

1
2 **Remote sensing and modeling analysis of the extreme dust storm hitting**
3 **Middle East and Eastern Mediterranean in September 2015**

4
5
6 **Solomos Stavros¹, Albert Ansmann², Rodanthi-Elisavet Mamouri³, Ioannis Binietoglou^{1,5}, Platon**
7 **Patlakas⁴, Eleni Marinou^{1,6} and Vassilis Amiridis¹**

8
9 ¹Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National
10 Observatory of Athens, Athens, Greece

11 ²Leibniz Institute for Tropospheric Research, Leipzig, Germany

12 ³Cyprus University of Technology, Department of Civil Engineering and Geomatics, Limassol, Cyprus

13 ⁴School of Physics, Division of Environment and Meteorology, University of Athens, Athens, Greece

14 ⁵National Institute of R&D for Optoelectronics, Magurele, Ilfov, Romania

15 ⁶Laboratory of Atmospheric Physics, Physics Department, Aristotle University of Thessaloniki, 54124,
16 Thessaloniki, Greece

17 **Abstract** The extreme dust storm that affected Middle East and the Eastern Mediterranean in
18 September 2015 resulted in record-breaking dust loads over Cyprus with aerosol optical depth
19 exceeding 5.0 at 550 nm. We analyze this event using profiles from the European Aerosol Research

20 *and*
21 Lidar Network (EARLINET) *as well as* the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
22 (CALIPSO) *as well as* geostationary observations from the Meteosat Second Generation - Spinning Enhanced

23 Visible and Infrared Imager (MSG-SEVIRI) and high resolution simulations with the Regional
24 Atmospheric Modeling System (RAMS). The analysis *presented in this paper* reveals the main mechanisms that resulted in

25 the generation and persistence of the dust cloud over Middle-East and Cyprus. *These mechanisms*
26 meteorological and surface processes *found*: (a) the development of a thermal low *over* *at the areas of*

27 Syria that results in unstable atmospheric conditions and dust mobilization at this area; (b) the
28 convective activity over North Iraq that triggers the formation of a westward moving haboob that
29 merges with the previously elevated dust layer; and (c) the changes in land use due to war at the

30 areas of North Iraq and Syria that enhances dust erodibility.

31

are based on

32 **1. Introduction**

33

34 A record dust storm affected the entire Middle East and Cyprus in September 2015. Remote sensing
35 observations and in-situ measurements of Arabian dust from this episode during 7-11 September
36 2015 are presented by Mamouri et al. (2016) for the station of Limassol (34.7°N, 33°E). As reported
37 in ~~this~~ ^{the} article, the extreme amounts of dust over Middle East and ~~East~~ ^{the} Mediterranean originate
38 from the desert and arid areas of Syria and ~~North~~ ^{evn} Iraq. Triggered by this work, we analyze here the
39 main processes that resulted in the mobilization of dust due to a combination of cyclonic flow and
40 haboob formation.

41 Haboobs are local and mesoscale atmospheric density currents that mobilize huge amounts of dust
42 and create a propagating dust wall extending up to 2-3 km in the troposphere (Knippertz et al.,
43 2009; Solomos et al., 2012). These systems are well known by local populations at desert and arid
44 areas worldwide due to their devastating impact in visibility and human health (e.g. Schepanski et

45 al., 2009; Emmel et al., 2010). The responsible mechanism for haboob formation is the generation
46 of a cold pool of ambient air due to evaporative cooling. The rain and ice condensates evaporate (or

47 melt) as they fall through the warmer and unsaturated air and the absorption of latent heat from
48 the phase changes leads in a vigor cooling of the surrounding air. When these convective outflow
49 boundaries travel over bare soil and desert areas they result in the generation of a propagating dust
50 wall. The scale of the processes that participate in the generation of such atmospheric density
51 currents ranges from synoptic down to mesoscale and local. As a result, haboobs and their effects in
52 weather and air-quality cannot be resolved by the coarse global model resolutions (Marsham et al.,

53 2013). Moreover, ~~are generated~~ haboobs ^{are} usually ~~generate~~ over remote arid areas where no in-situ networks are
54 present and ~~inside~~ ^{in site} dust-storm measurements can only be obtained during field campaign

55 experiments (e.g. SAMUM 1 & 2, Ansmann et al., 2011; FENNEC, Ryder et al., 2015). Following these
56 limitations, most of the efforts for the studying and forecasting of such intense dust episodes rely
57 on passive and active remote sensing observations (e.g. MODIS, EARLINET, CALIPSO) and on high
58 resolution modeling simulations. It is also worth to mention that satellite data assimilation, which
59 has been shown to improve dust forecasts in global models (Benedetti, et al., 2009), cannot be
60 easily adopted for the description of haboobs. The reason is that even when the correct amounts of
61 dust are assimilated in the dust model, the model itself ~~will~~ ^{is} not be able to determine the dust
62 transport since the primary atmospheric properties of moisture convergence and wind gust remain

please
update
Ref.

63 unresolved.

64 A variety of studies on haboobs has been performed worldwide Knippertz et al. (2009); Reinfried et
65 al. (2009); Solomos et al. (2012); Roberts and Knippertz (2014) analyzed the physical processes that
66 lead in severe haboob formation in Sahara as an aftermath of Atlas Mountains convective storms.
67 Bou Karam et al. (2008) showed the contribution of the east Atlantic monsoon flow and the
68 associated mesoscale convective systems (MCS) in dust elevation along the Sahel. Vukovic et al.
69 (2014) described the severe convective dust storm that hit Phoenix Arizona in July 2011. Asian
70 haboobs from the Taklimakan and Gobi deserts are described and simulated in Takemi (1999, X
71 2005). All these studies agree in the complexity and synergy between various physical processes at
72 multiple atmospheric scales that govern the generation and lifetime of these systems. Apart from
73 their devastating effects at local and near surface scales, such events may also contribute to the
74 free-troposphere dust burden in several ways: First, entrainment of dust particles in the free
75 troposphere takes place at the turbulent region of the density current head (Takemi, 2005; Solomos
76 et al., 2012); Second, they trigger secondary convective cells along their pathways that may evolve
77 to synoptic scale dust events and third, dust residuals remain aloft after the cold pool declines.

78 The current article is the second part (Part 2) in a series of articles on the September 2015
79 extraordinary dust storm in Middle East and Eastern Mediterranean. In Part 1, Mamouri et al.
80 (2016) present a detailed analysis of remote sensing and in-situ monitoring of the event over

81 Cyprus. The formation of similar events is not fully understood and we use this unique episode to
82 elucidate the mechanism of dust production in this understudied region. EARLINET measurements
83 along with CALIPSO and MSG observations will be used to fine tune RAMS simulations and explain the

84 physical processes that resulted in this haboob-driven dust storm. We focus our analysis on the first
85 two days of the event (6 and 7 September 2015) when the extraordinary dust-storm was generated.

86 To the best of our knowledge this is the first detailed modeling and remote sensing study to
87 describe a Middle East haboob. The modeling and measurement techniques for the analysis are
88 presented in Section 2. Section 3 includes the model results, the remote sensing observations and
89 the investigation of the atmospheric processes that lead in the formation of the dust episode.

90 Conclusive remarks and discussion are presented in Section 4.

91

92 **2. Instruments and models.**

94 **2.1 Remote sensing observations**

95 **2.1.1. EARLINET**

96 The lidar station at Limassol (34.7° N, 33° E; 23 m above sea level, a.s.l.) is part of the European
97 Aerosol Research Lidar Network (EARLINET: Pappalardo et al., 2014). Details on the lidar station
98 equipment and the retrieval algorithms are given in Mamouri et al. (2016). Dust mass concentration
99 profiles are obtained from the dust optical properties following the methodology proposed by
100 Ansmann et al. (2012). For this case study we use a lidar ratio of 40 sr that is typical for Middle East
101 dust (Mamouri et al., 2013). The overall uncertainty in the estimated dust mass concentrations is
102 20-30%. → provide here more details and reference papers.

104 **2.1.2. CALIPSO**

105 CALIOP, the principal instrument on board the CALIPSO satellite is a standard dual-wavelength (532
106 and 1064 nm) backscatter lidar, operating a polarization channel at 532 nm (Winker et al., 2009).
107 CALIOP has been acquiring high-resolution profiles of the attenuated backscatter at 532 and 1064
108 nm along with polarized backscatter in the visible channel since 2006. After calibration and range
109 correction of the lidar backscatter signals (Level 1 CALIPSO product), cloud and aerosol layers are
110 identified and aerosol backscatter and extinction coefficient profiles at 532 and 1064 nm are
111 retrieved as part of the Level 2 CALIPSO product. The CALIPSO algorithms are described in detail in
112 ~~a special issue of the Journal of Atmospheric and Oceanic Technology by~~ Winker et al. (2009). In
113 this study, we utilize L2 version 3 Aerosol and Cloud profiles product at a horizontal resolution of 5
114 km analysis and vertical resolution of 60 m (in altitudes up to 8 km above sea level). In extreme
115 haboob events, where the optical signal is very high, it is possible for the algorithm to wrongly
116 attribute a dust layer as a cloud. In order to address this issue and fully understand the observed
117 scene we use collocated information derived from MSG-SEVIRI (see sect. 2.1.3). In the two CALIPSO
118 cases used here, MSG-SEVIRI RGB images confirmed that CALIPSO overpasses were cloud free, hence
119 we classify both aerosol and cloud categorized CALIPSO observations as aerosol. Moreover, both of
120 the cases have significantly high particle depolarization ratio values, which is a signature of pure
121 dust scenes. In order to convert the dust extinction coefficient from CALIPSO into dust mass
122 concentration, we follow the methodology proposed by Ansmann et al. (2012) using the conversion

123 parameter of desert dust that is proposed in Mamouri and Ansmann (2017).

124

125 **2.1.3. MSG-SEVIRI**

126 The Meteosat dust RGB composite is produced from a combination between three MSG channels:
127 IR12.0-IR10.8 (red), IR10.8-IR8.7 (green) and IR10.8 (blue). This product is provided in hourly
128 intervals by EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites)
129 and aims in the monitoring of dust transport. Dust in these RGB images appears in pink or magenta
130 colors while green-blue and red-brown colors are reserved for land and clouds respectively (Lensky
131 and Rosenfeld, 2008). X

132

133 **2.2 Modeling simulations**

134 **2.2.1 RAMS-ICLAMS model**

135 For the simulations used in this study we adopt the online coupled atmospheric and air quality
136 modeling system RAMS-ICLAMS (Pielke et al., 1992; Meyers et al., 1997; Cotton et al., 2003;
137 Solomos et al., 2011). The Integrated Community Limited Area Modeling System (ICLAMS) is an
138 enhanced version of RAMS6.0 and it has been developed by the Atmospheric Modeling and
139 Weather Forecasting Group at the University of Athens, Greece. The model is set up in a two-way
140 nesting configuration. The external domain grid space is set at 12×12 km and the grid space of the
141 inner domain is set at 4×4 km. A higher resolution (cloud resolving) grid at 2×2 km is nested over the
142 haboob generation area at Syria-Iraq-Iran-Turkey borders. The locations of the model domains are
143 shown in Figure 1b. The vertical structure of the model consists of 50 terrain following levels
144 stretching from the surface up to 18 km. The dust production scheme follows the saltation and
145 bombardment approach (Marticorena and Bergametti 1995; Spyrou et al., 2010). Wet and dry
146 deposition of dust is formulated following Seinfeld and Pandis 1998. Mineral dust is represented
147 with a transport mode of eight radii bins namely 0.15, 0.25, 0.45, 0.78, 1.3, 2.2, 3.8 and 7.1 μm . Sea
148 salt aerosol is also parameterized following Monahan et al., 1986; Zhang et al., 2005; Leeuw et al.,
149 2000 and Gong et al., 2002, 2003 and it is represented with an accumulated and a coarse mode at
150 0.18 μm and 1.425 μm in radius respectively. Dust and sea salt particles interact with the radiative
151 transfer code of the model (Rapid Radiative Transfer Model (RRTM), Mlawer et al., 1997; Iacono et
152 al., 2000) for the computation of heating rate fluxes. The formation of cloud condensation nuclei
153 (CCN) and ice nuclei (IN) from dust and sea salt particles is also included in the model based on the

154 schemes of Fountoukis and Nenes, 2005 and Barahona and Nenes 2009. Initial and boundary
155 conditions are from the NCEP final analysis dataset (FNL at $1^\circ \times 1^\circ$ resolution) and the sea surface
156 temperature is the NCEP operational SST at $0.5^\circ \times 0.5^\circ$. The convective parameterization scheme of
157 Kain and Fritsch, 1993 (KF) is activated for the two coarser grids. Assimilation of radiosonde data
158 from the airports of Adana (36.98°N , 35.35°E), Bet Dagan (32.00°N , 34.81°E), Diyarbakir (37.54°N ,
159 40.12°E), Mafraq (32.36°N , 36.25°E) and Nicosia (35.10°N , 33.30°E) is also activated to fine tune the
160 simulations. A series of sensitivity runs with various model configurations (different physical
161 schemes, assimilation parameters and domain structures) is performed until we conclude to the
162 optimum setup for the specific simulation.

