan et al., 1981; Thompson, 1992). Global tropospheric ozone is 12 

formed from secondary photochemical production of ozone precursors including 13 

hydrocarbons or carbon monoxide (\chem{CO}) in the presence of nitrogen oxides 14 

(\chem{NO_x}) modulated by additional processes including in-situ chemical loss, deposition 15 

to the ground surface, and inflow from the stratosphere. These ozone precursors are largely 16 

controlled by anthropogenic and natural emissions, e.g., transport, industry, lightning, 17 

biomass burning sources. Representation of tropospheric ozone in chemical transport models 18 

(CTMs) and chemistry climate models (CCMs) is also important in estimating its impact on 19 

the atmospheric radiative budget. A number of chemical transport models (CTMs) and 20 

chemistry climate models (CCMs) have been developed and used to study variations in 21 

atmospheric environment and its impacts on climate (e.g. Bowman et al., 2013; Shindell et al, 22 

2006, 2013; Stevenson et al., 2006, 2013; Wild, 2007, Kawase et al., 2011; Young et al., 23 

2013). However, current tropospheric ozone simulations still have large uncertainties because 24 

of the incomplete representation of model processes, as well as the large uncertainty in 25 

precursor emissions. These in turn increase uncertainty in CCM projections.  26 

 27 

Climate model evaluation has primarily been achieved by comparisons with observed 28 

concentrations or related variables, which requires a precise description of their geographical, 29 

vertical, and temporal variations. Various measurements have been employed for evaluating 30 
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 3 

simulated fields (e.g., Huijnen et al., 2010; Parrish et al., 2014; Stevenson et al., 2006, 2013; 1 

Young et al., 2013). However, information obtained from individual measurements is limited, 2 

and evaluation of global ozone fields with a suite of satellite measurements and in situ 3 

measurements is challenging because of limited vertical sensitivity profiles that differ among 4 

measurements, different overpass times, and mismatches in spatial and temporal coverage 5 

between the instruments. First, surface measurements have a spatial representativeness that is 6 

much smaller than that of global models over polluted areas. Second, ozone climatology data 7 

sets have been established based on ozonesonde measurements for use in model evaluation 8 

(Logan et al., 1999; Considine et al., 2008). Tilmes et al. (2012) generated an ozone 9 

climatology using ozonesonde measurements obtained between 1995 and 2011, which mostly 10 

consists of the same station data described by Logan (1999) and Thompson et al (2003), but 11 

covering a longer time period. Using the compiled data of Tilmes et al. (2012), Young et al. 12 

(2013) conducted an intensive validation of tropospheric ozone from multiple model 13 

simulations in the Atmospheric Chemistry and Climate Model Inter-comparison Project 14 

(ACCMIP). However, the climatological data does not provide information on the temporal 15 

variability of the observed ozone. In addition, the current ozonesonde network does not cover 16 

the entire globe and is not homogeneously distributed between the hemispheres, ocean and 17 

land, and urban and rural areas, and its sampling interval is typically a week or longer. Model 18 

errors are also expected to vary greatly in time and space at various scales. Therefore, we 19 

consider that the spatial and temporal coverage of the ozonesonde network is insufficient to 20 

capture the temporally and spatially representative model bias. Third, satellite-retrieved 21 

measurements such as those from the Tropospheric Emission Spectrometer (TES) (Herman 22 

and Kulawik, 2013) and the Infrared Atmospheric Sounding Interferometer (IASI) (Clerbaux 23 

et al., 2009) have great potential for evaluating global ozone fields (e.g., Aghedo et al., 2011). 24 

However, information obtained from currently available satellite measurements are still 25 

limited. Their vertical sensitivity is not enough to resolve detailed vertical structures in the 26 

troposphere as appeared in current global models, and they measure at only a particular 27 

overpass time, thus the diurnal variation information is missing. Meanwhile, the 28 

characteristics of each measurement, such as observational error, vary with observational 29 

condition, but their influence is rarely taken into consideration in model evaluations. 30 

 31 
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Data assimilation is a technique for combining different observational data sets with a model, 1 

with consideration of the characteristics of individual measurements (e.g., Kalnay, 2003; 2 

Lahoz and Schneider, 2014). Advanced data assimilation allows the propagation of 3 

observational information in time and space and from a limited number of observed species to 4 

a wide range of chemical components, and provides global fields that are physically and 5 

chemically consistent and in agreement with individual observations (Sandu and Chai, 2011; 6 

Bocquet et al., 2015). Various studies have demonstrated the capability of data assimilation 7 

techniques in the analysis of chemical species in the troposphere and stratosphere (e.g. Stajner 8 

and Wargan, 2004; Jackson, 2007; Parrington et al., 2009; Kiesewetter et al., 2010; Flemming 9 

et al., 2011; Coman et al., 2012; Inness et al., 2013; Emili et al., 2014; Miyazaki et al., 2012a, 10 

2012b, 2013, 2014, 2015, 2016; van der A et al., 2015; Gaubert et al., 2016). 11 

 12 

Reanalysis is a systematic approach to creating a long-term data assimilation product. 13 

Meteorological reanalyses have been established at operational centers for many years and are 14 

widely used in climate and meteorological research (e.g., Hartmann et al., 2013). 15 

Tropospheric chemical reanalysis, however, is relatively new. Inness et al. (2013) performed 16 

an eight-year reanalysis of tropospheric chemistry for 2003--2010 using the integrated 17 

forecasting system with modules for atmospheric composition (C-IFS) with observations 18 

sensitive primarily to the upper troposphere, and highlighted the importance of estimating  19 

surface emissions. This chemical reanalysis is recently updated by Flemming et al. (2017). 20 

Miyazaki et al. (2015) simultaneously estimated concentrations and emissions for an eight-21 

year tropospheric chemistry reanalysis for 2005--2012 obtained from an assimilation of multi-22 

constituent satellite measurements, which had greater lower tropospheric sensitivity, using an 23 

ensemble Kalman filter (EnKF).  Chemical reanalysis using the EnKF has been used to 24 

provide comprehensive information on atmospheric composition variability and elucidate 25 

variations in precursor emissions and to evaluate bottom-up emission inventories (Miyazaki et 26 

al., 2014, 2015, 2016).  27 

 28 

In this study, we explore the new potential of chemical reanalysis for evaluation of 29 

tropospheric ozone profiles in multi-model chemistry climate simulations from ACCMIP 30 

(Lamarque et al., 2013). Model errors in precursors can also be evaluated using the reanalysis 31 

product, and this could help identify error sources in tropospheric ozone simulations. 32 
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However, because no other study has shown the potential of reanalysis ozone for model 1 

evaluation, this study focuses on tropospheric ozone only. ACCMIP models have been used 2 

to calculate historic and future radiative and chemically important species and their coupling 3 

with the broader climate system (Bowman et al., 2013; Lee et al., 2013; Naik et al., 2013; 4 

Stevenson et al., 2013; Shindell et al., 2013; Voulgarakis et al., 2013; Young et al., 2013). We 5 

characterize ACCMIP models in simulating global distributions and the seasonal variation of 6 

ozone from the lower troposphere to the lower stratosphere. We further discuss the limitation 7 

of the current ozonesonde network for evaluating temporally and spatially representative 8 

model errors. To the best of our knowledge, this is the first study to apply chemical reanalysis 9 

to the evaluation of global chemistry-climate models and consequently offers a similar 10 

potential as meteorological reanalysis for evaluation of climate models (Ana4MIPS, 11 

https://esgf.nccs.nasa.gov/projects/ana4mips/Background). 12 

 13 

\section{Methodology} 14 

 15 

\subsection{Chemical data assimilation system} 16 

 17 

The data assimilation system is constructed based on a global CTM MIROC-Chem 18 

(Watanabe et al. 2011) and an EnKF described in Miyazaki et al. (2016), which can be 19 

consulted for more detailed information. We use the two-hourly global chemical reanalysis 20 

data for the period 2005--2009 when tropospheric ozone fields are strongly constrained by 21 

TES tropospheric ozone measurements. The availability of TES measurements is strongly 22 

reduced after 2010, which led to a degradation of the reanalysis performance, as demonstrated 23 

by Miyazaki et al. (2015).  24 

 25 

A major update from the system used in Miyazaki et al. (2015) to the system used in this 26 

study is the replacement of forecast model from CHASER (Sudo et al., 2002) to MIROC-27 

Chem (Watanabe et al., 2011), which caused substantial changes in the a priori field and thus 28 

the data assimilation results of various species. Microwave Limb Sounder (MLS) retrievals 29 

have been updated from v3.3 in Miyazaki et al. (2015) to v4.2 in this study. In addition, we 30 

attempt to optimize the surface \chem{NO_x} emission diurnal variability using data 31 
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assimilation of multiple \chem{NO_2} satellite retrievals obtained at different overpass times 1 

in the updated system (Miyazaki et al., 2016). 2 

 3 

\subsubsection{Forecast model} 4 

 5 

The forecast model, MIROC-Chem (Watanabe et al., 2011), considers detailed 6 

photochemistry in the troposphere and stratosphere by simulating tracer transport, wet and dry 7 

deposition, and emissions, and calculates the concentrations of 92 chemical species and 262 8 

chemical reactions (58 photolytic, 183 kinetic, and 21 heterogeneous reactions). Its 9 

tropospheric chemistry considers the fundamental chemical cycle of \chem{O_x}-10 

\chem{NOx}-\chem{HO_x}-\chem{CH_4}-\chem{CO} along with oxidation of non-11 

methane volatile organic compounds (NMVOCs) to properly represent ozone chemistry in the 12 

troposphere. Its stratospheric chemistry simulates chlorine and bromine containing 13 

compounds, CFCs, HFCs, OCS, \chem{N_2O}, and the formation of polar stratospheric 14 

clouds (PSCs) and associated heterogeneous reactions on their surfaces. The radiative transfer 15 

scheme considers absorption within 37 bands, scattering by gases, aerosols, and clouds, and 16 

the effect of surface albedo. Detailed radiation calculations are used for photolysis calculation. 17 

