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Abstract The extreme dust storm that affected Middle East and the Eastern Mediterranean in
September 2015 resulted in record-breaking dust loads over Cyprus with aerosol optical depth
exceeding 5.0 at 550 nm. We analyze this event ursing profiles from the European Aerosol Research
Lidar Networl_< (EARLINE f:w e Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPS%% observations from the Meteosat Second Generation - Spinning Enhanced
Visible and Infrared Imager (MSG- SEVIRI) and high resolut:on S|mulat|0ns with the Reglonal

T(‘/)(M
Atmospheric Modeling System (RAMS) The analyszﬁ]ﬁmm%s/that resulted |n

the generation and persistence of the dust cloud over Middle-East and Cypru

meteorological and surface processes iégferie: (a) the development of a thermal Iow,a;t»zt-hesa:ceaa@#
Syria that results in unstable atmospheric conditions and dust mobilization at this area\b) the
convective activity over Norﬁlyr; that triggers the formation of a westward moving haboob that
merges with the previously elevated dust layer; and (c) the changes in land use due to war at the

3
areas of North/lrag and Syria that enhances dust erodibility.



1. Introduction

A record dust storm affected the entire Middle East and Cyprus in September 2015. Remote sensing

observations and in-situ measurements of Arabian dust from this episode during 7-11 September
2015 are presented by Mamouri et al. (2016) for the station of Limassol (34.7°N, 33°E). As reported
in Wﬁﬁsfticle, the extreme amounts of dust over Middle East and Eas%’diterranean originate
from the desert and arid areas of Syria and Nort%q’. Triggered by this work, we analyze here the
main processes that resulted in the mobilization of dust due to a combination of cyclonic flow aﬁd
haboob formation. ‘ ,

Haboobs are local and mesoscale atmospheric density currents that mobilize huge amounts of dust
and create a propagating dust wall extending up to 2-3 km in the troposphere (Knippertz et al,,
2009; Solomos et al., 2012). These systems are well known by local populations at desert and arid

areas worldwide due to their devastating impact in visibility and human health (e.g. Schepanski et

—

pleane

al., 2009; Emmel et al., 2010). The responsible mechanism for haboob formation is the generatlon ,urd«ta

of a cold pool of ambient air due to evaporative cooling. The rain and ice condensates evaporate (or
melt) as they fall through the warmer and unsaturated air and the absorption of latent heat from
the phase changes leads in a vigor cooling of the surrounding air. When these convective outflow
boundaries travel over bare soil and desert areas they result in the generation of a propagafing dust
wall. The scale of the processes that participate in the generation of such atmospheric density
currents ranges from synoptic down to mesoscale and local. As a result, haboobs and their effects in
weather and air-quality cannot be resolved by the coarse global model resolutions (Marsham et al.,

)

2013). Moreover, haboo suallym over remote arid areas where no in-situ networks are
present and m Sﬁé dust-storm measurements can only be obtained during field campaign
experiments (e.g. SAMUM 1 & 2, Ansmann et al., 2011; FENNEC, Ryder et al., 2015). Following these
limitations, most of the efforts for the studying and forecasting of such intense dust episodes rely
on passive and active remote sensing observations (e.g. MODIS, EARLINET, CALIPSO) and on high
resolution modeling simulations. It is also worth to mention that satellite data assimilation, which
has been shown to improve dust forecasts in global models (Benedetti, et al., 2009), cannot be
easily adopted for the description of haboobs. The reason is ’Ehat even when the correct amounts of

ic,
dust are assimilated in the dust model, the model itself \@# not be able to determine the dust

transport since the primary atmospheric properties of moisture convergence and wind gust remain
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unresolved. ' W