163

164 **2.2.2 Land use changes and activation of dust sources**

165 An accurate representation of dust sources in the region is crucial for understanding this complex
166 dust event, but this is hampered by recent land cover changes in the region. The original land use
167 database of the model is the USGS Data Base Version 2 which is obtained from 1-km AVHRR data
168 (Advanced Very High Resolution Radiometer) spanning April 1992 through March 1993. However,
169 complex interactions of drier climate (Notaro et al., 2015; Cook et al., 2016), transboundary water
170 managements (Voss et al., 2013), and prolonged conflict (Jaafar and Woertz, 2016) have led to
171 change of land use types that are no longer reflected at the model and this could have a large
172 impact on dust production. The comparison of Landsat 8 natural color and NDVI imagery between
173 2013 and 2015 (Figure 2) reveals large areas of uncultivated fields in regions of contested boarders
174 and exposed river and lake-bed sediments especially around the Euphrates river, all of which are
175 known to be very efficient dust sources (Prospero et al, 2002; Ginoux et al., 2012). In order to get
176 most accurate representation of dust sources for the specific event we use 1km monthly
177 Normalized Difference Vegetation Index (NDVI) from MODIS (Didan K., 2015) to characterize land
178 use type in the region of interest. Specifically, we consider regions with NDVI values from 0 to 0.1 to
179 correspond to bare soil and consequently efficient dust sources (DeFries et al., 1994). The updated
180 land cover dataset is used for all results shown in this study. Results from simulations using the
181 older database are only shown in Figure 11 for comparison.

182

183

184

185 **3. Results**

186 **3.1 Meteorological conditions**

187 The main driving force for the generation of this extreme dust episode is the combination between
188 two distinct meteorological features in the greater area: (i) establishment of a thermal low over the
189 bare-soil areas of Syria and (ii) convective outflow boundaries at the mountains of Iraq and Syria.
190 These processes are analyzed in the following sections using modeling results and remote sensing
191 observations.

192 **3.1.1 Development of a low pressure system over Syria on 6 September 2015**

193 As seen at the outer model grid in Figure 1a, the passage of a trough is evident over Turkey on 6
194 September 2015, 00:00 UTC. The low pressure center at 500 mb is found at 5840 m over the east
195 bank of Black Sea. During the same day, radiative warming of the bare soil surface results in very
196 hot soil temperatures exceeding 50 °C in Syria and Iraq. This combination of cold air aloft with low
197 level warming, leads in the formation of a thermal low pressure system over Syria. Another
198 parameter that plays important role for the process of dust source activation is the difference
199 between surface temperature (T_{Surf}) and air temperature at 2m (T_{2m}). Findings from earlier field
200 experiments (i.e. SAMUM) show that such a difference of 17°C-20°C facilitates the uplift of
201 convective dust plumes (Ansmann et al., 2009). As seen in Figure 1b, the modeled $T_{Surf}-T_{2m}$
202 difference at 10:00 UTC exceeds 17°C over extended bare soil areas in Syria. This temperature
203 gradient further explains the effectiveness of dust production at these areas. The pressure system
204 and the associated cyclonic flow persist during the entire day of 6th September 2015 and result in
205 the mobilization of dust in the area. The low pressure system is evident by the 850 mb geopotential
206 height contours in Figure 3a, reaching a minimum of 1490 m at 08:00 UTC, 6 September 2015. Dust
207 uptake is mostly evident at the outer parts of the cyclone where surface wind speed exceeds 7 m s^{-1}
208 almost during the entire day and $T_{Surf}-T_{2m}$ obtains maximum values. The elevated particles are
209 quickly distributed inside the system and a distinct cylindrical dust cloud is soon formed.
210 Recirculation of the elevated dust particles inside the closed cyclonic flow results in extreme AOT
211 values exceeding 15 at specific areas as seen in Figure 3a. The formation of this dense dust plume is
212 also evident in the MSG-SEVIRI satellite dust RGB image in Figure 3b. Pink and purple colors in this
213 image indicate dust while brown and red colors indicate clouds. As seen in Figure 4, convergence of
214 low level flow along the Mediterranean coastline during the morning hours on September 6th,
215 results in local convective activity at the area of Lebanon Mountains and in local disturbance of the
m

216 mesoscale wind field. A SE flow is established, and this flow is responsible for the transport of dust
217 from Lebanon towards Cyprus that is evident at the satellite and modeling images on 7 September
218 2015, 00:00 UTC (Figure 5). This cut-off plume (plume_1) travels in the lower troposphere above
219 the marine boundary layer and it was observed at 1.5 km above Limassol at 19:00 UTC on 7
220 September ~~7~~ as reported by Mamouri et al. (2016). The faster propagating haboob plume
221 (plume_2) also was detected at 2.0-3.5 km over Cyprus at 19:00 UTC. The extreme AOT values (>10)
222 that are seen in Figure 5a over Syria result from the overlapping of cyclone-driven and haboob-
223 driven dust over this area. In the model, approaching of the haboob front in Syria is accompanied
224 also by cloud formation as seen by the 70% cloud-cover contours in Figure 5a; however these clouds
225 are not evident in the satellite image (Figure 5b). The more elevated (cyclone-driven) dust in Figure
226 5b is shown in pink (plume_1 over the sea and plume_3 over North Syria and South Turkey have the
227 same origin) and the near surface dust (haboob) is shown with a darker purple color (plume_2).

228 *please always keep the same format for the dates!*

229 **3.1.2. Convection and haboob generation on 6 and 7 September 2015**

230 At 13:00 UTC on 6th of September a northward low level flow is evident over N. Iraq and N. Syria
231 (Figure 6a). This relatively unstable air mass is characterized by increased equivalent potential
232 temperature (θ_e) reaching up to 508 K. This flow is associated with a westerly shift of the
233 Somalian Low Level Jet (SLLJ). The SLLJ is part of the West India Monsoon circulation and as shown
234 in Figure 6b it is characterized by strong SW winds blowing from the Somalia highlands towards
235 West India. This low level flow steers towards the west along the coastal mountains of Yemen and
236 Oman and results in SE winds transferring moisture from the Arabian Sea towards the inlands of the
237 Arabian Peninsula. Mechanical elevation of this relatively unstable air as it approaches Mt. Sinjar in
238 N. Iraq (Figure 6a) triggers convection at this area. A crucial parameter that determines the
239 formation of a cold pool is the temperature difference between rain droplets and the ambient air.
240 As seen in Figure 7a, the absolute difference between rain droplets temperature and ambient air
241 temperature in the model reaches a maximum of 22 °C at this area. This temperature gradient
242 results in a faster evaporation rate of the rain droplets as they fall through the unsaturated air and
243 in the formation of a cold pool at the area of North Iraq. Wind speed inside the cold pool ranges
244 from 10 up to 20 ms^{-1} (Figure 7b). This cold pool moves towards the North and triggers the
245 generation of secondary convective cells at the mountainous areas along Iran-Iraq-Turkey
246 borderline. At 20:00 UTC, a series of convective outflows converges in an organized SE propagating

247 density current that is evident in the model over N. Iraq and N. Syria (Figure 8a). This system is
248 characterized by wind speeds higher than 6 m s^{-1} and results in activation of dust sources and near
249 surface ~~concentrations~~^{modelled} largely exceeding $10000 \mu\text{g m}^{-3}$ (Figure 8b). However, the corresponding
250 SEVIRI image (Figure 8c) indicates that by this time the haboob has already penetrated about 200
251 km inside Syria which is not reproduced by the model. This latency between satellite and modeled
252 haboob fronts is an indication that the convective downdrafts were in fact even stronger.

253

254 **3.2 Dust cloud properties and comparison with observations**

255 **3.2.1. Vertical dust structure**

256 The dust layer structure as it propagates towards the Mediterranean is captured by two CALIPSO
257 overpasses at 23:33 UTC, 6 September 2015 (Figure 9) and at 10:35 UTC, 7 September 2015 (Figure
258 10). Collocated model cross sections of dust and MSG-SEVIRI dust images are also presented in
259 Figures 8 and 9. All heights in satellite and model profiles refer to heights above surface. At the first
260 overpass (Figure 9), the south ~~end~~^{part} of the dust layer (31°N - 34°N) is detected up to 2-3 km and
261 originates from the cyclonic flow over Syria. Dust concentrations are estimated from CALIPSO
262 backscatter and as seen in Figure 9b they reach up to $5000 \mu\text{g m}^{-3}$ close to the surface between
263 31°N - 34°N and higher than $6000 \mu\text{g m}^{-3}$ in the first 500 m. Similar structure and dust concentrations
264 are also found by the model (Figure 9c). The northern part of the overpass (35°N - 38°N) detects also
265 elevated dust due to cyclonic activity between 2.5-4.5 km and concentrations up to 1000-2000 μg
266 m^{-3} are evident at this area from CALIPSO. The model overpredicts dust at this area with simulated
267 concentrations reaching up to $5000 \mu\text{g m}^{-3}$. These elevated layers are shown with pink colors in
268 Figure 9a. Low level dust (purple colors in SEVIRI images) is also evident in this area due to the
269 propagating haboob and CALIPSO detects this two-layer structure with a clear separation at 2 km.
270 The model also reproduces the uplift of dust at 35°N where the two systems (cyclone and haboob)
271 merge. The modeled concentration inside the haboob reaches extraordinary values exceeding
272 $10000 \mu\text{g m}^{-3}$. Due to the severity of the event, the CALIPSO lidar signal is totally attenuated below
273 $\sim 1 \text{ km}$ (dark blue color), in the area between 35°N - 37°N . For that reason the information from the
274 satellite is limited there in the highest 500m of the propagated haboob, implying also the existence
275 of much higher values close to the surface.

276 The second overpass at 7 September 10:35 UTC is actually behind or at the tail of the propagating
277 dust storm (Figure 10a). The thin dust layer that is detected by CALIPSO between 30°N - 32°N reaches

all height have to be
referred to a.s.l.
as in lidar observ.

lidar
signal

-9-

You have to explain how these
concentrations are calculated!

278 up to 2 km and maximum dust concentrations of up to 2000-3000 $\mu\text{g m}^{-3}$ are calculated mostly close
279 to the surface (Figure 10b). Extreme dust concentrations are also found in both satellite and model
280 plots between 34°N-36°N at the tail of the propagating system. Dust values at this area are so high
281 that CALIPSO observation suffers again from total attenuation of the lidar signal after penetrating
282 the first 1000 m and extraordinary concentrations of up to 20000 $\mu\text{g m}^{-3}$ are found in the lower
283 model levels (up to 1.5 km). Similar values are observed from CALIPSO in the edge of the haboob
284 (33.5°N-34°N) where the signal is strong enough to provide valuable information. The elevated
285 layers (2-4 km) between 36°N-38°N at both CALIPSO and model profiles are dust residuals over the
286 mountains of Turkey. An elevated dust layer of up to 600 $\mu\text{g m}^{-3}$ is also found south of 35°N in the
287 model at heights between 3-4 km. Due to the aforementioned latency between the true and
288 modeled propagation speeds, the model cross-section is closer to the core of the system hence this
289 layer consists of modeled cyclone uplifted dust that in fact is already west of the CALIPSO track.

