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Abstract. Airborne particles or aerosols have long been recognized for their major contribution to uncertainty in climate

change. In addition, aerosol amounts must be known for accurate atmospheric correction of remotely sensed images, and are

required to accurately gauge the available solar resource. However, despite great advances in surface networks and satellite

retrievals over recent years, long-term continental-scale aerosol data sets are lacking. Here we present an aerosol assessment

over Australia based on combined sun photometer measurements from the Bureau of Meteorology Radiation Network and5

CSIRO/AeroSpan. The measurements are continental in coverage, comprising 22 stations, and generally decadal in time-scale,

totalling 207 station-years. Monthly climatologies are given at all stations. Spectral decomposition shows that the time series

can be represented as a weighted sum of sinusoids with periods of 12, 6 and 4 months, corresponding to the annual cycle and its

second and third harmonics. Their relative amplitudes and phase relationships lead to sawtooth-like waveforms sharply rising

to an austral spring peak, with a slower decline often including a secondary peak during the summer. The amplitude and phase10

of these periodic components show significant regional change across the continent. Fits based on this harmonic analysis are

used to separate the periodic and episodic components of the aerosol time series. An exploratory classification of the aerosol

types is undertaken based on (a) the relative periodic amplitudes of the Ångström exponent and aerosol optical depth; (b)

the relative amplitudes of the 6 and 4-month harmonic components of the aerosol optical depth, and (c) the ratio of episodic

to periodic variation in aerosol optical depth. It is shown that Australian aerosol can be broadly grouped into three classes:15

Tropical, Arid and Temperate. Statistically significant decadal trends are found at 4 of the 22 stations. Despite the apparently

small associated declining trends in mid-visible aerosol optical depth of between 0.001 to 0.002 per year, these trends are much

larger than those projected to occur due to declining emissions of anthropogenic aerosols from the northern hemisphere. There

is remarkable long-range coherence in the aerosol cycle across the continent, suggesting broadly similar source characteristics,

including a possible role for inter-continental transport of biomass burning aerosol.20
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1 Introduction

Suspended atmospheric particles or aerosols are extensively studied because of their multiple environmental roles, and because

- unlike well-mixed gases - their concentration and properties vary widely over space and time. Aerosols adversely affect human

health (particularly in urban areas), and exert a further range of impacts due to their modulation of electromagnetic radiation

within the atmosphere. Scattering and absorption by aerosol remains a major source of uncertainty in climate projections5

(Boucher et al., 2013), while satellite images of the Earth’s surface require correction for aerosol effects. In addition, aerosol

data are also required for the accurate assessment and forecasting of available solar energy (e.g., Perry and Troccoli, 2015).

Major enhancements in surface networks and satellite retrievals over the last 15 years have radically boosted knowledge of

global aerosol. In particular, surface networks including AERONET (Holben et al., 1998), SKYNET (Nakajima et al., 2007;

Hashimoto et al., 2012) and GAW/PFR (WMO, 2005) have provided regional aerosol climatologies and supported process10

studies (e.g., Eck et al., 2008), while several major satellite programs have championed the characterization of aerosols from

orbit. Of note in this respect are NASA’s flagship EOS A-train instruments MODIS (Levy et al., 2010), MISR (Martonchik

et al., 2009) and CALIPSO (Young et al., 2013). In addition, the ATSR series of instruments operated by ESA has made

a significant contribution to satellite aerosol measurement from space, particularly the AATSR instrument launched on the

ENVISAT platform in March 2002 (Grey and North, 2009; Qin et al., 2015). However, retrieval of aerosol from satellites15

remains challenging (Mishchenko et al., 2009), and requires ongoing availability of validation data from surface networks.

In addition to these more recent sensors, the 30-year record available from the NOAA/AVHRR series is proving valuable, as

shown by the recent examination of the aerosol indirect effect of maritime aerosol on cloud properties (Zhao et al., 2016).

Since aerosol emission is highly correlated with human population and land mass, there has been a striking northern-

hemisphere bias in aerosol characterisation efforts to date. However, there is a growing need for improved characterisation20

of southern hemisphere aerosol. In particular, with lower levels of anthropogenic aerosol (AA), the southern hemisphere is

on average less subject to ‘masking’ of the greenhouse warming than the northern hemisphere (Rotstayn et al., 2013). Conse-

quently, low AA regions including Australia experience the greenhouse gas component of warming with less moderation from

aerosol radiative forcing, to a degree dependent on improved knowledge of Australian natural aerosol. Rotstayn et al. (2013)

sought to quantify the unmasking implied by projected future decreases in AA, and their findings will be further considered25

below. Furthermore, recently Stephens et al. (2015) showed that the contribution of each hemisphere to the planetary albedo

averaged over the last 13 years has been in near-perfect balance, with the increased reflection from northern hemisphere land

exactly balanced by increased atmospheric scattering in the southern hemisphere. While the full ramifications of this finding

are yet to be fully explored, there is a pressing need to better characterise southern hemisphere aerosol emissions.

Australia is the largest dust source in the southern hemisphere (Tanaka and Chiba, 2006) and is a significant source of smoke30

aerosol from savanna burning (Mitchell et al., 2013). Hence it is clear that Australia’s aerosol emissions make up a significant

fraction of the southern hemisphere total. Since aerosol contributes to the planetary albedo both directly, and indirectly through

the modulation of cloud properties, the need for improved continental-scale characterisation of Australian aerosol is clear.
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Studies of Australian aerosol to date have often been restricted in time and space. While coastal maritime aerosol has been

extensively studied (Gras and Ayers, 1983; Gras, 1991), studies of the continental aerosol are more restricted. Thus Scott et al.

(1992) characterised the aerosol cycle caused by seasonal biomass burning at Broome in the tropical north west of Australia in

the late 1980s, with more extended analysis of regional tropical aerosol carried out by Mitchell et al. (2013); see also references

cited therein, including Bouya et al. (2010). Studies of the smoke from Eucalypt fires in southern temperate forests are few in5

number, but include Mitchell et al. (2006) and Radhi et al. (2006).

Australian dust emission has been well-studied from a geomorphological perspective (e.g., Leys et al., 2008; Bullard et al.,

2008) but less so via sun photometry, where the measurand – column aerosol optical depth – is the required input for climate

and remote sensing studies. However, Mitchell et al. (2010) analysed sun photometer and nephelometer measurements from

Tinga Tingana in the Australian arid zone during the Millennium drought (2002-2010) and found an approximate doubling in10

both column and near-surface aerosol during the austral summer over the duration of the drought. Feedbacks related to dust

aerosol were modelled by Rotstayn et al. (2012), who found that inclusion of interactive dust in the model amplifies the impact

of the ENSO cycle on Australian climate.

While satellite retrieval of aerosol over Australia is promising in terms of the extensive areal and temporal coverage available

over a sparsely-populated continent, the dense-dark vegetation (DDV) assumption inherent in the MODIS aerosol retrieval15

algorithm does not apply well over most of Australia (Levy et al., 2010; Gillingham et al., 2012). Problems in other sensors

and retrieval methods are discussed by Qin et al. (2015), who show that the dual-view scan geometry of the AATSR instrument

offers particular advantages under Australian conditions. However, the ongoing need for validation data from surface networks

is universal.

Trends in aerosol loading over the period 1995–2009 were recently compiled by Yoon et al. (2016) at 15 AERONET stations.20

They showed that fine-mode anthropogenic aerosol is decreasing over those countries with strict environmental regulations,

and vice-versa. Coarse-mode dominant aerosol depends strongly on meteorological conditions subject to climate change, with

stations close to regions of increasing desertification showing a significant increase in coarse-mode dominant aerosol.

In this paper we present a continent-wide climatology of Australian aerosol obtained at 22 stations, spanning all mainland

states, and comprising a total of 207 station-years. The stations are operated by two agencies, the Australian Bureau of Mete-25

orology, and the Commonwealth Scientific and Industrial Research Organization (CSIRO). The CSIRO stations are affiliated

with NASA’s worldwide AERONET sun photometer system, as further described below. Section 2 describes the two measure-

ment systems and the data processing applied to each. The result of this step is a time series of multi-spectral monthly mean

aerosol optical depth. Section 3 describes the common analysis applied to these time series. Section 4 presents a discussion

of the results, with conclusions given in Section 5. The Appendix presents the monthly aerosol climatology at each of the 2230

stations in tabular form.
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2 Observations

This study is based on aerosol measurements obtained at 22 stations across the Australian continent between July 1997 and June

2015. The details of the 22 stations are given in Table 1. The columns headed ‘First’ and ‘Last’ denote the extremities of the

data record for a given station, but not its continuity. The right-hand column labelled ‘Months’ gives the number of months for

which sufficient observations were made to generate a valid monthly mean. A given month is deemed to have a valid monthly5

mean based on (a) the number of days in the month on which there were sufficient (≥8) point measurements of aerosol optical

depth to report a daily mean (NumDayOK), and the total number of point aerosol optical depth measurements in the month

(NumObsMonth). The criterion applied in this study was either (NumDayOK≥8 & NumObsOK>300) or (NumDayOK≥6 &

NumObsOK>600). The extent of spatial and temporal coverage is displayed in Figure 1, where the radius of the filled circles

indicate the number of months reported by each station. The stations are listed in latitudinal order, starting in the tropics.10

The measurements were obtained from sun photometers operated by the Bureau of Meteorology (abbreviated as ‘Bureau’

in Table 1 and later in the text) and CSIRO. The Bureau of Meteorology uses Middleton Solar SPO2 4-channel radiometers,

with initially one and currently two radiometers at each site including nominal wavelengths of 368, 412, 500, 610, 778, 812

and 868 nm. The 500 nm channel is common to all radiometers and aids in cross calibration. The 610 nm channel is used with

the 500 and 778 nm to provide an initial estimate of total column ozone, and the 812 nm channel is used to determine column15

water vapour. The FWHM for the filters is typically 10 nm, and an additional infrared blocking filter is used for the 368 nm

channel to eliminate any infrared transmission given the low spectral irradiance at 368 nm.

