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Response to Anonymous Referee  1 

 2 

-The manuscript is in need of some thorough editing: there are numerous typos and 3 

poor grammar that makes the text difficult to follow at times. As mentioned below, the 4 

text describing figures is often confusing, making it difficult to determine what results 5 

are actually being shown. Many of my original comments have not been adequately 6 

addressed by the authors: 7 

 8 

Response: We thank the reviewer for the criticisms and comments on this manuscript, 9 

which are helpful for us to further improve our presentation. We corrected all the typos 10 

and grammar mistakes that we found, and we clarified the figure captions. Our 11 

responses to the specific comments are presented below. 12 

 13 

-I again encourage the authors not to compare to the old MMCR cloud mask. ARM's 14 

new KAZR has new processing algorithms. Therefore, the authors are comparing to the 15 

cloud mask used for the old MMCR but applied to the KAZR instead. This limits the 16 

usefulness of their results. Several times the authors mention that their method is an 17 

improvement over ARM's operation method. If the authors keep their analysis as is, 18 

statements that claim improvement over ARM's operation method need to be removed 19 

since ARM does not produce data with the MMCR algorithms applied to the KAZR. 20 

 
21 

Response: Thank the reviewer for these comment and suggestion. In the revised 22 

manuscript, we remove all statements that claim improvement over ARM’s operational 23 

method and make it clear throughout the paper that the ARM algorithm that we 24 

compared with is that for MMCRs. We also make it clear that ARM's new KAZR has 25 

a new operational processing algorithm for the KAZRs at the ARM sites by adding the 26 

following paragraph at the end of section 4.1: 27 

“It is noted that the ARM program has recently developed a new operational cloud 28 

mask algorithm for the KAZRs by applying the Hildebrand and Sekhon[1974] 29 

technique to determine the SNR values along with the spatial filter (Karen Johnson, 30 

personal communication, 2017). It is our future research task to compare our algorithm 31 

with the ARM’s new operational algorithm”. 32 

Since ARM’s new algorithm still has not been published yet (Karen Johnson, 33 

personal communications), we will not compare it with ours in this paper although we 34 

are communicating with Karen for an inter-comparison of the algorithms by applying 35 

them to the same observational data. 36 

 
37 

-The authors have not made a convincing argument that the increased detection around 
38 

1.5 and 2km in Figure 7 in the cloud mask is dust. Their argument is that the MPL 
39 

backscatter (what are the units for the MPL backscatter?) and depolarization is large 
40 

where they detect dust with the KAZR. However, there appears to be plenty of pixels 
41 

with just as large backscatter and depolarization that is not detected in the KAZR mask. 
42 

To me, these KAZR detections appear to be false positives and are therefore 
43 

undesirable. It would be clearer to show the PDFs of MPL aerosol backscatter and 
44 
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depolarization for both the pixels identified in the KAZR cloud mask and those not. If 
45 

these PDFs don't differ significantly, then the authors need to revise their approach to 
46 

avoid these false positives. 
47 

 
48 

Response: We did not claim that the KAZR detects all features that the MPL detects 49 

with large backscatter and depolarization. But it is important that the increased 50 

detections are also detected by the MPL with large backscatter and depolarization, 51 

indicating dust particles. 52 

Following the reviewer’s suggestion, we examined the PDFs of MPL aerosol 53 

backscatter and depolarization corresponding to the KAZR increased feature and 54 

KAZR noise regions under 3 km (See Fig. 1 below). The PDFs of MPL backscatter for 55 

the KAZR feature and noise regions are quite different (Fig. 1a), with the mean 56 

backscatter of 0.15 for feature and 0.10 	 / 	 for noise. 57 

The mean of the MPL depolarization ratio is 0.16 for feature and 0.12 for noise although 58 

the PDFs are more similar (Fig.1b), because dust is the main aerosol type over this 59 

region. We also plot the PDFs of KAZR SNR and LDR for its feature and noise pixels 60 

(Figs. 1c and 1d), which are Gaussian-like for noise pixels, very different from those 61 

for the increased detections. Table 1 shows the mean values of the four quantities shown 62 

in Fig.1. All the differences of these mean values between KAZR noise and increase 63 

feature regions pass the significant test at 95% confidence level except for the MPL 64 

depolarization ratio. These increased features from our feature mask could thus be dust 65 

(or some plankton) but not the false positive.  66 

 67 

Figure 1. PDF of (a) MPL Backscatter, (b) MPL depolarization Ratio, (c) KAZR SNR 68 

and (d) KAZR LDR for the KAZR increased detections (solid line) and KAZR noise 69 

(dashed line) pixels. 70 

 71 
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Table 1. Mean values of four quantities for increased KAZR feature and KAZR noise  72 

 increased KAZR feature KAZA noise 
MPL backscatter 0.15 0.10 

MPL depolarization ratio 0.16 0.12 
KAZR SNR 3.9 0.1 
KAZR LDR -3.0 -0.4 

 73 

-The extended comparison to the MPL is helpful for understanding the accuracy of the 74 

author's method. However, it appears in Figure 9 that comparisons are made to the 75 

MPL detection of both cloud and aerosols. In this case, any increased detection in the 76 

lowest several kilometers will also be detected by the MPL since aerosol is always 77 

present there. Above those altitudes, the results are not good with about 20% of the 78 

cloud mask being false positives! Figure 9 would be more useful for assessing accuracy 79 

if the fraction of the increased detections identified by the MPL as cloud was shown. 80 

 81 

Response: Yes, we agree with the reviewer that comparing radar increased detections 82 

with clouds identified by MPL are useful. We visually looked at many cases and found 83 

that the classification of cloud and aerosol by MPL could have some issues. Figure 2 84 

shows an example. It is apparent that some signals at 6 km around 11:00-19:00 UTC, 85 

which should be clouds, are misidentified as aerosols. The MPL has a difficulty to 86 

distinguish dust from clouds (especially cirrus clouds). Unfortunately, there exist large 87 

amount of dust aerosols over the SACOL region. In any case, Fig.3a shows the 88 

percentage of the increased detections that are also detected by MPL as cloud following 89 

the review’s suggestion. We can see that the percentage increases with height quickly, 90 

which are more than 80% above ~7.5 km. However, Fig.3a overall can not be used to 91 

assess our method due to the MPL feature detection issue.  92 
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Figure 2. The feature mask, backscatter intensity and depolarization ratio of MPL as 93 

well as the cloud radar mask on January 2, 2014. (a) Feature mask of KAZR from our 94 

method. (b) MPL feature mask. (c) MPL backscatter intensity. (d) MPL depolarization 95 