290

ground

291 **3.2.2. Dust load over Cyprus**

292 The observed structure and amounts of dust arriving in Cyprus is described in detail by Mamouri et
293 al. (2016). The arrival of the dust plumes at Limassol in Cyprus is evident in Figure 11. A double layer
294 structure is detected by the lidar ^{on} ~~at~~ 7 September 19:00 UTC. The relatively shallow dust layer that is
295 found between 0.8-1.7 km with a maximum peak at 2000 $\mu\text{g m}^{-3}$, comes from the detached dust air
296 mass traveling off the coast of Lebanon as described in Section 3.1.1. The model reproduces
297 correctly the height of this layer but the maximum concentration is underestimated by almost 50 %.
298 The upper layer that is detected between 1.8-3.6 km originates from the north part of the fast
299 propagating haboob that catches up with the "Lebanon" dust over Cyprus. The location and dust
300 concentrations of this layer are adequately reproduced by the model. The total modeled dust load
301 is similar to the observed (lidar) dust load but the vertical distribution of dust in two distinct layers
302 is not so clearly reproduced. Model results using the old vegetation database are also shown in
303 Figure 11. As seen by the dashed line in this plot, this simulation failed to reproduce the strength of
304 the event ~~and~~ and the maximum concentration is 400 $\mu\text{g m}^{-3}$ at about 0.7 km height. On the ~~8th of~~
305 ~~September~~ the lidar system could not operate due to the extraordinary dust load. The mean MODIS
306 derived AOT on this day varied between 1.5-5 over five sites in Cyprus (Pafos, Limassol, Larnaca,
307 Nicosia, Rizokarpaso), (Mamouri et al., 2016). Given the fact that the maximum retrievable MODIS
308 AOT is 5, these values are most probably an underestimation of the true AOT. The distribution of

309 modeled AOT during 00:00 UTC-15:00 UTC on the 8th of September is shown in Figure12; the dust
310 plume approaches Cyprus from the South and the orographic effect of Mt. Troodos results in an
311 inhomogeneous distribution of dustload over the island, which explains the AOT variability between
312 the sites. The modeled AOT values over the Middle East inland exceed 10 as shown also by the
313 sharp gradient towards the eastern part of Figure 12 plots. However the extreme dust storm
314 affecting Cyprus during the 8th of September is the result of a plume that approaches the island
315 from the south. This dust layer is evident between 1.5-3.5 km in the vertical cross-sections of model
316 dust concentration at 00:00 UTC and 03:00 UTC in Figure 13. Downward mixing of dust as this air
317 mass approaches the topographic barrier of Troodos mountain increases the near-surface
318 concentrations at the southern sites especially during local morning and noon hours (06:00 UTC,
319 09:00 UTC). In the afternoon hours (12:00 UTC, 15:00 UTC), the development of upward motions
320 over Mt. Troodos separates the dust flow over Cyprus into two distinct cells (a south and a north
321 one) and at this time increased concentrations are found over the northern sites of the island. The
322 maximum simulated concentrations are up to $4000 \mu\text{g m}^{-3}$ aloft and about $1000 \mu\text{g m}^{-3}$ close to the
323 surface. Taking into account the complexity of the situation, the spatiotemporal evolution of the
324 episode seems to be correctly explained by the model but the extreme values of $8000-10000 \text{ mg m}^{-3}$
325 that are reported by Mamouri et al. (2016) are not reproduced. This discrepancy can be attributed
326 to a variety of reasons related to both dust and atmospheric properties that are not properly
327 resolved even at this fine model scale (e.g. more intense downward mixing or increased emissions
328 from the sources). The modeled versus observed maximum AOT values for the five sites are also
329 shown in Table 1. The model reproduces the higher AOTs at the most southern sites (Limassol and
330 Pafos) compared to the central and north sites. Following the previous discussion about the already
331 underestimated MODIS AOT it seems that the model reproduces the distribution of dust over
332 Cyprus however with an overall underestimation of more than 2. A possible explanation could be
333 also that the dry river beds of Tigris and Euphrates as well as several dust sources over Syria and
334 North Iraq provide even more erodible sediments than those assumed by the model hence the
335 discrepancies in dust concentrations.

336

337

338

339

340 Table 1. Maximum MODIS and RAMS AOT over Cyprus (8 September 2015)

	Pafos	Limassol	Larnaca	Nicosia	Rizokarpaso
MODIS _{AOT}	3.5	5.0	5.0	2.0	5.0
RAMS _{AOT}	3.5	4.0	3.0	3.0	3.0

341

342

343 **4. Discussion and Conclusions**

344 A combination of meteorological and landuse conditions resulted in the formation of an
 345 unprecedented dust episode over Middle East and ~~the~~ ^{the} East Mediterranean during 6-11 September
 346 2015. This event is unique due to the coincidence of various atmospheric phenomena related with
 347 the generation of turbulence and dust production. Interpretation and analysis of remote sensing
 348 data (EARLINET, CALIPSO, MSG-SEVIRI) and modeling simulations (RAMS-ICLAMS) reveals the main
 349 reasons that led in the uplift and persistence of the dust layers. The major processes affecting the
 350 generation of the dust storm are found to be:

- 351 1. The formation of a strong thermal low over Syria that lifted dust up to 4 km.
- 352 2. The intrusion of a moist and unstable air mass from the Arabian Sea that triggered
 353 convective activity over Iraq-Iran-Syria-Turkey borderline.
- 354 3. The generated outflow boundaries that led in dust deflation and formed a westward
 355 propagating haboob merging with the previously elevated dust over Syria.
- 356 4. The efficiency of Middle East dust sources is increased as an aftermath of war and the
 357 related changes in land use.

358 As reported by Mamouri et al. (2016), almost all operational dust models failed to forecast this
 359 event. RAMS-ICLAMS in this study is not used in forecasting mode but rather as a tool for the a-
 360 posteriori analysis and explanation of the event. This means that the configuration of several model
 361 parameters such as the nested grid structure, convective parameterization schemes, dust source
 362 strength etc. is guided by the available observations. In this context, most observed processes are
 363 successfully described by the model and the various physical mechanisms that took place during the
 364 event are explained. However, certain inaccuracies in the quantification of atmospheric variables
 365 and spatiotemporal deviations in the description of convection and other physical processes can still
 366 significantly decrease the model skill especially regarding the quantification of dust mass profiles.

367 The analysis presented here raises considerations regarding the forecast skills of the atmospheric
368 dust models, since even though such extreme episodes are very seldom they still represent the
369 most threatening dust hazards. The long range transport and the general circulation of dust in the
370 atmosphere are nowadays adequately forecasted by most global models but convectively driven
371 episodes cannot be resolved at synoptic and mesoscale resolutions. Moreover, a recent study by
372 Pope et al. (2016) suggests that unresolved haboobs may be responsible for up to 30% of the total
373 atmospheric dust and such considerations raise questions on the current status of early warning
374 systems for dust episodes. It is probably obvious that such a system cannot rely exclusively on
375 modeling simulations. As shown at the present study, the complexity of these events makes their
376 forecast very challenging and even at convection permitting resolutions, it is possible that a certain
377 model configuration could successfully reproduce a specific event but not all similar events.
378 Moreover, such high resolution grid-space can only be applied over limited areas due to restrictions
379 in computational power.

380 Remote sensing observations can play an important role for the provision of more accurate dust
381 forecasts. Engagement of geostationary satellite observations (MSG, Sentinel-4) and CALIPSO
382 profiles in forecasting activities could improve the forecasting skill either by the direct assimilation
383 of satellite data in dust models or by issuing human-assisted early warnings. Expansion of a lidar
384 network close to dust source areas (e.g. Sahara, Middle East) will also complement model activities
385 through the provision of ground truth observations for the vertical profile of dust plumes.
386 Additionally, the activation of ^{correlated} ~~synchronous~~ observations from the EARLINET network following a
387 dust forecast notice will allow a closer investigation of the physical processes that drive these
388 events.

389 .

390 .

391 .

392 **Acknowledgements**

393 The authors acknowledge support through the following projects and research programs: BEYOND
394 under grant agreement no. 316210 of the European Union Seventh Framework Programme FP7-
395 REGPOT-2012-2013-1. ACTRIS-2 under grant agreement no. 654109 of the European Union's
396 Horizon 2020 research and innovation programme. ECARS under grant agreement No 602014 from
397 the European Union's Horizon 2020 Research and Innovation programme. MarcoPolo under grant

398 agreement no. 606953 of the European Union Seventh Framework Programme FP7/2007-2013. The
399 authors acknowledge EARLINET for providing aerosol lidar profiles available under the World Data
400 Center for Climate (WDCC) (The EARLINET publishing group 2000-2010, 2014a. CALIPSO data were
401 obtained from the ICARE Data Center (<http://www.icare.univ-lille1.fr/>) and from the NASA Langley
402 Research Center Atmospheric Science Data Center. CALIPSO data were provided by NASA. We thank
403 the ICARE Data and Services Center for providing access to the data used in this study and their
404 computational center.

405

406 **References**

407

408 Ansmann A., Tesche, M., Knippertz, P., Bierwirth, E., Althausen, D., Muller, D. and Schulz. O.: Vertical profiling
409 of convective dust plumes in southern Morocco during SAMUM. Tellus 61B, doi:10.1111/j.1600-
410 0889.2008.00384.x., 2009

411 Ansmann, A., Petzold, A., Kandler, K., Tegen, I., Wendisch, M., Müller, D., Weinzierl, B., Müller, T., and
412 Heintzenberg, J.: Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?,
413 Tellus, 63B, 403–429, 2011

414 Ansmann, A., Seifert, P., Tesche, M., and Wandinger, U.: Profiling of fine and coarse particle mass: case
415 studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes, Atmos. Chem. Phys., 12, 9399–
416 9415, doi:10.5194/acp-12-9399-2012, 2012.

417 Barahona, D., West, R. E. L., Stier, P., Romakkaniemi, S., Kokkola, H., and Nenes, A.: Comprehensively
418 accounting for the effect of giant CCN in cloud activation parameterizations, Atmos. Chem. Phys., 10,
419 2467–2473, doi:10.5194/acp-10-2467-2010, 2010.

420 Benedetti A., J.-J., Morcrette, O. Boucher, A. Dethof, R. J. Engelen, M. Fisher, H. Flentje, N. Huneeus, L. Jones,
421 J. W. Kaiser, S. Kinne, A. Mangold, M. Razinger, A. J. Simmons, and M. Suttie: Aerosol analysis and forecast
422 in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data
423 assimilation, J. Geophys. Res., 114, D13205, doi:10.1029/2008JD011115., 2009

424 Bou Karam, D., Flamant, C., Knippertz, P., Reitebuch, O., Pelon, J., Chong, M., and Dabas, A: Dust emissions
425 over the Sahel associated with the West African Monsoon inter-tropical discontinuity region: a
426 representative case study, Q. J. Roy. Meteor. Soc., 134, 621–634, 2008.

427 Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M. and Cook, E. R.: Spatiotemporal drought variability in
428 the Mediterranean over the last 900 years, J. Geophys. Res. Atmos., 121(5), 2015JD023929,
429 doi:10.1002/2015JD023929, 2016.

430 Cotton W. R., Pielke Sr., R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., McAnelly, R. L., Harrington,
431 J. Y., Nicholls, M. E., Carrio, G. G., and McFadden, J. P.: RAMS 2001: Current status and future directions,

432 Meteor. Atmos. Phys., 82, 5–29, 2003

433 DeFries, R. S. and Townshend, J. R. G.: NDVI-derived land cover classifications at a global scale, International
434 Journal of Remote Sensing, 15(17), 3567–3586, doi:10.1080/01431169408954345, 1994.

435 Didan, K: MOD13A3 MODIS/Terra vegetation Indices Monthly L3 Global 1km SIN Grid V006, ,
436 doi:10.5067/MODIS/MOD13A3.006, 2015.

437 Emmel C, Knippertz P, Schulz O (2010) Climatology of convective density currents in the southern
438 foothills of the Atlas mountains. J Geophys Res 115, D11115. doi:10.1029/2009JD011819

439 Fountoukis, C., Nenes, A., Meskhidze, N., Bahreini, R., Conant, W. C., Jonsson, H., Murphy, S., Sorooshian, A.,
440 Varutbangkul, V., Brechtel, F., Flagan, R. C., and Seinfeld, J. H.: Aerosol – cloud drop concentration closure
441 for clouds sampled during the International Consortium for Atmospheric Research on Transport and
442 Transformation 2004 campaign, J. Geophys. Res., 112, D10S30, doi:10.1029/2006JD007272, 2007.

443 Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. and Zhao, M.: Global-scale attribution of anthropogenic and
444 natural dust sources and their emission rates based on MODIS Deep Blue aerosol products, Rev.
445 Geophys., 50(3), RG3005, doi:10.1029/2012RG000388, 2012.

446 Gong, S. L., Barrie, L. A., and Lazare, M.: Canadian Aerosol Module (CAM): a size-segregated simulation of
447 atmospheric aerosol processes for climate and air quality models. 2. Global seasalt aerosol and its
448 budgets, J. Geophys. Res., 107(D24), 4779, doi:10.1029/2001JD002004, 2002.

449 Gong, S. L.: A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global
450 Biogeochem. Cy., 17, 1097, doi:10.1029/2003GB002079, 2003.

451 Iacono, M. J., Mlawer, E. J., Clough, S. A., and Mocrette, J. J.: Impact of an improved longwave radiation
452 model, RRTM, on the energy budget and thermodynamic properties of the NCAR Community Climate
453 Model, CCM3, J. Geophys. Res., 105, 14873– 14890, 2000

454 Jaafar, H. H. and Woertz, E.: Agriculture as a funding source of ISIS: A GIS and remote sensing analysis, Food
455 Policy, 64, 14–25, doi:10.1016/j.foodpol.2016.09.002, 2016.

456 Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The
457 representation of cumulus convection in numerical models, Meteor. Monogr., No. 24, Amer. Meteor.
458 Soc., 165–170, 1993.

459 Knippertz P, Trentmann J, Seifert A, High resolution simulations of convective cold pools over the
460 northwestern Sahara. J. Geophys. Res. 2009; 114:D21109. doi: 10.1029/2007JD008774., 2009

461 Leeuw, G., Neele, F. P., Hill, M., Smith, M. H., and Vignali, E.: Production of sea spray aerosol in the surf zone,
462 J. Geophys. Res.- Atmos., 105, 29397–29409, 2000.