A variety of studies on haboobs has been performed worldwidéﬂ(nippertz et al. (2009); Reinfried et
al. (2009); Solomos et al. (2012); Roberts and Knippertz (_2014)/<analyzed the physical processes that
lead in severe haboob formation in Sahara as an aftermath of Atlas Mountains convective storms.
Bou Karam et al. (2008) showed the contribution of the east Atlantic monsoon flow and the
avssociated mesoscale convective systems (MCS) in dust elevation along the Sahel. Vukovic et al.
(2014) described the severe convective dust storﬁw that hit Phoenix Arizona in july 2011. Asian
haboobs from the Taklimakan and Gobi deserts are described and simulated in Takemi}<(1999,
2005). All these studies agree in the complexity and synergy between various physical processes at
multiple atmospheric scales that govern the geﬁeration and lifetime of these systems. Apart from
their devastating effécts at Ipcal and'nearusurface kscales, such events may also contribute to the
free-troposphere dust burden in several ways: First, entrainment of dust parti:cles in the free
troposphere takes place at the turbulent region of the density current head (Takemi, 2005; Solomos
et al., 2012); Second, they trigger secondary convective cells along their pathways that may evolve
to synoptic scale dust events aﬁd third, dust residuals remain aloft after the cold pbol declines.

The current article is the second part (Part 2) in a series of articles on the September 2015
extraordinary dust storm in Middle East and Eastern Mediterranean. In Part 1, Mamouri et al.
(2016) preseni/a detailed analysis of remote sensing and in-situ monitoring of the event over

Cyprus. The formation of similar events is not fully understood and we use this unique episode to

™Tee VeV ‘ in

elucidate the mechanism of dust production in this understudied region. EARLINET measuremen

along with CALIPSO and MSG observations% to fine tune RAMS simulations and explain the
physical processes that resulted in this haboob-driven dust storm. We focus our analysis on the first
two days of the event (6 and 7 September 2015) when the extraordinary dust-storm was generated.
To the best of our knowledge this is the first detailed modeling and remote sensing study to
describe a Middle East haboob. The modeling and measurement techniques for the analysis are
presented in Section 2. Section 3 includes the model results, the remote sensing observations and
the investigation of the atmospheric processes that lead in the formation of the dust episode.

Conclusive remarks and discussion are presented in Section 4.
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2. Instruments and models.

2.1 Remote sensing observations
2.1.1. EARLINET A
The lidar station at Limassol (34.7° N, 33° E; 23 m above sea level, a.s.l.) is part of the European
Aerosol Research Lidar Network {(EARLINET: Pappalardo et al., 2014). Details on the lidar station
equipment and the retrieval algorithms are given inyl\/lamouri et al. (2016). Dust mass concentration
profiles are obtained from the dust optical properties following the methodology proposed by
Ansmann et al. (2012). For this case study we use a lidar ratio of 40 sr that is typical for Middle East

dust (Mamouri et al., 2013). The overall uncertainty in the estimated dust mass concentrations is
_209 5 \ N
20-30%. —— ')o‘mvro\:t QW move &oﬁl&&, cwnd m{?e/wqce,, ppor>,

2.1.2. CALIPSO

CALIOP, the principal instrument on board the CALIPSO satellite is a standard dual-wavelength (532
and 1064 nm) backscatter Iida’r, operating a polarization channel at 532 nm {Winker et al., 2009).
CALIOP has been acquiring high-resolution profiles of the attenuated backscatter at 532 and 1064
nm along with polarized backscatter in the visible channel since 2006. After calibration and range
correction of the lidar backscatter signals (Level 1 CALIPSO product), cloud and aerosol layers are
identified and aerosol backscatter and extinction coefficient profiles at 532 and 1064 nm are
retrieved as part of the Level 2 CALIPSO product. The CALIPSO algorithms are described in detaildzez
sRecigkzissue afthe lourra mﬁm% Winker et aI.éOOé. In

this study, we utilize L2 version 3 Aerosol and Cloud profiles product at a horizontal resolution of 5

km analysis and vertical resolution of 60 m (in altitudes up to 8 km above sea level). in extreme
haboob events, where the optical signal is very high, it is possible for the algorithm to wrongly
attribute a dust layer as a cloud. In order to address this issue and fully understand the observed
scene we use collocated information derived from MSG-SEVIRI (see sect. 2.1.3). In the two CALIPSO
cases used here, MSG-SEVIRI RGB images confirmed that CALIPSO overpasses was cloud free, hence
we classify both aerosol and cloud categorized CALIPSO observations as aeroso%eover, both of
the cases have significantly high particle depolarization ratio values, which is a signature of pure
dust scenes. In order convert the dust extinction coefficient from CALIPSO into dust mass

concentration, we follow the methodology proposed by Ansmann et al. (2012) using the conversion

—4_



parameter of desert dust that is proposed in Mamouri and Ansmann (2017).