Methane concentrations were scaled on the basis of present-day values with reference to the 18 

surface concentration. MIROC-Chem has a T42 horizontal resolution (2.8$^\circ$) with 32 19 

vertical levels from the surface to 4.4 hPa. The horizontal model resolution is comparable to 20 

the resolution of ACCMIP models (ranging from 1.24$^\circ$ to 5$^\circ$). It is coupled to 21 

the atmospheric general circulation model MIROC-AGCM version 4 (Watanabe et al., 2011). 22 

The simulated meteorological fields were nudged toward the six-hourly ERA-Interim (Dee et 23 

al., 2011) to reproduce past meteorological fields.  24 

 25 

The a priori values for surface emissions of \chem{NO_x} and \chem{CO} were obtained 26 

from bottom-up emission inventories. Anthropogenic \chem{NO_x} and \chem{CO} 27 

emissions were obtained from the Emission Database for Global Atmospheric Research 28 

(EDGAR) version 4.2 (EC-JRC, 2011). Emissions from biomass burning were based on the 29 

monthly Global Fire Emissions Database (GFED) version 3.1 (van der Werf et al., 2010). 30 

Emissions from soils were based on monthly mean Global Emissions Inventory Activity 31 

� 
�. 32 
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(GEIA) (Graedel et al., 1993). Lightning \chem{NO_x} (\chem{LNO_x}) sources in 1 

MIROC-Chem were calculated based on the relationship between lightning activity and cloud 2 

top height (Price and Rind, 1992) and using the convection scheme of MIROC-AGCM 3 

developed based on the scheme presented by Arakawa and Schubert (1974). For black 4 

carbon (BC) and organic carbon (OC) and other precursor gases, surface and aircraft 5 

emissions are specified from the emission scenarios for Greenhouse Gas and Air Pollution 6 

Interactions and Synergies (GAINS) model developed by International Institute for Applied 7 

System Analysis (IIASA) (Klimont et al., 2009; Akimoto et al., 2015). 8 

 9 

\subsubsection{Data assimilation method} 10 

 11 

Data assimilation used here is based upon on an EnKF approach (Hunt et al., 2007). The 12 

EnKF uses an ensemble forecast to estimate the background error covariance matrix and 13 

generates an analysis ensemble mean and covariance that satisfy the Kalman filter equations 14 

for linear models. In the forecast step, a background ensemble, $\vec{x}^b_i (i=1,...,k)$, is 15 

obtained from the evolution of an ensemble model forecast, where $\vec{x}$ represents the 16 

model variable, $b$ is the background state, and $k$ is the ensemble size (i.e., 32 in this 17 

study). The ensemble perturbations were introduced to all the state vector variables as 18 

described below. The background ensemble is then converted into the observation space, 19 

$\vec{y}^b_i=H(\vec{x}^b_i)$, using the observation operator $H$ which is composed of a 20 

spatial interpolation operator and an operator that converts the model fields into retrieval 21 

space, which can be derived from an a priori profile and an averaging kernel of individual 22 

measurements (e.g., Eskes and Boersam, 2003; Jones et al, 2003). Using the covariance 23 

matrices of observation and background error as estimated from ensemble model forecasts, 24 

the data assimilation determines the relative weights given to the observation and the 25 

background, and then transforms a background ensemble into an analysis ensemble, 26 

$\vec{x}^a_i (i=1,...,k)$. The new background error covariance is obtained from an ensemble 27 

forecast with the updated analysis ensemble.  28 

 29 

In the data assimilation analysis, a covariance localization is applied to neglect the covariance 30 

among unrelated or weakly related variables, which has the effect of removing the influence 31 
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of spurious correlations resulting from the limited ensemble size. The localization is also 1 

applied to avoid the influence of remote observations that may cause sampling errors. The 2 

state vector includes several emission sources (surface emissions of \chem{NO_x} and 3 

\chem{CO}, and \chem{LNO_x} sources) as well as the concentrations of 35 chemical 4 

species. The emission estimation is based on a state augmentation technique, in which the 5 

background error correlations determines the relationship between the concentrations and 6 

emissions of related species for each grid point. Because of the simultaneous assimilation of 7 

multiple-species data and because of the simultaneous optimization of the concentrations and 8 

emission fields, the global distribution of various species, including \chem{OH}, is modified 9 

considerably in our system. Miyazaki et al. (2015) demonstrated that the Northern/Southern 10 

Hemisphere \chem{OH} ratio became closer to an observational estimate of Patra et al (2014) 11 

due to the multiple-species assimilation. This propagates the observational information 12 

between various species and modulates the chemical lifetimes of many species (Miyazaki et 13 

al., 2012b; 2015; 2016). 14 

 15 

\subsubsection{Assimilated measurements} 16 

 17 

Assimilated observations were obtained from multiple satellite measurements (Table 1). 18 

Tropospheric \chem{NO_2} column retrievals used are the version-2 Dutch Ozone 19 

Monitoring Instrument (OMI) \chem{NO_2}  (DOMINO) data product (Boersma et al., 2011) 20 

and version 2.3 TM4NO2A data products for Scanning Imaging Absorption Spectrometer for 21 

Atmospheric Cartography (SCIAMACHY) and Global Ozone Monitoring Experiment-2 22 

(GOME-2) (Boersma et al., 2004) obtained through the TEMIS website (www.temis.nl). The 23 

TES ozone data and observation operators used are version 5 level 2 nadir data obtained from 24 

the global survey mode (Bowman et al, 2006; Herman and Kulawik, 2013). This data set 25 

consists of 16 daily orbits with a spatial resolution of 5--8 km along the orbit track. The MLS 26 

data used are the version 4.2 ozone and \chem{HNO_3} level 2 products (Livesey et al., 27 

2011). We used data for pressures of less than 215 hPa for ozone and 150 hPa for 28 

\chem{HNO_3}. The Measurement of Pollution in the Troposphere (MOPITT) CO data used 29 

are version 6 level 2 TIR products (Deeter et al., 2013). 30 

 31 
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\subsection{ACCMIP models} 1 

 2 

The Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) focuses on 3 

chemistry-climate interactions needed to compute the proper climate forcing for Climate 4 

Model Intercomparison Project (CMIP5) climate simulations (Taylor et al., 2012) as well as 5 

the impact of climate change on chemical species. The ACCMIP consists of a series of time 6 

slice experiments for the long-term changes in atmospheric composition between 1850 and 7 

2100, as described by Lamarque et al. (2013). The experimental design was based on decadal 8 

time-slice experiments driven by decadal mean sea surface temperatures (SST). This study 9 

uses the 2000 decade simulation results from 15 models (1. CESM-CAM, 2. CICERO-10 

OsloCTM2, 3. CMAM, 4. EMAC, 5. GEOSCCM, 6. GFDL-AM3, 7. GISS-E2-R, 8. GISS-11 

E2-TOMAS, 9. HadGEM2, 10. LMDzOR-INCA, 11. MIROC-CHEM, 12. MOCAGE, 13. 12 

NCAR-CAM3.5, 14. STOC-HadAM3, 15. UM-CAM). The number of years that the 13 

ACCMIP models simulated for the 2000 decadal simulation mostly varied between 4 and 12 14 

years for each model. Each model simulation was averaged over the simulated years. 15 

 16 

Meteorological fields were obtained from analyses in CICERO-OsloCTM2 and from climate 17 

model fields in MOCAGE. UM-CAM and STOC-HadAM3 simulated meteorological and 18 

chemical fields, but chemistry did not affect climate. In all other models, simulated chemical 19 

fields were used in the radiation calculations and hence provide a forcing effect on the general 20 

circulation of the atmosphere. Lamarque et al. (2013) indicated that most models overestimate 21 

global annual precipitation and have a cold bias in the lower troposphere. 22 

 23 

Different models vary greatly in complexity. The calculated chemical species vary from 16 to 24 

120 species. Photolysis rates are computed with offline or online methods, depending on the 25 

model. Many models include a full representation of stratospheric ozone chemistry and the 26 

heterogeneous chemistry of polar stratospheric clouds, but several models specify 27 

stratospheric ozone. Methane concentration is prescribed for the surface or over the whole 28 

atmosphere in many models. Ozone precursor emissions from anthropogenic and biomass 29 

burning sources were taken from those compiled by Lamarque et al. (2010). Natural emission 30 

sources such as isoprene emissions, and lightning and soil \chem{NO_x} sources were not 31 

� 
�, and the same emissions were used in all the models32 



 10 

specified and were accounted for differently between models. There is a large range in soil 1 

\chem{NO_x} emissions from 2.7 to 9.3 \unit{TgNyr^{-1}} and in \chem{LNO_x} sources 2 

from 1.2 to 9.7  \unit{TgNyr^{-1}} for the 2000 conditions. The range of natural emissions is 3 

a significant source of model-to-model ozone differences (Young et al. 2013). A complete 4 

description of the models along with the experiment design can be found in Lamarque et al. 5 

(2013). 6 

 7 

Both the ACCMIP models and chemical reanalysis are interpolated to at 2$^\circ 8 

\times$2.5$^\circ$ spatial resolution and 67 levels, following Bowman et al. (2013), and then 9 

compared each other. Spatial correlations are computed with consideration of weighting for 10 

the latitude.  11 

 12 

\subsection{Ozonesonde data} 13 

 14 

Ozonesonde observations were taken from the World Ozone and Ultraviolet Radiation Data 15 

Center (WOUDC) database (available at http://www.woudc.org). All available data from the 16 

WOUDC database are used for the evaluation of reanalysis data (Section 3), as listed in Table 17 

2. For the evaluation of ACCMIP models and ozonesonde sampling biases (Section 4 and 5), 18 

we use the ozonesonde sampling based on the compilation by Tilmes et al. (2012), which is 19 

shown in bold in Table 2. Because there is no observation after 2003 in Scoresbysund, this 20 

location has been removed from the compilation in this study. The accuracy of the 21 

ozonesonde measurement is about $\pm$5 \% in the troposphere (Smit and Kley, 1998). 22 

 23 

To compare ozonesonde measurements with the data assimilation and ACCMIP models, all 24 

ozonesonde profiles have been interpolated to a common vertical pressure grid, with a bin of 25 