The sun photometers operated by CSIRO are Cimel CE-318. The network is collectively known as AeroSpan (Aerosol

characterisation via Sun Photometry: Australian Network) which forms the Australian component of AERONET, a worldwide

sun photometer network operated by NASA (Holben et al., 1998), with contributing sub-networks from several countries20

outside the USA. The spectral channels used on the Cimel instrument have become standardized, and now include 340, 380,

440, 500, 670, 870, 1020 and 1640 nm, with a further channel at 936 nm yielding information on water vapour absorption. The

channels between 340 and 1020 nm employ a silicon detector, while the 1640 nm channel uses an Indium gallium arsenide

(InGaAs) detector. FWHM was likewise 10 nm for all channels.

Calibration of sun photometers refers to methods used to determine the exoatmospheric response of the instrument to the25

solar irradiance in a given spectral channel. This is a crucial procedure since once complete, the ratio between the actual

instrument response and the exoatmospheric response gives the total atmospheric extinction, from which the aerosol extinction

can be derived given knowledge of the gaseous absorption and scattering.

The use of different radiometers, wavelengths, and sampling strategies by the two networks introduces traceability issues

when amalgamating the data series. In principle, the same calibration methodologies are used for in situ calibration as de-30

scribed in a detailed inter-calibration study of the two systems by Mitchell and Forgan (2003) at the Alice Springs station in

2000. The central result of the study was that the aerosol optical depths agreed to within 0.007 at the 95% confidence level for

the two common wavelengths 500 nm and 868 nm. This well within the WMO (2005) requirement, and Bureau participation in

the four WMO Filter Radiometer Comparisons held at the World Radiation Center in Davos, Switzerland, every 5 years begin-
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ning in 2000, confirm the Bureau of Meteorology methodologies produce aerosol optical depth within the WMO uncertainty

requirement.

Both networks utilise a combination of Langley methods to find a reference wavelength calibration and then apply the

General Method developed by Forgan (1994) to calibrate the other wavelength channels (excluding the channels affected by

water vapour). The General Method assumes the stability of the relative aerosol size distribution - but not the magnitude of the5

optical depth - throughout a morning or afternoon, and uses the reference wavelength aerosol optical thickness as the predictor

for the least squares solution of the wavelength calibration value at the top of the atmosphere. As a Langley-type method

involves an interpolation to the top of the atmosphere in real atmospheric conditions the selection of points not impacted

by water or ice particles is key to the uncertainty of the top of atmosphere value. The two networks use different sampling

strategies and methods to select points for the calibration process. The operational measurements are used to provide the10

in-situ calibrations.

The Bureau of Meteorology radiometers are co-located at solar and terrestrial irradiance stations that utilise the WMO

Global Climate Observing System (or Baseline Surface Radiation Network) solar monitoring methodologies (Ohmura et al.,

1998). The solar trackers employ active tracking sensors that mimic a 868 nm radiometer but with a wide field of view, and

sample at 1 Hz. The standard deviation of the active tracking sensor is recorded every minute with the 0.12 s samples from the15

SPO2 radiometers. If the active sensor was not available the standard deviation of the direct irradiance from a pyrheliometer

is used as an equivalent indicator of variability in the minute prior to the SPO2 measurement. The first pass of the selection

process of data to use for SPO2 calibration is to eliminate the near zero SPO2 signals that are less than 5 times the measurement

resolution (typically 0.005 V), and those periods when the standard deviation of the active sensor signal is more than 0.005 V.

As the 868 nm active sensor signals in clear sun in typical Australian conditions is within 25% of the solar noon value for20

aerosol air masses less than 6, use of a fixed standard deviation is sufficient. The remaining data for each wavelength are then

subject to the Harrison and Michalsky (1994) algorithm. If sufficient data remain, namely at least 30 points for aerosol air

masses less than 6 and greater than 2, the calibration process is applied and the result recorded.

The AeroSpan measurements are based on a ‘triplet’ of the routine measurements obtained 30 s apart, spanning a minute.

The standard deviation among the three measurements comprising the triplet is used for analogous filtering, as described in25

more detail by Mitchell and Forgan (2003).

For both networks, determinations of the natural logarithm of the top of atmosphere signal (lnV0) at 1 AU earth-sun distance

are compiled during the deployment period, which may range from months to over a year. The time series of the lnV0 is then

used to derive the time dependence of the lnV0 through linear interpolation using a single slope where possible, or a series of

linear functions if the calibration is changing in a non-linear manner. For some wavelengths of some radiometers the non-linear30

changes were rapid and difficult to model; these periods have been eliminated from the data analysis. The calibration functions

for each wavelength providing a top of atmosphere value for each day are used in the derivation of optical depth for the entire

measurement data set, not just the points selected for the calibration process.

Determination of aerosol optical depth requires subtraction of all relevant molecular extinction. For the present ‘aerosol’

channels (i.e., not including the 812/936 nm water vapour channels), these are nitrogen dioxide and ozone. The correction for35
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NO2 is small (typically <0.002 at 380-440 nm and <0.001 at 500 nm (Mitchell and Forgan, 2003) and was excluded from

the present analysis; however ozone absorption is more significant. The total column ozone determined from the Total Ozone

Monitoring Satellite (TOMS) measurements was used in this analysis. In particular, TOMS-EP (Earth Probe) was used from

1996 to September 2004, while TOMS-OMI (Ozone Monitoring Instrument) was used from October 2004 to present. Currently,

OMI Satellite Level 3e daily averaged ozone data gridded at 0.25◦x 0.25◦ are obtained from the NASA Goddard Earth Sciences5

Data and Information Services Center Website. The ozone value used was based on the satellite data point nearest to the station

coordinates.

For the elimination of cloud-affected aerosol optical depth measurements the two networks use different methods. In

AeroSpan the filtering is similar to that described by Smirnov et al. (2000) used by AERONET. This first evaluates the short-

term temporal variation based on triplets, then applies a further test based on the daily standard deviation of the aerosol optical10

depth. For the Bureau data the method of Alexandrov et al. (2004) is used after the elimination of signals less than 5 times

the measurement resolution. This applies a moving temporal window of 15 minutes in span across a time series examining the

variance in the initial estimate of the aerosol component of the optical depth.

2.1 Calculation of Ångström exponent

The Ångström exponent α captures the spectral slope of the aerosol optical depth, and is defined as15

α=− ln(τ2/τ1)

ln(λ2/λ1)
(1)

where τ is the spectral aerosol optical depth, and α is defined across the wavelength range (λ1-λ2). For the AeroSpan stations,

the Ångström exponent was defined using the wavelength pair (440-870 nm), in part because these channels have always

been present on the CE-318 instruments. For the Bureau stations, the Ångström exponents were calculated using the 500 nm

wavelength and the 868 or 870 nm channel when available. For the Bureau data sets prior to 2009, 868 nm was only available20

from the active sensor, and led to an underestimate of the true optical depth due to the large opening angle. A comparison of the

Bureau Ångström exponents using 500-778 and 500-868 was possible when the 868 nm channel was added in the last decade of

measurements. The differences in the Ångström exponents from the two different wavelength pairs were more than a factor of

4 less than the estimated standard uncertainties from the combined Type A and Type B uncertainties (ISO, 1995) in the monthly

mean Ångström exponent. As a result, in the period before 2009, when 868 nm data were only available from the active sensor25

at Bureau sites, the 500-778 nm pair was used to calculate the Ångström exponent statistics reported below. A similar rationale

supports the comparability of the AeroSpan and Bureau Ångström exponents, even though the basis wavelength pairs differ.

For the majority of the 22 stations, the annual mean aerosol optical depth at the 500 nm wavelength is less than 0.06, and at

868 nm less than 0.03. Hence even with the low uncertainties (∼0.007) for the individual aerosol optical depth measurements,

the uncertainties in the individual Ångström exponent measurements can be relatively large (>0.2). The monthly statistics of30

Ångström slopes based on individual values was compared to the monthly mean wavelength pair gradients derived from the

General Method calibrations. The differences in monthly means were typically less than 0.1 except for those months where the
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mean aerosol optical depth at 500 nm was less than 0.020. The comparison of the Ångström exponent methods of measurement

and subsequent statistics is the subject of future work.

3 Analysis

In this section we introduce the data sets, then define the model fitting procedure used as a basis for the analysis. This allows

separation of the observed aerosol times series into a periodic component, with the residual interpreted as an episodic compo-5

nent. This is used as a basis for classification of the aerosol across the continent in terms of (a) the periodic amplitudes found

for the Ångström exponent (a measure of aerosol size) and aerosol optical depth; (b) the harmonic content of the periodic com-

ponent of the aerosol optical depth; and (c) the balance between the episodic and periodic components of the aerosol optical

depth.

3.1 Monthly time series10

Since the object of this work is to define the monthly climatology of Australian aerosol, aerosol time series were preprocessed

into monthly means for subsequent analysis. The analysis involved (a) model fitting (as described below) and (b) spectral

decomposition using a Fast Fourier Transform (FFT). Due to instrument malfunction and occasional removal for calibration,

these time series contain infrequent gaps. The model fitting was carried out using all available data, simply ignoring periods

when no data were available. However, the FFT required a complete time series, so interpolation for missing data was required.15

This was carried out using a combination of spline fitting, and fits based on Kalman filtering, as provided in the R package.

Testing showed that the interpolation had no significant effect on the Fourier analysis, which was employed only to assess the

spectral content of the aerosol time series.