2.1.3. MSG-SEVIRI

The Meteosat dust RGB composite is produced from a combination between three MSG channels:
IR12.0-IR10.8 (red), IR10.8-IR8.7 (green) and IR10.8 (blue). This product is provided in hourly
ihtervals by EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites)
and aims in the monitoring of dust transport. Dust in these RGB images appears in pink or magenta
colo /;V ile green-blue and red-brown colors are reserved for land and clouds respectively (Lensky

and Rosenfeld, 2008).

2.2 Modeling simulatibns

2.2.1 RAMS-ICLAMS model

For the simulations used in this study we adopt the online coupled atmospheric and air quality
modeling system RAMS-ICLAMS (Pielke et al., 1992; Meyers et al.,, 1997; Cotton et al., 2003;
Solomos et al., 2011). The In’t/egrated Community Limited Area Modeling System (ICLAMS) is an
enhanced version of RAMS6.0 and it has been developed by the Atmospheric Modeling and
Weather Forecasting Group at the University of Athens, Greece. The model is set up in a two-way
nesting configuration. The external domain grid space is set at 12x12 km and the grid space of the
inner domain is set at 4x4 km. A higher resolution (cloud resolving) grid at 2x2 km is nested over the
haboob generation area at Syria-Irag-lran-Turkey borders. The locations of the model domains are
shown in Figure 1b. The vertical structure of the model consists of 50 terrain following levels

stretching from the surface up to 18 km. The dust production scheme follows the saltation and

bombardment approach (Marticorena and Bergametti 1995; Spyrou et al., 2010). Wet and dry - -

deposition of dust is formulated following Seinfeld and Pandis 1998. Mineral dust is represented
with a transport mode of eight radii bins namely 0.15, 0.25, 0.45, 0.78, 1.3, 2.2, 3.8 and 71 um. Sea
salt aerosol is also parameterized following Monahan et al., 1986; Zhang et al., 2005; Leeuw et al,,
2000 and Gong et al., 2002, 2003 and it is represented with an accumulated and a coarse mode at
0.18 um and 1.425 um in radius respectively. Dust and sea salt particles interact with the radiative
transfer code of the model (Rapid Radiative Transfer Model (RRTM), Mlawer et al., 1997; lacono et
al., 2000) for the computation of heating rate fluxes. The formation of cloud condensation nuclei

(CCN) and ice nuclei (IN) from dust and sea salt particles is also included in the mode! based on the

-
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schemes of Fountoukis and Nenes, 2005 and Barahona and Nenes 2009. Initial and boundary
conditions are from the NCEP final analysis dataset (FNL at 1°x1° resolution) and the sea surface
temperature .is the NCEP operational SST' at 0.5°x0.5°. The convective parameterization scheme of
Kain and Fritsch, 1993 (KF) is activated for the two coarser grids. Assimilation of radiosonde data
from the airports of Adana (36.98°N, 35.35°E), Bet Dagan (32.00°N, 34.81°E), Diyarbakir (37.S4°N,
40.12°E), Mafraq (32.36°N, 36.25°E) and Nicosia (35.10°N, 33.30°E) is also activated to fine tune the
simulations. A series of sensitivity runs with various model configurations (different physical
schemes, assimilation parameters and domain structures) is performed until we conclude to the

optimum setup for the specific simulation.