463 Lensky I.M. and D. Rosenfeld, 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos.
464 Chem. Phys., 8, 6739–6753.

465 Mamouri, R. E., Ansmann, A., Nisantzi, A., Kokkalis, P., Schwarz, A., and Hadjimitsis, D.: Low Arabian dust

466 extinction-to-backscatter ratio, *Geophys. Res. Lett.*, 40, 4762–4766, doi:10.1002/grl.50898, 2013.

467 Mamouri R.E., Ansmann, A., Nisantzi, A., Solomos, S., Kallos, G., and Hadjimitsis, D.G.: Extreme dust storm
468 over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the
469 Cyprus region *Atmos. Chem. Phys.*, 16, 1–14, 2016 [www.atmos-chem-
470 phys.net/16/1/2016/](http://www.atmos-chem-phys.net/16/1/2016/) doi:10.5194/acp-16-1-2016.

471 Mamouri, R.E. and Ansmann, A.: Fine and coarse dust separation with polarization lidar: Extended
472 Methodology for multiple wavelengths, to be submitted to ACP, 2017.

473 Marsham, J. H., N. S. Dixon, L. Garcia-Carreras, G. M. S. Lister, D. J. Parker, P. Knippertz, and C. E. Birch : The
474 role of moist convection in the West African monsoon system: Insights from continental-scale convection-
475 permitting simulations, *Geophys. Res. Lett.*, 40, 1843–1849, doi:10.1002/grl.50347., 2013

476 Marticorena, B. and Bergametti, G.: Modeling the atmospheric dust cycle: 1. Design of a soil derived dust
477 emission scheme, *J. Geophys. Res.*, 100, 16415–16430, 1995.

478 Meyers, M. P., Walko, R. L., Harrington, J. Y., and Cotton, W. R: New RAMS cloud microphysics
479 parameterization. Part II: The two-moment scheme, *Atmos. Res.*, 45, 3–39, 1997

480 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for
481 inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, *J. Geophys. Res.*,
482 102(D14), 16663–16682, 1997.

483 Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A model of marine aerosol generation via whitecaps and
484 wave disruption, in: *Oceanic Whitecaps*, edited by: Monahan, E. C. and Mac Niocaill, G., D. Reidel, 167–
485 174, 1986.

486 Notaro, M., Yu, Y. and Kalashnikova, O. V.: Regime shift in Arabian dust activity, triggered by persistent
487 Fertile Crescent drought, *J. Geophys. Res. Atmos.*, 120(19), 2015JD023855, doi:10.1002/2015JD023855,
488 2015.

489 Pielke, R. A., Cotton, W. R., Walko, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., Nicholls, M. E., Moran, M.
490 D., Wesley, D. A., Lee, T. J., and Copeland, J. H.: A comprehensive meteorological modeling system –
491 RAMS, *Meteorol. Atmos. Phys.*, 49, 69–91, 1992.

492 Pope, R. J., J. H. Marsham, P. Knippertz, M. E. Brooks, and A. J. Roberts: Identifying errors in dust models
493 from data assimilation, *Geophys. Res. Lett.*, 43, 9270–9279, doi:10.1002/2016GL070621., 2016

494 Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. and Gill, T. E.: Environmental Characterization of
495 Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer
496 (toms) Absorbing Aerosol Product, *Rev. Geophys.*, 40(1), 1002, doi:10.1029/2000RG000095, 2002.

497 Reinfried, F., I. Tegen, B. Heinold, O. Hellmuth, K. Schepanski, U. Cubasch, H. Huebener, and P. Knippertz :
498 Simulations of convectively-driven density currents in the Atlas region using a regional model: Impacts on
499 dust emission and sensitivity to horizontal resolution and convection schemes, *J. Geophys. Res.*, 114,

500 D08127, doi:10.1029/2008JD010844., 2009

501 Roberts, A. J., P. Knippertz : The formation of a large summertime Saharan dust plume: Convective and
502 synoptic-scale analysis, *J. Geophys. Res. Atmos.*, 119, 1766–1785, doi:10.1002/2013JD020667., 2014

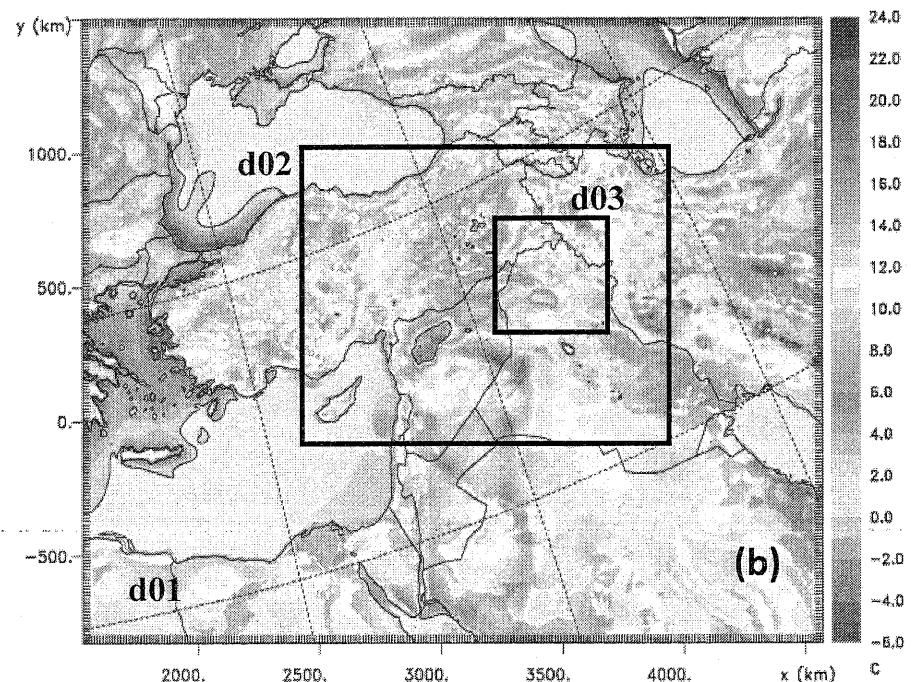
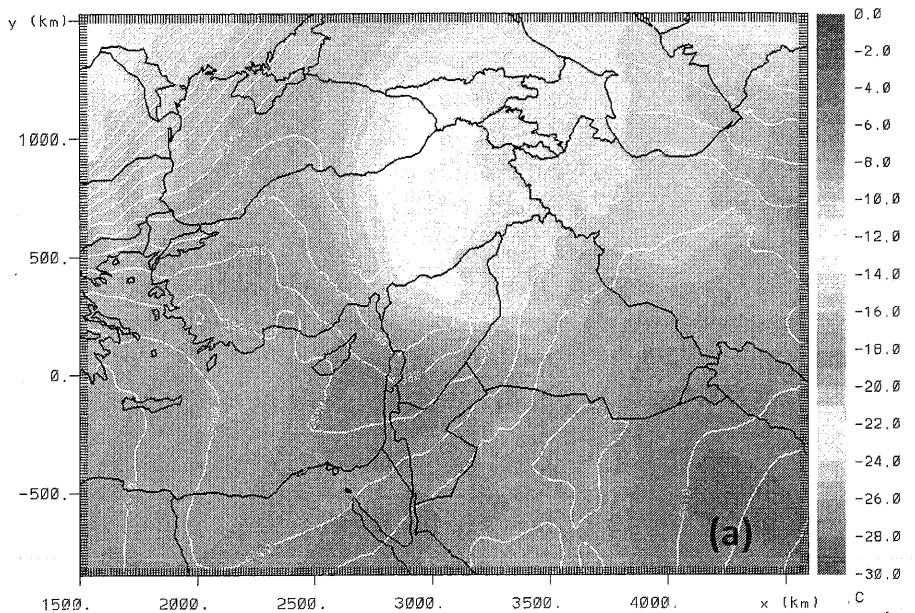
503 Ryder, C. L., McQuaid, J. B., Flamant, C., Rosenberg, P. D., Washington, R., Brindley, H. E., Highwood, E. J.,
504 Marsham, J. H., Parker, D. J., Todd, M. C., Banks, J. R., Brooke, J. K., Engelstaedter, S., Estelles, V.,
505 Formenti, P., Garcia-Carreras, L., Kocha, C., Marenco, F., Sodemann, H., Allen, C. J. T., Bourdon, A., Bart,
506 M., Cavazos-Guerra, C., Chevaillier, S., Crosier, J., Derbyshire, E., Dean, A. R., Dorsey, J. R., Kent, J.,
507 O’Sullivan, D., Schepanski, K., Szpek, K., Trembath, J., and Woolley, A.: Advances in understanding mineral
508 dust and boundary layer processes over the Sahara from Fennec aircraft observations, *Atmos. Chem.
509 Phys.*, 15, 8479–8520, doi:10.5194/acp-15-8479- 2015, 2015

510 Schepanski, K., Tegen, I., Todd, M. C., Heinold, B., Bonisch, G., Laurent, B., and Macke, A.: Meteorological
511 processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source
512 activation and numerical models, *J. Geophys. Res.*, 114, D10201, doi:10.1029/2008JD010325, 2009.

513 Seinfeld, J. H. and Pandis, S. N.: *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*, J.
514 Wiley, New York, 1998

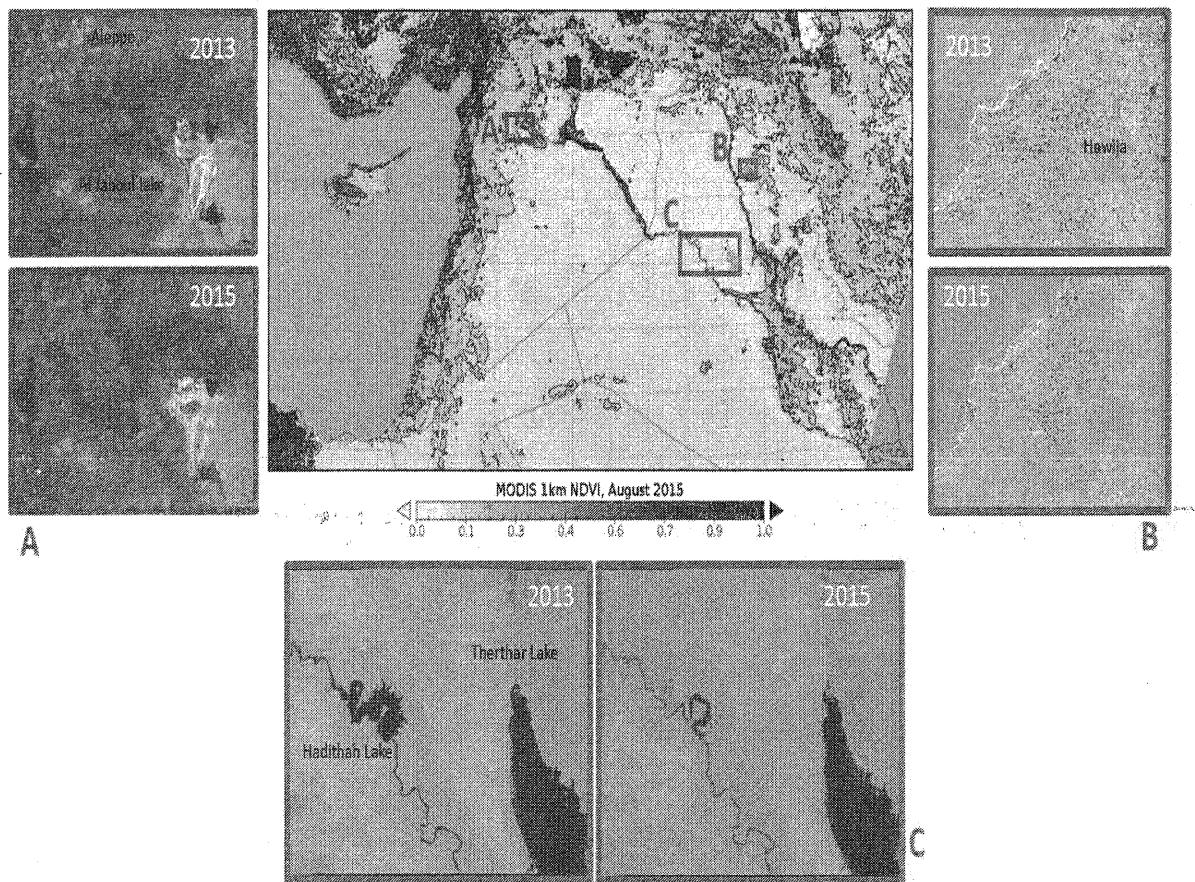
515 Solomos, S., Kallos, G., Kushta, J., Astitha, M., Tremback, C., Nenes, A., and Levin, Z.: An integrated modeling
516 study on the effects of mineral dust and sea salt particles on clouds and precipitation, *Atmos. Chem.
517 Phys.*, 11, 873–892, doi:10.5194/acp- 11-873-2011, 2011

518 Solomos, S., Kallos, G., Mavromatidis, E., and Kushta, J.: Density currents as a desert dust mobilization
519 mechanism, *Atmos. Chem. Phys.*, 12, 11199-11211, doi:10.5194/acp-12-11199-2012, 2012.



