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Abstract 23 

A new method is proposed to distinguish clouds and other hydrometeors from noise 24 

in cloud radar observations. A noise reduction scheme that can reduce the noise 25 

distribution to a narrow range is proposed in our method in order to recognize more 26 

weak signal clouds. A spatial filter with central weighting, which is used in current 27 

cloud radar hydrometeor detection algorithms, is also involved in our method to 28 

examine radar return for significant levels of signals. “Square clouds” were constructed 29 

to test the two schemes. We applied our method to six months of cloud radar 30 

observations and compared the results with those obtained by applying the U.S. 31 

Department of Energy (DOE) Atmospheric Radiation Measurements (ARM) program 32 

operational algorithm. It was found that our method has significant advantages in 33 

recognizing clouds with weak signal and reducing the rates of both failed negative and 34 

false positive hydrometeor identifications in simulated clouds.  35 
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1. Introduction 36 

Clouds, which are composed of liquid water droplets, ice crystals or both, cover 37 

about two-thirds of the earth surface at any time [e.g., King et al., 2013]. By reflecting 38 

solar radiation back to the space (the albedo effect) and trapping thermal radiation 39 

emitted by the Earth surface and the lower troposphere (the greenhouse effect), clouds 40 

strongly modulate the radiative energy budget in the climate system [e.g., Fu et al., 41 

2002; Huang et al., 2007; Huang et al., 2006a; Huang et al., 2006b; Ramanathan et al., 42 

1989; Su et al., 2008]. Clouds are also a vital component of water cycle by connecting 43 

the water-vapor condensation and precipitation. Despite the importance of clouds in the 44 

climate system, they are difficult to represent in climate models [Williams and Webb, 45 

2009], which causes the largest uncertainty in the predictions of climate change by 46 

general circulation models (GCMs) [e.g., Randall, 2007; Stephens, 2005; Williams and 47 

Webb, 2009]. 48 

Cloud formation, evolution and distribution are governed by complex physical and 49 

dynamical processes on a wide range of scales from synoptic motions to turbulence 50 

[Bony et al., 2015]. Unfortunately, the processes that occur on smaller spatial scales 51 

than a GCM grid box cannot be resolved by current climate models, and the coupling 52 

between large scale fluctuations and cloud microphysical processes are not well 53 

understood [e.g., Huang et al., 2006b; Mace et al., 1998; Yan et al., 2015; Yuan et al., 54 

2006]. Moreover, the cloud horizontal inhomogeneity and vertical overlap are not 55 

resolved by GCMs [Barker, 2000; Barker and Fu, 2000; Fu et al., 2000a; Fu et al., 56 

2000b; Huang et al., 2005; Li et al., 2015]. To better understand cloud processes for 57 
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improving their parameterization in climate models and revealing their evolution in 58 

response to climate change, long-term continuous observations of cloud fields in terms 59 

of both macro- and micro-physical properties are essential [e.g., Ackerman and Stokes, 60 

2003; Sassen and Benson, 2001; Thorsen et al., 2011; Wang and Sassen, 2001]. 61 

Millimeter-wavelength Cloud Radars (MMCRs) can resolve cloud vertical structure 62 

for their occurrences and microphysical properties [e.g., Clothiaux et al., 1995; Kollias 63 

et al., 2007a; Mace et al., 2001]. The wavelengths of MMCRs are shorter than those of 64 

weather radars making them sensitivity to cloud droplets and ice crystals and can 65 

penetrate multiple cloud layers [e.g., Kollias et al., 2007a]. Because of their outstanding 66 

advantages for cloud research, millimeter-wavelength radars have been deployed on 67 

various research platforms including the first space-borne millimeter-wavelength Cloud 68 

Profiling Radar (CPR) onboard the CloudSat [Stephens et al., 2002]. Ground-based 69 

cloud radar are operated at the U.S. Department of Energy’s Atmospheric Radiation 70 

Program (ARM) observational sites (used to MMCRs, now are replaced with a new 71 

generation of Ka band Zenith Radar (KAZR)) [e.g., Ackerman and Stokes, 2003; 72 

Clothiaux et al., 2000; Clothiaux et al., 1999; Kollias et al., 2007b; Protat et al., 2011] 73 

and in Europe [Illingworth et al., 2007; Protat et al., 2009]. In July 2013, KAZR was 74 

deployed in China at the Semi-Arid Climate and Environment Observatory of Lanzhou 75 

University (SACOL) site (latitude: 35.946°N; longitude: 104.137°E; altitude: 1.97 km) 76 