2.2.2 Land use changés and activation of dust sources

An accurate representation of dust sources in the region is crucial for understanding this complex
dust event, but this is hampered by recent land cover changes in the region. The original land use
database of the model is the USGS Data Base Version 2 which is obtained from 1-km AVHRR data
(Advanced Very High Resolutién Radiometer) spanning April 1992 through March 1993. However,

complex interactions of drier climate (Notaro et al., 2015; Cook et al., 2016), transboundary water

%
change of land use types that are no longer reflected at the model and this could have a large

managements (Voss et 013), and prolonged conflict (Jaafar and Woertz, 2016) have led to
impact on dust production. The comparison of Landsat 8 natural color and NDVI imagery between
2013 and 2015 (Figure 2) reveals large areas of uncultivated fields in regions of contested boarders
and exposed river and lake-bed sediments especially around the Euphrates river, all of which are
known to be very efficient dust sources (Prospero et al, 2002; Ginoux et al., 2012). In order to get
most accurate representation of dust sources for the specific event we use 1lkm monthly
Normalized Difference Vegetation Index (NDVI) from MODIS (Didan K., 2015) to characterize land
use type in the region of interest. Specifically, we consider regions with NDVI values from 0 to 0.1 to
correspond to bare soil and consequently efficient dust sources (DeFries et al., 1994). The updated
land cover dataset is used for all results shown in this study. Results from simulations using the

older database are only shown in Figure 11 for comparison.



3. Results

3.1 Meteorological conditions

The main driving force for the generation of this extreme dust episode is the combination between
two distinct meteorological features in the greater area: (i) establishment of a thermal low over the

bare-soil areas of Syria and (ii) convective outflow boundaries at the mountains of Irag and Syria.

These processes are analyzed in the following sections using modeling results and remote sensing.

observations.
3.1.1 Development of a low pressure system over Syria on 6 September 2015
As seen at the outer model grid in Figure 1a, the passage of a trough is evident over Turkey on 6

September 2015, 00:00 UTC. The low pressure center at 50¢mb is found at 5840 m ovéf the east

bank of Black Sea. Duﬁng the same day, radiative warming of the bare soil surface results in very'

hot soil temperatures exceeding 50 °C in Syria and Irag. This combination of cold air aloft with low
level warming, leads in the formation of a thermal low pressure system over Syria.l Another
parameter that plays important role for the process of dust source activation is the difference
between surface temperature (Tsy) and air temperature at 2m (T,m). Findings from earlier field
experiments (i.e. SAMUM) show that such a difference of 17°C-20°C facilitates the uplift of
convective dust plumes (Ansmann et al., 2009). As seen in Figure 1b, the modeled TsuTom
difference at 10:00 UTC exceeds 17°C over extended bare soil areas in Syria. This temperature
gradient further explains the effectiveness of dust production at these areas. The pressure system
and the associated cyclonic flow persist during the entire day of 6" September 2015 and result in
the mobilization of dust in the area. The low pressure system is evident by the 850 mb geopotential

height contours in Figure 3a, reaching a minimum of 1490 m at 08:00 UTC, 6 September 2015. Dust

almost during the entire day and Tsu¢+T2m Obtains maximum values. The elevated particles are
quickly distributed inside the system and a distinct cylindrical dust cloud is soon formed.
Recirculation of the elevated dust particles inside the closed cyclonic flow results in extreme AOT
values exceeding 15 at specific areas as seen in Figure 3a. The formation of this dense dust plume is
also evident in the MSG-SEVIRI satellite dust RGB image in Figure 3b. Pink and purple colors in this
image indicate dust while brown and red colors indicate clouds. As seen in Figure 4, convergence of
low level flow along the Mediterranean coastline during the morning hours on September 6",

results in local convective activity at the area of Lebanon)aéuntains and in local disturbance of the
i

blxaekc

-uptake is mostly evident at the outer parts of the cyclone where surface wind speed exceeds 7-m st

e
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mesoscale wind field. A SE flow is established, and this flow is responsible for the transport of dust
from Lebanon towards Cyprus that is evident at the satellite and modeling images on 7 September
2015, 00:00 UTC (Figure 5). This cut-off plume (plume_1) travels in the lower troposphere above
the marine boundary layer and it was observed at 1.5 km above Limassol at 19:00 UTC on
September %’as reported by Mamouri et al. (201} The faster propagating haboob plume
(plume 2) also was detected at 2.0-3.5 km over Cyprus at 19:00 UTC. The extreme AOT values (>10)
that are seen in Figure 5a over Syria result from the overlapping of cyclone-driven and haboob-
driven dust over this area. In the model, approaching of the haboob front in Syria is accompanied
also by cloud formation as seen by the 70% cloud-cover contours in Figure 5a; however these clouds

are not evident in the satellite image (Figure 5b) The more elevated (cyclone-driven) dust in Figure