25 hPa. The two-hourly reanalysis and forecast model (i.e., control run) fields were linearly 26 

interpolated to the time and location of each measurement, with a bin of 25 hPa, and then 27 

compared with the measurements. For the ACCMIP models, the monthly model outputs were 28 

compared with the measurements at the location of each measurement. The averaged profile 29 

is computed globally and for four latitudinal bands, SH extratropics (90--30{\degree}\,S), SH 30 
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tropics (30{\degree}\,S--Equator), NH tropics (Equator--30{\degree}\,N), and NH 1 

extratropics (30--90{\degree}\,N). 2 

 3 

\subsection{Ozonesonde sampling bias estimation} 4 

 5 

The current ozonesonde network does not cover the entire globe and is not homogeneously 6 

distributed between the hemispheres, ocean and land, and urban and rural areas. Also, the 7 

sampling interval of ozonesonde observations is typically a week or longer, which does not 8 

reflect the influence of diurnal and day-to-day variations. Model errors are also expected to 9 

vary greatly in time and space at various scales. Therefore, the implications of model 10 

differences at ozonesonde locations to regional and seasonal processes is uncertain. Thus, we 11 

evaluate how changes in evaluated model performance could be obtained by using the 12 

complete sampling chemical reanalysis fields instead of the existing ozonesonde network on 13 

simulated regional ozone fields.  14 

 15 

Sampling bias is an error in a computed quantity that arises due to unrepresentative (i.e., 16 

insufficient or inhomogeneous) sampling, which induces spurious features in the average 17 

estimates (e.g., Aghedo et al., 2011; Foelsche et al 2011; Toohey et al., 2013; Sofieva et al., 18 

2014) and long-term trends (Lin et al., 2016). Sampling bias may occur when the atmospheric 19 

state within the time-space domain over which the average is calculated is not uniformly 20 

sampled. In regions where variability is dominated by short-term variations, limited sampling 21 

may lead to a random sampling error. The primary technique for sampling bias estimation is 22 

to subsample model or reanalysis fields based on the sampling patterns of the measurements 23 

and then to quantify differences between the mean fields based on the measurement sampling 24 

and those derived from the complete fields. Sampling bias cannot be negligible, even for 25 

satellite measurements (Aghedo et al. 2011; Toohey et al., 2013; Sofieva et al., 2014). 26 

 27 

To estimate sampling biases of the ozonesonde network in the ACCMIP model evaluation, 28 

two evaluation results of mean model bias are compared using the chemical reanalysis. The 29 

first evaluation was conducted based on the complete sampling; the second evaluation used 30 

the ozonesonde sampling (in both space and time) that is based on the compilation by Tilmes 31 

� 
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et al. (2012). By using the two-hourly reanalysis fields, we can address possible biases due to 1 

the limited model sampling (i.e., monthly ACCMIP model outputs were used). Note that the 2 

relatively coarse horizontal resolution of the reanalysis may lead to an underestimation of the 3 

sampling bias in the model evaluation, because the variability of a sampled field depends on 4 

the resolution of the measurement. Tilmes et al. (2012) stated that regional aggregates of 5 

individual ozonesonde measurements with similar characteristics are more representative for 6 

larger regions; however, this may not mean that evaluation results using the compiled data 7 

generate model errors that are representative of actual monthly mean for a surrounding area.  8 

 9 

\section{Consistency between chemical reanalysis and ozonesonde observations}  10 

 11 

Miyazaki et al. (2015) validated an older version of the reanalysis 12 

(http://www.jamstec.go.jp/res/ress/kmiyazaki/reanalysis/) and showed good agreement with 13 

independent observations such as ozonesonde and aircraft measurements on regional and 14 

global scales and for both seasonal and year-to-year variations from the lower troposphere to 15 

the lower stratosphere for the 2005-2012 period. The mean bias against the ozonesonde 16 

measurements in the older dataset is -3.9 ppb at the NH high-latitudes (55--90{\degree}\,N), -17 

0.9 ppb at the NH mid-latitudes (15--55{\degree}\,N), 2.8 ppb in the tropics (15{\degree}\,S--18 

15{\degree}\,N), -1.0 ppb at the SH mid-latitudes (55--15{\degree}\,S), -1.7 ppb at the SH 19 

high-latitudes (90--55{\degree}\,S) between 850 and 500 hPa (Miyazaki et al., 2015). Since 20 

the updated reanalysis ozone fields used in this study have not yet been validated in any 21 

publication, we first present the evaluation results of the chemical reanalysis using global 22 

ozonesonde observations for 2005--2009. 23 

 24 

Figs 1 and 2 compare the reanalysis and the global ozonesonde observations, and the 25 

comparison result is summarized in Table 3. In order to confirm improvements in the 26 

reanalysis, results from a model simulation without any chemical data assimilation (i.e., a 27 

control run) is also shown. The control run shows systematic biases, such as positive biases in 28 

the upper troposphere and lower stratosphere (UTLS) throughout the globe and negative 29 

biases in the lower and middle troposphere in the extratropics of both hemispheres. The 30 

positive bias in the UTLS is larger in the Southern Hemisphere (SH) than in the Northern 31 
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of forecast model from CHASER (Sudo et al., 2002) to 34 
MIROC-Chem (Watanabe et al., 2011), which caused 35 
substantial changes in the a priori field and thus the data 36 
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Hemisphere (NH). The a priori systematic bias in this study is larger than that in our previous 1 

study (Miyazaki et al., 2015) in the UTLS, because of different model settings, such as the 2 

upper boundary conditions of \chem{NO_y}, \chem{Cl_y}, and \chem{Br_y}. However, the 3 

reanalysis fields were less sensitive to the a priori profiles in the UTLS than in the lower and 4 

middle troposphere because of strong constraints by MLS measurements and long chemical 5 

lifetime of ozone in the UTLS. 6 

 7 

The reanalysis shows improved agreements with the ozonesonde observations over the globe 8 

for most cases. The data assimilation removed most of the positive bias in the UTLS 9 

throughout the year and reduced the negative bias in the lower and middle troposphere in the 10 

extratropics. In the NH extratropics in the lower and middle troposphere, the data assimilation 11 

reduced the annual mean negative bias of the forecast model by 55 \%, which is attributed to 12 

the reduced bias in boreal spring--summer. The mean bias in the new reanalysis dataset is 13 

smaller than that in the older reanalysis dataset (Miyazaki et al., 2015) for most cases (e.g., 14 

from -3.9 to -2.9 ppb at the NH high-latitudes (55--90{\degree}\,N), -0.9 to -0.1 ppb at the 15 

NH mid-latitudes (15--55{\degree}\,N), -1.0 to -0.1 ppb at the SH mid-latitudes (55--16 

15{\degree}\,S) between 850 and 500 hPa). The mean bias in the new dataset is less than 0.9 17 

ppb at the tropics and mid-latitudes between 500 and 200 hPa (not shown). The simultaneous 18 

optimization of concentrations and emissions played important roles in improving the lower 19 

tropospheric ozone analysis, associated with the pronounced ozone production caused by 20 

\chem{NO_x} increases, as demonstrated by Miyazaki et al. (2015). This advantage increases 21 

the ability of the chemical reanalysis to evaluate the simulated tropospheric ozone profiles, 22 

including the lower tropospheric ozone concentrations. Root-Mean-Square-Errors (RMSEs) 23 

are also reduced above the middle troposphere, although the reduction rate is relatively small 24 

compared to the bias, probably due to representativeness errors between the ozonesonde 25 

measurements and data assimilation analysis. The tropospheric concentrations show distinct 26 

seasonal and year-to-year variations, for which the temporal correlation based on the monthly 27 

and regional mean concentrations is increased by the data assimilation globally, except at high 28 

latitudes in the lower troposphere (Table 3). The reanalysis can be extended to a longer-term 29 

validation that will provide more information on  seasonality and year-to-year variability. 30 

 31 

\section{Evaluation of ACCMIP models}  32 
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 1 

\subsection{Global distribution} 2 

 3 

We use the global chemical reanalysis to evaluate the global ozone profiles in ACCMIP 4 

simulations. Fig. 3 compares the global distribution of the annual mean ozone concentration 5 

between the five-year mean reanalysis and the ensemble mean of the ACCMIP models. The 6 

average over the multiple models can be expected to improve the robustness of the model 7 

simulation results, because some parts of the model errors may cancel each other out. As 8 

summarized in Table 4, the global spatial distributions are similar between the five-year mean 9 

reanalysis field and the ensemble mean when estimated at 2$^\circ \times$2.5$^\circ$ spatial 10 

resolution, with a spatial correlation (r) greater than 0.94 from the lower troposphere to the 11 

lower stratosphere, except for the NH extratropical middle troposphere (r=0.57). The 12 

reanalysis and multi-model mean commonly reveal distinct inter-hemispheric differences, 13 

associated with a stronger downwelling across the tropopause and stronger emission sources 14 

of ozone precursors in the NH. The wave-1 pattern in the zonal ozone distribution in the 15 

tropics, with a minimum over the Pacific Ocean and maximum over the Atlantic (Thompson 16 

et al., 2003; Bowman et al, 2009; Ziemke et al., 2011), can also be commonly found in the 17 

reanalysis and the multi-model mean and was also suggested by Young et al. (2013). 18 

 19 

Large errors between the reanalysis and the multi-model mean in the troposphere are found in 20 

the NH extratropics and SH tropics (right panel in Fig. 3). The multi-model mean 21 

overestimates the zonal and annual mean concentrations by 6--11 ppb at 800 hPa and by 2--9 22 

ppb at 500 hPa in the NH extratropics. The overestimation is larger over the oceans than over 23 

land at the NH mid-latitudes at 800 hPa. Both the mean RMSE and bias are larger at 800 hPa 24 

than at 500 hPa in the NH extratropics, whereas they are larger at 500 hPa in the NH tropics 25 