[Huang et al., 2008]，providing an opportunity to observe and reveal the detailed 77 

structure of the mid-latitude clouds over East Asia semi-arid regions. 78 

Before characterizing the cloud physical properties from the cloud radar return signal, 79 
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we first need to distinguish and extract the hydrometeor signals from the background 80 

noise (i.e. cloud mask). A classical cloud mask method was developed in Clothiaux et 81 

al.[2000; 1995] by analyzing the strength and significance of returned signals. This 82 

method consists of two main steps. First any power in a range gate that is greater than 83 

a mean value of noise plus one standard deviation is selected as a bin containing 84 

potential hydrometer signal. Second, a spatial-time coherent filter is created to estimate 85 

the significance level of the potential hydrometer bin signal to be real. This cloud mask 86 

algorithm is operationally used for the ARM MMCRs data analysis and was later 87 

adopted to the CPR onboard the CloudSat [Marchand et al., 2008].  88 

It is recognized that by visually examining a cloud radar return image, one can easily 89 

tell where the return power is likely to be caused by hydrometeors and where the power 90 

is just from noise. This ability of human eye on extracting and analyzing information 91 

from an image has been broadly studied in image processing and computer vision, and 92 

a number of mathematical methods for acquiring and processing information from 93 

images have been developed, including some novel algorithms for noise reduction and 94 

edge detection [Canny, 1986; He et al., 2013; Marr and Hildreth, 1980; Perona and 95 

Malik, 1990]. In this paper we develop a new cloud mask method for cloud radar by 96 

noticing that removing noise from signal and identifying cloud boundaries are the 97 

essential goals of cloud mask. This method reduces the radar noise while preserving 98 

cloud edges by employing the bilateral filtering that is widely used in the image 99 

processing [Tomasi and Manduchi, 1998]. The power weighting probability method 100 

proposed by Marchand et al.[2008] is also adopted in our method to prevent the cloud 101 
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corners from being removed. It is found that our improved hydrometeor detection 102 

algorithm is more efficient in terms of reducing false positives and negatives as well as 103 

identifying cloud features with weak signals such as thin cirrus clouds. 104 

The KAZR deployed at the SACOL is described in section 2 and the new cloud mask 105 

algorithm is introduced in section 3. The applications of the new scheme to both 106 

hypothetical and observed cloud fields including a comparison with previous schemes 107 

are shown in section 4. Summary and conclusions are given in section 5. 108 

2. The KAZR Radar 109 

The SACOL KAZR, built by ProSensing Inc. of Amherst, MA, is a zenith-pointing 110 

cloud radar operating at approximately 35 GHz for the dual-polarization measurements 111 

of Doppler spectra. The main purpose of the KAZR is to provide vertical profiles of 112 

clouds by measuring the first three Doppler moments: reflectivity, radial Doppler 113 

velocity, and spectra width. The linear depolarization ratio [Marr and Hildreth, 1980] 114 

can be computed from the ratio of cross-polarized reflectivity to co-polarized 115 

reflectivity.  116 

The SACOL KAZR has a transmitter with a peak power of 2.2 kw and two modes 117 

working at separate frequencies. One is called “chirp” mode that uses a linear-FM 118 

(frequency modulation) pulse compression to achieve high radar sensitivity of about -119 

65 dBZ at 5 km altitude. The minimum altitude (or range) that can be detected in chirp 120 

mode is approximately 1 km AGL. To view clouds below 1 km, a short pulse or “burst 121 

mode” pulse is transmitted at a separate frequency just after transmission of the chirp 122 

pulse. This burst mode pulse allows clouds as low as 200 m to be measured. The chirp 123 
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pulse is transmitted at 34.890 GHz while the burst pulse is transmitted at 34.830 GHz. 124 

These two waveforms are separated in the receiver and processed separately.   125 

The pulse length is approximately 300 ns (giving a range resolution of 45 m), while 126 

the digital receiver samples the return signal every 30 m. The interpulse period is 208.8 127 

μs, the number of coherent averages is 1, and the number of the fast Fourier transform 128 

(FFT) points is currently set to 512. An unambiguous range is thus 31.29 km, an 129 

unambiguous velocity is 10.29 m/s, and a velocity resolution of is 0.04m/s. The signal 130 

dwell time is 4.27s. These operational parameters are set for the purpose of having 131 

enough radar sensitivity and accurately acquiring reflectivities of hydrometeors. In this 132 

study, we mainly use radar observed reflectivity (dBZ) data to test our new hydrometeor 133 

detection method. 134 

3. Hydrometeor detection algorithm 135 

The basic assumption in the former cloud mask algorithms [Clothiaux et al., 1995; 136 

Marchand et al., 2008] is that the random noise power follows the normal distribution. 137 