Ratio. 96 

 97 

Figure 3. The solid lines are the percentage of the increased detections of the KAZR 98 

feature mask which are also recognized by MPL. Dash lines represent the number of 99 

increased detections by our method at each height. Left is for cloud recognized by MPL, 100 

right is for both cloud and aerosol recognized by MPL. 101 

 102 

-Figure 9 also does not show the opposite error: false negatives: i.e. detected by the 103 

MPL but not the KAZR cloud mask. In lieu of Figure 9 it would be more helpful to just 104 

show a confusion matrix (similar to what the authors present in Table 1) for the MPL 105 
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cloud mask compared to both the KAZR cloud mask both with and without the noise 106 

reduction step. That way the change in both error rates could be assessed. 107 

 108 

Response: Figure 4 shows the profile of false negative (i.e. the percentage of the cloud 109 

pixels identified by MPL but not by KAZR in the total MPL detected cloud pixels). We 110 

can see that our method with the noise reduction has relative smaller false negatives 111 

especially in the layers under 3 km and between 7 and 10 km. Table 2 is the confusion 112 

matrix of the MPL detection and the KAZR mask. Overall, 71% feature mask identified 113 

by MPL also recognized by the new method, while this percent is 69% for the algorithm 114 

without noise reduction. The difference of false positive between two method is only 115 

0.1% (table 2). 116 

Figure 4. The percentage of the cloud pixels identified by MPL but not by KAZR in the 117 

total MPL detected cloud pixels. Solid line represents for the algorithm with noise 118 

reduction step. Dot line is for the method without noise reduction scheme. 119 

 120 

Table 2. The confusion matrix of KAZR feature mask results from both our and old 121 

methods estimated by MPL 122 

 our method old method 

True Positive 70.7% 68.9% 

True Negative 95.4% 95.5% 

False Positive 4.6% 4.5% 

False Negative 29.3% 31.1% 

 123 

 124 

-I cannot tell the line styles apart in the top panel of Figure 8. I'm also unsure what is 125 

being plotted there as the caption mentions a "confusion matrix" but no matrix is given. 126 

It is also not clear what the lines in the bottom panels of Figure 8 are normalized to. It 127 

would be most useful to show the comparison of cloud occurrence profiles (i.e. number 128 

of cloudy pixels /total number of pixels), but that doesn't appear to be what is plotted 129 
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here. 130 

 131 

Response: Figure 8 in our manuscript is replaced with a new one. We plotted cloud 132 

occurrence profiles to demonstrate cloud vertical distributions detected with and 133 

without noise reduction scheme in Figure 5 as the reviewer suggested. Overall, more 134 

than 5.3% cloud pixels are detected by our method comparing with the old MMCR 135 

algorithm. We don’t replace Figure 8 in our paper with this one, since the main purpose 136 

of this paper is to show the ability of our algorithm on recognizing weak signals. It is 137 

more clear to compare the increased detection just with the old method. The lines in the 138 

bottom panels of Figure 8 are normalized to the number of feature identified by MMCR 139 

method in each height interval. 140 

Figure 5. Cloud occurrence profiles for the feature detection algorithm with and without 141 

noise reduction step. Left panel is for December,2013 and January, February and March, 142 

2014. Right panel is for June, July and August 2014.143 
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Abstract 23 

A newmodified method with a new noise reduction scheme that can reduce the noise 24 

distribution to a narrow range is proposed to distinguish clouds and other hydrometeors 25 

from noise and recognize more features with weak signal  in cloud radar observations. 26 

A noise reduction scheme that can reduce the noise distribution to a narrow range is 27 

proposed in our method in order to recognize more weak signal clouds.  A spatial filter 28 

with central weighting, which is widely used in current cloud radar hydrometeor 29 

detection algorithms, is also involved in our method to examine radar return for 30 

significant levels of signals. “Square clouds” were constructed to test the two 31 

schemesour algorithm and the method used for the U.S. Department of Energy 32 

Atmospheric Radiation Measurements program millimeter-wavelength cloud radar. We 33 

also applied our both the methods to six months of cloud radar observations at the Semi-34 

Arid Climate and Environment Observatory of Lanzhou University and compared the 35 

results.  with those obtained by applying the U.S. Department of Energy (DOE) 36 

Atmospheric Radiation Measurements (ARM) program operational algorithm. It was 37 

found that our method has significant advantages in recognizing clouds with weak 38 

signal and reducing the rates of both failed negative and false positive hydrometeor 39 

identifications in simulated clouds.  40 
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1. Introduction 41 

Clouds, which are composed of liquid water droplets, ice crystals or both, cover 42 

about two-thirds of the earth surface at any time [e.g., King et al., 2013]. By reflecting 43 

solar radiation back to the space (the albedo effect) and trapping thermal radiation 44 

emitted by the Earth surface and the lower troposphere (the greenhouse effect), clouds 45 

strongly modulate the radiative energy budget in the climate system [e.g., Qiang Fu et 46 

al., 2002; Huang et al., 2007; Huang et al., 2006a; Huang et al., 2006b; Ramanathan 47 

et al., 1989; Su et al., 2008]. Clouds are also a vital component of water cycle by 48 

connecting the water-vapor condensation and precipitation. Despite the importance of 49 

clouds in the climate system, they are difficult to represent in climate models [e.g., 50 

Williams and Webb, 2009], which causes the largest uncertainty in the predictions of 51 

climate change by general circulation models (GCMs) [e.g., Randall, 2007; Stephens, 52 

2005; Williams and Webb, 2009]. 53 

Cloud formation, evolution and distribution are governed by complex physical and 54 

dynamical processes on a wide range of scales from synoptic motions to turbulence 55 

[Bony et al., 2015]. Unfortunately, the processes that occur on smaller spatial scales 56 

than a GCM grid box cannot be resolved by current climate models, and the coupling 57 

between large scale fluctuations and cloud microphysical processes are not well 58 

understood [e.g., Huang et al., 2006b; Mace et al., 1998; Yan et al., 2015; Yuan et al., 59 