_5b is shown in pink (plume_l over the sea and plume_3 over NorWa and Sou%key have the

same origin) and the near surface dust (haboob) is shown with a darker purple color (plume_2).
me QQLMM_V_) bzﬁjp Hee s ame {:@wﬂw\“ jg\uv e AOA‘%',

, generationon 6 a ptember 2015
" of September a northward low level flow is evident over N. Irag and N. Syria

3.1.2. Convecfion and
At 13:00 UTC on

(Figure 6a). This relatively unstable air mass is characterized by increased equivalent potential
temperature (theta_e) reaching up to 508 K. This flow is associated with a westerly shift of the
Somalian Low Level Jet (SLLJ). The SLLJ is part of the West India Monsoon circulation and as shown
in Figure 6b it is characterized by strong SW winds blowing from the Somalia highlands towards
West India. This low level flow steers towards the west along the coastal mountains of Yemen and
Oman and results in SE winds transferring moisture from the Arabian Sea towards the inlands of the

Arabian Peninsula. Mechanical elevation of this relatively unstable air as it approaches Mt. Sinjar in

N. Iraq (Figure 6a) triggers convection at this area. A crucial parameter that determines the

formation of a cold pool is the temperature difference between rain droplets and the ambient air.
As seen in Figure 7a, the absolute difference between rain droplets temperature and ambient air
temperature in the model reaches a maximum of 22 °C at this area. This temperature gradient
results in a faster evaporation rate of the rain droplets as they fall through the unsaturated air and
in the formation of a cold pool at the area of Nort Q“:aq. Wind speed inside the cold pool ranges
from 10 up to 20 ms™ (Figure 7h). This cold pool moves towards the North and triggers the

generation of secondary convective cells at the mountainous areas along Iran-lrag-Turkey

borderline. At 20:00 UTC, a series of convective outflows converges in an organized SE propagating

-9
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247  density current that is evident in the model over N. Irag and N. Syria (Figure 8a). This system is
248  characteriz y,wind sbeeds higher than 6 m s™ and results in activation of dust sources and near
249 surf@ﬁ?%ions largely exceeding 10000 pg m™ (Figure 8b). However, the corresponding
250  SEVIRI image (Figure 8c) indicates that by this time the haboob has already penetrated about 200

251  km inside Syria which is not reproduced by the model. This latency between satellite and modeled

252 " haboob fronts is an indication that the convective downdrafts were in fact even stronger..—— ,

o

253
254 3.2 Dust cloud properties and comparison with observations

255  3.2.1. Vertical dust structure

256  The dust layer structure as it propagates towards the Mediterranegn”is captured by two CALIPSO
257  overpasses at 23:33 UTC, 6 September 2015 (Figure 9) and at 10735 UTC, 7 September 2015 (Figure
258 10). Collocated vrvchJCtieI cro;c,ﬂs sections of dué‘é }and MiSA‘GV—S IRl dust images are also prese‘ntlerd in
259  Figures 8 and 9.@3 in saj\enll/ite and model proﬁleé refer to heights above sur ac@At the first

260 overpass (Figure 9), the souEt?b’art of the dust layer (31°N-34°N) is detected up to 2-3 km and g
ar
261  originates from the cyclonic flow over Syria. Dust concentrations are estimated from CALIW

3

262  backscatter and as seen in Figure 9b they reach up {o 5000 pg m_>/close to the surface between

263  31°N-34°N and higher than 6000 ug m~ in the first 500 m. Simfilar structure and dust concentrations