(Table 4). In the SH tropics, the multi-model mean underestimates the concentration over the 26 

eastern Pacific by up to 9 ppb, over the Atlantic by up to 18 ppb, and over the Indian Ocean 27 

by up to 8 ppb at 500 hPa. These negative biases are larger in the middle troposphere than in 28 

the lower troposphere for most places and also for the zonal means in the SH tropics (-15 \% 29 

in the middle troposphere and -10 \% in the lower troposphere) (Table 4). Young et al. (2013) 30 

consistently revealed the positive bias in the NH and negative bias in the SH using OMI/MLS 31 

tropospheric ozone column measurements. At 200 hPa, the multi-model mean underestimates 32 
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the zonal mean concentration by 20--30 ppb at high latitudes in both hemispheres, with a 1 

larger error in the SH than in the NH (Table 4). 2 

 3 

Fig. 4 shows the Taylor diagram of the ACCMIP models against the reanalysis for three 4 

latitudinal bands for three levels. The relevant statistics at 500 hPa are summarized in Table 5, 5 

for which the tropics is separated into two hemispheres. In the NH extratropics at 800 hPa, 6 

most models reproduced the spatial distribution (r = 0.8--0.95), while underestimating the 7 

spatial standard deviation (SD) by up to 50 \%. Three exceptional models (1, 7, 8) show 8 

relatively poor agreements (r = 0.45--0.6 and SD underestimations by 50--60 \%). At 500 hPa, 9 

there is a large diversity in the agreement. Only a few models (2, 4, 9, 11) show close 10 

agreement with the reanalysis (r > 0.8, SD error < 20 \%). Notably, two models (12, 15) 11 

reveal too large spatial variabilities (SD error > 80 \%), and five models (1, 6, 7, 8, 12) reveal 12 

small spatial correlation (r < 0.15). The regional mean bias is largely positive (> 10 ppb) in 13 

several models (7, 8, 12) (Table 5). In the NH extratropics in the lower and middle 14 

troposphere, ozone distributions are modified by various processes, including vertical 15 

transport by convection and along conveyor belts, inflow from the stratosphere, long-range 16 

transports, and photochemical production (e.g, Lelieveld and Dentine, 2000; Oltmants et al., 17 

2006; Sudo and Akimoto, 2007; Jonson et al., 2010). The evaluation results indicate that these 18 

processes occur differently among models. At 200 hPa, all the models  simulate well the 19 

spatial distribution (r > 0.95), whereas the spatial variability differs between the models (SD 20 

error ranges from -50 \% to +30 \%). There is relatively large variation in the stratospheric 21 

concentration, which results in the diversity in the UTLS, as also discussed by Young et al. 22 

(2013). 23 

 24 

In the tropics, the spatial correlation is greater than 0.8 at all levels for most models (except 25 

for 12, 15), as they capture the wave-1 structure. When dividing the tropics into two 26 

hemispheres (Table 5), only a few models (4, 12) reveal low spatial correlation (r < 0.8) for 27 

the SH tropics (30$^\circ$S--EQ) at 500 hPa. The spatial correlation in the tropics is lower at 28 

500 hPa than at 800 hPa for most models. The SD error is less than 40 \% for all the models at 29 

800 and 500 hPa, while mostly overestimating the spatial variability at 800 hPa by up to 30 30 

\%. The mean bias is negative for most models at 500 hPa in the tropics in both hemispheres, 31 

with larger negative biases in the SH tropics (Table 5). Young et al (2013) noted that 32 
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correlations between the biases for the NH and SH tropical tropospheric columns are strong. 1 

Similarly, our analysis using the reanalysis reveal a high correlation (0.91) between the NH 2 

and SH tropical biases at 500 hPa, suggests that similar processes are producing the model 3 

biases in the tropical middle troposphere between the hemispheres. For instance, biomass 4 

burning emissions are handled differently across the models, which may lead to differences in 5 

ozone simulations in the tropics (Anderson et al., 2016). At 200 hPa in the tropics, the SD 6 

error differs among models, which could primarily be associated with the different 7 

representations of convective transports and ozone production by \chem{LNO_x} sources 8 

(e.g., Lelieveld and Crutzen, 2007; Wu et al., 2007). 9 

 10 

In the SH extratropics at 800 hPa, most models reproduce the spatial distribution (r > 0.9), 11 

while underestimating the SD by 15--70 \%, except for model 15. The model performance is 12 

similar between 800 hPa and 500 hPa, with a smaller SD error at 500 hPa for most models. 13 

These high spatial correlations may be related to a lack of local precursor emissions in the SH. 14 

At 500 hPa, a majority of the models underestimate the mean concentration (Table 5), with 15 

large negative biases (< -8 ppb) in several models (1, 2, 12, 14). At 200 hPa, the SD error 16 

varies from -80 \% to + 65 \%. The large diversity at 200 hPa may be related to the different 17 

representation of the tropopause and stratosphere--troposphere exchange (STE) among 18 

models.  19 

\subsection{Seasonal variation} 20 

 21 

Fig. 5 compares the seasonal variation of zonal mean ozone concentration between the 22 

ACCMIP models, the reanalysis, and ozonesonde observations. The comparison between the 23 

reanalysis concentrations sampled at ozonesonde sites/time (black dashed line) and the 24 

ozonesonde observations (blue solid line) shows that the reanalysis is in close agreement with 25 

the ozonesonde observations over the globe, as described in Sec. 3. However, in the NH 26 

extratropics at 800 hPa, the reanalysis concentration is too low from boreal spring to summer 27 

by up to 4 ppb, which leads to an underestimation of the seasonal amplitude (as estimated 28 

from the difference between maximum and minimum monthly mean concentrations). In the 29 

NH tropics at 500 hPa, the reanalysis overestimates the concentration except in April. In the 30 

SH tropics at 500 and 800 hPa, the reanalysis slightly overestimates the concentrations 31 

throughout the year by up to 5 ppb. In the SH extratropics at 800 hPa, the reanalysis 32 
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concentration is too low by up to 5 ppb from austral autumn to winter. The reanalysis 1 

concentration and seasonal variation differs largely between the complete sampling (black 2 

bold line, where the concentrations were averaged over all grid points) and the ozonesonde 3 

sampling (black dashed line) for the globe. The impact of using the reanalysis instead of the 4 

ozonesonde network in characterizing the ozone seasonal variation is discussed in Section 5. 5 

 6 

The global ozone concentrations averaged over all grid points with area weights are compared 7 

between the ACCMIP models and the reanalysis (black solid line vs. red solid line for the 8 

multi-model mean and thin colored lines for individual models). There is considerable 9 

interannual variability in both the reanalysis and the ACCMIP models. We confirmed that the 10 

ACCMIP ensemble mean is mostly within the standard deviation (i.e., year-to-year variation) 11 

of the reanalysis (not shown). In the NH extratropics, the multi-model mean overestimates the 12 

monthly mean concentrations by 6--9 ppb at 800 hPa and by 3--6.5 ppb at 500 hPa. The 13 

multi-model mean reproduces the seasonal variation, whereas there is large diversity among 14 

the models. The increase from winter to spring differs among models at 500 hPa, which is 15 

probably associated with different representations of downwelling from the stratosphere. Fig. 16 

6 compares the seasonal amplitude. Most models overestimate the seasonal amplitude in the 17 

NH lower and middle troposphere, with a mean overestimation of 50--70 \% at 800 hPa and 18 

25--40 \% at 500 hPa at NH high latitudes.  At 200 hPa, the multi-model annual mean 19 

concentration is in good agreement with that of the reanalysis, whereas the seasonal amplitude 20 

is underestimated by most models at NH high latitudes, with a mean underestimation of 15--21 

25 \%. 22 

 23 

In the NH tropics at 500 hPa, the multi-model mean underestimates the concentration by 1--4 24 

ppb throughout the year, which can be attributed to the anomalously low concentrations in 25 

several models. There is a large diversity among the models in this region. In the SH 26 

subtropics, the multi-model mean is lower by up to 5 ppb at 800 hPa and by up to 11 ppb at 27 

500 hPa, with the largest errors occurring in austral spring. A majority of models overestimate 28 

the seasonal amplitude in the NH subtropics at 800 hPa (by about 10--40 \%), whereas they 29 

mostly underestimate the amplitude in the SH tropics at 800 and 500 hPa. In the tropical 30 

upper troposphere in both hemispheres, a few models reveal anomalously high or low 31 

concentrations. Both the ozonesondes and reanalysis reveal a sharp increase in ozone between 32 
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March and April in the NH subtropics, which is not captured in the multi-model mean, as 1 

suggested by Young et al. (2013).  2 

 3 

In the SH extratropics, the multi-model mean and the reanalysis are in good agreement at 800 4 

hPa, whereas it largely underestimates the peak concentration in austral winter--spring at 500 5 

hPa (by up to 7 ppb) and 200 hPa (by up to 35 ppb). The large diversity among the models 6 

and the large underestimation in the multi-model mean at 500 hPa in spring could be 7 

attributed to the differing influence of stratospheric air. The seasonal amplitude is 8 

overestimated at 800 and 200 hPa by most models at SH high-latitudes. 9 

 10 

\subsection{Inter-hemispheric gradient} 11 

 12 

Fig. 7 compares the inter-hemispheric gradient (NH/SH ratio) of the annual mean ozone 13 

concentration. We calculated the gradient of area-weighted ozone concentrations across the 14 

equator; however, recognize a more careful definition of the boundary between two 15 

hemispheres would be required to isolate air masses originated from each hemisphere (e.g., 16 

Hamilton et al., 2008). For the estimation of the gradient using the ozonesonde observations, 17 

we made a gridded dataset from the ozonesonde observations based on the completion by 18 

Tilmes et al (2012) at 2$^\circ \times$2.5$^\circ$ spatial resolution, and then calculated area-19 

weighted hemispheric mean concentrations using the gridded dataset. The gradient is similar 20 

between the ozonesonde observations (blue solid line) and the reanalysis concentration from 21 

the ozonesonde sampling (black dashed line) throughout the troposphere. In these estimates, 22 

the NH mean concentration is higher than the SH mean by 60--70 \% in the lower troposphere, 23 

by 30--40 \% in the middle troposphere, and by 55--60 \% around 200 hPa. Near the surface, 24 

the reanalysis slightly overestimates the NH/SH ratio, mainly because of overestimated 25 

concentrations at the NH mid-latitudes.   26 

 27 

By taking a complete sampling in the reanalysis (i.e., averaging over all model grid points for 28 

each hemisphere) (black solid line), the NH/SH ratio becomes smaller by about 25--30 \%, 7--29 