2006]. Moreover, the cloud horizontal inhomogeneity and vertical overlap are not 60 

resolved by GCMs [Barker, 2000; Barker and Fu, 2000; Q. Fu et al., 2000a; Q. Fu et 61 

al., 2000b; Huang et al., 2005; Li et al., 2015]. To better understand cloud processes 62 
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for improving their parameterization in climate models and revealing their evolution in 63 

response to climate change, long-term continuous observations of cloud fields in terms 64 

of both macro- and micro-physical properties are essential [e.g., Ackerman and Stokes, 65 

2003; Sassen and Benson, 2001; Thorsen et al., 2011; Wang and Sassen, 2001]. 66 

Millimeter-wavelength Cloud Radars (MMCRs) can resolve cloud vertical structure 67 

for their occurrences and microphysical properties [e.g., Clothiaux et al., 1995; Kollias 68 

et al., 2007a; Mace et al., 2001]. The wavelengths of MMCRs are shorter than those of 69 

weather radars making them sensitivity to cloud droplets and ice crystals and can 70 

penetrate multiple cloud layers [e.g., Kollias et al., 2007a]. Because of their outstanding 71 

advantages for cloud research, millimeter-wavelength radars have been deployed on 72 

various research platforms including the first space-borne millimeter-wavelength Cloud 73 

Profiling Radar (CPR) onboard the CloudSat [Stephens et al., 2002]. Ground-based 74 

cloud radar are operated at the U.S. Department of Energy’s Atmospheric Radiation 75 

Program (ARM) observational sites (used to be MMCRs, now are replaced with a new 76 

generation of Ka band Zenith Radar (KAZR)) [e.g., Ackerman and Stokes, 2003; 77 

Clothiaux et al., 2000; Clothiaux et al., 1999; Kollias et al., 2007b; Protat et al., 2011] 78 

and in Europe [Illingworth et al., 2007; Protat et al., 2009]. In July 2013, a KAZR was 79 

deployed in China at the Semi-Arid Climate and Environment Observatory of Lanzhou 80 

University (SACOL) site (latitude: 35.946°N; longitude: 104.137°E; altitude: 1.97 km) 81 

[Huang et al., 2008]，providing an opportunity to observe and reveal the detailed 82 

structure and process of the mid-latitude clouds over the semi-arid regions of East Asia 83 

semi-arid regions. 84 
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Before characterizing the cloud physical properties from the cloud radar return signal, 85 

we first need to distinguish and extract the hydrometeor signals from the background 86 

noise (i.e. cloud mask). A classical cloud mask method was developed in Clothiaux et 87 

al.[2000; 1995] by analyzing the strength and significance of returned signals. This 88 

method consists of two main steps. First any power in a range gate that is greater than 89 

a mean value of noise plus one standard deviation is selected as a bin containing 90 

potential hydrometer signal. Second, a spatial-time coherent filter is created to estimate 91 

the significance level of the potential hydrometer bin signal to be real. This cloud mask 92 

algorithm is operationally used for the ARM MMCRs data analysis and was later 93 

adopted to the CPR onboard the CloudSat [Marchand et al., 2008].  94 

It is recognized that by visually examining a cloud radar return image, one can easily 95 

tell where the return power is likely to be caused by hydrometeors and where the power 96 

is just from noise. This ability of human eye on extracting and analyzing information 97 

from an image has been broadly studied in image processing and computer vision, and. 98 

a A number of mathematical methods for acquiring and processing information from 99 

images have been developed, including some novel algorithms for noise reduction and 100 

edge detection [Canny, 1986; He et al., 2013; Marr and Hildreth, 1980; Perona and 101 

Malik, 1990]. In this paper, we propose a modifieddevelop a new cloud mask method 102 

for cloud radar by noticing that removing noise from signal and identifying cloud 103 

boundaries are the essential goals of cloud mask. This method reduces the radar noise 104 

while preserving cloud edges by employing the bilateral filtering that is widely used in 105 

the image processing [Tomasi and Manduchi, 1998]. The power weighting probability 106 
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method proposed by Marchand et al.[2008] is also adopted in our method to prevent 107 

the cloud corners from being removed. It is found that our improved hydrometeor 108 

detection algorithm is more efficient in terms of reducing false positives and negatives 109 

as well as identifying cloud features with weak signals such as thin cirrus clouds. 110 

The KAZR deployed at the SACOL is described in section 2 and the modified new 111 

cloud mask algorithm is introduced in section 3. The applications of the new scheme to 112 

both hypothetical and observed cloud fields including a comparison with previous 113 

schemes are shown in section 4. Summary and conclusions are given in section 5. 114 

2. The KAZR Radar 115 

The SACOL KAZR, built by ProSensing Inc. of Amherst, MA, is a zenith-pointing 116 

cloud radar operating at approximately 35 GHz for the dual-polarization measurements 117 

of Doppler spectra. The main purpose of the KAZR is to provide vertical profiles of 118 

clouds by measuring the first three Doppler moments: reflectivity, radial Doppler 119 

velocity, and spectra width. The linear depolarization ratio [Marr and Hildreth, 1980] 120 

can be computed from the ratio of cross-polarized reflectivity to co-polarized 121 

reflectivity.  122 

The SACOL KAZR has a transmitter with a peak power of 2.2 kw and two modes 123 

working at separate frequencies. One is called “chirp” mode that uses a linear-FM 124 

(frequency modulation) pulse compression to achieve high radar sensitivity of about -125 

65 dBZ at 5 km altitude. The minimum altitude (or range) that can be detected in chirp 126 

mode is approximately 1 km AGL. To view clouds below 1 km, a short pulse or “burst 127 

mode” pulse is transmitted at a separate frequency just after transmission of the chirp 128 
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pulse. This burst mode pulse allows clouds as low as 200 m to be measured. The chirp 129 

pulse is transmitted at 34.890 GHz while the burst pulse is transmitted at 34.830 GHz. 130 

These two waveforms are separated in the receiver and processed separately.   131 

The pulse length is approximately 300 ns (giving a range resolution of 45 m), while 132 

the digital receiver samples the return signal every 30 m. The interpulse period is 208.8 133 