264  are also found by the model (Figure 9c). The northern part of the overpass (35°N-38°N) detects also
265  elevated dust due to cyclonic activity between 2.5-4.5 km arjd concentrations up to 1000-2000 pg
266  m? are evident at this area from CALIPSO. The model overpredicts dust at this area with simulated
267  concentrations reaching up to 5000 pg m?>. These elevated layers are shown with pink colors in
268  Figure 9a. Low ievel dust {purple colors in SEVIRI images) i$ also evident in this area due to the

269 - propagating haboob and CALIPSO detects this two-layer structure with a clear separation at 2 km.

270  The model also reproduces the uplift of dust at 35°N where the two systems (cyclone and haboob)
271  merge. The modeled concentration inside the haboob reaches extraordinary values exceeding
272 10000 pug m>. Due to the severity of the event, the CALIPSO/Iidar signal is totally attenuated bellow
273  ~1 km (dark blué color), in the area between 35°N-37°N. Fgr that reason the information from the
274  satellite is limited there in the highest 500m of the propagated haboob, implying also the existence
- 275  of much higher values close to the surface.

276  The second overpass at 7 September 10:35 UTC is actually behind or at the tail of the propagating
277  dust storm (Figure 10a). The thin dust layer that is detected by CALIPSO between 30°N-32°N reaches

~4- | , | A Pa o ex 00(;‘4 How Hiose
7ou CMQZV,HL’TLL e wﬂd‘j“t‘/ /



278  upto 2 km and maximum dust concentrations of up to 2000-3000 pg m are calculated mostly close
279  to the surface (Figure 10b). Extreme dust concentrations are also found in both satellite and model
280  plots between 34°N-36°N at the tail of the propagating system. Dust values at this area are so high
281  that CALIPSO observation suffers again from total attenuation of the lidar signal after penetrating
282  the first 1000 m and extraordinary concentrations of up to 20000 g m™ are found in the lower
283 model levels (up to 1.5 km). Similar values are observed from CALIPSO in the edge of the haboob
284  (33.5°N-34°N) where the signal is strong enough to provide valuable information. The elevated
285 layers (2-4 km) between 36°N-38°N at both CALIPSO and model profiles are dust residuals over the
286  mountains of Turkey. An elevated dust layer of up to 600 pg m is also found south of 35°N in the
287  model at heights between 3-4 km. Due to the aforementioned latency between the true and
288 modeled propagation speeds, the model cross-section is closer to the core of the system hence this

289  layer consists of modeled cyclone uplifted dust that in fact is already west of the CALIPSO, track.

| | oed
290 ?’/YW/,

291  3.2.2. Dust load over Cyprus

292  The observed structure and amounts of dust arriving in Cyprus is described in detail by Mamouri et
293 al. (2016). The arrival of the dust plumes at Limassol in Cyprus is evident in Figure 11. A double layer
294  structure is detected by the Iidar‘(aa{‘//; September 19:00 UTC. The relatively shallow dust layer that is
295  found between 0.8-1.7 km with a maximum peak at 2000 pg m~, comes from the detached dust air
296 mass traveling off the coast of Libanon as described in Section 3.1.1. The model reproduces
297  correctly the height of this layer but the maximum concentration is underestimated by almost 50 %.
298  The upper layer that is detected between 1.8-3.6 km originates from the north part of the fast
299  propagating haboob that catches up with the “Lebanon” dust over Cyprus. The location and dust
300 concentrations of this layer are adequately reproduced by the model. The total modeled dust load
301 s similar to the observed (lidar) dust load but the vertical distribution of dust in two distinct layers
302 is not so clearly reproduced. Model results using the old vegetation database are also shown in
303  Figure 11. As seen by the dashed line in this plot, this simulation failed to reproduce the strength of
304  the eygni_’f.pd the maximum concentration is 400 pg m™ at about 0.7 km height. On the@)

e

305 é’(p/tg,mbér the lidar system could not operate due to the extraordinary dust load. The mean MODIS
© 306 d:rived AOT on this day varied between 1.5-5 over five sites in Cyprus (Pafos, Limassol, Larnaca,