In this study, several clear sky cases in all seasons from the KAZR observations were 138 

firstly selected to analyze its background noise power distributions (Fig.1). As 139 

demonstrated in Fig.1a for a clear-sky case during 0000 to 1200 UTC on January 21st, 140 

2014, the noise power estimated from the top 30 range gates, which includes both 141 

internal and external sources[Fukao and Hamazu, 2014], has an apparent non-Gaussian 142 

distribution with a positive skewness of 1.40. The signal-to-noise ratio (SNR) is defined 143 

as:	  144 

SNR ൌ 10log	ሺ௉ೞ
௉೙
ሻ         (1) 145 
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where Ps is the power received at each range gate in a profile, Pn is the mean noise 146 

power that is estimated by averaging the return power in the top 30 range gates which 147 

are between 16.8 and 17.7 km AGL. Since this layer is well above the tropopause, few 148 

atmospheric hydrometeors existing in this layer can scatter enough power back to 149 

achieve the radar sensitivity. Figure 1a shows that the SNRs for clear skies closely 150 

follow a Gaussian distribution. Instead of using radar received power, the SNR is used 151 

to estimate the background noise level and taken as the input to the cloud mask 152 

procedure since the SNR satisfies the assumption of a normally distributed noise and in 153 

our method the chance for the central range gate to be a noise or a potential signal relies 154 

on calculating the probability for a given range of SNR values based on the Gaussian 155 

distribution. Note that the mean value of the SNR for the noise power is not zero, but a 156 

small negative value of about -0.3. This is because the mean of the noise power is larger 157 

than its the median due to its positive skewed distribution. It is further noted that the 158 

distribution of SNR and its mean for the top 30 range gates are the same as those from 159 

the lower atmosphere.  160 

 The SNR value is treated as the brightness of a pixel in an image fሺx, yሻ in our 161 

hydrometeor detection method. In an image processing, the random noise can be 162 

smoothed out by using a low pass filter, which gives a new value for a pixel of an image 163 

by averaging with neighboring pixels [Tomasi and Manduchi, 1998]. The cloud signals 164 

are highly correlated in both space and time and have more similar values in near pixels 165 

while the random noise values are not correlated. Therefore, as illustrated in Fig. 2a, 166 

this low pass filter can efficiently reduce the original radar noise represented by the 167 
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green line to a narrow bandwidth (blue line) while keeping the signal preserved. By 168 

reducing the standard deviations of noise, which shrinks the overlap region of signal 169 

and noise and enhances their contrast, the weak signals (yellow area) that cannot be 170 

detected based on original noise level may become distinguished.  171 

Based on this idea, we develop a non-iterative hydrometeor detection algorithm by 172 

applying a noise reduction and a central pixel weighting schemes. Figure 3 shows the 173 

schematic flow diagram of our method. The input SNR data set is first separated into 174 

two groups. One group with values greater than the mean background noise SNR (So) 175 

plus three times of its standard deviation (ߪ௢) are considered as the cloud features that 176 

can be confidently identified. Another group with values between ܵ௢ and ܵ௢ ൅  ௢ 177ߪ3

may potentially contain moderate (ܵ௢ ൅ ௢ߪ ൏ ܴܵܰ ൑ ܵ௢ ൅ ௢) to weak (ܵ௢ߪ3 ൏ ܴܵܰ ൑178 

ܵ௢ ൅  ௢) cloud signals, which will further go through a noise reduction process. Here 179ߪ

ܵ௢ and ߪ௢ are estimated from the top 30 range gates of each five successive profiles.  180 

    The noise reduction process is mainly performed by convolving radar SNR time-181 

height data with a low pass filter. The Gaussian Filter, which outputs a `weighted 182 

average' of each pixel and its neighborhood with the average weighted more towards 183 

the value of the central pixel (ݒ଴), is one of the most common functions of the noise 184 

reduction filter. A 2-D Gaussian distribution kernel, shown in Fig. 2b1, can be expressed 185 

as: 186 

Gሺ݅, ݆ሻ ൌ ଵ

ଶ஠஢మ
exp	ሺെ ௜మା௝మ

ଶ஢మ
ሻ       (2) 187 

where i and j are the indexes in a filter window which are 0 for the central pixel, and σ 188 

is standard deviation of the Gaussian distribution for the window size of the kernel. 189 
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Equation (2) is used in our study to filter the radar SNR image. Note that the 190 

convolution kernel is truncated at about three standard deviations away from the mean 191 

in order to accurately represent the Gaussian distribution. Figure 1b are the cumulative 192 

distribution functions (CDFs) of clear sky SNR by convolving the same data in Fig. 1a 193 