520 Spyrou, C., Mitsakou, C., Kallos, G., Louka, P., and Vlastou, G.: An improved limited-area model for describing
521 the dust cycle in the atmosphere, *J. Geophys. Res.*, 115, D17211, doi:10.1029/2009JD013682, 2010.

522 Takemi, T.: Explicit simulations of convective-scale transport of mineral dust in severe convective weather, *J.
523 Meteorol. Soc. Jpn.*, 83A, 187–203, 2005.

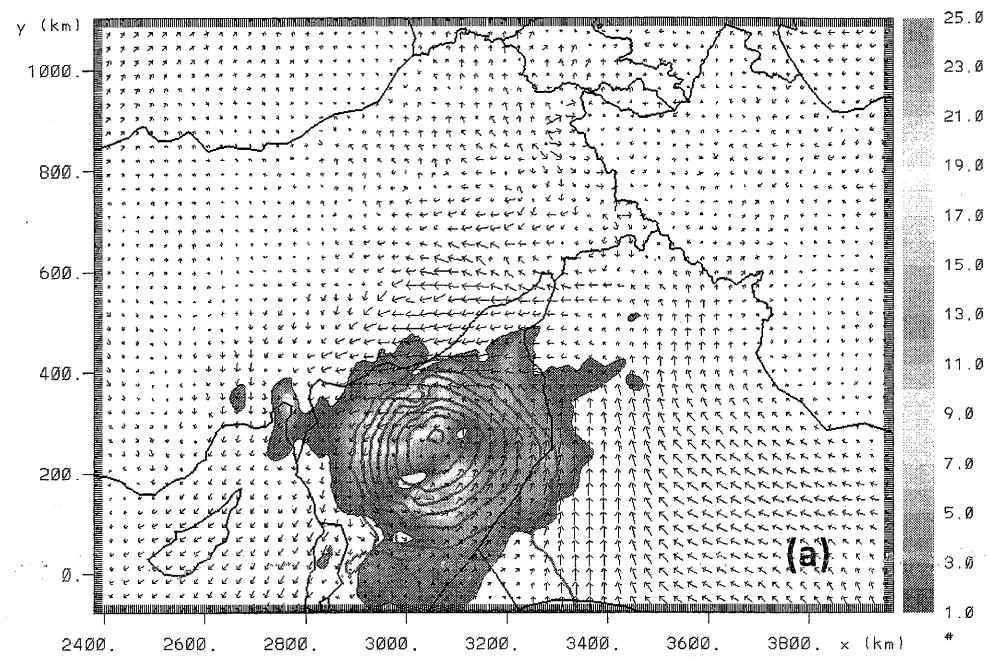
524 Takemi, T.: Structure and evolution of a severe squall line over the arid region in Northwest China. *Mon.
525 Wea. Rev.*, 127, 1301–1309., 1999.

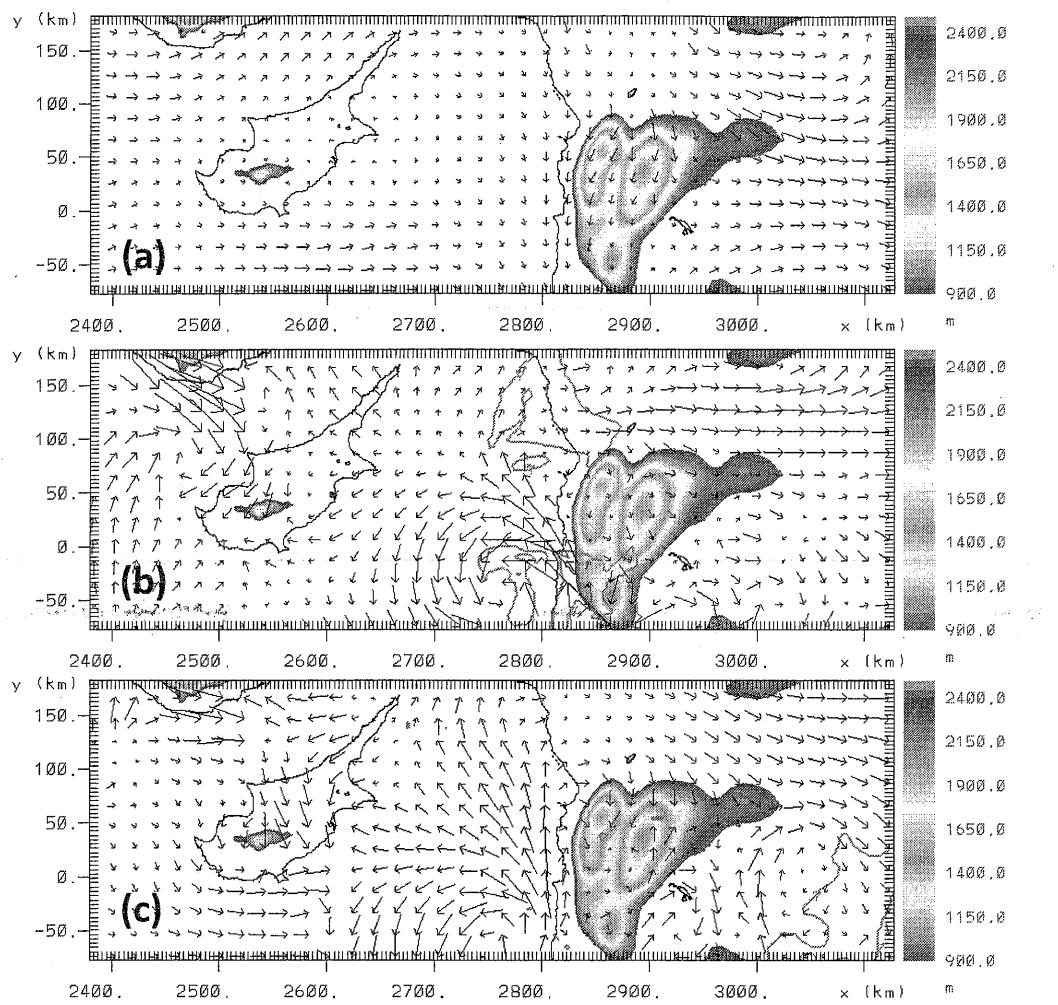

526 The EARLINET publishing group 2000–2010: Adam, M., Alados-Arboledas, L., Althausen, D., Amiridis, V.,
527 Amodeo, A., Ansmann, A., Apituley, A., Arshinov, Y., Balis, D., Belegante, L., Bobrovnikov, S., Boselli, A.,
528 Bravo-Aranda, J. A., Bösenberg, J., Carstea, E., Chaikovsky, A., Comerón, A., D’Amico, G., Daou, D.,
529 Dreischuh, T., Engelmann, R., Finger, F., Freudenthaler, V., García-Vicaino, D., García, A. J. F., Geiß, A.,
530 Giannakaki, E., Giehl, H., Giunta, A., de Graaf, M., Grana-dos-Muñoz, M. J., Grein, M., Grigorov, I., Groß, S.,
531 ruening, C., Guerrero-Rascado, J. L., Haeffelin, M., Hayek, T., Iarlori, M., Kanitz, T., Kokkalis, P., Linné, H.,
532 Madonna, F., Mamouri, R.-E., Matthias, V., Mattis, I., Menéndez, F. M., Mitev, V., Mona, L., Morille, Y.,
533 Muñoz, C., Müller, A., Müller, D., Navas-Guzmán, F., Nemuc, A., Nicolae, D., Pandolfi, M., Papayannis, A.,

534 Pappalardo, G., Pelon, J., Perrone, M. R., Pietruczuk, A., Pisani, G., Potma, C., Preißler, J., Pujadas, M.,
535 Putaud, J., Radu, C., Ravetta, F., Reigert, A., Rizi, V., Rocadenbosch, F., Rodríguez, A., Sauvage, L., Schmidt,
536 J., Schnell, F., Schwarz, A., Seifert, P., Serikov, I., Sicard, M., Silva, A. M., Simeonov, V., Siomos, N., Sirch, T.,
537 Spinelli, N., Stoyanov, D., Talianu, C., Tesche, M., De Tomasi, F., Trickl, T., Vaughan, G., Volten, H., Wagner,
538 F., Wandinger, U., Wang, X., Wiegner, M., and Wilson, K. M.: EARLINET all observations (2000–2010),
539 World Data Center for Climate (WDCC), doi:10.1594/WDCC/EN_all_measurements_2000-2010, 2014a.
540 Voss, K. A., Famiglietti, J. S., Lo, M., de Linage, C., Rodell, M. and Swenson, S. C.: Groundwater depletion in
541 the Middle East from GRACE with implications for transboundary water management in the Tigris-
542 Euphrates-Western Iran region, *Water Resour. Res.*, 49(2), 904–914, doi:10.1002/wrcr.20078, 2013.
543 Vukovic, A., Vujadinovic, M., Pejanovic, G., Andric, J., Kumjian, M. R., Djurdjevic, V., Dacic, M., Prasad, A. K.,
544 El-Askary, H. M., Paris, B. C., Petkovic, S., Nickovic, S., and Sprigg, W. A.: Numerical simulation of "an
545 American haboob", *Atmos. Chem. Phys.*, 14, 3211–3230, doi:10.5194/acp-14-3211-2014, 2014.
546 Zhang, K. M., Knipping, E. M., Wexler, A. S., Bhave, P. V., and Tonnesen, G. S.: Size distribution of sea-salt
547 emissions as a function of relative humidity, *Atmos. Environ.*, 39, 3373–3379, 2005.
548

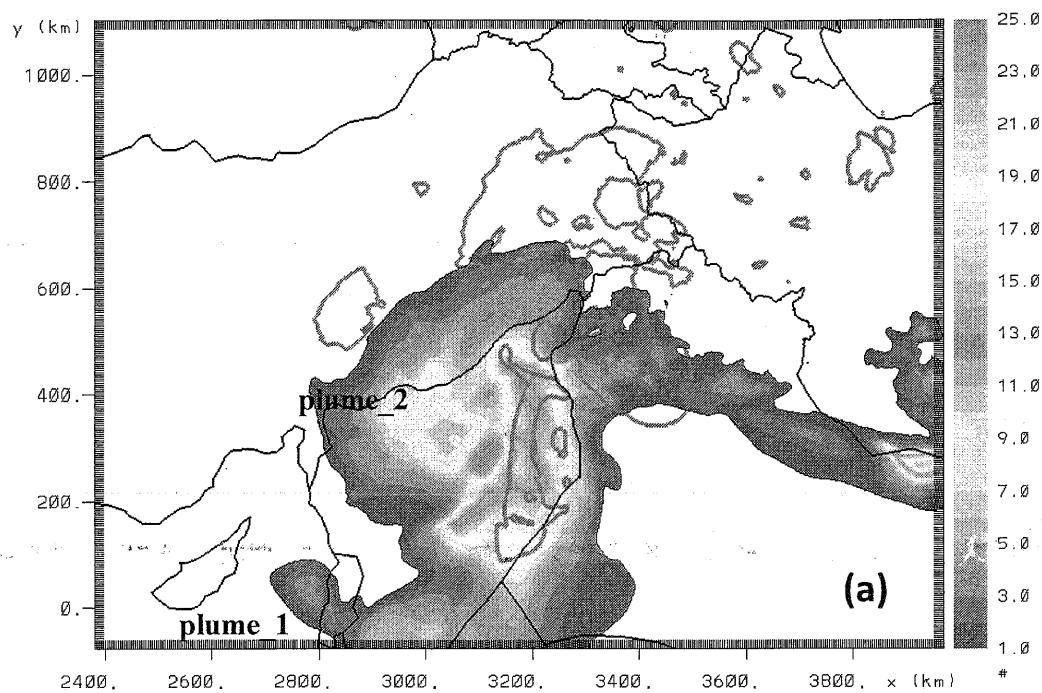
553 Figure 1. a) Model geopotential height contours (every 10 m) and temperature (color scale in °C) at
 554 500mb, 6 September 2015, 00:00 UTC; b) Difference (°C) between model soil temperature and
 555 model temperature at 2m, 10:00 UTC, 6 September 2015. Black rectangulars indicate the location of
 556 the nested model domains (d01:12x12 km, d02:4x4 km, d03:2x2 km).