μs, the number of coherent averages is 1, and the number of the fast Fourier transform 134 

(FFT) points is currently set to 512. An unambiguous range is thus 31.29 km, an 135 

unambiguous velocity is 10.29 m/s, and a velocity resolution of is 0.04m/s. The signal 136 

dwell time is 4.27s. These operational parameters are set for the purpose of having 137 

enough radar sensitivity and accurately acquiring reflectivities of hydrometeors. In this 138 

study, we mainly use radar observed reflectivity (dBZ) data to test our new hydrometeor 139 

detection method. 140 

3. Hydrometeor detection algorithm 141 

The basic assumption in the former cloud mask algorithms [e.g., Clothiaux et al., 142 

1995; Marchand et al., 2008] is that the random noise power follows the normal 143 

distribution. In this study, severalHere clear sky cases in all seasons from the KAZR 144 

observations were firstly selected to analyzed for its background noise power 145 

distributions (Fig.1). As demonstrated in Fig.1a for Figure 1a shows an example of a 146 

clear-sky case during 0000 to 1200 UTC on January 21st, 2014, . tThe noise power is 147 

estimated from the top 30 range gates, which includes both internal and external 148 

sources[Fukao and Hamazu, 2014], [Fukao and Hamazu, 2014]. It has an apparent non-149 

Gaussian distribution with a positive skewness of 1.40 (Fig.1a). The signal-to-noise 150 
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ratio (SNR) is defined as:	  151 

SNR 10log	          (1) 152 

where Ps is the power received at each range gate in a profile, Pn is the mean noise 153 

power that is estimated by averaging the return power in the top 30 range gates which 154 

are between 16.8 and 17.7 km AGL. Since this layer is well above the tropopause, few 155 

atmospheric hydrometeors existing in this layer can scatter enough power back to 156 

achieve the radar sensitivity. Figure 1a shows that the SNRs for clear skies closely 157 

follow a Gaussian distribution. Instead of using radar received power, the SNR is used 158 

to estimateas the input in our cloud mask algorithm including estimating the 159 

background noise level. This is because and taken as the input to the cloud mask 160 

procedure since the SNR satisfies the assumption of a normally distributed noise and in 161 

our method the chance for the a central range gate to be a noise or a potential signal 162 

feature, relies on calculating the probability for a given range of SNR values based 163 

onfollowing the Gaussian distribution. Note that the mean value of the SNR for the 164 

noise power is not zero, but a small negative value of about -0.3. This is because the 165 

mean of the noise power is larger than its the median due to its positive skewed 166 

distribution. It is further noted that for the noise the distribution of SNR and its mean 167 

for the top 30 range gates are the same as those from the lower atmosphere.  168 

 The SNR value is treated as the brightness of a pixel in an image f x, y  in our 169 

hydrometeor detection method. In an image processing, the random noise can be 170 

smoothed out by using a low pass filter, which gives a new value for a pixel of an image 171 

by averaging with neighboring pixels [Tomasi and Manduchi, 1998]. The cloud signals 172 
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are highly correlated in both space and time and have more similar values in near pixels 173 

while the random noise values are not correlated. Therefore, as illustrated in Figure. 2a 174 

shows, a schematic comparison of the original noise, reduced noise and hydrometeor 175 

signal distributions: this the low pass filter can could efficiently reduce the original 176 

radar noise represented by the green line to a narrow bandwidth (blue line) while 177 

keeping the signal preserved. By reducing the standard deviations of noise, which 178 

shrinks the overlap region of signal and noise and enhances their contrast, the weak 179 

signals (yellow area) that cannot be detected based on original noise level may become 180 

distinguished.  181 

Based onFollowing this idea, we develop a non-iterative hydrometeor detection 182 

algorithm by applying a noise reduction and a central pixel weighting schemes. Figure 183 

3 shows the schematic flow diagram of our method. For given mean SNR values (So) 184 

and one standard deviation ( ) of the original background noise, Tthe input SNR data 185 

set is first separated into two groups. One group with values greater than the mean 186 

background noise 3  SNR (So) plus three times of its standard deviation ( ) 187 

are considered as the cloud features that can be confidently identified. Another group 188 

with values between  and 3  may potentially contain moderate (189 

3 ) to weak ( ) cloud signals, which will further go 190 

through a noise reduction process. Here   and   are estimated from the top 30 191 

range gates of each five successive profiles.  192 

    The noise reduction process is mainly performed by convolving radar SNR time-193 

height data with a low pass filter. The Gaussian Filter, which outputs a `weighted 194 



  16

average' of each pixel and its neighborhood with the average weighted more towards 195 

the value of the central pixel ( ), is one of the most common functions of the noise 196 

reduction filter. A 2-D Gaussian distribution kernel, shown in Fig. 2b1, can be expressed 197 

as: 198 

G , exp	        (2) 199 

where i and j are the indexes in a filter window which are 0 for the central pixel, and σ 200 

is standard deviation of the Gaussian distribution for the window size of the kernel. 201 

Equation (2) is used in our study to filter the radar SNR image. Note that the 202 

convolution kernel is truncated at about three standard deviations away from the mean 203 

in order to accurately represent the Gaussian distribution. Figure 1b are the cumulative 204 

distribution functions (CDFs) of clear sky SNR by convolving the same data in Fig. 1a 205 

with four filters that have different kernel sizes (3  3, 5  5, 7  7 and 9  9 pixels) 206 

corresponding to the σ ranging from 0.5 to 2. The original SNR values are distributed 207 

from about -5 to 5. After convolving the image with the Gaussian filter, the SNR 208 

distribution can be constrained to a much narrower range. It is clear that the filter with 209 

a larger kernel size is more effective in suppressing the noise. Shown in Fig. 1c are 210 

results for a cloudy case on January 4th,2014 by applying the filter to the range gates 211 

inside the cloud but adjacent to the boundary, . It is showning that a larger kernel size 212 

shifts the SNR farther away from the noise region. It therefore appears that increasing 213 

the standard deviation (i.e. the window size) continues would reduceing the noise and 214 

increasing enhance the contrast between signal and noise more effectively. At the same 215 

timeOn the other hand, however, a larger kernel can also attenuate or blur the high 216 
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frequency components of an image (e.g., the boundary of clouds) more at the same time. 217 