Examples of the time series are shown in Figures 2, 3 and 4. The left-hand panels show the monthly time series (black),

together with the (annually repeated) climatology (red), and the fit (green, see below). Interpolated periods are shown in blue.20

The right-hand panels show the power spectrum obtained from the FFT. From the latter, the dominance of the annual cycle

is clear, with significant contributions at the 6 and 4-month periods, varying between sites. This general pattern was evident

at all sites. The increasing complexity of the power spectrum at Wagga Wagga (Figure 4) arises due to the high incidence of

episodic smoke plumes from forest fires in the south eastern Eucalypt forests. Other stations - not shown here - exhibit similar

characteristics, supporting the analysis outlined here.25

3.2 Model fitting

The equation describing the model fit is as follows:

f(t) = a0 + a1t+
J∑
j=1

bj cos[2πωj(t− t∗j )] (2)

where a0 is the time-invariant offset of the fit to the (dimensionless) aerosol optical depth time series, and a1 is the linear

coefficient with units of inverse time. The following term represents the sum of J sinusoidal components, with amplitude bj30
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and frequency ωj . The phases of the sinusoidal components are encapsulated by t∗j , which is the time in months corresponding

to the first maximum in the cosine function following the zero-time reference for the jth harmonic component, referred to

below as the phase-time. The zero-time reference was chosen as the first December in the time series at each station. This aids

the pictorial representation of the phase angles of the harmonic components, with the months of the phase-time corresponding

to the hours of a clock face, with December at 12 O’clock (see Figure 6 in Section 4.1). Guided by the identification of the5

annual cycle and its second and third harmonics in the FFT analysis discussed above, three sinusoidal terms were employed

(J=3), with periods of 12, 6 and 4 months corresponding to frequencies ω of 1/12, 1/6 and 1/4 cycles per month, respectively.

An example of the Fourier decomposition of one of the aerosol time series - in this case from Tinga Tingana - is shown

in Figure 5. The sinusoidal components are shown in the lower panel, with their respective phase-times marked by arrows.

Their sum (together with the offset and linear term further discussed below) results in the fit depicted by the orange line,10

representing the optimal fit to the data (shown here by the climatology in black) derived using a least-squares optimization

provided within the R language. Clearly, the fitting using the three component sinusoid is capable of representing the dual

peaks in aerosol optical depth observed at Tinga Tingana and in other in arid zone stations, the peaks occurring in the spring and

summer. Although the three-term sinusoidal fit has insufficient high-frequency content to represent the narrow peaks observed

at this site, the higher frequency components required are not found to be continent-wide, and the use of this three-component15

harmonic analysis is sufficient for classification of the various aerosol regimes as further discussed below.

A list of the fitted parameters for all sites is given in Table 2. As well as the parameters defined in Equation 2, the tables

lists the square of Pearson’s correlation coefficient (R2). The linear trend parameter a1 and its significance is further discussed

below.

4 Results20

4.1 Amplitude and phase of the aerosol optical depth of harmonic components

A geographic depiction of the fitted amplitudes and phases at all sites is shown in Figure 6. This clearly shows the increase

in amplitude of the periodic components from south to north, and the general coherence of their phase relationship across the

continent. However, at Darwin the phase-time of the annual cycle is noticeably earlier (10.3 months) than at all other tropical

sites (11.0 months), suggesting an earlier onset of dry season at Darwin than at other sites. Comparison of the fitted functions25

with those at other tropical stations (Broome, Lake Argyle and Jabiru) indeed shows slightly earlier onset of the rise toward

the October peak at Darwin than at the other tropical stations. In addition, the other stations show a broader peak declining

later than at Darwin. This earlier decline from the October peak contributes to earlier phase-time at Darwin than at the other

sites. Both effects can be understood as the high population density around Darwin relative to the other stations, leading to

many fires early in the dry season. By contrast, the burning in the more remote regions is more driven by natural ignition, and30

hence peaks later when the fuel is drier. The reduced influence of human activity - with fewer late season fires being lit closer

to Darwin - supports the persistence of the smoke aerosol later in the dry season at the more remote stations.

8



A regional phase change is also evident in south-eastern Australia, in the west-east transect Adelaide, Mildura, Wagga Wagga

and Canberra. The corresponding phase-times are 10.4, 11.0, 0.1 and 0.6 months respectively, showing a trend toward a later

spring-summer aerosol peak in moving from west to east. This is caused by the increasing strength of the summer component

relative to the spring component in the compound peak, a consequence of the increasingly forested and (hence) bushfire-prone

character of the more easterly sites. This is particularly true of Wagga Wagga and Canberra, where major incursions of smoke5

aerosol are found in the austral summer months. In contrast, the arid zone aerosol has a greater magnitude during the austral

spring.

Aerosol sources contributing to the noted rise during spring are heterogeneous, with suggested contributions from fine

aeolian dust (Mitchell et al., 2010), a combination of biomass burning smoke, fine dust, and maritime aerosol from long-range

transport (Radhi et al., 2010), and exogenous biomass burning aerosol originating in southern Africa or even South America10

(Rosen et al., 2000).

Both Geraldton (t∗12=11.9 months) and Learmonth (11.7 months) on the Western Australian coast show an aerosol peak near

the end of the calendar year, and are thus distinct from both the tropical stations further north, and the temperate stations further

south. These stations lie in the significant but poorly-studied north-west pathway for dust transport out of the central arid zone

(Karlson et al., 2014), and their aerosol dynamics warrants closer study.15

Further results from the spectral analysis allow an exploratory classification into different aerosol regimes, as described

below in sections 4.2, 4.3 and 4.4.

4.2 Comparison of harmonic amplitudes of Ångström exponent and aerosol optical depth

The fitting procedure described above was applied to the time series of both aerosol optical depth and Ångström exponent.

For the Ångström exponent, this leads to a set of fitted parameters analogous to those shown in Table 2, although for brevity,20

these are not shown. However, once the optimised fit for each station is obtained, its peak-to-peak amplitude can be determined

for both the aerosol optical depth and Ångström exponent. A scatterplot of the amplitudes found for the Ångström exponent

against that for the aerosol optical depth is shown in Figure 7, for all stations where the data record is 5 years or more.

Some separation of different aerosol regimes is possible from Figure 7. In particular, the tropical stations are easily identified

by their large aerosol optical depth amplitude (Aτ >0.2) and clustering around Ångström exponent amplitude (AAE ∼ 1.0).25

A large number of stations lie within 0.03 <Aτ <0.1 but with a large range of AAE between 0.4 and 0.9. This rectangular

region was divided into ‘Temperate’ and ‘Arid’, with the suggested division atAAE ∼0.6. Perhaps surprisingly given its coastal

location, this classification places Adelaide in the Arid regime, possibly a result of the transport of dust over Adelaide during

the summer months. By contrast, the more easterly stations at Wagga Wagga and Canberra have lowerAAE , as does Kalgoorlie,

in temperate inland Western Australia.30

The three stations Tennant Creek, Learmonth and Rockhampton fall outside the suggested classification rectangles. Tennant

Creek is clearly a tropical station with somewhat reduced Aτ , consistent with its location between Darwin and Alice Springs.

Learmonth combines theAAE of a tropical station with theAτ of an Arid zone station, while Rockhampton shows a puzzlingly
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smallAτ given its location in coastal tropical Queensland. The aerosol regimes at Learmonth and Rockhampton warrant further

study.

4.3 The 6 and 4 month components of the aerosol optical depth

For the tropical stations, the seasonal aerosol cycle is largely controlled by the 12-month component, with the second and

third harmonics of lesser importance. However, for the arid zone and temperate stations, the higher frequency components are5

crucial in defining the dual-peaked nature of the compound spring-summer aerosol maximum, particularly the balance between

the spring and summer components. For example, the seasonal cycle of aerosol at the arid zone station Tinga Tingana shown

in Figure 5 has dual peaks in September and January, which can be understood by the interaction of the 6 and 4 month cycles

with the annual cycle.

This is further explored in Figure 8, which plots the amplitude ratio of the 4-month to 12-month component (A4:12), against10

that of the 6-month to 12-month component (A6:12). This plot exhibits an reversed ‘L’-shaped distribution, with a horizontal

arm at A4:12 ∼0.2, and vertical arm at A6:12 ∼0.4. The horizontal arm contains all the tropical stations excepting Lake Argyle,

confirming the weakness of the 4-month component at these stations. At the far left of this arm lie the two west coastal stations

of Geraldton and Learmonth, suggesting that their seasonal cycle is largely determined by the 12-month component, with weak

contributions at both 6 and 4 months.15

The vertical arm contains a mixture of arid and temperate stations, increasing toward Wagga Wagga and Canberra, the

only stations where A4:12 exceeds A6:12. This is a consequence of the large summer smoke aerosol signal associated with

these stations, as already discussed. The ‘outlier’ of Mildura arises because of the relatively small amplitude of the annual

component, rather than excessively high amplitudes at 6 and 4 months.

4.4 The balance between episodic and periodic aerosol20

The residual or difference between the optimised model fit to the observed time series (equation 2) and the data itself is

considered to be the ‘episodic’ component of the aerosol signal, in the sense that it is determined by unpredictable episodes

such as fires or dust storms which depart from the ‘periodic’ component that govern the parameters of the fitted model. Figure 9

shows the standard deviation of the residual (expressed as a fraction of the peak-to-peak amplitude of its periodic variation)

against the peak-to-peak amplitude of the periodic function fitted to the aerosol optical depth at 500 nm. The standard deviation25

was chosen as it includes extreme values, unlike other measures of variation such as the inter-quartile range.

Figure 9 allows separation of (a) the four tropical stations (b) a cluster of 5 stations with episodic variation at ∼20%, and (c)

an extended series of stations with episodic variation between 24% up to 50%. The stations with episodic variation above 30%

include the smoke-affected Wagga Wagga (46%) and Canberra (49%), and the dust-dominated Tinga Tingana (36%). Geraldton

(39%) and Adelaide (32%) are also in this group, although the aerosol sources responsible are less clear. This result suggests30

that proximity to forested areas prone to irregular bushfires (unlike the savanna burning in the tropical north) engenders the

greatest episodic variation found across the sites studied.
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4.5 Trends in aerosol optical depth

Trends in aerosol optical depth are difficult to discern because of the inherent stochastic variability imposed on the periodic

signal. Hence long time series are necessary to discern a small signal amidst much noise. For the present data set, we limit

the trend analysis to those time series longer than 10 years. This avoids the pitfall that can appear when a multi-year (but

sub-decadal) regional change causes a change in aerosol loading. Such a change caused an increase in dust aerosol over the5

Lake Eyre Basin during the Millennium Drought (2003–2010), (Mitchell et al., 2010).