307 Nicosia, Rizokarpaso), (Mamouri et al., 2016). Given the fact that the maximum retrievable MODIS

308 AOT is 5, these values are most probably an underestimation of the true AOT. The distribution of

wlo—



modeled AOT during-00:00 UTC-15:00 UTC on the 8™ of September is shown in Figure12; the dust
plume apbroaches Cyprus from the South and the orographic effect of Mt. Troodos results in an
inhomogeneous distribution of dustload over the istand, which explains the AOT variability between
the sites. The modeled AOT values over the Middle East inland exceed 10 as shown aléo by the
sharp,gradient towards the eastern part of Figure 12 plots. However the extreme dust storm
affecting Cyprus during the 8thﬁ5epteﬁwber is the result of a plume that approaches the island
from the south. This dust layer is evident between 1.5-3.5 km in the vertical cross-sections of model
dust concentration at 00:00 UTC and 03:00 UTC in Figure 13. Downward mixing of dust as this air |
mass approaches the topographic barrier of Troodos mountain increases the near—surface

concentrations at the southern sites especially during local morning and noon hours (06:00 UTC,

09:00 UTC). In the afternoon hours (12:00 UTC, 15:00 UTC), the development of upward motions

over Mt. Troodos sepafates the dust flow over Cyprus ihto two distinct cells {a south and a north .
one) and at this time increased concentrations are found over the northern sites of the island. The
maxim simulated concentrations are up to 4000 ug m™ aloft and about 1000 pg m? close to the
surfé?‘aking into account the complexity of the situation, the spatiotemporal evolution of the
episode seems to be correctly explained by the model but the extreme values of 8000-10000 mg m>
that are reported by Mamouri et al. (2016) are not reproduced. This discrepancy can be attributed
to a variety of reasons related to both dust and atmospheric properties that are not properly
resolved even at this fine model scale (e.g. more intense downward mixing or increased emissions
from the sources). The modeled versus observed maximum AOT values for the five sites are also
shown in Table 1. The model reproduces the highef AQOTs at the most southern sites (Limassol and

Pafos) compared to the central and north sites. Following the previous discussion about the already

- underestimated - MODIS AOT- it -seems that the model reproduces-the distribution of dust over

Cyprus however with an overall underestimation of more than 2. A possible explanation could be
also that the dry river beds of Tigris and Euphrates as well as several dust sources over Syria and
North Iraq provide even more erodible sediments than those assumed by the model hence the

discrepancies in dust concentrations.

—)—
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Table 1. Maximum MODIS and RAMS AQOT over CypruséSeptember 2015)

Pafos Limassol Larnaca Nicosia  Rizokarpaso

'MODISpor 3.5 5.0 50 2.0 5.0

RAMSaor 3.5 4.0 3.0 3.0 3.0

4. Discussion and Conclusions
A combination of meteorological and landuse conditio:s resulted in the formation of an
unprecedented dust episode over Middle East an&%s%diterranean during 6-11 September
2015. This event is unique due to the coincidence of various atmospheric phenomena related with
the generation of turbulence and dust production. interpretation and analysis of remote sensing
data (EARLINET, CALIPSO, MSG-SEVIRI) and modeling simulations (RAMS-ICLAMS) reveals the main
reasons that led in the uplift and persistence of the dust layers§:rhe major processes affecting the
generation of the dust storm are found to be:
1. The formation of a strong thermal low over Syria that lifted dust up to 4 km.
2. The intrusion of a moist and unstable air mass from the Arabian Sea that triggered
convective activity over lrag-lran-Syria-Turkey borderline.
3. The generated outflow boundaries that led in dust deflation and formed a westward
propagating haboob merging with the previously elevated dust over Syria.
4. The efficiency of Middle East dust sources is increased as an aftermath of war and the
related changes in land use.

