Supplementary material to

5

10

Diurnal fluxes of HONO above a crop rotation

Sebastian Laufs¹, Mathieu Cazaunau^{2,3}, Patrick Stella^{4,5}, Ralf Kurtenbach¹, Pierre Cellier⁴, Abdelwahid Mellouki², Benjamin Loubet⁴ and Jörg Kleffmann¹

Calculations of the scalar flux by the aerodynamic gradient method

For unstable conditions, the stability integrated function Ψ was calculated as in Webb (1970) or Paulson (1970):

$$\Psi_{(z-d)/L} = -5.2 \cdot \frac{(z-d)}{L} \tag{S1}.$$

For unstable conditions, it was calculated:

$$\Psi_{(z-d)/L} = 2 \cdot ln \left[1 + \sqrt{1 - 16 \cdot \frac{(z-d)}{L}} \right]$$
 (S2).

The flux of a scalar is given by:

$$F = -u_* \cdot \chi_* \tag{S3}.$$

By replacing χ_* by its expression in equation (1), one gets:

$$F = -u_* \cdot \frac{\kappa \cdot (z-d)}{\varphi_{(z-d)/L}} \cdot \frac{\partial \chi}{\partial z}$$
(S4).

15 Knowing that Ψ is the integral of φ and noticing the following equality:

$$\frac{\partial z}{\partial [\ln(z-d) - \Psi_{(z-d)/L}]} = \frac{(z-d)}{\varphi_{(z-d)/L}}$$
(S5),

leads to the expression for the flux given in equation (2):

$$F = -\kappa \cdot u_* \cdot \frac{\partial \chi}{\partial [\ln(z-d) - \Psi_{(z-d)/L}]}$$
(S6).

Hence, the slope of χ against the stability corrected logarithmic height, $\ln(z-d) - \Psi_{(z-d)/L}$, multiplied by

20 $-\kappa \cdot u_*$ gives a direct estimate of the flux by the aerodynamic gradient method.

References supplement:

Paulson, C. A.: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteorol., 9, 857-861, 1970.

Webb, E. K.: Profile relationships. Log-linear range, and extension to strong stability, Quart. J. Roy. Meteorol.Soc., 96, 67-90, 1970.