The model used in the present study does return a linear trend, as the coefficient a1 listed in Table 2, together with the

significance of the trend, expressed as the probability that the trend arose from a random distribution. It is standard practice to

declare the trend significant if the probability of it arising randomly is 5% or less. In the present case, three of the stations fulfill

this criteria, but we relax it slightly to 6% to enable inclusion of a fourth station. The four stations satisfying both duration of10

record and significance criteria are listed in Table 3.

The table shows that the trends are negative but small. For Lake Argyle and Broome in Australia’s north west (Kimberley)

region, the trend expressed as a change in aerosol optical depth at 500 nm is -0.002 per year, with a standard uncertainty of

±0.0008. Assuming the uncertainty is normally distributed, there is a 67% probability that the trend lies between -0.0028 and

-0.0012 per year. For Rockhampton and Alice Springs, the best estimate of the trend is -0.0009 per year, with a corresponding15

range of -0.0012 to -0.0005. In summary, it can be stated that there is evidence for a small decrease in aerosol loading at these

four sites, with a stronger (but still small) negative trend over the Kimberley stations.

The small negative trend at Alice Springs could well be due to the large aerosol peak in the austral summer 2002-2003, at

the beginning of the Millennium drought, followed by fairly regular annual cycling thereafter (Figure 3). The more significant

trend at Broome and Lake Argyle is considered given an expectation of increasing intensity of the monsoon in the north-20

west tropics (Rotstayn et al., 2009). Increasing monsoon rainfall can suppress subsequent smoke emission due to lingering

moisture in the vegetation, although associated increased vegetation growth leads to increased smoke emission in subsequent

dry seasons. Evidence for this is seen from Figure 2 in the suppressed aerosol immediately following the 2010-2011 monsoon

(the largest seasonal rainfall on record), but with very large smoke emission during the following burning season (2012). The

balance between these competing effects will determine the ultimate direction of any trend. The present analysis suggests that25

the trend may be negative.

Further context for these trends emerges from a consideration of the projected decrease in global aerosol following from

scenarios under which future anthropogenic aerosol (AA) emissions decline. Rotstayn et al. (2013) modelled the impact of

one such projected decline, following ‘representative concentration pathway’ 4.5 (RCP4.5, Taylor et al., 2012). Rotstayn et al.

(2013) found the expected ‘unmasking’ of greenhouse warming accompanying reduced aerosol emissions, with a less-expected30

increase in global rainfall caused by changed atmospheric dynamics. RCP4.5 is based on highly spatially inhomogeneous

reduction in AA, with reductions over the centres of industrial activity in the northern hemisphere reflected as a large reduction

in mid-visible aerosol optical depth over the northern hemisphere of 0.2 per century over the period 2006–2100. The projected

decrease over the southern hemisphere is generally smaller, with a decline of <0.05 per century over Australia. Hence, the
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observed trends of between 0.001–0.002 per year (0.1–0.2 per century) are larger than the modelled decrease (RCP4.5) by

a factor between 2 and 4. This suggests that, over Australia, changes in natural aerosol are likely to dominate over inter-

hemispheric transport of AA, hence adding weight to the climatological aerosol characterisation presented here.

4.6 Aerosol climatologies

Aerosol climatologies are presented in tabular and graphical formats. For each of the 22 stations included in this study, statistical5

summaries of aerosol optical depth at 500 nm and the Ångström exponent were prepared in tabular form, based on all individual

determinations of the measurands. This allowed generation of quartiles and medians in addition to means. The resulting tables

list the monthly mean, lower quartile, median, and upper quartile for both aerosol optical depth and Ångström exponent, for

all 22 stations listed in order of decreasing latitude, and shown in Table A1.

For sites where the data record is over 5 years in length, the monthly climatology of aerosol optical depth at 500 nm is10

displayed in Figure 10. The time axis runs from July to June (rather than January to December) so as not to bisect the aerosol

peak, which occurs in the austral spring-summer period (September to February). The grouping of stations into regions was

based on the classification suggested by Figure 7, with the three sites lying outside the rectangles labelled ‘Unclassified’, and

Adelaide included with the ‘Temperate’ sites, both in view of its transitional characteristics, and to reduce clutter in the ‘Arid

Zone’ panel. The scale length corresponding to unit optical depth is the same in all four panels to facilitate intercomparison.15

4.7 Correlation among aerosol time series

The groupings adopted in Figure 10 are used to examine correlation of the station time series within groups. The resulting

values of Pearson’s correlation coefficient between each station pair in a group are shown in Tables 4–7. Unsurprisingly,

given the tight clustering found in much of the foregoing analysis, the tropical group shows high correlation between stations,

with even the distant pair Broome–Jabiru yielding R=0.8 (Table 4). Although the correlation between arid zone station pairs20

is weaker across the board, the pair Alice Springs–Birdsville showed the highest coefficient in the present study, at R=0.92

(Table 5). The large episodic aerosol component in the bushfire-prone part of the Temperate group reduces expectations of high

correlation coefficients, so it is surprising to note the coefficient of R=0.795 between Wagga Wagga and Canberra (Table 6),

suggesting regional-scale linkage via correlated smoke episodes. The results seen in Table 7 for the ‘Unclassified’ stations are

yet more surprising, particularly the coefficient of R=0.73 between the pair Learmonth–Rockhampton, located on opposite25

sides of the continent at a distance of ∼3730 km. The implication is that the mechanisms responsible for aerosol generation

and transport have much in common at both regional and trans-continental scales.

A further mechanism underlying this correlation is the inter-continental transport of aerosol plumes from southern Africa

and possibly South America considered by Rosen et al. (2000). Although they measured the plumes from only one site, such

material is likely to be well-dispersed following long-range transport, and was shown to contribute ∼0.02 to the mid-visible30

aerosol optical depth over Mildura. This is significant given the aerosol ‘offset’ of 0.05–0.06 typical of the arid zone stations

(Table 2), so the widespread presence of this aerosol source could well boost the correlation among widely separated stations.

Further analysis of the prevalence and uniformity of these layers is required.
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5 Summary and conclusions

Analysis of the aerosol records at 22 stations across the Australian continent has been carried out with dual aims in mind: (a)

generation of benchmark aerosol climatologies across the continent, and (b) classification of Australian continental aerosol

types based on their measured time series. The latter goal was achieved by Fourier analysis which suggested that most of the

seasonal variation could be explained by just three periodic terms, corresponding to the annual cycle and its second and third5

harmonics. Fitted coefficients arising from a model constructed on this basis support the following principal conclusions.

1. The proposed model explains 50% or more of the variance at 17 of the 22 sites (77%), and hence provides a basis on

which to infer aerosol classification and to examine the time series for possible trends.

2. Analysis of the fitted parameters suggests that Australian aerosol can be classified into three groups: Tropical, Arid and

Temperate, although there is overlap between the latter two groups on some measures.10

3. Tropical aerosol is distinguished by a large and dominant annual mode, resulting from savanna burning in Australia’s

tropical zone. Consideration of the phase of this annual mode allows the separation of different burning regimes, as seen

in the earlier onset of burning near Darwin relative to the more remote tropical stations. Individual time series show

significant interannual variability due to variation in the strength of the monsoon and its effect on the fuel source.

4. Arid zone aerosol is seasonally bimodal, often showing dual peaks in the austral spring and summer (typically September15

- January). This is associated with an increase in amplitude of the 4-monthly harmonic relative to the annual (12-month)

signal. Arid zone sites are characterised by an increasing episodic component toward active dust-source regions.

5. Temperate zone aerosol is characterised by a small-amplitude periodic component, with an increasing episodic com-

ponent caused by smoke aerosol arising from fire-prone Eucalypt forests. This episodic component increases along a

west-east transect with proximity to the forested areas of the south-east.20

6. Significant decadal trends in aerosol optical depth at the 6% level or below were found at 4 of the 22 stations. The

magnitude of the trends was small, with a decline in aerosol optical depth at 500 nm of ∼0.002 per year in the Kimberley

region of the tropical north west and ∼0.001 per year at Alice Springs and Rockhampton. However, these trends are

much larger than those projected to occur over Australia through future reductions in northern hemisphere anthropogenic

aerosol emissions.25

7. Strong correlation was found both among stations in the same group, and, remarkably, between stations separated by

the full width of the continent. It follows that, on a monthly timescale, aerosol sources over Australia are driven by

mechanisms that do not vary greatly either on regional or continental scales. There is evidence that inter-continental

transport of biomass burning aerosol may play a significant role in this.

Despite the strong coherence in Australian aerosol just noted, we caution that this applies to monthly-mean data. The extent to30

which such coherence applies on shorter timescales is unclear, although its persistence among tropical stations was explored
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by Mitchell et al. (2013). Although a monthly climatology is useful for low frequency applications, including solar resource

prediction and arguably climate change, it is by no means suitable for applications requiring instantaneous aerosol fields such

as the atmospheric correction of remote sensing imagery from satellites. Hence future work will consider the relation between

the instantaneous and monthly mean aerosol, and the predictive capacity of the latter. Future work will also be directed to

filling in the geographical gaps evident in the present study, particularly the lack of stations over Victoria and Tasmania.5
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Table 1. Details of the 22 stations considered in this study.