As shown in Fig. 1d, when the window size is increased from 3 3 (σ=0.5) to 9 9 (σ=2), 218 

the SNR distribution of the range gates that are outside the cloud but adjacent to the 219 

boundary gradually move toward larges larger values. This will consequently raise the 220 

risk of misidentifying cloud boundaries. To solve this problem, a bilateral filtering idea 221 

proposed by Tomasi and Manduchi [1998] is adopted here. Considering a sharp edge 222 

between cloudy and clear region as shown in Fig. 2b2, we define a δ ,  function that 223 

when the central pixel is on the cloudy or clear side, gives a weighting of 1 to the similar 224 

neighboring pixels (i.e. on the same side), and 0 to the other side. After combining this 225 

δ function to the Gaussian kernel in Fig. 2b1, we can get a new non-linear function 226 

called bilateral kernel as shown in Fig. 2b3. It can be written as: 227 

B , exp	 ∙ δ , .       (3) 228 

Thus the bilateral kernel will reduce averaging noises with signals, and vice versa. The 229 

noise-reduced image	 h x, y  is produced by convolving the bilateral kernel with the 230 

original input image x, y  as:  231 

h , k , ∑ ∑ , ∙ ,    (4) 232 

where ±w is the bounds of the finite filter window, k ,   is defined as 233 

1/∑ ∑ ,  which is used to normalize the weighting coefficients. Since 234 

the bilateral kernel function only average the central pixel with neighbors on the same 235 

side (Fig. 2b), ideally it will preserve sharp edges of a target. We will discuss how to 236 

construct the δ function in order to group the central pixel with its neighbors later in 237 

this section. In the noise reduction process, a 5 5 window size (i.e., 25 bins in total) is 238 
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specified for the low pass filter, which is empirically determined by visually comparing 239 

the cloud masks with original images. We should keep in mind that the window size is 240 

compromised since a small window size is less effective in noise reduction but a large 241 

window is not suitable for recognizing weak signals. 242 

For performing the noise reduction with Eq. (4) in a 5x5 filter window, the number 243 

of range bins (Ns) with signal greater than 3  are first counted. These  range 244 

bins are then subtracted from the total 25 of the range bins in the filter window. Note 245 

that a noise reduction is only applied when the central pixel is among the 25-Ns bins, 246 

and the  function is set to be zero for the Ns range bins. If the remaining 25-  range 247 

bins are all noises, the range bin number (Nm) with SNR greater than  should 248 

be about equal to an integral number (Nt) of 0.16 (25- ) where 0.16 is the probability 249 

for a remaining range bin to have a value greater than  for a Gaussian noise. 250 

Thus when  is equal to or smaller than , all the 25-  range bins could only 251 

contain pure noise and/or some weak cloud signals. In this case, the δ function is set 252 

to 1 for all the 25-  bins. When  is found to be larger than , the 25-  range 253 

bins might contain a combination of moderate signal, noise and/or some weak clouds. 254 

In this case,  is selected as a threshold to determine whether the neighboring 255 

pixels are on the same side of the central pixel. If the central pixel has a value greater 256 

than , the δ function is assigned to 1 for the 25-Ns pixels with SNR257 

, but 0 for the neighboring bins with SNR . If the central pixel is less than 258 

, the δ function is assigned to 1 for the neighboring pixels with SNR259 

, but 0 for the 25-Ns bins with SNR .  260 
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After picking out the strong return signals and applying the noise reduction scheme, 261 

the new background noise Sn and its standard deviation  are estimated. While Sn is 262 

the same as So, the  is significantly reduced, which is a half of . This will make 263 

it possible to identify more hydrometeors as exhibited in Fig.2a. We assign different 264 

confidence level values (which is called the mask value in this study) to the following 265 

initial cloud mask according to the SNR. 40 is first assigned to the mask of any range 266 

bins with 3  in the original input data. For the rest of the range bins 267 

after applying the noise reduction, if the 3 , the mask is assigned to be 268 

30; if 2 3 , the mask is 20; if 2 , 269 

the mask is 10; and the remaining range bin mask is assigned to be 0. Thus, a mask 270 

value assigned to a pixel represents the confident level for the pixel to be a feature. 271 

To reduce both false positives (i.e. false detections) and false negatives (i.e. failed 272 

detections), the next step is to estimate whether a range gate contains significant 273 

hydrometeor. Following Clothiaux et al.[2000; 1995] and Marchand et al.[2008], a 5 5 274 

spatial filter is used to calculate the probability of clouds and noise occurring in the 25 275 

range gates. The probability of central pixel weighting scheme proposed by Marchand 276 

et al. [2008] is adopted here, and the weighting for the central pixel is assigned 277 

according to its initial mask value. The probability is calculated by  278 

0.16 0.84   (5) 279 

where  is the number of masks with zero masks values,  is the number of masks 280 

with non-zeros mask values and 25; G(L) is the weighting probability of 281 

the central pixel that could be a false detection at a given where L is the significant level 282 



  20

of L (i.e., mask value) in the initial cloud mask. Here [G(0)=0.84, G(10)=0.16, 283 

G(20)=0.028, G(≥30)=0.002]. If p estimated from Eq. (5) is less than a given threshold 284 

( ), then the central pixel is likely to be a hydrometeor signal. The cloud mask 285 

value in the cloud mask will be set to be the same value as in the initial mask if it is 286 

non-zero; otherwise it will be set to 10. Likewise, if p , then the central pixel 287 

is likely to be noise and the mask value will be set to 0. This process is iterated 5 times 288 

for each pixel to obtain the final cloud mask. 289 

Following Marchand et al. [2008] who well explained the logic of choosing a proper 290 

threshold, pthresh is calculated as  291 

0.16 0.84   (6) 292 

Note that a smaller pthresh will keep the false positives lower but increase the false 293 

negative. Herein we adopt the pthresh of 5.0×10-12 used in Clothiaux et al.[2000], which 294 

is approximately equivalent to Nthresh = 13, is selected. 295 

   Figure 4 illustrate the main steps of our detection method by using the data from 296 