with four filters that have different kernel sizes (3ൈ 3, 5ൈ 5, 7ൈ 7 and 9ൈ 9 pixels) 194 

corresponding to the σ ranging from 0.5 to 2. The original SNR values are distributed 195 

from about -5 to 5. After convolving the image with the Gaussian filter, the SNR 196 

distribution can be constrained to a much narrower range. It is clear that the filter with 197 

a larger kernel size is more effective in suppressing the noise. Shown in Fig. 1c are 198 

results for a cloudy case on January 4th,2014 by applying the filter to the range gates 199 

inside the cloud but adjacent to the boundary, showing that a larger kernel size shifts 200 

the SNR farther away from the noise region. It therefore appears that increasing the 201 

standard deviation (i.e. the window size) continues reducing the noise and increasing 202 

the contrast between signal and noise more effectively. On the other hand, a larger 203 

kernel can also attenuate or blur the high frequency components of an image (e.g., the 204 

boundary of clouds) more at the same time. As shown in Fig. 1d, when the window size 205 

is increased from 3ൈ3 (σ=0.5) to 9ൈ9 (σ=2), the SNR distribution of the range gates 206 

that are outside the cloud but adjacent to the boundary gradually move toward larges 207 

values. This will consequently raise the risk of misidentifying cloud boundaries. To 208 

solve this problem, a bilateral filtering idea proposed by Tomasi and Manduchi [1998] 209 

is adopted here. Considering a sharp edge between cloudy and clear region as shown in 210 

Fig. 2b2, we define a δሺ݅, ݆ሻ function that when the central pixel is on the cloudy or 211 
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clear side, gives a weighting of 1 to the similar neighboring pixels (i.e. on the same 212 

side), and 0 to the other side. After combining this δ function to the Gaussian kernel 213 

in Fig. 2b1, we can get a new non-linear function called bilateral kernel as shown in Fig. 214 

2b3. It can be written as: 215 

Bሺ݅, ݆ሻ ൌ ଵ

ଶ஠஢మ
exp	ሺെ ௜మା௝మ

ଶ஢మ
ሻ ∙ δሺ݅, ݆ሻ.       (3) 216 

Thus the bilateral kernel will reduce averaging noises with signals, and vice versa. The 217 

noise-reduced image	 hሺx, yሻ is produced by convolving the bilateral kernel with the 218 

input image ݂ሺx, yሻ as:  219 

hሺݔ, ሻݕ ൌ kିଵሺݔ, ∑ሻݕ ∑ ݂ሺݔ ൅ ݅, ݕ ൅ ݆ሻ ∙ ,ሺ݅ܤ ݆ሻ௜ୀ௪
௜ୀି௪

௝ୀ௪
௝ୀି௪    (4) 220 

where ±w is the bounds of the finite filter window, kିଵሺݔ,  ሻ  is defined as 221ݕ

1/∑ ∑ ,ሺ݅ܤ ݆ሻ௜ୀ௪
௜ୀି௪

௝ୀ௪
௝ୀି௪  which is used to normalize the weighting coefficients. Since 222 

the bilateral kernel function only average the central pixel with neighbors on the same 223 

side (Fig. 2b), ideally it will preserve sharp edges of a target. We will discuss how to 224 

construct the δ function in order to group the central pixel with its neighbors later in 225 

this section. In the noise reduction process, a 5ൈ5 window size (i.e., 25 bins in total) is 226 

specified for the low pass filter, which is empirically determined by visually comparing 227 

the cloud masks with original images. We should keep in mind that the window size is 228 

compromised since a small window size is less effective in noise reduction but a large 229 

window is not suitable for recognizing weak signals. 230 

For performing the noise reduction with Eq. (4) in a 5x5 filter window, the number 231 

of range bins (Ns) with signal greater than ܵ௢ ൅  ௢ are first counted. These ௦ܰ range 232ߪ3

bins are then subtracted from the total 25 of the range bins in the filter window. Note 233 
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that a noise reduction is only applied when the central pixel is among the 25-Ns bins, 234 

and the  function is set to be zero for the Ns range bins. If the remaining 25- ௦ܰ range 235 

bins are all noises, the range bin number (Nm) with SNR greater than ܵ௢ ൅  ௢ should 236ߪ

be about equal to an integral number (Nt) of 0.16ൈ(25- ௦ܰ) where 0.16 is the probability 237 

for a remaining range bin to have a value greater than ܵ௢ ൅  ௢ for a Gaussian noise. 238ߪ