Station State Agency Latitude Longitude First Last Months

Darwin NT Bureau -12.42 130.89 Apr 1999 Dec 2015 194

Jabiru NT CSIRO -12.66 132.89 Jun 2000 Jun 2016 151

Lake Argyle WA CSIRO -16.11 128.75 May 1999 May 2016 177

Broome WA Bureau -17.95 122.24 Dec 1998 Dec 2015 181

Townsville QLD Bureau -19.25 146.77 Sep 2012 Sep 2015 37

Tennant Creek NT Bureau -19.64 134.18 Jun 1999 Jun 2006 82

Learmonth WA Bureau -22.24 114.10 Dec 1998 Dec 2015 87

Rockhampton QLD Bureau -23.38 150.48 May 2000 Dec 2015 183

Longreach QLD Bureau -23.44 144.28 Dec 2012 Jun 2015 31

Alice Springs NT Bureau -23.80 133.89 Jan 2001 Dec 2015 180

Birdsville QLD CSIRO -25.90 139.35 Aug 2005 Apr 2016 115

Geraldton WA Bureau -28.80 114.70 Nov 1998 Dec 2015 115

Tinga Tingana SA CSIRO -28.98 139.99 Jul 1997 Feb 2012 121

Kalgoorlie WA Bureau -30.78 121.45 Jan 2003 Dec 2015 79

Fowlers Gap NSW CSIRO -31.09 141.70 Apr 2013 Apr 2016 34

Woomera SA Bureau -31.16 136.81 Jan 2012 Jun 2015 42

Lake Lefroy WA CSIRO -31.25 121.70 Jun 2012 May 2016 46

Cobar NSW Bureau -31.54 145.80 May 2012 Jun 2015 38

Mildura Vic Bureau -34.24 142.09 Nov 1998 Jan 2015 102

Adelaide SA Bureau -34.95 138.52 Mar 2003 Dec 2015 154

Wagga NSW Bureau -35.16 147.46 Jan 2000 Dec 2015 190

Canberra ACT CSIRO -35.27 149.11 Jan 2003 Jul 2016 148
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Table 2. Parameters of the fits to the aerosol optical depth time series derived from the 22 stations. R2 is the square of Pearson’s correlation

coefficient of the fit between the model given in Equation 2 and the aerosol optical depth time series at 500 nm. The parameters a0 and a1

give the AOD offset and linear coefficient respectively, the latter in units of AOD per year. The following column tabulates the significance

of the trend, expressed as the probability that the trend arises from a random distribution. Trends were considered significant for P(a1) of

<6%, indicated in bold face. Remaining columns list the coefficients b and phase for the three sinusoidal components with periods of 12

months, 6 months and 4 months, respectively. The phase is expressed as the time in months at which the basis cosine function reaches its

first maximum. The station labelled Canberrab in the last row of the table demonstrates the improvement in the fit when the effects of the

firestorm of January 2003 are excised. Exclusion of the months January, February, March and April 2003 leads to an increase in the value of

R2 from 0.181 to 0.413.

12 month 6 month 4 month

Station Months R2 a0 a1 P(a1) b12 t12 b6 t6 b4 t4

Darwin 194 0.670 0.150 0.000 0.669 0.079 10.3 0.028 3.8 0.013 1.8

Jabiru 151 0.685 0.165 -0.001 0.198 0.089 11.0 0.026 4.2 0.016 1.8

Lake Argyle 177 0.601 0.147 -0.002 0.056 0.086 11.0 0.037 4.0 0.023 1.5

Broome 181 0.527 0.136 -0.002 0.005 0.067 11.0 0.029 4.0 0.013 1.7

Townsville 37 0.604 0.094 -0.006 0.168 0.031 11.3 0.005 3.1 0.011 1.3

Tennant Creek 82 0.688 0.090 -0.004 0.038 0.054 10.9 0.022 3.9 0.011 1.7

Learmonth 87 0.736 0.055 0.001 0.000 0.033 11.7 0.009 3.4 0.006 1.6

Rockhampton 183 0.692 0.087 -0.001 0.015 0.043 11.4 0.012 3.8 0.005 1.4

Longreach 31 0.697 0.072 -0.011 0.046 0.036 11.4 0.009 4.6 0.003 1.6

Alice Springs 180 0.586 0.064 -0.001 0.021 0.033 11.2 0.011 3.8 0.006 1.7

Birdsville 115 0.688 0.056 -0.001 0.100 0.024 10.9 0.010 3.6 0.007 1.6

Geraldton 115 0.397 0.064 -0.000 0.365 0.031 11.9 0.005 2.1 0.006 1.3

Tinga Tingana 121 0.382 0.048 0.001 0.157 0.023 11.4 0.011 2.9 0.011 1.1

Kalgoorlie 79 0.737 0.046 0.000 0.686 0.016 11.0 0.007 3.1 0.006 1.3

Fowlers Gap 34 0.731 0.042 0.004 0.010 0.011 10.9 0.006 3.0 0.006 1.6

Woomera 42 0.752 0.040 0.002 0.044 0.014 10.7 0.007 3.6 0.006 1.6

Lake Lefroy 46 0.756 0.049 0.002 0.026 0.016 11.1 0.005 2.8 0.007 1.3

Cobar 38 0.750 0.045 -0.001 0.315 0.013 11.4 0.005 2.9 0.009 1.5

Mildura 102 0.476 0.056 -0.000 0.053 0.011 11.0 0.009 2.9 0.008 1.3

Adelaide 154 0.510 0.058 0.000 0.880 0.014 10.4 0.006 3.3 0.006 1.2

Wagga Wagga 190 0.310 0.061 -0.000 0.944 0.017 0.1 0.007 2.9 0.008 1.2

Canberra 148 0.181 0.077 -0.002 0.131 0.025 0.6 0.009 2.3 0.012 1.1

Canberrab 144 0.413 0.061 0.000 0.308 0.018 0.4 0.009 3.1 0.005 1.2
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Table 3. Analysis of linear trends a1 expressed as the change in aerosol optical depth per year. Only stations with at least a 10-year data

record and trend significance of P(a1)≤6% are listed. σ(a1) is the standard uncertainty in a1.

Station Months P(a1) a1 (yr−1) σ(a1)

Lake Argyle 177 0.056 -0.0017 0.00086

Broome 181 0.005 -0.0022 0.00077

Rockhampton 183 0.015 -0.0009 0.00035

Alice Springs 180 0.021 -0.0009 0.00037

Table 4. Pearson’s correlation coefficient between all Tropical station pairs, for stations with time series of 60 months or greater.

Tropical

Station Darwin Jabiru L. Argyle Broome

Darwin 1.000 0.888 0.827 0.750

Jabiru 0.888 1.000 0.869 0.804

L. Argyle 0.827 0.869 1.000 0.883

Broome 0.750 0.804 0.883 1.000

Table 5. Pearson’s correlation coefficient between all Arid Zone station pairs, for stations with time series of 60 months or greater.

Arid Zone

Station Alice Birdsville Geraldton T. Tingana Mildura

Alice 1.000 0.920 0.569 0.732 0.577

Birdsville 0.920 1.000 0.550 0.748 0.574

Geraldton 0.569 0.550 1.000 0.361 0.469

T. Tingana 0.732 0.748 0.361 1.000 0.757

Mildura 0.577 0.574 0.469 0.757 1.000

Table 6. Pearson’s correlation coefficient between all Temperate station pairs, for stations with time series of 60 months or greater.

Temperate

Station Kalg. Adel. Wagga Canberra

Kalg. 1.000 0.680 0.492 0.263

Adel. 0.680 1.000 0.575 0.375

Wagga 0.492 0.575 1.000 0.795

Canberra 0.263 0.375 0.795 1.000
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Table 7. Pearson’s correlation coefficient between all unclassified station pairs, for stations with time series of 60 months or greater.

Unclassified

Station Tennant Ck Learmonth Rockhampton

Tennant Ck 1.000 0.761 0.829

Learmonth 0.761 1.000 0.726

Rockhampton 0.829 0.726 1.000
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Figure 1. Location of sun photometer stations in Australia. Bureau of Meteorology stations are shown in blue, and CSIRO/AeroSpan stations

in grey. The radius of the filled circles scales as the duration of the data record at a given station. The filled circles shown in the legend are

for a duration of 5 yr.
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Figure 2. Left panel: Time series of monthly mean aerosol optical depth at 500 nm at Lake Argyle. The raw data is shown in black, the

(repeated) climatology in red, the interpolated data in blue (see text), and the model fit is shown in green. Right panel: The power spectrum

of the interpolated time series computed using a fast Fourier transform (FFT).
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Figure 3. Left panel: Time series of monthly mean aerosol optical depth at 500 nm at Alice Springs. The raw data is shown in black, the

(repeated) climatology in red, the interpolated data in blue (see text), and the model fit is shown in green. Right panel: The power spectrum

of the interpolated time series computed using a fast Fourier transform (FFT).
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Figure 4. Left panel: Time series of monthly mean aerosol optical depth at 500 nm at Wagga Wagga. The raw data is shown in black, the

(repeated) climatology in red, the interpolated data in blue (see text), and the model fit is shown in green. Right panel: The power spectrum

of the interpolated time series computed using a fast Fourier transform (FFT).
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Figure 5. Illustration of the Fourier decomposition of the periodic component of the aerosol optical depth at Tinga Tingana. The fitted curve

(orange) results from the addition of the offset plus linear trend (dashed line) to the three sinusoids corresponding to periods of 12 months

(blue), 6 months (red) and 4 months (green). The arrowed phase-times of the three sinusoids were 11.4, 2.9 and 1.1 months respectively. The

phase-times are referenced to the first December in each time series, denoted as month zero in this plot. The observed climatology is shown

as the black solid line. The linear trend apparent in the dashed line is not significant at the 5% level (see Table 2).
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Figure 6. Amplitude and phase of the 12-month (blue), 6-month (red) and 4-month (green) components of the sinusoidal functions fitted

to the time series of aerosol optical depth at 500 nm. The length of the bars is proportional to their amplitude, while the angles measured

clockwise from due north indicate their phase. In the upper panel, all three components are shown. The lower panel presents an expanded

version of the 6-month (red) and 4-month (green) components, where the lengths of these two components are scaled up by a factor of 3

relative to the upper panel.
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from the peak-to-peak excursion of the fitted functions representing the periodic component of the respective aerosol quantities.
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Figure 9. The standard deviation of the episodic component of the aerosol optical depth expressed as a fraction of the amplitude of the

periodic aerosol optical depth at 500 nm, plotted against the amplitude of the periodic aerosol optical depth at 500 nm. This allows clear

separation between (a) the tropical stations, and (b) stations effected by increasingly large episodic activity. Stations where the episodic

standard deviation is more than 30% of the periodic component include the smoke-affected temperate stations of Wagga Wagga and Canberra,

and the dust-dominated station at Tinga Tingana. The high episodic aerosol at Wagga Wagga and Canberra is consistent with the increasing

incidence of smoke aerosol from forested areas from west to east.
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Figure 10. The monthly climatology of aerosol optical depth at 500 nm, for (a) Tropical, (b) Unclassified, (c) Arid zone, and (d) Temperate

regions. The plots depict the monthly median, with the vertical bars showing the inter-quartile range, i.e., the range in aerosol optical depth

between the 25th and 75th percentiles. The vertical bars are offset between sites for clarity.
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Appendix A: Climatological tables

Table A1. Monthly climatology of 500 nm aerosol optical depth and Ångström exponent at all 22 stations, listed in order of decreasing

latitude. The columns labelled 25Q and 75Q list the break points at the first quartile (25%) and third quartile (75%) respectively. For the

Bureau stations (denoted ‘BoM’ in the header), the Ångström exponent before 2009 was calculated using the wavelength pair (500, 778 nm).