Land type changes in 2015

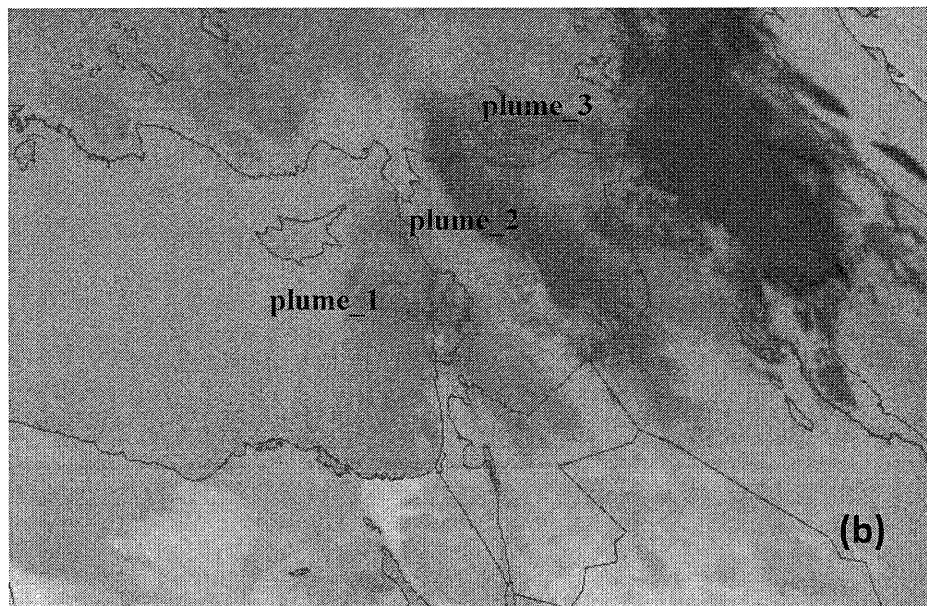

558


559 Figure 2. (central panel) MODIS NDVI observations for August 2015 were used to identify regions of
560 bare soil that can be sources of dust aerosols. The contour lines correspond to the major ticks of the
561 color scale. Large regions of western Syria and Iraq have NDVI values from 0 to 0.1. The three
562 subpanels show examples of land type change between summer 2013 and summer 2015. (Subpanel
563 A) Landsat 8 natural color images of Aleppo region, Syria shows changes of cultivation patterns and
564 drying of nearby Al Jaboul lake (e.g. the bright areas of the Al Jaboul Lake - dry parts of the lake -
565 increased from 2013 to 2015); (Subpanel B) Landsat 8 NDVI index images in the region of Hawija,
566 Kirkuk Province, Iraq reveal that large areas remained uncultivated in 2015 (e.g. the 2013 map
567 shows many more green spots - agriculturally used areas - than the 2015 map); (Subpanel C)
568 Landsat 8 natural color images showing diminishing area of Haditha Lake on the Euphrates river and
569 the drying up of the Therthar canal and lake.

570

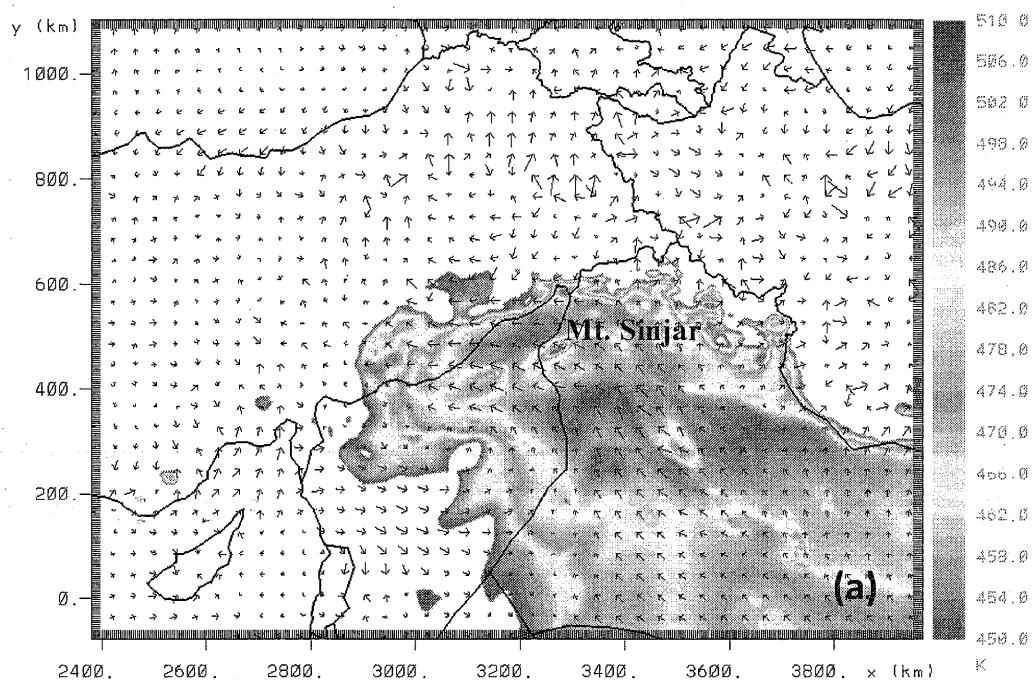

571

572



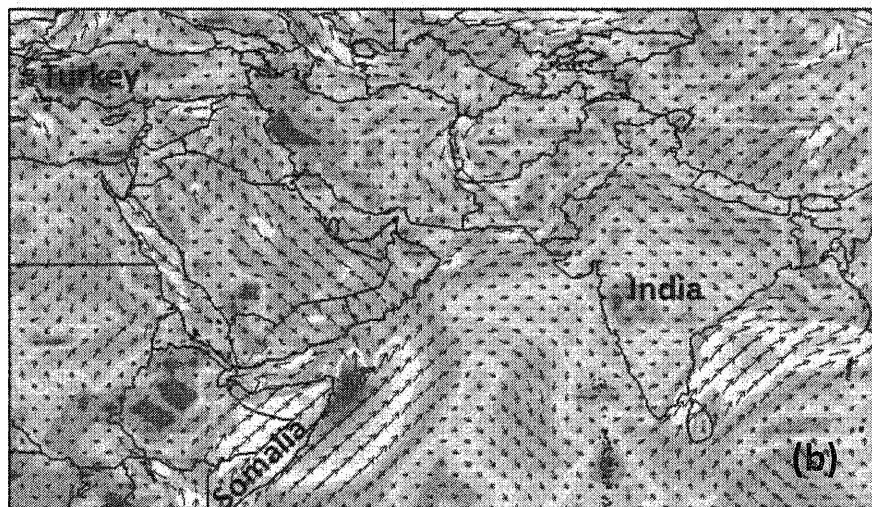
586
587

588
589


590
591
592

593 Figure 5. a) Model AOD at 550 nm (color scale) and cloud cover > 70% (red contour). b) MSG-SEVIRI
594 dust RGB component, 7 September 2015, 00:00 UTC