10 \%, and 15--25 \% in the lower troposphere, the middle troposphere, and around 200 hPa, 30 

respectively, compared to the average at the ozonesonde sampling sites (black dashed line). 31 
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The difference is a consequence of ozonesonde stations located near large cities at NH mid-1 

latitudes, and therefore tend to observe higher ozone concentration than the hemispheric 2 

average. At around 200 hPa, the difference could also be attributed to the presence of 3 

atmospheric stationary waves and Asian monsoon circulation in the NH, which result in 4 

substantial spatial ozone variations in the UTLS (e.g., Wirth, 1993; Park et al., 2008) (c.f., Fig. 5 

3). The annual mean NH/SH ratio based on the global reanalysis field estimated at the surface, 6 

800 hPa, 500 hPa, and 200 hPa are 1.36, 1.42, 1.30, and 1.35, respectively. 7 

 8 

Most models overestimate the NH/SH ratio compared with the reanalysis, with a mean 9 

overestimation (black solid line  vs. red solid line) of 34 \% at the surface and 22--30 \% in 10 

the free troposphere, attributing to both too-high concentrations in the NH extratropics and 11 

too-low concentrations in the SH subtropics in most models (c.f., Figs. 3 and 5). The multi-12 

model mean reveals annual mean NH/SH ratios of 1.71, 1.73, 1.54, and 1.49 at the surface, 13 

800 hPa, 500 hPa, and 200 hPa, respectively. The large systematic error in the NH/SH ratio 14 

suggests that, for instance, the inter-hemispheric distribution of radiative heating due to 15 

tropospheric ozone in chemistry--climate simulations are largely uncertain in most models, 16 

and such comprehensive information for different altitudes in the troposphere cannot be 17 

obtained using any individual measurements, as is further discussed in Section 6.3. 18 

 19 

\section{Impact of sampling on model evaluation} 20 

 21 

As presented in the previous section, the chemical reanalysis provides comprehensive 22 

information on global ozone distributions for the entire troposphere which is useful for 23 

validating global model performance. It was also demonstrated that the inter-hemispheric 24 

gradient of ozone measured with the ozonesonde and complete sampling method produced 25 

different results, and the model-reanalysis difference strongly depended on the choice of the 26 

sampling method. As these networks have been the primary basis for CCM evaluation (e.g., 27 

Stevenson et al., 2006; Huijnen et al., 2010; Young et al., 2013), the implications of this 28 

sampling bias need to be quantified.  29 
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This section evaluates how changes in evaluated model performance could be obtained by 1 

using the complete sampling chemical reanalysis fields instead of the existing ozonesonde 2 

network on simulated regional ozone fields.  3 

 4 

 5 

The model evaluation results are shown for the 11 regions illustrated in Fig. 8 and 6 

summarized in Table 6. Japan was excluded from the evaluation because data from only one 7 

station was available for the reanalysis period. The 11 areas surrounding the ozonesonde 8 

stations were considered for complete atmospheric sampling (rectangles in  Fig. 8), for which 9 

small margins were considered around the stations to prevent overestimation of the 10 

ozonesonde network limitation. It was confirmed that the discrepancy between the two 11 

evaluations generally increases with the size of the area. In contrast, for the SH mid- and high 12 

latitudes, the defined areas cover the entire range of longitudes, because of generally less 13 

variabilities in the SH than in the NH. Four latitude bands (90--30{\degree}\,S, 14 

30{\degree}\,S--Equator, Equator--30{\degree}\,N, 30--90{\degree}\,N) were also considered 15 

in the sampling bias evaluation. 16 

 17 

The reality of the reanalysis fields is important for reasonable estimates of the true sampling 18 

bias of the real atmosphere. As discussed in Section 3, there is good agreement in the 19 

evaluated model performance using the reanalysis and the ozonesonde measurements at the 20 

ozonesonde sampling, except for the lower troposphere. This result supports the use of the 21 

reanalysis data at the ozonesonde locations. The performance of the ACCMIP model as 22 

compared with the ozonesonde measurements is mostly consistent with that shown by Young 23 

et al. (2013), although the ozonesonde data periods differ -- 1997-2011 was used by Young et 24 

al (2013) and 2005-2009 was used in this study. 25 

 26 

Table 7 demonstrates the regional and seasonal mean differences of the reanalysis 27 

concentrations between the complete sampling and the ozonesonde sampling. The 28 

ozonesonde sampling results have higher concentrations (by about 3 \%) in the two NH polar 29 

regions for most cases, whereas the difference is smaller in NH polar west than in NH polar 30 

east. Among the NH mid-latitude regions, a large difference (about 14 \%) exists between the 31 

� 
�The current ozonesonde network does not cover the 32 
entire globe and is not homogeneously distributed between 33 
the hemispheres, ocean and land, and urban and rural areas. 34 
Also, the sampling interval of ozonesonde observations is 35 
typically a week or longer, which does not reflect the 36 
influence of diurnal and day-to-day variations. Model errors 37 
are also expected to vary greatly in time and space at various 38 
scales. Therefore, the implications of model differences at 39 
ozonesonde locations to regional and seasonal processes is 40 
uncertain.  41 
� 
�Sampling bias is an error in a computed quantity that 42 
arises due to unrepresentative (i.e., insufficient or 43 
inhomogeneous) sampling, which induces spurious features 44 
in the average estimates (e.g., Aghedo et al., 2011; Foelsche 45 
et al 2011; Toohey et al., 2013; Sofieva et al., 2014). 46 
Sampling bias may occur when the atmospheric state within 47 
the time-space domain over which the average is calculated 48 
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dominated by short-term variations, limited sampling may 50 
lead to a random sampling error. The primary technique for 51 
sampling bias estimation is to subsample model or reanalysis 52 
fields based on the sampling patterns of the measurements 53 
and then to quantify differences between the mean fields 54 
based on the measurement sampling and those derived from 55 
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to the limited model sampling (i.e., monthly model outputs 67 
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bias in the model evaluation, because the variability of a 70 
sampled field depends on the resolution of the measurement. 71 
Tilmes et al. (2012) stated that regional aggregates of 72 
individual ozonesonde measurements with similar 73 
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� 
�378 
� 
�SH79 

� 
�west80 
� 
� from March--May (MAM) to September--November 81 
(SON)82 
� 
�east83 
� 
�west84 



 21 

two cases over the eastern United States in June--August (JJA), where the comparison using 1 

monthly reanalysis fields sampled at the ozonesonde locations (brackets in Table 7) suggests 2 

that the sampling bias is dominated by temporal variations. The tropical and subtropical 3 

regions exhibit large sampling biases, 4--12.3 \% over the NH subtropics, -3.2--5.0 \% over 4 

the Western Pacific and East Indian Ocean, 0--7.8 \% over the equatorial Americas, and -3.8--5 

7.5 \% over the Atlantic Ocean and Africa. In most of the tropical and subtropics regions, 6 

both the spatial and temporal sampling biases are important, because of large spatial and 7 

temporal variability of ozone and the sparse observation network. For the global tropics, the 8 

sampling bias reaches 13 \% in the NH (Eq--30{\degree}\,N) and 8 \% in the SH 9 

(30{\degree}\,S--Eq). Thus, the ozonesonde network has a major limitation when it comes to 10 

capturing ozone concentrations that are representative of seasonal and regional means for the 11 

entire tropical region. The sampling bias may not be negligible even in the SH (0.3--3.9 \% in 12 

the SH mid-latitudes and 0.8--4.2 \% in the SH high latitudes), and it is large (up to 13 \%) 13 

when estimations are done for a large area (90--30{\degree}\,S). The large sampling bias in 14 

90--30{\degree}\,S is primarily attributed to spatial variability. The impact of the sampling 15 

bias on the model evaluation is discussed in the following section. 16 

 17 

\subsection{Mean error and its distribution} 18 

 19 

The model evaluation results differ greatly for many regions between the complete sampling 20 

and the ozonesonde sampling, as shown by Fig. 9 and summarized in Table 8. The sampling 21 

bias is evaluated using the median of the multiple models to provide robust estimates of the 22 

model performance. For the NH Polar Regions, Tilmes et al. (2012) stated that separating the 23 

regions into eastern and western sectors reduces the variability in ozone within each region 24 

because long-range transports of pollution from low and mid-latitudes into high latitudes 25 

shows longitudinal variations in the NH (e.g., Stohl, 2006). Comparisons further suggest that, 26 

except for the UTLS in winter (December--February (DJF)), the evaluated model 27 

performance using the ozonesonde measurements are representative of the surrounding 28 

regional and seasonal mean model performance. For the two NH polar regions at 200 hPa in 29 

DJF, the validation based on the ozonesonde sampling reveals a large negative sampling bias 30 

in the model bias as compared with regional and monthly means. Large negative model biases 31 

against the ozonesonde observations have been reported by Young et al. (2013) for 250 hPa 32 
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(by about -13 \% for the NH polar west and -18 \% for the NH polar east for the annual mean 1 

concentration), whereas results from this study suggest that these errors based on the 2 

ozonesonde sampling (by -14 \% for the NH polar west and -18 \% for the NH polar east in 3 

DJF in our estimates) are larger than those from regional and seasonally representative model 4 

bias (by -3 \% and +5 \%, respectively). At 500 hPa, the ozonesonde network reveals a 5 

negative sampling bias for the NH polar east in DJF. Thus, the positive bias reported in 6 

Young et al. (2013) for the NH polar east at 500 hPa may be lower than regional and 7 

seasonally representative model biases. Our analysis using monthly reanalysis fields sampled 8 

at the ozonesonde locations (brackets in Table 8) suggests a greater impact of the spatial 9 

sampling bias than the temporal sampling bias for the NH polar east in DJF. The large 10 

discrepancy between the two estimates in the UTLS model performance can be attributed to 11 

the large variability of ozone distribution and associated model errors on a regional and 12 

seasonal scale. 13 

 14 

For Canada, large differences (>30 \%) exist in the two evaluations in the lower troposphere 15 

and for the UTLS in DJF and for the middle troposphere in March--May (MAM). The 16 

ozonesonde measurements reveal a large negative sampling bias in the model evaluation in 17 