For 2009 and beyond, the wavelength pair (500, 868 nm) was used (see text). For the CSIRO AeroSpan stations, denoted ‘CSIRO’, the

wavelength pair (440, 870 nm) was used throughout.

Darwin (12.42 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 13 17430 0.140 0.088 0.123 0.172 17430 0.57 0.27 0.54 0.84

2 12 21399 0.120 0.074 0.098 0.145 21399 0.58 0.26 0.68 1.05

3 13 31050 0.098 0.062 0.083 0.119 31050 0.86 0.53 0.89 1.16

4 12 73545 0.078 0.050 0.064 0.089 73545 0.93 0.58 0.92 1.24

5 13 105951 0.092 0.057 0.079 0.108 105951 1.13 0.81 1.15 1.46

6 14 134604 0.099 0.058 0.081 0.120 134604 1.22 0.89 1.22 1.59

7 14 139413 0.105 0.065 0.091 0.129 139413 1.18 0.88 1.20 1.49

8 15 126444 0.149 0.095 0.129 0.178 126444 1.29 1.05 1.30 1.54

9 15 108975 0.230 0.157 0.208 0.278 108975 1.34 1.19 1.36 1.54

10 15 86430 0.260 0.186 0.243 0.313 86430 1.26 1.12 1.30 1.45

11 15 54747 0.238 0.153 0.215 0.300 54747 1.22 1.01 1.29 1.50

12 15 36378 0.165 0.102 0.141 0.188 36378 0.90 0.65 0.96 1.24

Jabiru (12.66 S, CSIRO) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

01 9 6417 0.187 0.113 0.150 0.212 6417 0.57 0.21 0.52 0.85

02 8 8371 0.128 0.080 0.110 0.149 8371 0.65 0.29 0.68 1.06

03 10 12124 0.114 0.067 0.096 0.125 12124 0.78 0.42 0.80 1.11

04 11 25762 0.084 0.051 0.068 0.092 25762 0.85 0.49 0.86 1.23

05 13 40694 0.088 0.051 0.071 0.101 40694 0.97 0.60 0.99 1.35

06 15 53134 0.088 0.046 0.066 0.103 53134 1.03 0.64 1.03 1.45

07 15 64731 0.085 0.051 0.072 0.103 64731 1.07 0.77 1.11 1.42

08 15 65423 0.117 0.064 0.092 0.136 65423 1.27 1.02 1.32 1.58

09 15 49354 0.212 0.125 0.183 0.259 49354 1.35 1.17 1.40 1.59

10 15 35388 0.259 0.161 0.220 0.329 35388 1.33 1.16 1.36 1.54

11 12 21807 0.250 0.161 0.220 0.306 21807 1.19 0.99 1.22 1.45

12 12 14469 0.214 0.124 0.168 0.253 14469 0.78 0.40 0.83 1.18
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Lake Argyle (16.11 S, CSIRO) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

01 14 25361 0.146 0.076 0.106 0.160 25361 0.48 0.16 0.37 0.73

02 14 24189 0.114 0.062 0.085 0.124 24189 0.63 0.22 0.60 0.99

03 14 30789 0.090 0.052 0.070 0.096 30789 0.71 0.38 0.72 1.02

04 15 45877 0.077 0.044 0.063 0.093 45877 1.04 0.73 1.09 1.38

05 17 51042 0.078 0.038 0.058 0.095 51042 1.12 0.81 1.15 1.46

06 13 43909 0.050 0.026 0.036 0.058 43909 1.04 0.77 1.07 1.35

07 14 50725 0.051 0.027 0.040 0.058 50725 1.11 0.81 1.11 1.43

08 15 60426 0.088 0.041 0.068 0.111 60426 1.23 1.02 1.27 1.49

09 14 58752 0.212 0.097 0.170 0.275 58752 1.34 1.15 1.40 1.61

10 16 50694 0.266 0.163 0.232 0.341 50694 1.39 1.21 1.43 1.60

11 16 45741 0.219 0.123 0.195 0.283 45741 1.30 1.14 1.38 1.57

12 14 27041 0.175 0.100 0.144 0.211 27041 0.84 0.48 0.88 1.20

Broome (17.95 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 15 63441 0.137 0.080 0.112 0.166 63441 0.38 0.12 0.34 0.61

2 16 64785 0.106 0.064 0.089 0.122 64785 0.42 0.17 0.37 0.62

3 15 101973 0.077 0.049 0.065 0.086 101973 0.61 0.32 0.63 0.93

4 13 142407 0.079 0.046 0.066 0.096 142407 1.05 0.71 1.12 1.44

5 13 154413 0.076 0.038 0.061 0.095 154413 1.20 0.88 1.26 1.57

6 13 161550 0.047 0.025 0.036 0.055 161550 0.94 0.54 0.98 1.33

7 13 168627 0.048 0.025 0.039 0.061 168627 0.92 0.56 0.97 1.33

8 14 185094 0.090 0.040 0.070 0.115 185094 1.07 0.74 1.16 1.50

9 16 211056 0.162 0.081 0.130 0.214 211056 1.28 1.06 1.32 1.56

10 16 202263 0.210 0.138 0.197 0.261 202263 1.19 1.01 1.27 1.49

11 16 154101 0.185 0.107 0.164 0.236 154101 1.12 0.86 1.13 1.42

12 17 117633 0.141 0.087 0.124 0.178 117633 0.71 0.31 0.65 1.08
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Townsville (19.25 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 3 11097 0.103 0.071 0.088 0.122 11097 0.63 0.28 0.62 0.93

2 3 11856 0.090 0.048 0.069 0.100 11856 0.71 0.38 0.74 0.98

3 3 16746 0.073 0.054 0.068 0.084 16746 0.38 0.14 0.38 0.61

4 3 18690 0.056 0.039 0.051 0.067 18690 0.65 0.35 0.58 0.96

5 3 21204 0.057 0.040 0.056 0.070 21204 0.50 0.17 0.44 0.80

6 3 18183 0.058 0.040 0.051 0.071 18183 0.72 0.40 0.72 1.08

7 3 25752 0.054 0.039 0.049 0.066 25752 0.59 0.35 0.62 0.80

8 3 33111 0.068 0.046 0.061 0.082 33111 0.84 0.62 0.86 1.07

9 4 33579 0.108 0.070 0.096 0.135 33579 0.91 0.69 0.94 1.15

10 3 29700 0.114 0.084 0.105 0.127 29700 0.86 0.64 0.87 1.09

11 3 21135 0.105 0.071 0.094 0.129 21135 0.76 0.50 0.73 1.02

12 3 22038 0.111 0.070 0.092 0.117 22038 0.74 0.44 0.69 1.05

Tennant Creek (19.64 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 7 53808 0.087 0.052 0.071 0.103 53808 1.02 0.63 1.04 1.41

2 7 46875 0.079 0.041 0.058 0.089 46875 0.79 0.43 0.73 1.10

3 7 62208 0.056 0.030 0.046 0.073 62208 1.22 0.70 1.10 1.53

4 7 74208 0.046 0.030 0.039 0.053 74208 1.28 0.80 1.12 1.72

5 7 78627 0.039 0.020 0.026 0.040 78627 1.17 0.91 1.19 1.42

6 7 73527 0.029 0.018 0.023 0.032 73527 1.00 0.73 1.02 1.28

7 7 98988 0.034 0.020 0.025 0.039 98988 1.16 0.75 1.09 1.47

8 7 104730 0.063 0.035 0.051 0.074 104730 1.30 1.01 1.30 1.61

9 7 80706 0.126 0.055 0.097 0.155 80706 1.24 1.06 1.29 1.46

10 7 81009 0.159 0.070 0.123 0.206 81009 1.44 1.25 1.45 1.62

11 7 59589 0.138 0.062 0.102 0.178 59589 1.22 0.97 1.30 1.50

12 7 54309 0.101 0.051 0.077 0.134 54309 1.22 0.91 1.23 1.60
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Learmonth (22.24 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 7 69039 0.099 0.068 0.086 0.116 69039 0.34 0.12 0.29 0.53