Thus when ܰ௠ is equal to or smaller than ௧ܰ, all the 25- ௦ܰ range bins could only 239 

contain pure noise and/or some weak cloud signals. In this case, the δ function is set 240 

to 1 for all the 25- ௦ܰ bins. When ܰ௠ is found to be larger than ௧ܰ, the 25- ௦ܰ range 241 

bins might contain a combination of moderate signal, noise and/or some weak clouds. 242 

In this case, ܵ௢ ൅  ௢ is selected as a threshold to determine whether the neighboring 243ߪ

pixels are on the same side of the central pixel. If the central pixel has a value greater 244 

than ܵ௢ ൅ ௢, the δ function is assigned to 1 for the 25-Ns pixels with SNRߪ ൒ ܵ௢ ൅245 

௢, but 0 for the neighboring bins with SNRߪ ൏ ܵ௢ ൅  ௢. If the central pixel is less than 246ߪ

ܵ௢ ൅ ௢, the δ function is assigned to 1 for the neighboring pixels with SNRߪ ൏ ܵ௢ ൅247 

௢, but 0 for the 25-Ns bins with SNRߪ ൒ ܵ௢ ൅  ௢.  248ߪ

After picking out the strong return signals and applying the noise reduction scheme, 249 

the new background noise Sn and its standard deviation ߪ௡ are estimated. While Sn is 250 

the same as So, the ߪ௡ is significantly reduced, which is a half of ߪ௢. This will make 251 

it possible to identify more hydrometeors as exhibited in Fig.2a. We assign different 252 

confidence level values to the following initial cloud mask according to the SNR. 40 is 253 

first assigned to the mask of any range bins with ܴܵܰ ൐ ܵ௢ ൅  ௢ in the original input 254ߪ3

data. For the rest of the range bins after applying the noise reduction, if the ܴܵܰ ൐255 
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ܵ௡ ൅ ௡, the mask is assigned to be 30; if ܵ௡ߪ3 ൅ ௡ߪ2 ൏ ܴܵܰ ൑ ܵ௡ ൅  ௡, the mask is 256ߪ3

20; if ܵ௡ ൅ ௡ߪ ൏ ܴܵܰ ൑ ܵ௡ ൅  ௡, the mask is 10; and the remaining range bin mask 257ߪ2

is assigned to be 0.  258 

To reduce both false positives (i.e. false detections) and false negatives (i.e. failed 259 

detections), the next step is to estimate whether a range gate contains significant 260 

hydrometeor. Following Clothiaux et al.[2000; 1995] and Marchand et al.[2008], a 5ൈ5 261 

spatial filter is used to calculate the probability of clouds and noise occurring in the 25 262 

range gates. The probability of central pixel weighting scheme proposed by Marchand 263 

et al. [2008] is adopted, and the weighting for the central pixel is assigned according to 264 

its initial mask value. The probability is calculated by  265 

݌ ൌ  ሻሺ0.16ே೅ሻሺ0.84ேబሻ  (5) 266ܮሺܩ

where ଴ܰ is the number of masks with zeros values, ்ܰ is the number of masks with 267 

non-zeros values and ଴ܰ ൅ ்ܰ ൌ 25; G(L) is the weighting probability of the central 268 

pixel that could be a false detection where L is the significant level in the initial cloud 269 

mask [G(0)=0.84, G(10)=0.16, G(20)=0.028, G(≥30)=0.002]. If p estimated from Eq. 270 

(5) is less than a given threshold (݌௧௛௥௘௦௛ ), then the central pixel is likely to be a 271 

hydrometeor signal. The value in the cloud mask will set to be the same value as in the 272 

initial mask if it is non-zero; otherwise it will be set to 10. Likewise, if p ൐  ௧௛௥௘௦௛, 273݌

then the central pixel is likely to be noise and will be set to 0. This process is iterated 5 274 

times for each pixel to obtain the final cloud mask. 275 

Following Marchand et al. [2008] who well explained the logic of choosing a proper 276 

threshold, pthresh is calculated as  277 
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௧௛௥௘௦௛݌ ൌ ሺ0.16ே೟೓ೝ೐ೞ೓ሻሺ0.84ଶହିே೟೓ೝ೐ೞ೓ሻ  (6) 278 

Note that a smaller pthresh will keep the false positives lower but increase the false 279 

negative. Herein the pthresh of 5.0×10-12 used in Clothiaux et al.[2000], which is 280 

approximately equivalent to Nthresh = 13, is selected. 281 

   Figure 4 illustrate the main steps of our detection method by using the data from 282 

January 8th, 2014. Figure 4a is the original SNR input. Figure 4b shows the SNR 283 

distribution after the noise reduction process. One can see that the SNR is compressed 284 

to a narrow range and become much smoother than original input after the noise 285 

reduction process. This step significantly increases the contrast between signal and 286 

noise.  Figure 4c indicates the range gates that potentially contain hydrometeors in the 287 

initial cloud mask.  Figure 4d is the final result by applying the spatial filter. 288 