January 8th, 2014. Figure 4a is the original SNR input. Figure 4b shows the SNR 297 

distribution after the noise reduction process. One can see that the SNR after beingis  298 

compressed to a narrow range and, becomes much smoother than original input. after 299 

the noise reduction process. This step significantly increases the contrast between signal 300 

and noise.  Figure 4c indicates the range gates that potentially contain hydrometeors 301 

in the initial cloud mask.  Figure 4d is the final result by applying the spatial filter. 302 

4. Results 303 

4.1 Detection test 304 
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To test the performance of our hydrometeor detection method, we create 7 squares 305 

of SNR with sides of 100, 50, 25, 15, 10, 5, and 3 bins to mimic the radar “time-height” 306 

observations as shown in Fig. 5. The background noise is randomly given by a Gaussian 307 

distribution with a mean  and a standard deviation σ . The targets in panels a1, a2 308 

and a3 are set with different SNR values to represent situations in which clouds have 309 

strong, moderate and weak signals, respectively. In panel a1, the targets signals are set 310 

to be 10 . In panel a2, the targets signals distribute from  to 3  311 

with a mean value of 2 . In panel a3, the targets SNRs range from  to 312 

 with a mean value of 0.5 .  313 

The three middle panels in Fig. 5 show the results after applying the noise reduction. 314 

Again, Ccomparing with the input signals, we can see that the background noise is well 315 

compressed and becomes more smoothsmoother. The shapes of the square targets are 316 

all well maintained with sharp boundaries for strong and moderate signals (see Fig.5 317 

panels b1 and b2). In panel Fig.5 b33 for weak signals, the 3-bin square target is not 318 

obvious while the other 6 squares are still distinguishable. To separate the compressed 319 

background noise from hydrometeor signals, the 5 5 spatial filter is further applied to 320 

the noise-reduced data.   The three right panels in Fig.5 show the final mask results. 321 

Generally, the hydrometeor detection method can identify those targets well. Six of the 322 

seven square targets can be identified for clouds with strong and moderate SNR. The 323 

3 3 square is missed because the small targets cannot be resolved by the 5 5 spatial 324 

filter. Since the temporal resolution of KAZR is about 4 seconds, we expect that a cloud 325 

only having 3 bins in horizontal would be rare. For the targets with weak SNR values, 326 
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the 3  3 and 5  5 square targets are missed, but the rest five square targets are 327 

successfully distinguished and their boundaries are well maintained.  328 

To further demonstrate the performance of our method to for detecting the 329 

hypothetical clouds in Fig.5 a1, a2, and a3, the false and failed detection rates are listed 330 

in the table 1. For strong signals, no background noise pixel is misidentified as one 331 

containing hydrometeors at level 40. Although at levels less than 40, some noise pixels 332 

around the edges of targets are identified as signals, the false detection is within 0.05%. 333 

The failed detection rate is about 0.24%. For moderate signals, the failed detection rate 334 

is still as small as 0.23%, while the false detection increases a little to 0.10% at the 335 

confidence levels below 30. The failed detection can reach up to 9.77% for weak signal 336 

at level 10, but more than 90% weak signals can be captured in our method. Note that 337 

the false positive is less than 0.01%; in other words, any range gate that is detected 338 

likely as a signal bin will have extremely high likelihood to contain hydrometeors. 339 

The simple square clouds are also tested by using the ARM operational hydrometeor 340 

detection algorithm developed for the MMCRs [Clothiaux et al., 2000; 1995] that 341 

which does not include the noise reduction and weighting schemes. As can be seen in 342 

Fig. 6, thise ARM operational algorithm can only find five of the seven square targets 343 

with strong and moderate SNR. Meanwhile without central pixel weighting, the corners 344 

of the targets become rounded and more than 2.23% of hydrometeors are missed for 345 

strong and moderate cloud cases. Without the noise reductionMore importantly, none 346 

of the weak cloud signals can be detected. Comparing Fig.5 and Fig.6, it is obvious that 347 

our hydrometeor detection method can well maintain the cloud boundary, keep both 348 
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false and failed detection rate as low as a few percent for strong and moderate cloud 349 

cases, and has a remarkable advantage in recognizing weak signals.  350 

It is noted that the ARM program has recently developed a new operational cloud 351 

mask algorithm for the KAZRs by applying the Hildebrand and Sekhon [1974] 352 

technique to determine the SNR values along with the spatial filter (Karen Johnson, 353 

personal communication, 2017). It is our future research task to compare our algorithm 354 

with the ARM’s new operational algorithm. 355 

4.2 Application to the SACOL KAZR observations 356 

Our hydrometeor detection method was then applied to the winter and summer 357 

months (Dec. in 2013, Jan., Feb., Jun., Jul. and Aug. in 2014) KAZR data at the SACOL. 358 

A micropulse lidar (MPL) transmitted at 527 nm is operated nearby the KAZR. Lidar 359 

is more sensitive to thin cirrus clouds and thus used to assess the performance of our 360 

algorithm. Figure 7 a, b & c show an one-day example of radar reflectivity, normalized 361 

backscatter and depolarization ratio of lidar, respectively. The cloud masks from our 362 

detection method and the ARM operational MMCR method without the noise reduction 363 

and the central pixel weighting are shown in Fig. 7d&e. The MPL feature mask is 364 

derived by modifying the method proposed developed in Thorsen et al. [2015] and 365 

Thorsen and Fu [2015] (seeis shown in Fig. 7f). The vertical and horizontal resolutions 366 

of the radar and lidar are different, and we map the observed data and derived feature 367 

mask on the same height and time coordinates for a simplethe purpose of a comparison. 368 

A distinct thin feature layer appears at about 8 km during 1500 to 1830 UTC form the 369 

lidar observation which is clearly identified as a cirrus cloud using the depolarization 370 
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ratio. The contrast between the cirrus layer and background from the KAZR observation 371 

(Fig. 7a) is very weak, and only a few range gates are identified as the ones containing 372 

hydrometeors using the method without the noise reduction and weighting (Fig. 7d). 373 

However, our cloud mask method can find more range gates (about 2.8 times of ARM’s 374 

result). All these increased range bins from our method are also detected as thin cirrus 375 

by the MPL (Fig. 7f). Another apparent discrepancy exists in the low atmosphere layer. 376 