2 6 73647 0.078 0.050 0.069 0.096 73647 0.29 0.10 0.34 0.54

3 6 61080 0.064 0.045 0.058 0.079 61080 0.36 0.08 0.31 0.66

4 6 54321 0.045 0.028 0.039 0.054 54321 0.67 0.39 0.68 0.98

5 6 51885 0.036 0.023 0.030 0.044 51885 0.71 0.39 0.72 1.00

6 8 73611 0.030 0.020 0.026 0.036 73611 0.64 0.30 0.64 0.96

7 7 85224 0.031 0.021 0.027 0.037 85224 0.61 0.25 0.53 0.96

8 8 101604 0.047 0.029 0.042 0.058 101604 0.85 0.53 0.86 1.16

9 8 106053 0.083 0.048 0.072 0.105 106053 1.00 0.74 1.02 1.27

10 8 113100 0.100 0.054 0.084 0.139 113100 0.98 0.72 1.05 1.27

11 7 105447 0.097 0.061 0.089 0.125 105447 0.73 0.43 0.72 1.00

12 8 107043 0.076 0.047 0.068 0.098 107043 0.55 0.23 0.54 0.80

Rockhampton (23.38 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 15 62601 0.107 0.069 0.091 0.120 60318 0.88 0.58 0.91 1.20

2 15 59529 0.090 0.063 0.080 0.102 57762 0.85 0.50 0.85 1.22

3 15 78348 0.074 0.055 0.071 0.088 77493 0.72 0.38 0.69 1.00

4 15 100890 0.061 0.045 0.058 0.071 99675 0.81 0.48 0.88 1.21

5 16 123183 0.043 0.028 0.038 0.052 115098 0.96 0.59 1.00 1.37

6 16 109758 0.037 0.024 0.033 0.045 94458 0.92 0.59 0.94 1.27

7 16 142692 0.041 0.025 0.035 0.051 117462 0.88 0.57 0.94 1.25

8 14 140895 0.059 0.037 0.055 0.074 130539 1.11 0.83 1.14 1.39

9 16 156834 0.110 0.070 0.097 0.135 138741 1.17 0.95 1.19 1.43

10 16 130170 0.127 0.080 0.110 0.149 121626 1.12 0.84 1.14 1.44

11 16 99297 0.121 0.074 0.103 0.149 95661 1.10 0.83 1.11 1.38

12 16 83106 0.116 0.072 0.097 0.133 77235 1.03 0.72 1.05 1.36
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Longreach (23.44 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 3 20343 0.080 0.039 0.058 0.097 20343 0.75 0.45 0.83 1.10

2 3 21129 0.051 0.031 0.043 0.060 21129 0.75 0.46 0.72 1.02

3 3 24864 0.051 0.042 0.050 0.058 24864 0.70 0.51 0.74 0.91

4 3 32142 0.033 0.024 0.033 0.039 32142 0.94 0.60 0.88 1.18

5 3 29613 0.028 0.017 0.026 0.036 29613 0.71 0.38 0.66 0.95

6 3 23079 0.026 0.017 0.025 0.032 23079 0.34 0.13 0.59 1.00

7 2 22395 0.030 0.021 0.027 0.038 22395 0.38 0.04 0.43 0.75

8 2 27858 0.034 0.023 0.029 0.042 27858 0.51 0.14 0.47 0.88

9 2 24885 0.075 0.054 0.065 0.084 24885 0.58 0.30 0.69 1.29

10 2 28503 0.092 0.076 0.094 0.113 28503 0.82 0.44 0.97 1.30

11 2 18720 0.086 0.069 0.085 0.104 18720 0.49 0.23 0.51 0.82

12 3 22056 0.092 0.047 0.068 0.097 22056 0.78 0.57 0.84 1.16

Alice Springs (23.80 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 15 164997 0.076 0.043 0.061 0.095 164997 0.61 0.27 0.54 0.90

2 15 147060 0.061 0.035 0.049 0.073 147060 0.63 0.35 0.59 0.87

3 15 153681 0.051 0.030 0.044 0.060 153681 0.64 0.36 0.57 0.82

4 15 169059 0.041 0.026 0.034 0.048 169059 0.85 0.59 0.82 1.08

5 15 161859 0.030 0.021 0.026 0.034 161859 0.98 0.71 0.92 1.14

6 15 164082 0.025 0.018 0.022 0.028 164082 0.83 0.61 0.82 1.04

7 15 200130 0.027 0.018 0.023 0.030 200130 0.94 0.73 0.93 1.15

8 15 227472 0.043 0.024 0.034 0.051 227472 1.04 0.83 1.05 1.25

9 15 197091 0.082 0.046 0.068 0.098 197091 1.16 0.93 1.17 1.38

10 15 193989 0.098 0.053 0.082 0.123 193989 1.08 0.84 1.13 1.34

11 15 153372 0.090 0.047 0.065 0.106 153372 0.96 0.67 0.94 1.23

12 15 131631 0.070 0.037 0.054 0.085 131631 0.70 0.48 0.70 0.92
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Birdsville (25.90 S, CSIRO) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

01 9 27932 0.063 0.035 0.050 0.076 27932 0.59 0.22 0.56 0.92

02 9 22760 0.055 0.034 0.046 0.063 22760 0.61 0.27 0.61 0.93

03 10 34604 0.044 0.029 0.038 0.051 34604 0.50 0.25 0.50 0.74

04 9 30607 0.037 0.024 0.033 0.042 30607 0.78 0.51 0.78 1.04

05 9 26949 0.031 0.022 0.028 0.037 26949 0.98 0.69 0.97 1.21

06 9 23085 0.028 0.018 0.024 0.031 23085 1.01 0.69 0.98 1.27

07 10 26187 0.031 0.019 0.027 0.036 26187 1.06 0.78 1.07 1.33

08 10 33467 0.044 0.025 0.034 0.055 33467 1.21 0.93 1.20 1.45

09 11 40205 0.079 0.044 0.061 0.094 40205 1.23 0.95 1.25 1.53

10 10 38777 0.091 0.052 0.073 0.104 38777 1.13 0.80 1.20 1.50

11 9 24828 0.076 0.038 0.056 0.098 24828 0.97 0.61 1.03 1.36

12 9 26411 0.060 0.034 0.046 0.067 26411 0.63 0.26 0.62 0.96

Geraldton (28.80 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 9 118401 0.085 0.048 0.067 0.095 96831 0.40 0.12 0.39 0.67

2 9 96519 0.076 0.045 0.062 0.088 77730 0.47 0.17 0.42 0.73

3 9 89955 0.052 0.032 0.046 0.063 71049 0.49 0.19 0.46 0.79

4 9 72270 0.040 0.026 0.035 0.047 48900 0.68 0.34 0.71 1.03

5 10 69081 0.032 0.021 0.028 0.038 50034 0.62 0.18 0.63 1.06

6 10 77562 0.028 0.017 0.024 0.035 61611 0.47 0.11 0.53 0.86

7 10 75828 0.032 0.022 0.028 0.039 65628 0.51 0.09 0.52 0.94

8 9 75966 0.044 0.025 0.036 0.055 65964 0.69 0.28 0.71 1.12

9 9 73878 0.076 0.046 0.066 0.093 65076 0.87 0.59 0.95 1.22

10 9 92436 0.071 0.047 0.060 0.084 78741 0.80 0.50 0.84 1.14

11 11 97635 0.080 0.050 0.070 0.096 86379 0.62 0.34 0.63 0.92

12 11 136530 0.087 0.047 0.068 0.101 110145 0.64 0.18 0.47 0.82
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Tinga Tingana (28.98 S, CSIRO) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

01 9 32799 0.086 0.044 0.064 0.093 32799 0.65 0.26 0.58 1.04

02 11 33001 0.059 0.032 0.045 0.070 33001 0.70 0.34 0.67 1.00

03 11 38212 0.049 0.027 0.039 0.056 38212 0.55 0.26 0.53 0.79

04 12 31238 0.038 0.024 0.032 0.043 31238 0.80 0.43 0.77 1.15

05 10 25510 0.038 0.020 0.025 0.034 25510 0.91 0.54 0.90 1.25

06 11 21402 0.026 0.018 0.023 0.029 21402 0.87 0.47 0.85 1.23

07 11 24220 0.027 0.018 0.024 0.032 24220 0.78 0.37 0.74 1.10

08 7 20779 0.043 0.025 0.034 0.051 20779 1.02 0.74 1.05 1.30

09 9 19911 0.093 0.043 0.070 0.114 19911 1.22 0.98 1.30 1.53

10 8 26343 0.073 0.036 0.050 0.078 26343 1.15 0.84 1.20 1.48

11 9 26199 0.063 0.033 0.043 0.063 26199 0.98 0.67 0.98 1.26

12 9 28923 0.064 0.033 0.046 0.065 28923 0.74 0.47 0.72 0.99

Kalgoorlie (30.78 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 7 78819 0.054 0.036 0.048 0.065 78819 0.92 0.54 0.80 1.23

2 7 66669 0.049 0.034 0.044 0.058 66669 0.80 0.52 0.76 1.05

3 7 71631 0.039 0.027 0.037 0.048 71631 0.74 0.44 0.70 0.99

4 7 47499 0.035 0.024 0.032 0.043 47499 0.85 0.54 0.83 1.18

5 7 45126 0.031 0.020 0.028 0.038 45126 0.81 0.48 0.88 1.17

6 7 41082 0.030 0.020 0.025 0.033 41082 0.94 0.52 0.98 1.30

7 6 44394 0.031 0.020 0.027 0.036 44394 1.01 0.71 1.02 1.33

8 6 46155 0.043 0.027 0.035 0.049 46155 1.07 0.82 1.12 1.37

9 6 52254 0.071 0.047 0.064 0.086 52254 1.19 0.91 1.27 1.51

10 6 72519 0.065 0.042 0.059 0.079 72519 1.18 0.87 1.19 1.48

11 6 60234 0.053 0.037 0.050 0.065 60234 0.98 0.77 1.01 1.21

12 7 93039 0.053 0.037 0.047 0.061 93039 0.80 0.50 0.75 1.08
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Fowlers Gap (31.09 S, CSIRO) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