DJF at 200 hPa (-4 \% in the complete sampling and -25 \% in the ozonesonde sampling), 18 

while they reveal a negative sampling bias (by about 50 \%) at 500 hPa in MAM. At 500 hPa 19 

over Canada, the relative importance of the spatial and temporal sampling biases varies with 20 

season: the spatial (temporal) sampling bias is dominant in DJF (JJA), whereas both of them 21 

are important in MAM. Similar differences between the two evaluations are found for 22 

Western Europe at 500 hPa and at 200 hPa in DJF. These results suggest that, for instance, the 23 

positive bias for Western Europe estimated by Young et al (2013) may be lower than regional 24 

and seasonally representative model bias, even for such a small area. The smaller discrepancy 25 

between the two estimates for Western Europe as compared for Canada for most cases could 26 

be associated with the better coverage of the ozonesonde measurements for Western Europe. 27 

Even for the small area of the eastern United States, the two validations differ largely in the 28 

UTLS (e.g., -9 \% in the ozonesonde sampling and +6 \% in the complete sampling at 200 hPa 29 

in MAM) and at 500 hPa in MAM, JJA, and September--November (SON). In the NH 30 

subtropics, the two evaluations disagree largely in the middle and upper troposphere in JJA 31 

and SON. 32 
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 1 

The tropical stations were separated into the three sub-regions: Western Pacific and East 2 

Indian Ocean, equatorial America, and the Atlantic Ocean and Africa. These regions reflect 3 

the different dominant tropical processes including biomass burning and lightning over the 4 

Atlantic and Africa. The large variability of tropical ozone and its associated model error, 5 

together with the sparse ozonesonde network in these regions, results in large discrepancies 6 

between the two evaluations in the tropical regions.  At 500 hPa, the ozonesonde 7 

measurements reveal a large (by 40--50 \%) negative sampling bias in MAM and a positive 8 

sampling bias in DJF over the Western Pacific and East Indian Ocean, whereas it shows a 9 

large negative sampling bias (by 110 \%) in MAM over the equatorial Americas. Over the 10 

Western Pacific and East Indian Ocean, the sampling bias is not reduced by using monthly 11 

mean reanalysis fields (sampled at the ozonesonde locations) in DJF and JJA. This suggests 12 

that ozone varies with time and space in a complex manner, and a dense (in both space and 13 

time) network would be required to capture the regional and seasonally representative model 14 

biases in this region. The probability distribution function (PDF) estimated using monthly 15 

mean reanalysis and model fields also differs largely between the two samplings (Fig. 10). 16 

Over the Western Pacific and East Indian Ocean in SON at 500 hPa, the multi-model mean 17 

shows a sharp peak around 54--58 ppb, in contrast to the broad distribution seen in the 18 

reanalysis with two peaks around 65 ppb and 35--45 ppb for the complete sampling (left 19 

bottom panel in Fig. 10). This information is useful to characterize model errors and for 20 

process-oriented model validation. On the other hand, the validation based on the ozonesonde 21 

sampling (left top panel) does not show any clear pattern and does not support model 22 

evaluation. Note that the influence of inter-annual variability was not considered in the 23 

analysis because the monthly climatological data were used by averaging over ten years for 24 

the models and five years for the reanalysis.  25 

 26 

Although the variability of ozone is generally smaller in the SH than in the NH because of 27 

smaller local precursor emissions, large sampling biases exist even at SH mid- and high-28 

latitudes due to the sparse ozonesonde network. In the SH mid latitudes, for example, the sign 29 

of the evaluated bias is opposite between the two cases at 200 hPa in DJF (-2.8 ppb in the 30 

complete sampling and +25.1 ppb in the ozonesonde sampling). In the SH high latitudes, 31 

evaluation results differ largely throughout the year in the middle troposphere. The temporal 32 
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sampling bias mostly dominates the difference in the SH high latitudes in MAM and JJA, 1 

whereas the spatial sampling bias is also important in the SH mid latitudes in DJF and MAM. 2 

Based on the complete sampling, the ozone PDF is broadly distributed with a peak around 38 3 

ppb at 500 hPa in SON at the SH high latitudes (right bottom panel in Fig. 10), while the 4 

multi-model mean underestimates high concentrations (>47 ppb) and shows a sharp peak of 5 

about 35 ppb. The PDF generated by the ozonesonde sampling does not provide a strong 6 

information on the distribution of the ozone (right top panel). These results highlight the 7 

advantage of using the reanalysis data for evaluating regional and seasonally representative 8 

model performance, and for characterizing these distributions. 9 

 10 

Table 8 also shows the model evaluation results for four latitudinal bands at 500 hPa. The 11 

observations used are shown in bold in Table 2. The differences between the two evaluations 12 

are small in the NH extratropics (30--90{\degree}\,N) in all seasons, because of the relatively 13 

large number of observations. There are large differences in the tropics of both hemispheres: 14 

the ozonesonde network reveals a large negative sampling bias in the model evaluation in the 15 

NH tropics (Eq--30{\degree}\,N) in SON (-9 \% in the complete sampling and -16 \% in the 16 

ozonesonde sampling) and in the SH tropics (30{\degree}\,S--Eq) in MAM (-14 \% and -21 17 

\%) and a large positive sampling bias in the NH tropics in JJA (-7 \% and -3 \%).  Large 18 

sampling biases (> 60 \%) also exist in the SH extratropics (90--30{\degree}\,S) in DJF and 19 

MAM due to the sparse ozonesonde network.  20 

 21 

Further, ozonesonde sampling bias is evaluated for the control run and reanalysis comparisons. 22 

As summarized in Table 9, at 500 hPa, there are large differences (> 30 \%) between the two 23 

evaluations in many regions, especially in the NH mid latitude regions in winter and in the 24 

tropics throughout the year, as also found in the ACCMIP models and reanalysis comparisons 25 

(Table 8). The analysis increments introduced by data assimilation vary with space and time, 26 

reflecting the changes in coverage and uncertainty of assimilated measurements as well as in 27 

model errors. Nevertheless, observational information was propagated globally and integrated 28 

with time through forecast steps during the data assimilation cycles. This is true for ozone 29 

because of its relatively long lifetime in the free troposphere. Therefore, the spatial 30 

distribution is well constrained by data assimilation, and we do not expect large variations in 31 

the reanalysis quality within each analysis region. 32 
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 1 

\subsection{Seasonal variation} 2 

 3 

The seasonal cycle of tropospheric ozone is determined by various factors such as local 4 

photochemical production and atmospheric transport (e.g., Monks, 2000). Carslaw (2005), 5 

Bloomer et al. (2010), and Parrish et al. (2013) found multi-decadal changes in the amplitude 6 

and phase of the seasonal cycle at NH mid-latitudes. It was suggested that these changes can 7 

be attributed to changes in atmospheric transport patterns combined with spatial and temporal 8 

changes in emissions. CTMs have been used to explore the causal mechanisms; however, they 9 

failed to simulate several important features of the observed seasonal cycles (e.g., Ziemke et 10 

al., 2006; Stevenson et al., 2006; Parrish et al. 2014; Young et al., 2013). Accurate validation 11 

of the seasonal cycle is thus important for evaluating general model performance.  12 

 13 

 14 

Table 10 compares the relative error in the seasonal amplitude obtained from the multi-mean 15 

model with that of the reanalysis for the complete and ozonesonde samplings. The evaluation 16 

based on the ozonesonde sampling results in a larger overestimation of the seasonal amplitude 17 

in the NH lower troposphere for most regions (+13.4--+63.4 \% in the sonde sampling and -18 

19.0--+40.2 \% in the complete sampling). The large discrepancies can be attributed to large 19 

spatial variability in the seasonal variations of ozone and its model errors within each defined 20 

region and also the existence of short-term variability that is not completely captured by the 21 

ozonesonde sampling. For the Eastern US and Western Europe at 800 hPa, the sign of the bias 22 

is opposite between the two estimates. In contrast, at 200 hPa in the NH, results between the 23 

two evaluations are similar, suggesting spatial homogeneity in the seasonal cycle and its 24 

model errors within each region in the NH. Because the seasonal variations differ among 25 

different regions, the seasonal amplitude estimated for the entire NH extratropics (30--26 

90{\degree}\,N) is largely different between the two estimates throughout the troposphere.  27 

 28 

In the tropics, the estimated errors of the seasonal amplitude largely differ between the two 29 

samplings throughout the troposphere, suggesting that information obtained from the sparse 30 

ozonesonde network cannot be applied to characterize regional model errors in the seasonal 31 
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cycle, even within the small defined area. The sampling bias in the seasonal amplitude 1 

estimated for the entire tropics is larger than 60 \% throughout the troposphere both in the NH 2 

(Eq--30{\degree}\,N) and SH (30{\degree}\,S--Eq). Because of the large spatial variability, 3 

detailed validations using the chemical reanalysis (e.g., for each grid point) would be helpful. 4 

Also, in the SH high latitudes, large disagreements in the seasonal amplitude exist at 800 and 5 

200 hPa. 6 

 7 

\section{Discussions} 8 

 9 

\subsection{Reanalysis uncertainty} 10 

 11 

Although the reanalysis dataset provides comprehensive information for global model 12 

evaluations, its performance still needs to be improved, especially for the lower troposphere, 13 

as also discussed by Miyazaki et al. (2015). Performance can be improved by ingesting more 14 

datasets including meteorological sounders such as IASI (Clerbaux et al., 2009), AIRS 15 

(Chahine et al., 2006), and CrIS (Glumb et al., 2002). Application of a bias correction 16 

procedure for multiple measurements, which is common in numerical weather prediction (e.g., 17 

Dee, 2005),  is needed to improve reanalysis accuracy. Recently developed retrievals with 18 

high sensitivity to the lower troposphere (e.g. Deeter et al., 2013; Fu et al., 2016) and the 19 

optimization of additional precursor emissions would be helpful to improve analysis of the 20 

lower troposphere. The relatively coarse resolution of the model could cause large differences 21 

between the simulated and observed concentrations at urban sites and may degrade the 22 

reanalysis. 23 

 24 

The statistical information obtained from the reanalysis and the multi-model simulations can 25 

be used to suggest further developments for the models and observations. The analysis 26 

ensemble spread from EnKF can be regarded as uncertainty information about the analysis 27 

mean fields, indicating requirements for additional observational constraints. As shown in Fig. 28 