4. Results 289 

4.1 Detection test 290 

To test the performance of our hydrometeor detection method, we create 7 squares 291 

of SNR with sides of 100, 50, 25, 15, 10, 5, and 3 bins to mimic the radar “time-height” 292 

observations as shown in Fig. 5. The background noise is randomly given by a Gaussian 293 

distribution with a mean ܵ଴ and a standard deviation σ଴. The targets in panels a1, a2 294 

and a3 are set with different SNR values to represent situations in which clouds have 295 

strong, moderate and weak signals, respectively. In panel a1, the targets signals are set 296 

to be ܵ଴ ൅ ଴. In panel a2, the targets signals distribute from ܵ଴ߪ10 ൅ ଴ to ܵ଴ߪ ൅  ଴ 297ߪ3

with a mean value of ܵ଴ ൅ ଴. In panel a3, the targets SNRs range from ܵ଴ to ܵ଴ߪ2 ൅298 

଴ with a mean value of ܵ଴ߪ ൅  ଴.  299ߪ0.5
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The three middle panels in Fig. 5 show the results after applying the noise reduction. 300 

Comparing with the input signals, we can see that the background noise is well 301 

compressed and becomes more smooth. The shapes of the square targets are all well 302 

maintained with sharp boundaries for strong and moderate signals (see panels b1 and 303 

b2). In panel b3 for weak signals, the 3-bin square target is not obvious while the other 304 

6 squares are still distinguishable. To separate the compressed background noise from 305 

hydrometeor signals, the 5ൈ5 spatial filter is further applied to the noise-reduced data.   306 

The three right panels in Fig.5 show the final mask results. Generally, the hydrometeor 307 

detection method can identify those targets well. Six of the seven square targets can be 308 

identified for clouds with strong and moderate SNR. The 3ൈ3 square is missed because 309 

the small targets cannot be resolved by the 5ൈ 5 spatial filter. Since the temporal 310 

resolution of KAZR is about 4 seconds, we expect that a cloud only having 3 bins in 311 

horizontal would be rare. For the targets with weak SNR values, the 3ൈ 3 and 5ൈ 5 312 

square targets are missed, but the rest five square targets are successfully distinguished 313 

and their boundaries are well maintained.  314 

To further demonstrate the performance of our method to detect the hypothetical 315 

clouds in Fig.5 a1, a2, and a3, the false and failed detection rates are listed in the table 316 

1. For strong signals, no background noise pixel is misidentified as one containing 317 

hydrometeors at level 40. Although at levels less than 40, some noise pixels around the 318 

edges of targets are identified as signals, the false detection is within 0.05%. The failed 319 

detection rate is about 0.24%. For moderate signals, the failed detection rate is still as 320 

small as 0.23%, while the false detection increases a little to 0.10% at the confidence 321 
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levels below 30. The failed detection can reach up to 9.77% for weak signal at level 10, 322 

but more than 90% weak signals can be captured in our method. Note that the false 323 

positive is less than 0.01%; in other words, any range gate that is detected likely as a 324 

signal bin will have extremely high likelihood to contain hydrometeors. 325 

The simple square clouds are also tested by using the ARM operational hydrometeor 326 

detection algorithm that does not include the noise reduction and weighting schemes. 327 

As can be seen in Fig. 6, the ARM operational algorithm can only find five of the seven 328 

square targets with strong and moderate SNR. Meanwhile without central pixel 329 

weighting, the corners of the targets become rounded and more than 2.23% of 330 

hydrometeors are missed for strong and moderate cloud cases. Without the noise 331 

reduction, none of the weak cloud signals can be detected. Comparing Fig.5 and Fig.6, 332 

it is obvious that our hydrometeor detection method can well maintain the cloud 333 

boundary, keep both false and failed detection rate as low as a few percent for strong 334 

and moderate cloud cases, and has a remarkable advantage in recognizing weak signals.  335 

4.2 Application to the SACOL KAZR observations 336 

Our hydrometeor detection method was then applied to the winter and summer 337 

months (Dec. in 2013, Jan., Feb., Jun., Jul. and Aug. in 2014) KAZR data at the SACOL. 338 