A non-negligible number of range gates at about 2 km are recognized as hydrometeor 377 

echoes by our method but mostly missed by former technique. This feature layer is also 378 

apparent in lidar observations with both relative large backscatter intensities and 379 

depolarization ratios(Fig. 7b&c). MPL recognizes this feature as an aerosol layer. In 380 

From our KAZR observations, we did find some dust events that were detected by this 381 

millimeter wavelength radar (see the auxiliary Fig.1). Those hydrometeor feature 382 

echoes detected by our method might partly be caused by large dust particles. Although 383 

the dust is not desired for cloud mask, the appearance of those particles dose prove the 384 

ability of our method on recognizing weak signals. 385 

The upper two panels in Fig. 8 compares the number of occurrences of the detected 386 

hydrometeor range bins from our new methods with that from the ARM operational 387 

MMCR algorithm for the six months of data. Generally, one can see that the variations 388 

of the identified hydrometeor numbers with height from the two techniques are in a 389 

good agreement. The distinct discrepancies appear at about 2 km in Winter and above 390 

13 km in Summer where our method apparently identify more hydrometeors. To 391 

illustrate the improvements of our method and quantitatively evaluate the two schemes 392 
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used in the algorithm, we plot the percent change of the detected hydrometeor bins form 393 

our method comparing with that from the ARM MMCR operational method in the 394 

lower two panels in Fig. 8. As expected from the results in the test square clouds, our 395 

method can identify more signals. The remarkable feature is that the increased 396 

percentage is over 20% at high altitude, indicating that our method can recognize more 397 

cirrus clouds. The increased percentage of hydrometeor derived only with the weighting 398 

scheme (dashed line) and with both the noise reduction and weighting schemes (solid 399 

line) are separated to demonstrates the individual contribution of the scheme to the 400 

improvement of our method. In winter ,winter, the number of the detected hydrometeors 401 

only with the weighting scheme is almost the same as that from the ARM operational 402 

method at layer from 3.5 to 9 km AGL, while this number will increase by about 5% if 403 

the noise reduction scheme is involved, indicating that some hydrometeors with weak 404 

SNR values may exit in this layer. Above and below this atmospheric layer, the 405 

increased percentage is largely determined by the weighting scheme. In summer, the 406 

two lines almost overlap each other between 3.5 and 9.5 km with values below 5%, 407 

revealing that the bins found by our method in the middle atmospheric layer are mainly 408 

around the boundaries of clouds. We may infer that in summer season, clouds in middle 409 

level are usually composed of large droplets with strong SNR values. The two lines are 410 

gradually apart with height. This is because hydrometeors in the upper of troposphere 411 

are usually with have smaller size and that causes weak SNR values, whichthat will be 412 

effectively detected by the noise reduction scheme. Note that the confusion matrix 413 

shows that the cancellation errors can be negligible.  414 
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We also analyzed the data in January July, 2014 when both KAZR and MPL 415 

observations are available, and compared our KAZR cloud mask with MPL feature 416 

detection. Figure 9a and showsed the percentage of the increased detections identified 417 

by both KAZR with our method and MPL observations as compared normalized to the 418 

KAZR total increased detections in Fig. 9. Here we should point out that MPL has a 419 

difficulty to distinguish dust from clouds (especially cirrus clouds). Unfortunately, 420 

there exist large amount of dust aerosols over the SACOL region. We visually looked 421 

at many cases and found many MPL signals, which should be clouds, are misidentified 422 

as aerosols. For this reason, we compare the KAZR increased detections with the 423 

features (i.e. cloud and aerosol) detected by MPL above 3 km. It is obviously that most 424 

of themore than 90% of increased detections are also detected as features by MPL. 425 

Below 3 km, we calculated the percentage by comparing the KAZR detections only 426 

with the cloud pixels detected by MPL, since aerosol is always present in the lowest 427 

several kilometers. To test whether those increased detections, which are not identified 428 

as cloud by MPL under 3 km, are signal or noise, we examined the PDFs of MPL 429 

normalized aerosol backscatter and depolarization corresponding to the KAZR 430 

increased feature and KAZR noise regions in Figure 10a & 10b. The PDFs of MPL 431 

backscatter for the KAZR feature and noise regions are quite different (Fig.10a) with 432 

the mean backscatter of 0.15 for feature and 0.10 	 /433 

	  for noise. The mean of the MPL depolarization ratio is 0.16 for feature and 434 

0.12 for noise although the PDFs are more similar (Fig.10b), because dust is the main 435 

aerosol type over this region. We also plot the PDFs of KAZR SNR and LDR for its 436 



  27

feature and noise pixels (Figs. 10c and 10d), which are Gaussian-like for noise pixels, 437 

very different from those for the increased detections. Table 2 shows the mean values 438 

of the four quantities shown in Fig.10. All the differences of these mean values between 439 

KAZR noise and increased feature regions pass the significant test at 95% confidence 440 

level except for the MPL depolarization ratio. These increased features from our feature 441 

mask could thus be dust (and/or some plankton) but not the false positive. Figure 9b 442 

shows the profile of false negative (i.e. the percentage of the cloud pixels identified by 443 

MPL but not by KAZR in the total MPL detected cloud pixels). We can see that our 444 

method with the noise reduction has relative smaller false negatives especially in the 445 

layers under 3 km and between 7 and 10 km. Table 3 is the confusion matrix of the 446 

KAZR feature mask results from both our and old methods estimated by MPL cloud 447 

feature. Overall, 70.7% cloud mask identified by MPL also recognized by the new 448 

method, while this percent is 68.9% for the algorithm without noise reduction. The 449 

difference of false positive between the two methods is only 0.1% as shown in table 3. 450 

These numbers dose show an improvement of our method on recognize weak signals 451 

by comparing with the results from the ARM MMCR method, however, they can not 452 

be used to assess the accuracy of our method due to the MPL feature detection issue. 453 