11 (left panels), the relative reanalysis uncertainty is large over the tropical areas of the 29 

oceans at 800 hPa (>20 \%), over the Southern Ocean at 500 hPa (10--20 \%), and over the 30 

tropics of the Pacific Ocean and the Antarctic at 200 hPa (>16 \%). Conversely, the reanalysis 31 
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uncertainty is small from the tropics to mid-latitudes in both hemispheres at 500 hPa (<11 \%). 1 

Miyazaki et al (2015) investigated that the analysis spread is caused by errors in the model 2 

input data, model processes, and assimilated measurements, and it is reduced if the analysis 3 

converges to a true state. The analysis spread is smaller in the extratropical lower stratosphere 4 

than in the tropical upper troposphere at 200 hPa, because of the high accuracy of the MLS 5 

measurements. In contrast, in the middle troposphere, the analysis spread is generally smaller 6 

in the tropics than the extratropics because of the higher sensitivities in the TES retrievals. 7 

Note that the data assimilation setting influences the analysis uncertainty estimation in the 8 

reanalysis. In particular, the analysis spread was found to be sensitive to the choice of 9 

ensemble size (Miyazaki et al., 2012b). A large ensemble size is essential to capture the 10 

proper background error covariance structure (i.e., analysis uncertainty).  11 

 12 

The five-year reanalysis (2005--2009) may cause biases in the estimated model errors in the 13 

evaluation of the 2000 decade ACCMIP simulations that used decadal-averaged SST 14 

boundary conditions and biomass burning emissions averaged over 1997--2006 (Lamarque et 15 

al., 2010). It may neglect the influences of interannual and decadal changes in both 16 

anthropogenic and biomass emissions and meteorology. Longer-term reanalysis and time-17 

consistent validation are required to obtain more robust error estimations. 18 

 19 

\subsection{Model uncertainty} 20 

 21 

The variability across the ensemble models (i.e., ensemble spread) identifies where the 22 

models are most consistent or uncertain (center panels in Fig. 11). As discussed by Young et 23 

al. (2013), the relative spread among the ACCMIP models is large over the tropical areas of 24 

the oceans in the lower and middle troposphere, a reflection of the important differences 25 

among the models in various processes such as convective processes, lightning sources, 26 

biogenic emission sources with related chemistry. The large relative spread (>20\%) at the 27 

NH mid-latitudes and in the SH at 200 hPa may be associated with the different 28 

representations of the tropopause and STE among models. In contrast, the relative spread is 29 

small around 20--40$^\circ$N at 500 hPa (< 10 \%). The simultaneous enhancement of the 30 

analysis uncertainty (c.f., Section 6.1), together with the model spread, indicates low 31 
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robustness of the validation results for some tropical regions over the oceans in the lower 1 

troposphere, and over the tropics in the Pacific Ocean as well as the Antarctic at 200 hPa. On 2 

the other hand, the ACCMIP model standard deviation with respect to the reanalysis could be 3 

used to identify the averaged uncertainty of ACCMIP models (right panels in Fig. 11). The 4 

standard deviation is large at NH high latitudes and over the tropical ocean areas at 800 hPa, 5 

over the SH tropics at 500 hPa, and in the SH extratropics at 200 hPa (> 25 \%). 6 

 7 

\subsection{Implications into model improvements and climate studies} 8 

 9 

Numerous studies have identified decadal-scale changes in global tropospheric ozone using 10 

observations, such as the shift in the seasonal cycle at NH mid-latitudes and trends observed 11 

over many regions (e.g., Parrish et al., 2014; Cooper et al., 2014). A long-record of the 12 

reanalysis will allow detailed structures in simulated inter-annual and long-term variations to 13 

be evaluated in association with changes in human activities and natural processes. However, 14 

any discontinuities in the availability and coverage of the assimilated measurement will affect 15 

the quality of the reanalysis and estimated interannual variability, which limit the usability of 16 

a long term reanalysis for model evaluation, as discussed in Miyazaki et al (2015) for 17 

chemical reanalyses and in Thorne and Vose (2010) for climate reanalyses. This also requires 18 

a bias-correction procedure for each assimilated measurements, in order to improve the 19 

reanalysis quality (Inness et al, 2013). It is noted that the influence of ENSO was not 20 

considered in ACCMIP due to a decadal-averaged SST boundary condition, which limits the 21 

evaluation of inter-annual variations and could lead to bias in the ACCMIP models and 22 

reanalysis comparisons. 23 

 24 

Process-oriented validations using the reanalysis would be useful for understanding the 25 

uncertainty in simulated ozone fields and associated mechanisms. The ACCMIP models 26 

reveal large variations in short-lived species such as \chem{OH} and ozone precursors (Naik 27 

et al., 2013; Voulgarakis et al., 2013), whereas information obtained from direct in-situ 28 

measurements cannot be applied for investigating global distributions because of the limited 29 

coverage of the measurements and the large spatial variability of concentrations. Miyazaki et 30 

al. (2012b, 2015) demonstrated that the multiple-species assimilation results in a strong 31 
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influence on both assimilated and non-assimilated species. Validation of various species using 1 

the chemical reanalysis product can be used to identify potential sources of error in the 2 

simulated ozone fields. Meanwhile, the global monthly products of precursor emissions from 3 

the chemical reanalysis calculations (Miyazaki et al., 2012a, 2014, 2016) can be used to 4 

validate emission inventories and \chem{LNO_x} source parameterizations used in model 5 

simulations. As changes in tropospheric ozone burden associated with different future 6 

scenarios show a broadly linear relation to changes in \chem{NO_x} emissions (Stevenson et 7 

al., 2006), evaluations using up-to-date estimated emissions (Miyazaki et al., 2016) may 8 

prove useful to partly validate emissions for each scenario.  9 

 10 

The performance of the simulated radiative forcing is largely influenced by representation of 11 

ozone in model simulations (Bowman et al., 2013; Shindell et al., 2013; Stevenson et al., 12 

2013). Bowman et al (2013) suggested that overestimation of the OLR in the tropical seas of 13 

the east Atlantic Ocean and over Southern Africa is associated with model ozone errors, a 14 

persistent feature in all ACCMIP models, which was also found in this study using the 15 

reanalysis. Validation of short-lived species is also important for evaluating the radiative 16 

forcing because simulated \chem{OH} fields influence simulated climates through for 17 

instance their influences on methane (Voulgarakis et al., 2013). Thus, detailed information on 18 

model errors in ozone and other short-lived species could be used to improve estimates of 19 

radiative forcing in climate studies. Meanwhile, model biases for present-day ozone may be 20 

correlated with biases in other time periods. Young et al. (2013) showed that ACCMIP 21 

models with high, present day ozone burdens also had high burdens for the other periods of 22 

time, including the preindustrial period. Thus, the validation of present-day ozone fields using 23 

the reanalysis has the potential to evaluate preindustrial to present day ozone radiative forcing. 24 

 25 

\conclusions 26 

 27 

We conducted a eight-year tropospheric chemistry reanalysis by assimilating multiple 28 

chemical species from the OMI, MLS, TES, MOPITT, SCIAMACHY, and GOME-2 to 29 

provide a gridded, chemically consistent estimate of concentrations and precursor emissions. 30 

This study explores the potential of atmospheric chemical reanalysis to evaluate global 31 
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tropospheric ozone of multi-model chemistry-climate model simulations. The evaluation 1 

results are also used to quantify the ozonesonde network sampling bias. Validation of the 2 

chemical reanalysis using global ozonesondes shows good agreement throughout the free 3 

troposphere and lower stratosphere for both seasonal and year-to-year variations. 4 

 5 

The reanalysis product provides comprehensive and unique information on global ozone 6 

distributions for the entire troposphere and on the weakness of the individual models and 7 

multi-model mean.  We found that the ACCMIP multi-model mean overestimates ozone 8 

concentration in the NH extratropics throughout the troposphere (by 6--11 ppb and 800 hPa 9 

and by 2--9 ppb at 500 hPa for the zonal and annual mean concentration), and underestimates 10 

it in the SH tropics in the lower and middle troposphere by about 9 ppb over the eastern 11 

Pacific, by up to 18 ppb over the Atlantic, and by up to 8 ppb over the Indian Ocean. Most 12 

models underestimate the spatial variability of the annual mean concentration in the NH 13 

extratropics at 800 hPa (by up to 50 \%) and in the SH extratropics at 800 and 500 hPa (by up 14 

to 70 \%). The multi-model mean overestimates the seasonal amplitude in the NH by 50--70 15 

\% in the lower troposphere and by 25--40 \% in the middle troposphere, whereas the seasonal 16 

amplitude is underestimated by 15--25 \% at 200 hPa in the NH extratropics. The seasonal 17 

amplitude in the NH extratropics shows great diversity among models. The NH/SH ratio is 18 

overestimated by 22--30 \% in the free troposphere in the multi-model mean; this can be 19 

attributed to both a concentration high bias in the NH and a concentration low-bias in the SH 20 

in most models. The performance of the ACCMIP model when compared with the reanalysis 21 

is qualitatively similar for most cases from that shown by Young et al. (2013) using the 22 

ozonesonde measurements but quantitatively different because of the ozonesonde network 23 

sampling bias. 24 

 25 

We quantified the ozonesonde network sampling bias and how reanalysis can help extend the 26 

range of that network as a kind of "transfer standard". For instance, the ozonesonde sampling 27 

bias in the evaluated model bias is largely negative (positive) in MAM (in DJF) by 40--50 \% 28 

over the Western Pacific and East Indian Ocean and largely negative by 110 \% in MAM over 29 

the equatorial Americas at 500 hPa. For the global tropics, the ozonesonde sampling bias is 30 

largely negative by 80 \% in the NH (Eq--30{\degree}\,N) in SON and by 50 \% in the SH 31 

(30{\degree}\,S--Eq) in MAM. Although the spatial and temporal variability is generally 32 
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smaller in the SH than in the NH, the ozonesonde sampling bias cannot be negligible for 1 

capturing the regionally and monthly representative model errors even in the SH. Large 2 

sampling biases (> 60 \%) exist in the SH extratropics (90--30{\degree}\,S) in DJF and MAM 3 