01 3 10779 0.053 0.036 0.045 0.059 10779 0.95 0.70 0.96 1.18

02 3 10697 0.049 0.035 0.046 0.060 10697 0.83 0.59 0.83 1.09

03 3 9624 0.048 0.032 0.045 0.060 9624 0.84 0.64 0.81 1.02

04 3 6354 0.032 0.024 0.030 0.038 6354 0.93 0.67 0.92 1.16

05 3 5471 0.034 0.023 0.031 0.039 5471 0.74 0.38 0.76 1.06

06 3 5217 0.035 0.024 0.030 0.040 5217 1.00 0.78 1.06 1.27

07 3 6777 0.032 0.021 0.027 0.039 6777 1.01 0.62 1.09 1.33

08 3 10558 0.039 0.027 0.034 0.048 10558 1.18 0.94 1.19 1.45

09 3 10329 0.064 0.044 0.057 0.078 10329 1.19 0.99 1.22 1.41

10 2 7100 0.058 0.034 0.048 0.065 7100 1.12 0.87 1.14 1.41

11 2 6487 0.044 0.029 0.036 0.051 6487 0.99 0.82 1.00 1.15

12 3 8032 0.046 0.030 0.039 0.054 8032 0.86 0.69 0.84 1.01

Woomera (31.16 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 3 39396 0.050 0.031 0.040 0.061 39396 0.93 0.59 0.94 1.33

2 4 42141 0.047 0.034 0.044 0.059 42141 0.92 0.64 0.90 1.17

3 4 43056 0.034 0.024 0.032 0.041 43056 0.87 0.49 0.89 1.21

4 4 28503 0.035 0.024 0.032 0.043 28503 0.86 0.61 0.88 1.13

5 4 25938 0.031 0.021 0.029 0.037 25938 0.81 0.43 0.78 1.19

6 4 22785 0.035 0.022 0.028 0.041 22785 0.70 0.36 0.75 1.09

7 3 22647 0.029 0.018 0.023 0.032 22647 0.91 0.59 0.96 1.19

8 3 27981 0.037 0.026 0.033 0.045 27981 0.83 0.52 0.90 1.14

9 3 34107 0.065 0.038 0.055 0.084 34107 0.95 0.67 0.98 1.25

10 3 39054 0.063 0.035 0.048 0.075 39054 0.76 0.44 0.82 1.17

11 3 35679 0.057 0.034 0.044 0.068 35679 0.96 0.68 0.96 1.22

12 3 38532 0.042 0.029 0.037 0.050 38532 0.77 0.50 0.80 1.04
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Lake Lefroy (31.25 S, CSIRO) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

01 4 9729 0.063 0.042 0.055 0.076 9729 0.75 0.50 0.68 0.97

02 4 9704 0.059 0.040 0.056 0.072 9704 0.78 0.53 0.78 0.98

03 4 8129 0.045 0.034 0.042 0.054 8129 0.79 0.57 0.77 0.99

04 4 6204 0.039 0.026 0.034 0.048 6204 0.93 0.69 0.95 1.18

05 4 6493 0.040 0.027 0.035 0.046 6493 0.95 0.62 0.97 1.25

06 4 7512 0.035 0.024 0.030 0.043 7512 1.24 1.04 1.28 1.50

07 4 7297 0.039 0.025 0.033 0.047 7297 1.02 0.64 1.11 1.37

08 4 6965 0.047 0.029 0.039 0.056 6965 1.03 0.75 1.04 1.31

09 4 9844 0.076 0.046 0.068 0.098 9844 1.12 0.87 1.15 1.44

10 3 10470 0.063 0.040 0.052 0.072 10470 1.06 0.85 1.08 1.31

11 3 5875 0.060 0.041 0.053 0.070 5875 0.91 0.70 0.91 1.13

12 4 9326 0.057 0.040 0.050 0.068 9326 0.73 0.49 0.72 0.94

Cobar (31.54 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 3 35127 0.062 0.034 0.049 0.079 35127 0.79 0.49 0.76 1.03

2 3 23010 0.054 0.039 0.055 0.067 23010 0.75 0.57 0.79 0.97

3 3 27621 0.040 0.027 0.038 0.051 27621 0.68 0.33 0.65 1.04

4 3 20724 0.034 0.022 0.029 0.040 20724 0.78 0.44 0.74 1.07

5 3 19260 0.033 0.022 0.029 0.040 19260 0.64 0.41 0.66 0.88

6 4 15828 0.033 0.021 0.028 0.034 15828 0.82 0.55 0.86 1.14

7 3 22806 0.029 0.018 0.023 0.031 22806 0.62 0.38 0.58 0.84

8 3 27069 0.035 0.022 0.031 0.044 27069 0.67 0.37 0.65 1.01

9 3 33414 0.063 0.035 0.054 0.074 33414 0.44 0.03 0.68 1.17

10 3 35907 0.061 0.036 0.052 0.073 35907 0.90 0.55 0.96 1.28

11 3 31761 0.047 0.027 0.034 0.056 31761 0.74 0.51 0.74 0.98

12 3 33609 0.044 0.029 0.037 0.053 33609 0.72 0.43 0.68 0.94
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Mildura (34.24 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 10 104439 0.059 0.033 0.044 0.068 104439 0.85 0.49 0.86 1.18

2 9 73968 0.061 0.035 0.052 0.075 73968 0.91 0.60 0.94 1.24

3 8 87930 0.047 0.033 0.042 0.057 87930 0.92 0.56 0.94 1.26

4 8 68325 0.044 0.032 0.041 0.052 68325 0.96 0.54 0.97 1.38

5 8 49818 0.044 0.029 0.040 0.052 49818 0.98 0.46 1.10 1.45

6 8 37413 0.038 0.024 0.030 0.041 37413 0.81 0.39 0.72 1.17

7 8 43722 0.040 0.024 0.034 0.046 43722 0.82 0.38 0.78 1.21

8 8 51516 0.049 0.032 0.043 0.056 51516 0.99 0.58 1.07 1.40

9 8 53826 0.081 0.053 0.073 0.097 53826 1.02 0.68 1.04 1.35

10 9 71685 0.064 0.044 0.054 0.074 71685 0.92 0.62 0.95 1.24

11 10 77835 0.052 0.035 0.045 0.059 77835 0.82 0.57 0.93 1.21

12 11 82419 0.052 0.033 0.042 0.055 82419 0.70 0.36 0.72 1.10

Adelaide (34.95 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 12 154815 0.060 0.038 0.053 0.073 154815 0.65 0.28 0.64 1.00

2 12 118848 0.058 0.038 0.050 0.067 118848 0.70 0.40 0.70 0.98

3 13 117720 0.048 0.033 0.045 0.059 117720 0.51 0.15 0.53 0.95

4 13 80235 0.049 0.032 0.044 0.059 80235 0.68 0.27 0.72 1.11

5 13 54048 0.048 0.032 0.042 0.058 54048 0.80 0.35 0.82 1.30

6 13 44610 0.047 0.029 0.040 0.055 44610 0.73 0.30 0.76 1.20

7 13 47583 0.046 0.028 0.041 0.056 47583 0.60 0.23 0.58 1.09

8 13 58410 0.059 0.038 0.052 0.072 58410 0.65 0.19 0.72 1.21

9 13 78237 0.080 0.051 0.071 0.097 78237 0.80 0.40 0.90 1.27

10 13 95628 0.075 0.050 0.066 0.091 95628 0.75 0.40 0.84 1.26

11 13 109044 0.064 0.042 0.055 0.075 109044 0.86 0.45 0.88 1.23

12 13 129108 0.063 0.038 0.052 0.078 129108 0.66 0.21 0.62 1.07
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Wagga (35.16 S, BoM) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

1 15 148815 0.083 0.040 0.059 0.091 148815 1.03 0.64 1.06 1.45

2 16 114705 0.083 0.041 0.066 0.105 114705 1.14 0.83 1.18 1.51

3 16 144306 0.059 0.033 0.049 0.075 144306 1.07 0.73 1.10 1.45

4 16 114588 0.055 0.030 0.046 0.069 114588 1.26 0.95 1.32 1.61

5 16 90843 0.052 0.030 0.043 0.064 90843 1.22 0.88 1.32 1.61

6 17 58620 0.036 0.021 0.029 0.041 58620 1.15 0.76 1.19 1.56

7 16 60381 0.038 0.022 0.031 0.042 60381 1.11 0.74 1.15 1.54

8 17 86358 0.050 0.033 0.043 0.056 86358 1.08 0.73 1.16 1.46

9 17 109128 0.071 0.044 0.059 0.088 109128 1.06 0.76 1.13 1.43

10 16 126945 0.072 0.045 0.060 0.088 126945 1.04 0.72 1.07 1.39

11 17 115911 0.063 0.038 0.052 0.077 115911 1.11 0.79 1.12 1.40

12 17 154983 0.062 0.034 0.049 0.073 154983 0.95 0.60 1.01 1.34

Canberra (35.27 S, CSIRO) Aerosol Optical Depth, 500 nm Ångström exponent

Mon Yrs Nobs Mean 25Q Median 75Q Nobs Mean 25Q Median 75Q

01 13 32164 0.096 0.053 0.077 0.110 32164 0.96 0.64 0.95 1.28

02 14 28148 0.090 0.049 0.074 0.105 28148 1.04 0.73 1.02 1.35

03 14 30960 0.067 0.036 0.056 0.089 30960 1.14 0.84 1.17 1.45

04 14 22939 0.071 0.034 0.051 0.089 22939 1.14 0.81 1.17 1.50

05 12 19717 0.046 0.027 0.036 0.050 19717 1.26 1.02 1.27 1.52

06 11 12527 0.038 0.024 0.032 0.044 12527 1.21 0.92 1.27 1.52

07 11 15065 0.039 0.024 0.032 0.044 15065 1.24 0.92 1.30 1.58

08 13 26419 0.058 0.032 0.045 0.064 26419 1.22 0.92 1.32 1.59

09 11 30892 0.071 0.043 0.061 0.086 30892 1.34 1.12 1.42 1.61

10 12 25773 0.086 0.050 0.073 0.104 25773 1.22 0.98 1.25 1.50

11 11 22616 0.070 0.042 0.061 0.086 22616 1.07 0.84 1.10 1.32

12 12 31646 0.068 0.041 0.057 0.084 31646 1.01 0.73 1.05 1.31
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