As reported by Mamouri et al. (2016), almost all operational dust models failed to forecast this

event. RAMS-ICLAMS in this study is not used in forecasting mode but rather as a tool for the a-

posteriori analysis and explanation of the event. This means that thé configuration of several model
parameters such as the nested grid structure, convective parameterization schemes, dust source
strength etc. is guided by the available observations. In this context, most observed processes are
successfully described by the model and the various physical mechanisms that took place during the
event are explained. However, certain inaccuracies in the quantification of atmospheric variables
and spatiotemporal deviations in the description of convection and other physical processes can still

significantly decrease the model skill especially regarding the quantification of dust mass profiles.
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The analysis. presented here raises considerations regarding the forecast' skills of fhe atmospheric
dust models, since even though such extreme episodes are very seldom they still represent the
most threatening dust hazards. The long range transport and the general circulation of dust in the
atmosphere are nowadays adequately forecasted by most global models but convectively driven
episodes cannot be resolved at synoptic and mesoscale resolutions. Moreover, a recent study by
Pope et al./2016) suggests that unresolved haboobs may be responsible for up to 30% of the total
atmospheric dust and such considerationé raise questions on the current status of early warning
systems for dust episodes. It is probably obvious that such a system cannot rely exclusively on
modeling simulations. As shown at the present Ystudy, the complexity of these events makes their
forecast very challenging and even at convection permitting resolutions, it is possible that a certain
model configuration could successfully reproduce a specific event but not all similar events.
Moreover, such high resolution grid-space can only be appl‘ied over limited areas due to restrictions
in computational power.

Remote sensing observations can play an important role for the provision of more accurate dust
forecasts. Engagement of geostationary satellite observations (MSG, Sentinel-4) and CALIPSO
profiles in forecasting activities could improve the forecasting skill either by the direct assimilation
of satellite data in dust models or by issuing human-assisted early warnings. Expansion of a lidar
network close to dust source areas (e.g. Sahara, Middle East) will also compiement model activities
through the provision of ground truth observations for the vertical profile of dust plumes.
Additionally, the activation of m& observations from the EARLINET network following a

dust forecast notice will allow a closer investigation of the physical processes that drive these

even
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Figure 1. a) Model geopotential height contours (every 10 m) and temperature (color scale in °C) at
500mb, 6 September 2015, 00:00 UTC; b) Difference (°C) between model soil temperature and
model temperature at 2m, 10:00 UTC, 6 September 2015. Black rectangulars indicate the location of
the nested model domains (d01:12x12 km, d02:4x4 km, d03:2x2 km).
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Land type changes in 2015

Figure 2. (central panel) MODIS NDVI observations for August 2015 were used to identify regions of
bare soil that can be sources of dust aerosols. The contour lines correspond to the major ticks of the
color scale. Large regions of wester Syria and Irag have NDVI values from O to 0.1. The three

subpanels show examples of land type change between summer 2013 and summer 2015. (Subpanel

"A) Landsat 8 natural color images of Aleppo region, Syria shows changes of cultivation patternsand

drying of nearby Al Jaboul lake (e.g. the bright areas of the Al Jaboul Lake - dry parts of the lake -
increased from 2013 to 2015); (Subpanel B) Landsat 8 NDVI index images in the region of Hawija,
Kirkuk Province, iraq reveal that large areas remained uncultivated in 2015 (e.g. the 2013 map
shows many more green spots - agriculturally used areas - than the 2015 map); {Subpanel C)
Landsat 8 natural color images showing diminishing area of Haditah Lake on the Euphrates river and

the drying up of the Therthar canal and lake.
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Figure 5. a) Model AOD at 550 nm (color scale) and cloud cover > 70% (red contour). b) MSG-SEVIRI
dust RGB component, 7 September 2015, 00:00 UTC
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September 2015, 13:00 UTC. b) Wind speed at 10m from the NCEP final analysis (FNL) dataset, 6
September 2015, 06:00 UTC.
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654  Figure 13. Vertical cross-section (So‘uth-North) of modeled dust concentration over Cyprus 00:00 —

655  15:00 UTC, 8 September 2015. The location of the cross-section is shown in Figure 12a.
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