595
596
597
598

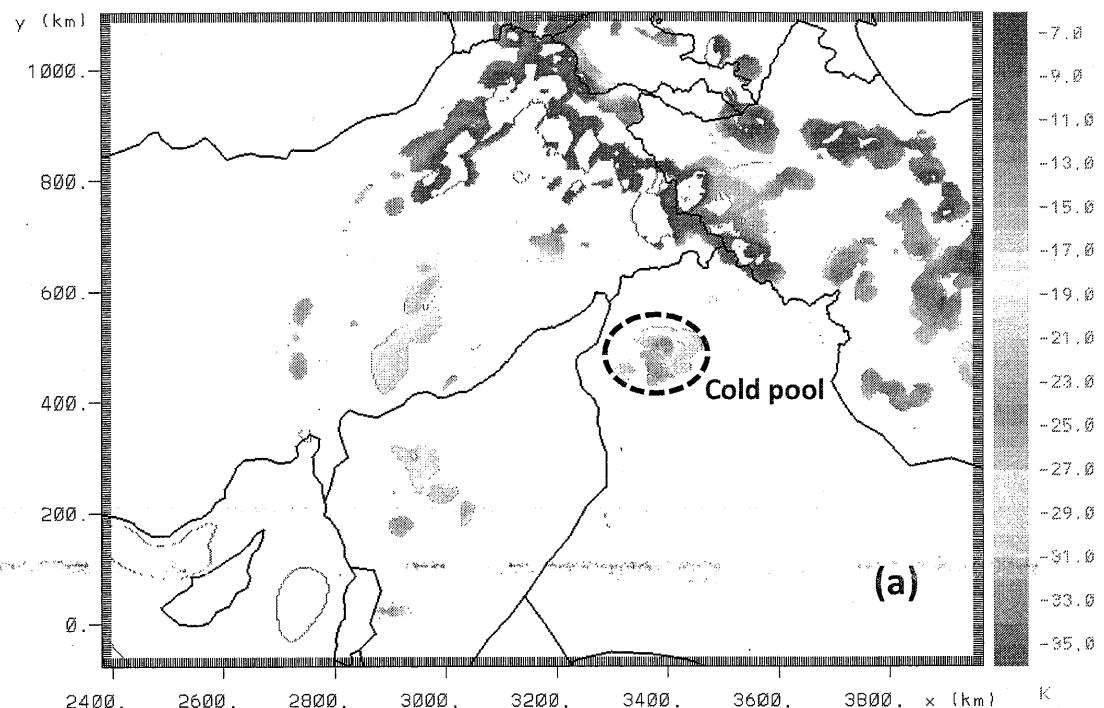

599

600

601

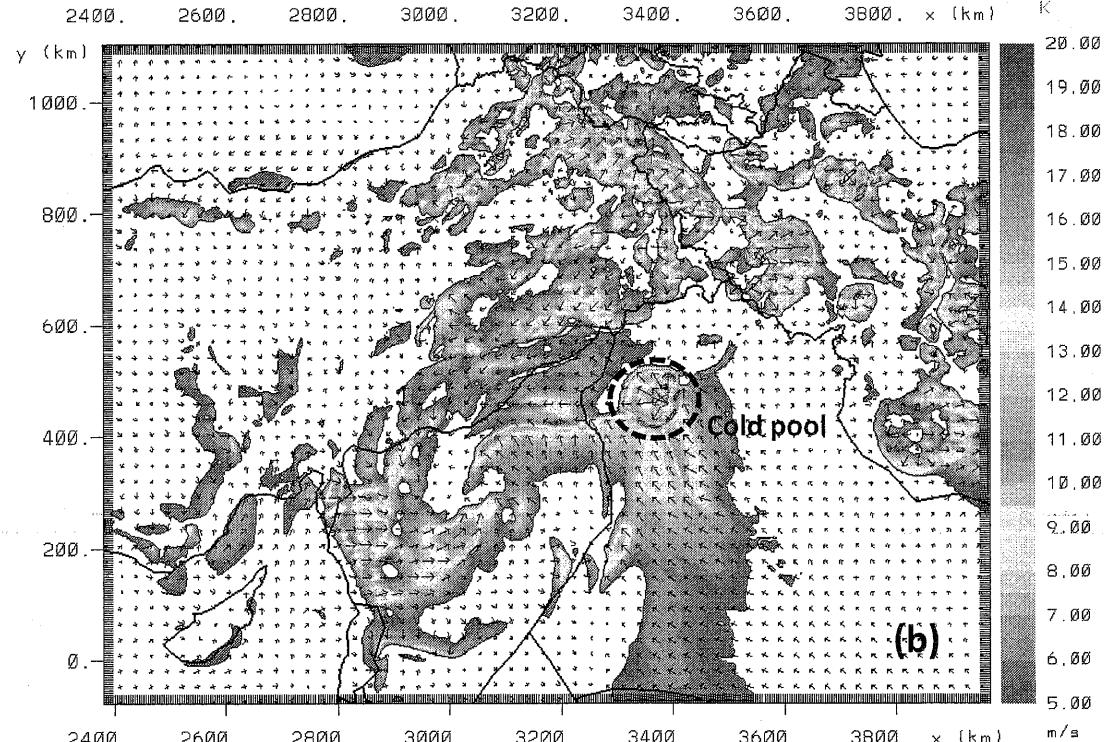
602

603


604 Figure 6. a) Model equivalent potential temperature (K) and wind vectors at 50m above ground, 6

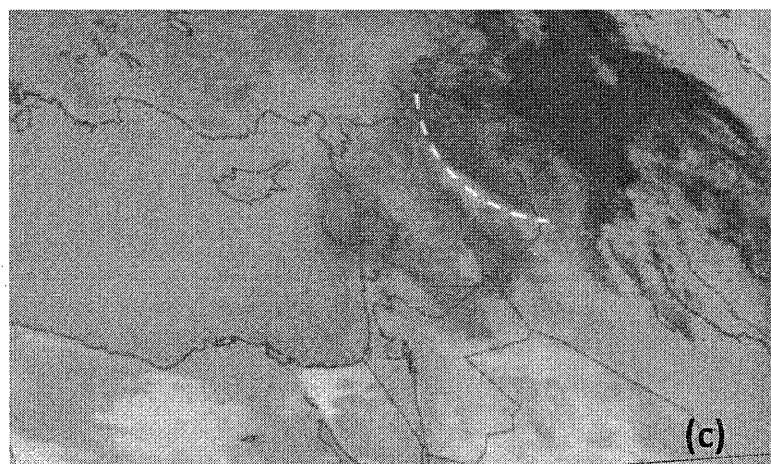
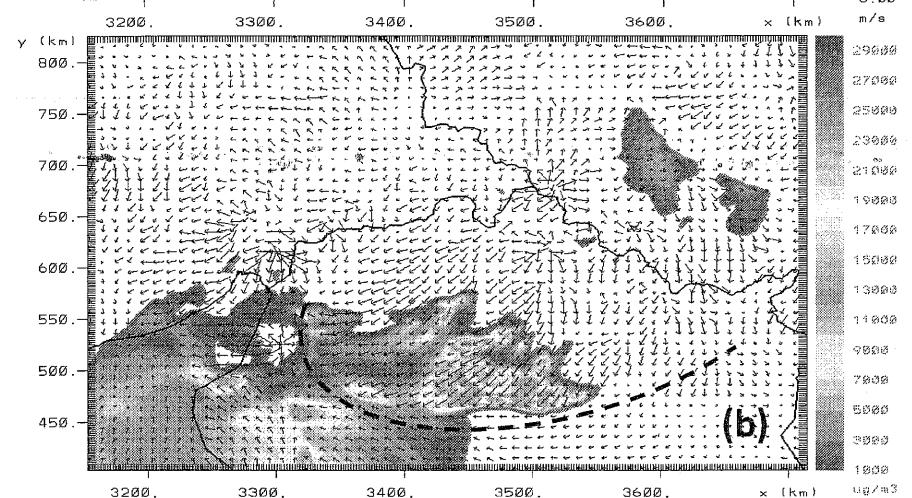
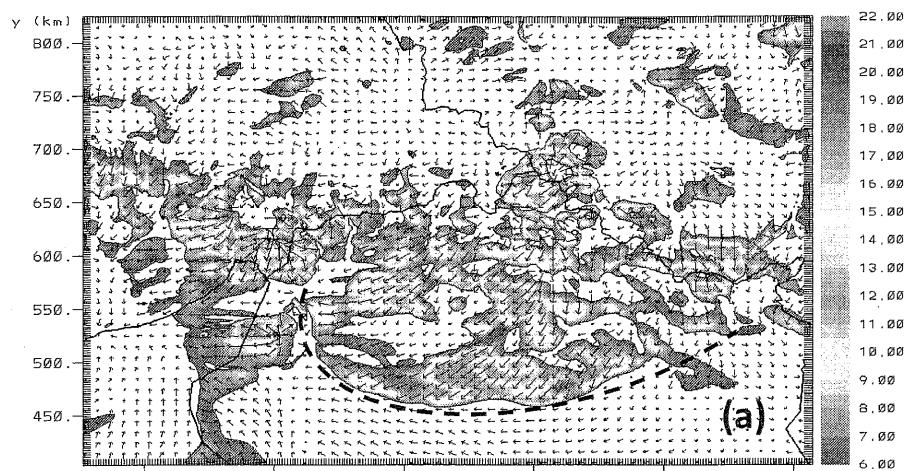
605 September 2015, 13:00 UTC. b) Wind speed at 10m from the NCEP final analysis (FNL) dataset, 6

606 September 2015, 06:00 UTC.


607

608

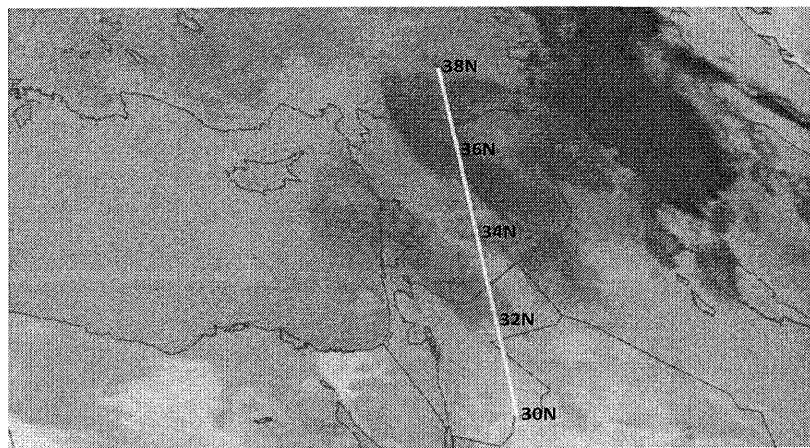
(a)




609

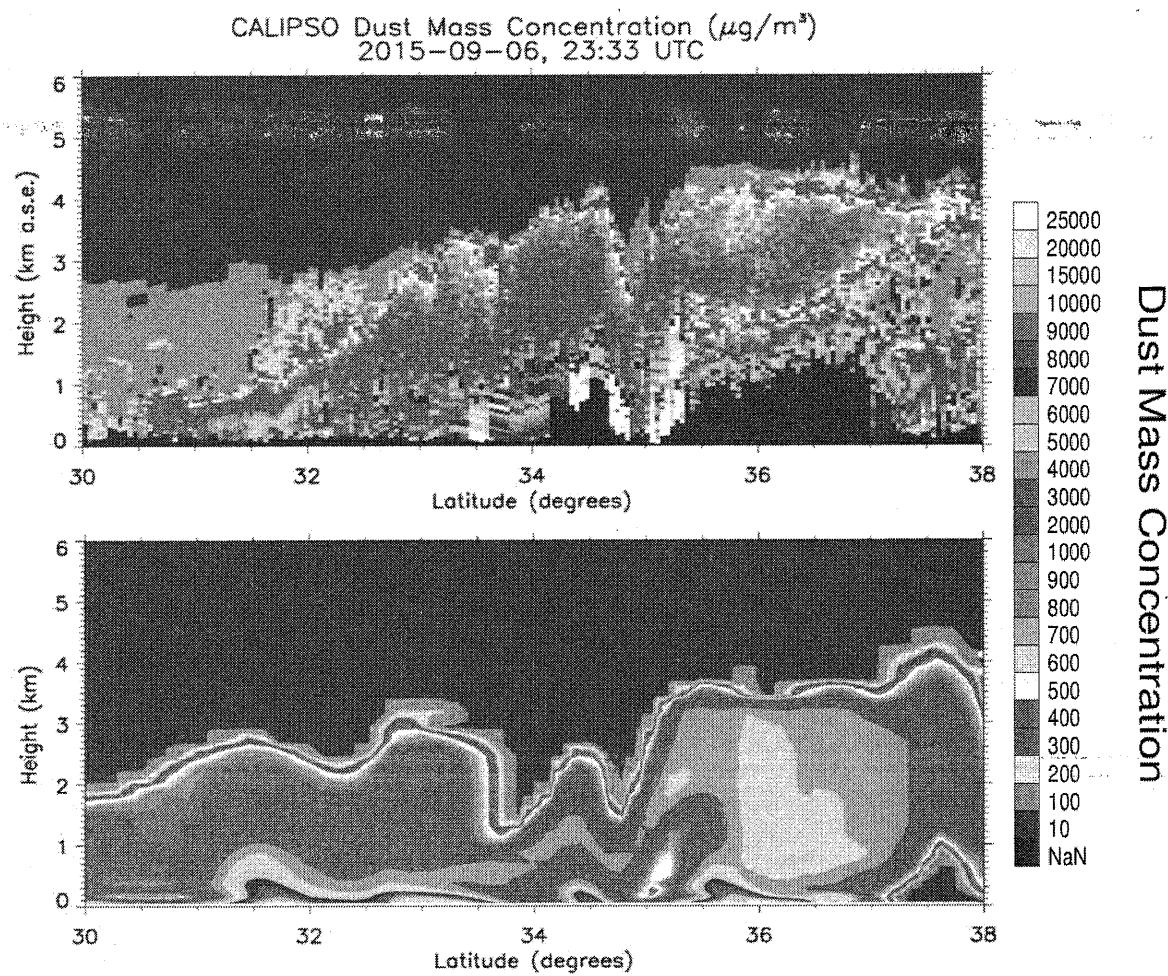
(b)

610

611 Figure 7. a) Model rain droplets – air temperature difference in K. b) Model wind speed at 10m (ms^{-1}), 6 September 2015, 15:00 UTC. The dashed line denotes the location of the cold pool.



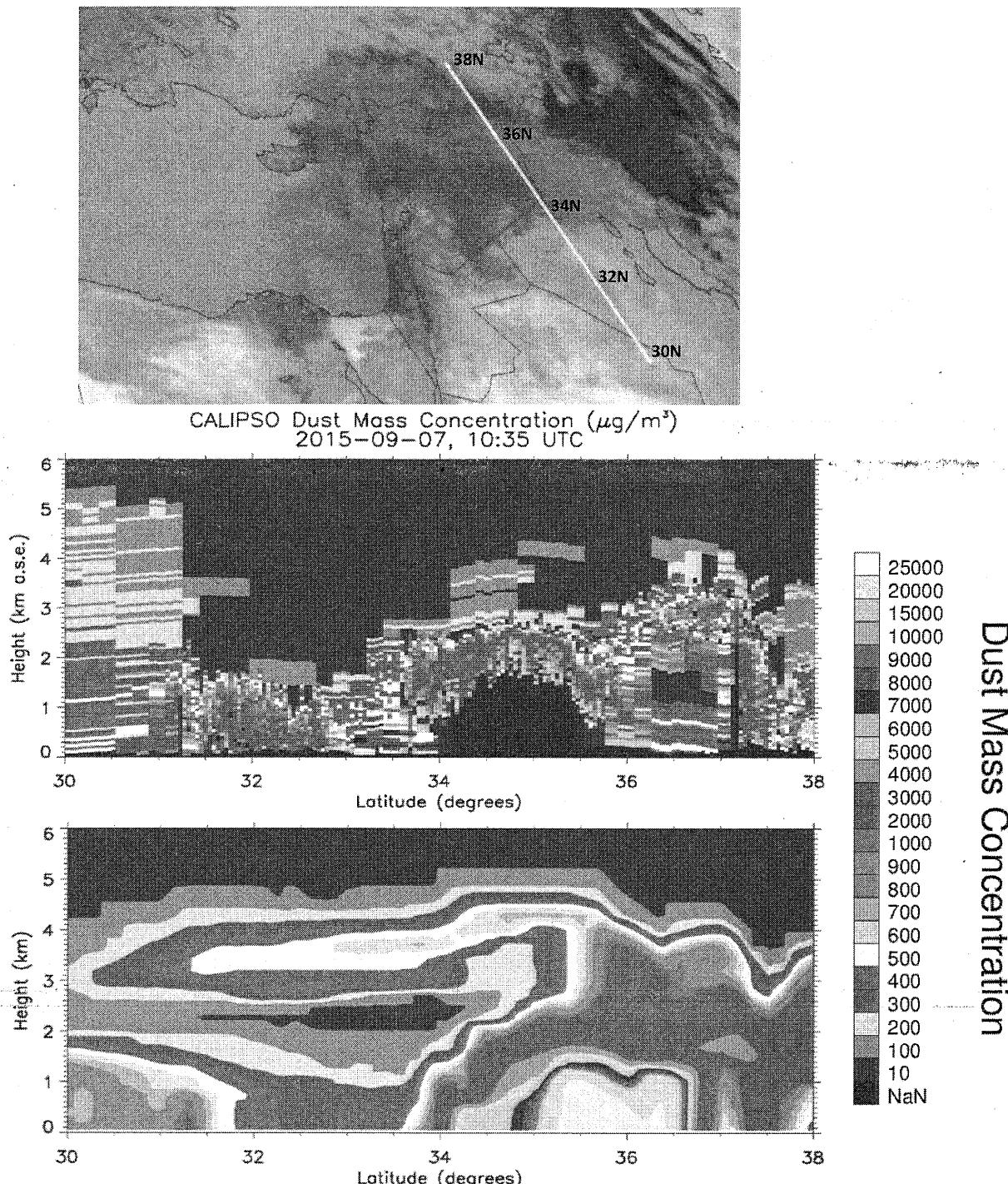
Blank


616 Figure 8. a) Model wind speed greater than 6 ms^{-1} at 10m and b) Near surface model dust
 617 concentration ($\mu\text{g m}^{-3}$) from the inner grid ($2 \times 2 \text{ km}$) c) MSG-SEVIRI RGB component, 6 September
 618 2015, 20:00 UTC. The dashed lines indicates the haboob front location.