The percentage drops to a minimum of 70% at about 9 km, where the total increased 454 

cloud range bins are only about 110 and there are 35 range bins that are identified by 455 

our method not observed by MPL. Considering all the increased detections by our 456 

method, 98.6% of them are confirmed by MPL as features.  457 

5. Summary and Discussion 458 
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Based on image noise reduction technique, we propose a new modified method to 459 

detect hydrometeors from cloud radar return signals. The basic idea is to treat the SNR 460 

value of each range gate as a pixel brightness and suppress the SNR distributions of 461 

noise to a narrow range by convolving with a 2-D bilateral kernel which can effectively 462 

avoid blurring the high frequency components (i.e. boundaries of a target).  After the 463 

noise smoothing process, a special filter with central-pixel weighting scheme is used to 464 

get obtain the final cloud mask. The detection of the test square clouds shows that there 465 

are two remarkable advantages of our method: . First the noise reduction scheme of our 466 

algorithm can enhance the contrast between signal and noise, while keeping the cloud 467 

boundaries preserved and detecting more hydrometeors with weak SNR values. Second 468 

both false positive and failed negative rates for strong and moderate clouds can be 469 

reduced to acceptably small values. A comparison of radar and lidar observed 470 

caseations further highlight the advantage of our method on recognizing weak cloud 471 

signal in application.    472 
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Cloud Type 
Performance 

(%) 

Cloud Mask Confidence Level 

10 20 30 40 

Strong  
False positive 0.048  0.044  0.009  0 

Failed negative 0.244  0.244  0.244  0.244 

Moderate 
False positive 0.103  0.103  0.063  0 

Failed negative 0.229  0.229  0.229  100 

Weak 
False positive 0.007  0.006  0.003  0 

Failed negative 9.774  96.788  100 100 

Table 1. Summary of false positives and failed negatives for hypothetical strong, 631 

moderate and weak cloud cases in Fig.4 a1, a2, and a3, respectively.  632 
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 increased KAZR feature KAZA noise  

MPL backscatter 0.15 0.10 

MPL depolarization ratio 0.16 0.12 

KAZR SNR 3.9 0.1 

KAZR LDR -3.0 -0.4 

Table 2. Mean values of four quantities for KAZR increased feature and noise pixels 633 
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 our method MMCR method 

True Positive 70.7% 68.9% 

True Negative 95.4% 95.5% 

False Positive 4.6% 4.5% 

False Negative 29.3% 31.1% 

Table 3. Confusion matrix of KAZR mask results from our method and the ARM 634 

MMCR algorithm estimated by MPL observations. 635 
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Figure 1. (a) Probability distribution function (PDF) of the noise power and SNR from 636 

the KAZR observations in a clear day of January 21, 2014. (b) Cumulative distribution 637 

function (CDF) of original and convolved SNR for the noise from the clear day. (c) and 638 

(d) CDF of original and convolved SNR from a cloudy case of January 4, 2014 for 639 

range gates inside and outside the cloud adjacent to the cloud boundary, respectively. 640 

The converted SNR is obtained by using a 2-D Gaussion distribution kernel (Eq. 2).641 
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Figure 2. (a) comparison of original noise, reduced noise and hydrometeor signal 642 

distributions. 	   and    are one standard deviation of the original and reduced 643 

background noise, respectively. (b) Illustration of the bilateral filtering process. (b1) 644 

Gaussian kernel distribution in space. (b2) δ  function. (b3) Bilateral kernel by 645 

combining Gaussian kernel with δ function. 646 

647 
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Figure 3. Schematic flow diagram for hydrometeor detection method.  and  are 648 

the mean SNR for the original and reduced noise, respectively.   649 
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Figure 4. Illustration of the steps of the detection method using the real data of January 650 

8th, 2014.  651 
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Figure 5. Panels a1, a2 and a3 are three “square clouds” that have strong, moderate and 652 

weak SNR values with random Gaussian noise used to test the detection method. Panels 653 

b1, b2 and b3 are SNR distributions after convolving the data with a bilateral kernel. 654 

Panels c1, c2 and c3 are the final cloud mask filtered by the spatial filter.  655 
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Figure 6. Cloud mask without applying noise reduction and central pixel weighting. (a), 656 

(b), (c) are for the targets with strong, moderate and weak SNR, respectively, from Fig. 657 

4 a1, a2, and a3.  658 
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Figure 7．One-day example of radar- and lidar-observed cirrus cloud at the SACOL on 659 

January 8, 2014. (a) KAZR reflectivity. (b) MPL normalized backscatter intensity 660 

(c)MPL Depolarization Ration (d) radar cloud mask derived by the ARM operational 661 

MMCR algorithm. (e) radar cloud mask derived by our new method. (f) MPL feature 662 

mask. Three windows in (d), (e), (f) show the zoom-in views of cirrus masks.   663 
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Figure 8 ． The upper panel shows the number of occurrences of the detected 664 

hydrometeor range bins from the two methods with the confusion matrix. The solid line 665 

is the number of range gates represents the results derived from our new method. The 666 

dot line represents the range gate number that are detected as signals by both methods. 667 

The dashed line is the number of range gates detected as noise by our method but signal 668 

byfrom the ARM MMCR algorithm. The dot-dash line is the increased range gates from 669 

our method. The lower two panels demonstrate the increased percentage of 670 

hydrometeor bins from our new method comparing to the ARM MMCR 671 

algorithmARM operational method. The solid line is calculated by applying both noise 672 

reduction and central-pixel weighting schemes, while the dashed line is calculated by 673 

only applying the central-pixel weighting scheme in our detection method. 674 

675 
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Figure 9. (a) A comparison of the increased detections with the MPL observations. (b) 676 

The percentage of the cloud pixels identified by MPL but not by KAZR in the total 677 

MPL detected cloud pixels. The solid line in Fig.9a is the percentage of increased 678 

detections seen by both KAZR with our method and MPL as compared with the total 679 

increased detections. The dot dash line in Fig.9a is the number of increased detections. 680 

The solid lines in Fig. 9b represents for the algorithm with noise reduction step. The 681 

dash line in Fig. 9b is for the method without noise reduction scheme. 682 
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Figure 10. PDF of (a) MPL Backscatter, (b) MPL depolarization Ratio, (c) KAZR SNR 683 

and (d) KAZR LDR for the KAZR increased detections (solid line) and KAZR noise 684 

(dashed line) pixels.  685 
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Auxiliary Figure 1. KAZR reflectivity A dust event observed on January 29th, 2014 at 686 

the SACOL, indicating a dust event. The morphology and power level of the return 687 

signal is apparent not for a cloud from the surface to the height of 5 km between 0800 688 

to 1600 UTC. 689 