A micropulse lidar (MPL) transmitted at 527 nm is operated nearby the KAZR. Lidar 339 

is more sensitive to thin cirrus clouds and thus used to assess the performance of our 340 

algorithm. Figure 7 a, b & c show an one-day example of radar reflectivity, normalized 341 

backscatter and depolarization ratio of lidar, respectively. The cloud masks from our 342 

detection method and the ARM operational method without the noise reduction and the 343 
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central pixel weighting are shown in Fig. 7d&e. The MPL feature mask derived by 344 

modifying the method proposed in Thorsen et al. [2015] and Thorsen and Fu [2015] is 345 

shown in Fig. 7f. The vertical and horizontal resolutions of the radar and lidar are 346 

different, and we map the observed data and derived feature mask on the same height 347 

and time coordinates for a simple comparison. A distinct thin feature layer appears at 348 

about 8 km during 1500 to 1830 UTC form the lidar observation which is clearly 349 

identified as a cirrus cloud using the depolarization ratio. The contrast between the 350 

cirrus layer and background from the KAZR observation (Fig. 7a) is very weak, and 351 

only a few range gates are identified as the ones containing hydrometeors using the 352 

method without the noise reduction and weighting (Fig. 7d). However, our cloud mask 353 

method can find more range gates (about 2.8 times of ARM’s result). All these increased 354 

range bins from our method are also detected as thin cirrus by the MPL (Fig. 7f). 355 

Another apparent discrepancy exists in the low atmosphere layer. A non-negligible 356 

number of range gates at about 2 km are recognized as hydrometeor echoes by our 357 

method but mostly missed by former technique. This feature layer is also apparent in 358 

lidar observations with both relative large backscatter intensities and depolarization 359 

ratios(Fig. 7b&c). MPL recognizes this feature as an aerosol layer. In our KAZR 360 

observations, we did find some dust events that were detected by this millimeter 361 

wavelength radar (see the auxiliary Fig.1). Those hydrometeor echoes detected by our 362 

method might partly be caused by large dust particles. Although the dust is not desired 363 

for cloud mask, the appearance of those particles dose prove the ability of our method 364 

on recognizing weak signals. 365 
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The upper two panels in Fig. 8 compares the number of occurrences of the detected 366 

hydrometeor range bins from our new methods with that from the ARM operational 367 

algorithm for the six months of data. Generally, one can see that the variations of the 368 

identified hydrometeor numbers with height from the two techniques are in a good 369 

agreement. The distinct discrepancies appear at about 2 km in Winter and above 13 km 370 

in Summer where our method apparently identify more hydrometeors. To illustrate the 371 

improvements of our method and quantitatively evaluate the two schemes used in the 372 

algorithm, we plot the percent change of the detected hydrometeor bins form our 373 

method comparing with that from the ARM operational method in the lower two panels 374 

in Fig. 8. As expected from the results in the test square clouds, our method can identify 375 

more signals. The remarkable feature is that the increased percentage is over 20% at 376 

high altitude, indicating that our method can recognize more cirrus clouds. The 377 

increased percentage of hydrometeor derived only with the weighting scheme (dashed 378 

line) and with both the noise reduction and weighting schemes (solid line) are separated 379 

to demonstrates the individual contribution of the scheme to the improvement of our 380 

method. In winter , the number of the detected hydrometeors only with the weighting 381 

scheme is almost the same as that from the ARM operational method at layer from 3.5 382 

to 9 km AGL, while this number will increase by about 5% if the noise reduction 383 

scheme is involved, indicating that some hydrometeors with weak SNR values may exit 384 

in this layer. Above and below this atmospheric layer, the increased percentage is 385 

largely determined by the weighting scheme. In summer, the two line almost overlap 386 

each other between 3.5 and 9.5 km with values below 5%, revealing that the bins found 387 
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by our method in the middle atmospheric layer are mainly around the boundaries of 388 

clouds. We may infer that in summer season, clouds in middle level are usually 389 

composed of large droplets with strong SNR values. The two lines are gradually apart 390 

with height. This is because hydrometeors in the upper of troposphere are usually with 391 

smaller size and cause weak SNR values that will be effectively detected by the noise 392 

reduction scheme. Note that the confusion matrix shows that the cancellation errors can 393 

be negligible.  394 

We also analyzed data in January July, 2014 when both KAZR and MPL observations 395 

are available, and showed the percentage of the increased detections identified by both 396 

KAZR with our method and MPL observations as compared to the total increased 397 

detections in Fig. 9. It is obviously that most of the increased detections are also 398 

detected as features by MPL. The percentage drops to a minimum of 70% at about 9 399 

km, where the total increased cloud range bins are only about 110 and there are 35 range 400 

bins that are identified by our method not observed by MPL. Considering all the 401 

increased detections by our method, 98.6% of them are confirmed by MPL as features.  402 