619

620

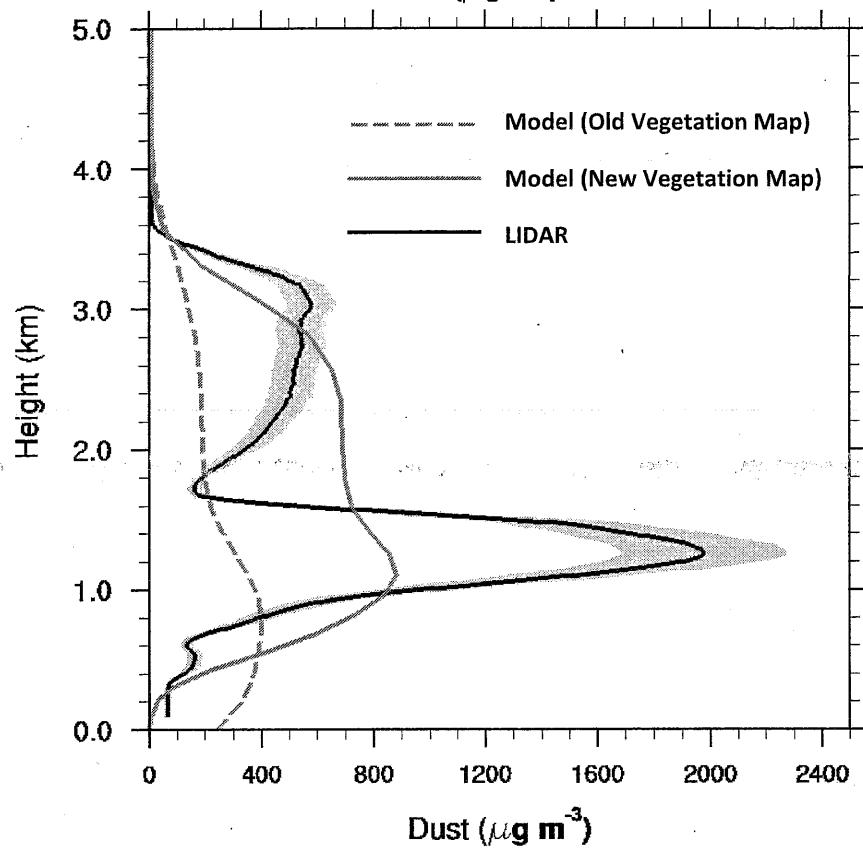
621



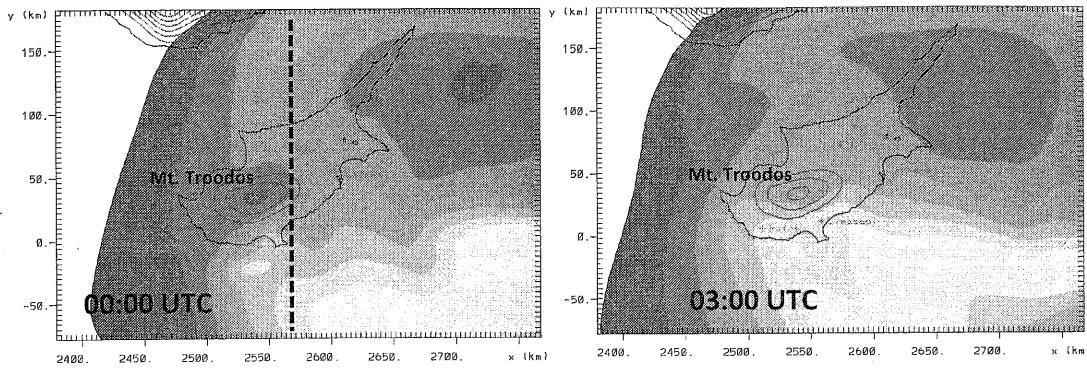
622

623

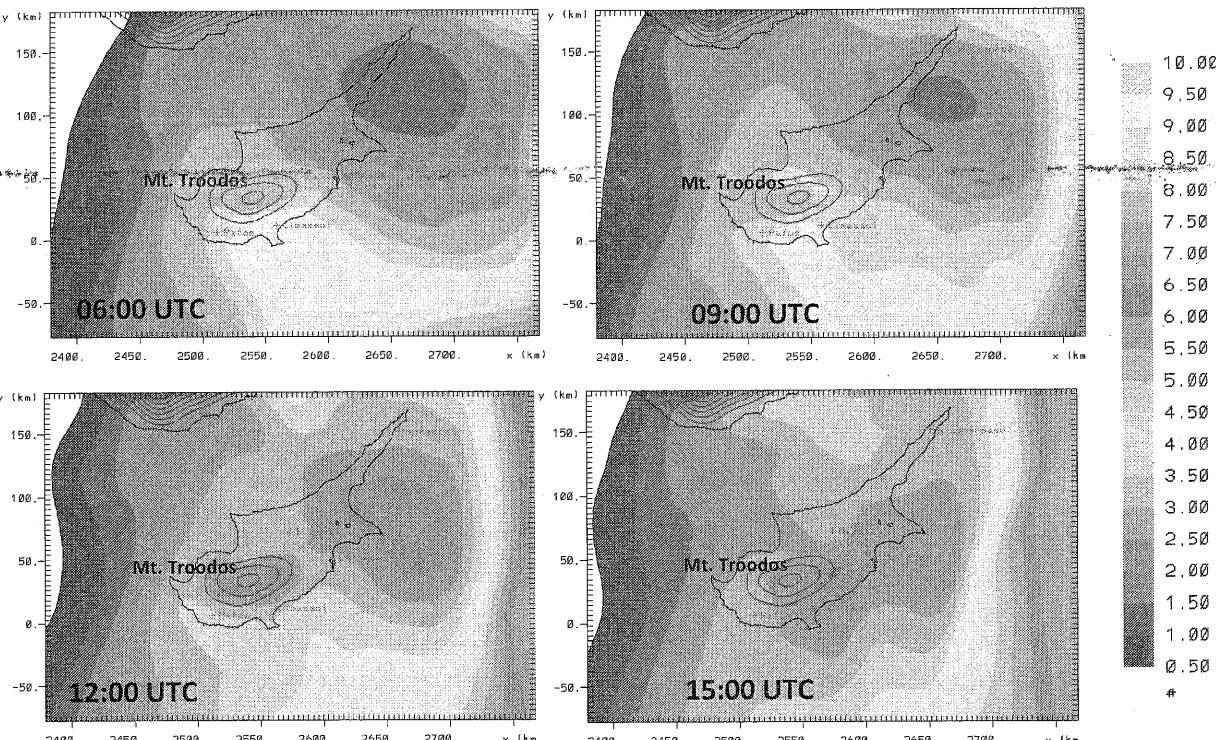
624 Figure 9. a) MSG-SEVIRI RGB map and CALIPSO overflight (green line), b) CALIPSO dust mass
625 concentration ($\mu\text{g m}^{-3}$) and c) model dust mass concentration at 6 September 2015, 23:33 UTC. Due
626 to the severity of the event CALIPSO signal is totally attenuated below ~1km a.s.e. in the area
627 between 35-37°N (dark blue color).


628

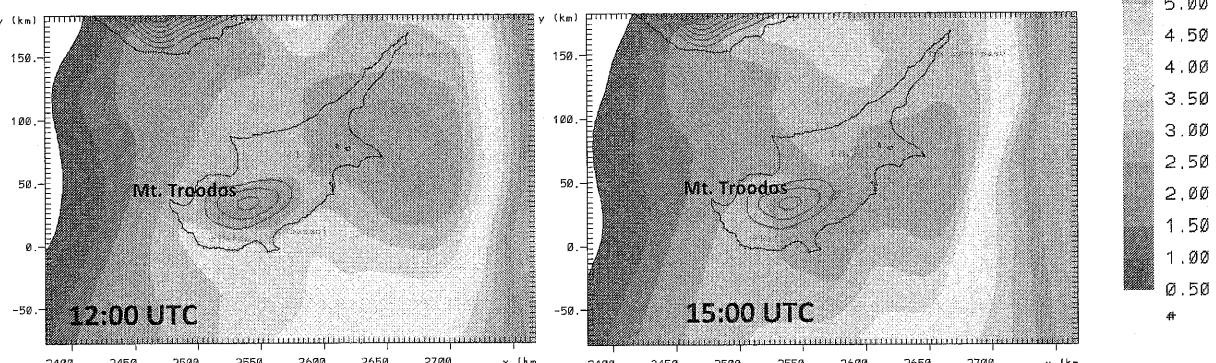
638
639


Date: 7 September 2015, 19:00 UTC

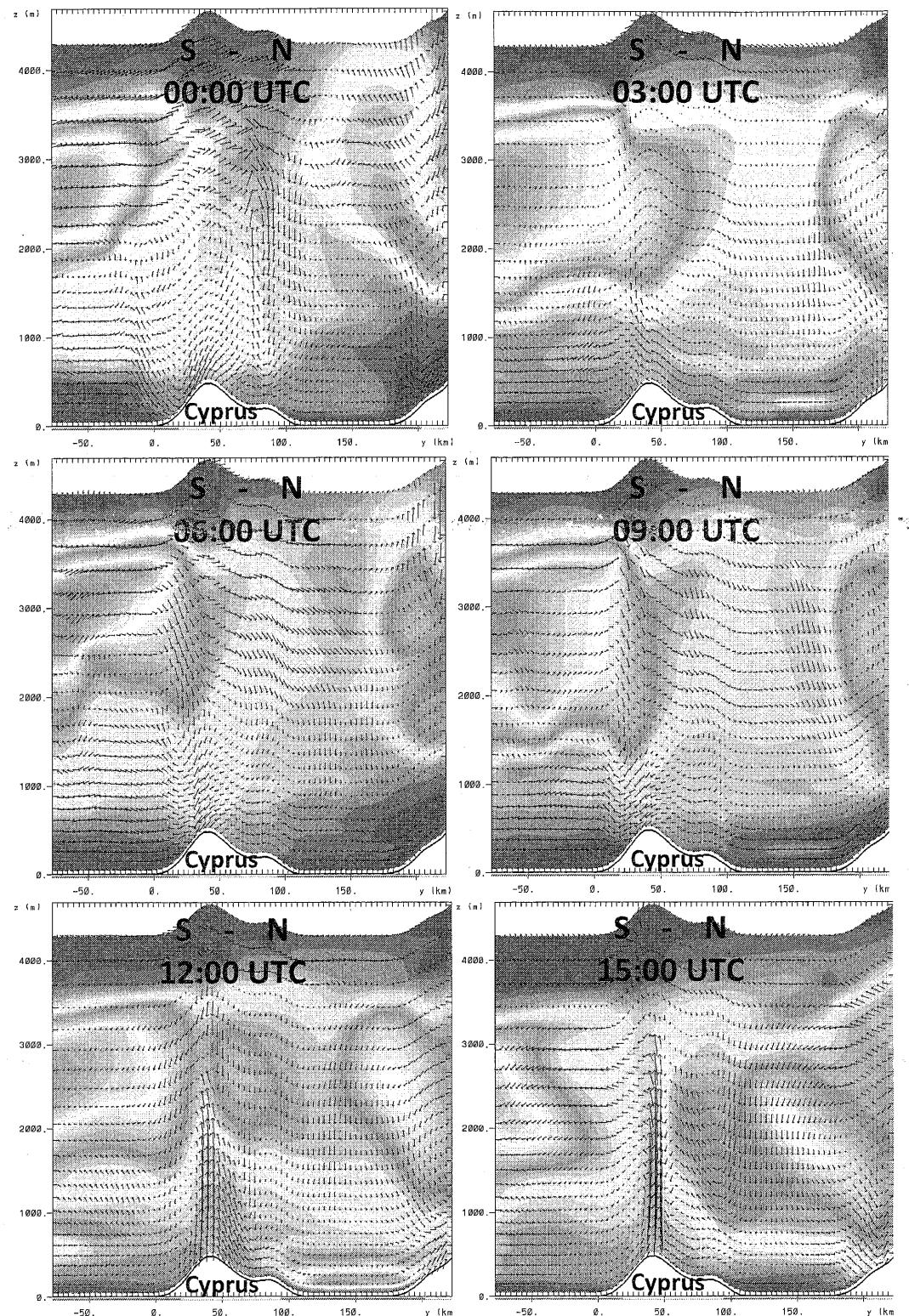
Dust concentration ($\mu\text{g m}^{-3}$) lat=34.7 lon=33.02



640
641 Figure 11. Vertical profile of dust concentration on 7 September 19:00 UTC over Limassol. Blue
642 shadow indicates a 20% uncertainty of the lidar measurements.


643

644


645

646

647 Figure 12. Model 550 nm AOT over Cyprus 00:00 – 15:00 UTC, 8 September 2015, zoom from the
648 second (4x4 km) model domain. The dashed black line shows the location of the cross-sections in
649 Figure 13.

650

651

652

653

654

655

656

Figure 13. Vertical cross-section (South-North) of modeled dust concentration over Cyprus 00:00 – 15:00 UTC, 8 September 2015. The location of the cross-section is shown in Figure 12a.