The evaluation of the seasonal cycle of tropospheric ozone is also largely limited by the 4 

ozonesonde sampling bias. The evaluation based on the ozonesonde sampling introduces a 5 

larger overestimation of the seasonal amplitude than that based on the complete sampling for 6 

most of the surrounding areas in the NH lower troposphere, whereas the two estimates are 7 

largely different for the entire tropical regions. Therefore, there is an advantage of the 8 

reanalysis data for evaluating actual regionally and seasonally representative model 9 

performance required for model improvements. However, the network provides critical 10 

independent validation of the reanalysis, which can provide a much broader spatial constraint 11 

on chemistry-climate model performance.  12 

 13 

The proposed model validation approach provides regionally and temporally representative 14 

model performance; this could ensure more accurate predictions for the chemistry--climate 15 

system. In future studies, validation of multiple species concentrations and precursor 16 

emissions from reanalysis would be useful in identifying error sources in model simulations. 17 

In particular, the response of tropospheric composition to changing emissions over decadal 18 

time scales is still not captured in CCMs relative to a few remote sites (Parrish et al, 2014). 19 

Recent increases in emissions from China have been linked to changes in tropospheric ozone 20 

concentrations (Verstraeten et al, 2015). Over the next decade, a new constellation of of low 21 

Earth Orbiting  sounders, e.g., IASI, AIRS, CrIS, Sentinel-5p (TROPOMI), Sentinel-5 and 22 

geostationary satellites (Sentinel-4, GEMS, and TEMPO) will provide even more detailed 23 

knowledge of ozone and its precursors (Bowman, 2013).  Assimilating these datasets into a 24 

decadal chemical reanalysis will be a more direct means of quantifying the response of 25 

atmospheric composition to emissions at climate relevant time scales, which should be a more 26 

direct test on chemistry-climate change scenarios. Combining many observations requires a 27 

bias correction procedure for each assimilated measurement to improve the reanalysis quality 28 

but needs to be carefully checked. We also plan to apply the proposed evaluation approach to 29 

a more recent model inter-comparison project, the Chemistry-Climate Model Initiative 30 

(CCMI). 31 
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 9 

Table 1: Measurements used for data assimilation in the chemical reanalysis.  10 

 11 

Table 2: Ozonesonde observation sites used in this study. All the data are used for the 12 

evaluation of reanalysis data (Section 3), whereas selected observations (shown in bold) based 13 

on the compilation by Tilmes et al. (2012) are used for the evaluation of ACCMIP models and 14 

to investigate ozonesonde sampling biases (Section 4 and 5). 15 

 16 

Table 3: Chemical reanalysis (or control run in brackets) minus ozonesonde comparisons of 17 

mean ozone concentrations in 2005--2009. RMSE is the root-mean-square error. Units of bias 18 

and RMSE are ppb. T-Corr is the temporal correlation. 19 

 20 

Table 4: ACCMIP model mean minus reanalysis comparisons of the mean ozone 21 

concentrations. Units of bias and RMSE are ppb. S-Corr is the spatial correlation coefficient. 22 

 23 

Table 5: ACCMIP models minus reanalysis comparisons of the mean ozone concentrations at 24 

500 hPa. Units of bias are ppb. 25 

 26 

Table 6: Regions and observation sites used in model evaluation in Section 5. The 11 regions 27 

are defined following Tilmes et al. (2012). See also Fig. 8. 28 

 29 
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Table 7: The reanalysis ozone concentration differences between the ozonesonde sampling 1 

(for both time and space using two-hourly reanalysis fields) and the complete sampling at 500 2 

hPa (in \% relative to the complete sampling). Results using monthly reanalysis fields 3 

sampled at the ozonesonde locations are also shown in brackets. 4 

 5 

Table 8: Median of the ACCMIP models minus reanalysis at 500 hPa (in \% relative to the 6 

reanalysis concentrations). Results presented include the regional averages (Regional), for the 7 

ozonesonde temporal/spatial sampling using two-hourly reanalysis fields (Sonde), and for the 8 

ozonesonde spatial sampling using monthly reanalysis fields (in brackets). Relative 9 

differences between the two estimates larger than 30 \% are shown in bold. 10 

 11 

Table 9: The control run minus reanalysis comparison of the mean ozone concentration at 500 12 

hPa (in \% relative to the reanalysis concentrations). Results are the regional averages 13 

(Regional) and at the ozonesonde temporal/spatial sampling (Sonde). Relative differences 14 

between the two estimates larger than 30 \% are shown in bold. 15 

 16 

Table 10: ACCMIP multi-model mean minus reanalysis comparisons of the seasonal 17 

amplitude of regional mean ozone concentration (in \%) for the regional average (Regional) 18 

and at the ozonesonde sampling (Sonde). The seasonal amplitude is estimated as a difference 19 

between maximum and minimum monthly mean concentrations. 20 

 21 

Figure 1: Comparison of vertical ozone profiles from ozonesondes (black), control run (blue), 22 

and reanalysis (red) averaged for the period 2005--2009. Top row shows mean profile; middle 23 

and bottom rows show mean difference and RMSE between control run and observations 24 

(blue) and between the reanalysis and the observations (red). From left to right, results are 25 

shown for SH extratropics (30--90$^\circ$S), SH tropics (30$^\circ$S--Eq), NH tropics (Eq--26 

30$^\circ$N), and NH extratropics (30--90$^\circ$N). All ozonesonde observations taken 27 

from the WOUDC database were used in the comparison. 28 

 29 
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Figure 2: Time series of monthly mean ozone concentrations obtained from ozonesondes 1 

(black), control run (blue), and reanalysis (red) averaged between 850 and 500 hPa (top), 500 2 

and 200 hPa (middle), and 200 and 90 hPa (bottom) for 2005--2009. From left to right the 3 

results are shown for SH extratropics (30--90$^\circ$S), SH tropics (30$^\circ$S--Eq), NH 4 

tropics (Eq--30$^\circ$N), and NH extratropics (30--90$^\circ$N). 5 

 6 

Figure 3: Global distributions of annual mean ozone concentrations obtained from reanalysis 7 

(left), ACCMIP model mean (2nd left), difference between ACCMIP model mean and 8 

reanalysis (3rd left), and the ozonesonde measurements used for the evaluation of ACCMIP 9 

models and ozonesonde sampling biases (right). From top to bottom, results are shown for 10 

global distributions at 200 hPa, 500 hPa, and 800 hPa. Units are ppb. 11 

 12 

Figure 4: Taylor diagrams showing standard deviation normalized with respect to that of 13 

reanalysis (x-axis) and spatial correlation coefficient (y-axis) for the comparison of annual 14 

mean ozone concentrations between ACCMIP models and reanalysis for SH extratropics 15 

(90$^\circ$S--30$^\circ$S, left), tropics and subtropics (30$^\circ$S--30$^\circ$N, center), 16 

and NH extratropics (30$^\circ$N--90$^\circ$N, right) at 200 hPa (top), 500 hPa (middle), 17 

and 800 hPa (bottom). 18 

 19 

Figure 5: Comparison of seasonal variation of ozone concentration between the reanalysis 20 

(black lines), individual ACCMIP models (thin colored lines), ACCMIP ensemble mean (red 21 

solid line), and ozonesonde observations (blue solid line) averaged between 90$^\circ$S--22 

30$^\circ$S (1st column from left), 30$^\circ$S--Eq (2nd column), Eq--30$^\circ$N (3rd 23 

column), and 30$^\circ$N--90$^\circ$N (4th column). From top to bottom, results are shown 24 

for concentrations at 200 hPa, 500 hPa, and 800 hPa. Individual model results are shown by 25 

colored thin lines. The reanalysis result is shown for the average over all model grid points 26 

(black solid line) and over the ozonesonde sampling sites/time (black dashed line).  27 

Figure 6: Seasonal amplitude (peak-to-peak difference) estimated from the reanalysis (black 28 

solid line) and ACCMIP models (thin colored lines). The $\pm 1 \sigma$ deviation among 29 

ACCMIP models (i.e., model spread) is shown in pink. The seasonal amplitude derived from 30 

the multi-model mean fields (red solid line) and the multi-model mean of the seasonal 31 
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 35 

amplitude from each model (red dashed line) are also shown. From top to bottom, results are 1 

shown for 200 hPa, 500 hPa, and 800 hPa. 2 

 3 

Figure 7: Vertical profile of inter-hemispheric gradient of annual mean ozone concentrations 4 

estimated from the reanalysis (black lines), ACCMIP ensemble mean (red solid line), 5 

ACCMIP models (thin colored lines), and ozonesonde observations (blue solid line). The 6 

reanalysis result is shown for the average over all model grid points (black solid line) and 7 

over the ozonesonde samplings (black dashed line). The $\pm 1 \sigma$ deviation among the 8 

ACCMIP models is shown in pink. 9 

 10 

Figure 8: Regions and observation sites used in model evaluation. The 11 regions are defined 11 

following Tilmes et al. (2012). See also Table 3. 12 

 13 

Figure 9: Box plots of relative model--reanalysis difference for seasonal mean concentration 14 

for DJF (left) and MAM (right) at 200 hPa (top), 500 hPa (middle), and 800 hPa (bottom). 15 

Results are shown for ACCMIP model simulations for 11 regions (c.f., Table 3 and Fig. 8). 16 

Black box shows model minus reanalysis difference for regional mean concentration 17 

(averaged over all model grid points); red box shows model minus reanalysis at the 18 

ozonesonde samplings. 19 

 20 

Figure 10: Probability distribution functions (PDFs) of ozone concentration obtained from the 21 

ACCMIP multi-model mean (blue) and the reanalysis (red) at 500 hPa for W. Pacific/E. India 22 

in SON (left) and for the SH high latitudes in MAM (right). The plots are shown for all model 23 

and reanalysis grid point (bottom) and for the ozonesonde sampling (top) within each defined 24 

region. 25 

 26 

Figure 11: Global distributions of relative value (in \%) of reanalysis uncertainty (left), 27 

standard deviation among the ACCMIP models (center), and ACCMIP model standard 28 

deviation with respect to the reanalysis for the annual mean concentration (right). From top to 29 

bottom, results are shown for global distributions at 200 hPa, 500 hPa, and 800 hPa. 30 