5. Summary and Discussion 403 

Based on image noise reduction technique, we propose a new method to detect 404 

hydrometeors from cloud radar return signals. The basic idea is to treat the SNR value 405 

of each range gate as a pixel brightness and suppress the SNR distributions of noise to 406 

a narrow range by convolving with a 2-D bilateral kernel. After the noise smoothing 407 

process, a special filter with central-pixel weighting scheme is used to get the final 408 

cloud mask. The test square clouds show that there are two remarkable advantages of 409 
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our method: First the noise reduction scheme of our algorithm can enhance the contrast 410 

between signal and noise, while keeping the cloud boundaries preserved and detecting 411 

more hydrometeors with weak SNR values. Second both false positive and failed 412 

negative rates for strong and moderate clouds can be reduced to acceptably small values. 413 

A comparison of radar and lidar observed case further highlight the advantage of our 414 

method in application.    415 
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Cloud Type 
Performance 

(%) 

Cloud Mask Confidence Level 

൒10 ൒20 ൒30 ൒40 

Strong  
False positive 0.048  0.044  0.009  0 

Failed negative 0.244  0.244  0.244  0.244 

Moderate 
False positive 0.103  0.103  0.063  0 

Failed negative 0.229  0.229  0.229  100 

Weak 
False positive 0.007  0.006  0.003  0 

Failed negative 9.774  96.788  100 100 

Table 1. Summary of false positives and failed negatives for hypothetical strong, 571 

moderate and weak cloud cases in Fig.4 a1, a2, and a3, respectively.  572 
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Figure 1. (a) Probability distribution function (PDF) of the noise power and SNR from 573 

the KAZR observations in a clear day of January 21, 2014. (b) Cumulative distribution 574 

function (CDF) of original and convolved SNR for the noise from the clear day. (c) and 575 

(d) CDF of original and convolved SNR from a cloudy case of January 4, 2014 for 576 

range gates inside and outside the cloud adjacent to the cloud boundary, respectively.577 
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Figure 2. (a) comparison of original noise, reduced noise and hydrometeor signal 578 

distributions. (b) Illustration of the bilateral filtering process. (b1) Gaussian kernel 579 

distribution in space. (b2) δ  function. (b3) Bilateral kernel by combining Gaussian 580 

kernel with δ function. 581 

582 
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Figure 3. Schematic flow diagram for hydrometeor detection method.  583 
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Figure 4. Illustration of the steps of the detection method using the real data of January 584 

8th, 2014.  585 
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Figure 5. Panels a1, a2 and a3 are three “square clouds” that have strong, moderate and 586 

weak SNR values with random Gaussian noise used to test the detection method. Panels 587 

b1, b2 and b3 are SNR distributions after convolving the data with a bilateral kernel. 588 

Panels c1, c2 and c3 are the final cloud mask filtered by the spatial filter.  589 
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Figure 6. Cloud mask without applying noise reduction and central pixel weighting. (a), 590 

(b), (c) are for the targets with strong, moderate and weak SNR, respectively, from Fig. 591 

4 a1, a2, and a3.592 
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Figure 7．One-day example of radar- and lidar-observed cirrus cloud at the SACOL on 593 

January 8, 2014. (a) KAZR reflectivity. (b) MPL normalized backscatter intensity 594 

(c)MPL Depolarization Ration (d) radar cloud mask derived by the ARM operational 595 

algorithm. (e) radar cloud mask derived by our new method. (f) MPL feature mask. 596 

Three windows in (d), (e), (f) show the zoom-in views of cirrus masks.   597 
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Figure 8 ． The upper panel shows the number of occurrences of the detected 598 

hydrometeor range bins from the two methods with the confusion matrix. The solid line 599 

represents the results derived from our new method. The dot line represents the range 600 

gate number that are detected as signals by both methods. The dashed line is the number 601 

of range gates detected as noise by our method but signal by ARM. The dot-dash line 602 

is the increased range gates from our method. The lower two panels demonstrate the 603 

increased percentage of hydrometeor bins from our new method comparing to the ARM 604 

operational method. The solid line is calculated by applying both noise reduction and 605 

central-pixel weighting schemes, while the dashed line is calculated by only applying 606 

the central-pixel weighting scheme in our detection method. 607 

608 
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Figure 9. A comparison of the increased detections with the MPL observations. The 609 

solid line is the percentage of increased detections seen by both KAZR with our method 610 

and MPL as compared with the total increased detections. The dot line is the number of 611 

increased detections.  612 



  38

Auxiliary Figure 1. A dust event observed on January 29th, 2014. The morphology and 613 

power level of the return signal is apparent not for a cloud from the surface to the height 614 

of 5 km between 0800 to 1600 UTC. 615 


