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1. OC and EC Measurements

Semi-continues thermal-optical transmittance (TOT) carbon analyzers (Model RT-4, Sunset
Laboratory Inc., Tigard, Oregon, USA) were deployed at three sites in Pearl River Delta (PRD) region,
China for hourly PM,s organic carbon (OC) and elemental carbon (EC) measurement. Briefly,
ambient air is first drawn into a sharp-cut PM, 5 cyclone (BGI, Waltham, Massachusetts, USA) at the
flow rate of 8 Lmin™, then passing through a parallel plated carbon denuder (Sunset Laboratory, Inc.,
Tigard, Oregon, USA) to remove gaseous OC, and finally collected onto two back-to-back 16 mm
diameter quartz filter (Pallflex, Tissuquartz, 2500-QAT-UP, Putnam, Massachusetts, USA). After 45
min of sampling the particle laden filter is subjected to analysis. The analysis is done in the following
15 min. In thermal-optical analysis, OC is volatized first by programed temperature steps in oxygen-
free atmosphere while in the second stage combustion of EC requires presence of oxygen. Evolved
OC is converted to carbon dioxide (CO,) by manganese dioxide catalyst. Determination of CO, from
oxidized OC and EC is quantified by a non-dispersive infrared (NDIR) detector. During the Helium
stage a fraction of OC is pyrolized at high temperature and lead to formation of pyrolized carbon
(PC), resulting filter darkened. To minimize this analytical artifact, a tunable red diode laser (660 nm)
is used for monitoring the transmittance signal of filter. Formation of PC in He stage decreases the
laser signal while combustion of PC and EC in O, stage results in recovery of laser signal. When the
laser signal in O, stage returns to the initial level, the carbon fraction before this point in O, stage is
quantified as PC, achieving the differentiation of PC and native EC. So all carbon fractions volatized
before this point (known as OC/EC split) are regarded as OC (OC evolved in He + PC combusted in O,)
and after as EC.
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The three monitoring sites include (1) Nancun, a suburban location in Guangzhou, Guangdong,

(2) Tsuen Wan, an urban in Hong Kong, and (3) Mong Kok, an urban roadside in Hong Kong. Figure S1
shows the frequency distributions of OC, EC, and OC/EC ratios at the three sites for the whole year.
Figures S2-S4 show the seasonal subsets using the Nancun site as the example. Figure S5 shows
frequency distribution of OC/EC ratio during rush hours (7:00-9:00) at the urban roadside location

Mong Kok.
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Figure S1. Frequency distributions of OC, EC and OC/EC ratio in ambient samples recorded at three
locations in the Pearl River Delta region, China. (a)-(c) Nancun, a suburban site in Guangzhou, (d)-(f)
Mong Kok, an urban roadside site in Hong Kong, (g)-(i) Tsuen Wan, a general urban site in Hong Kong.
Grey areas represent frequency distribution, green dashed lines represent cumulative frequency
distribution, red lines are normal fitting, and blue lines are log-normal fitting. D represent the
Kolmogorov-Smirnov statistic, C represent critical value. If D<C, the samples follow corresponding

distribution.
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Figure S2. Seasonal frequency distributions of OC observed at the suburban site Nancun in the Pearl
River Delta region. (a)-(d) represent spring, summer, fall, and winter, respectively. Grey areas
represent frequency distributions, green dashed lines represent cumulative frequency distributions,
red lines represent normal fitting, blue lines represent log-normal fitting. D represent the
Kolmogorov—Smirnov statistic, C represent critical value. If D<C, the samples follow corresponding

distribution.
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Figure S3. Seasonal frequency distributions of EC observed at the suburban site Nancun in the Pearl
River Delta region. (a)-(d) represent spring, summer, fall, and winter, respectively. Grey areas
represent frequency distributions, green dashed lines represent cumulative frequency distributions,
red lines represent normal fitting, blue lines represent log-normal fitting. D represent the
Kolmogorov—Smirnov statistic, C represent critical value. If D<C, the samples follow corresponding
distribution.
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Figure S4. Seasonal frequency distributions of OC/EC ratio observed at the suburban site Nancun in
the Pearl River Delta region. (a)-(d) represent spring, summer, fall, and winter, respectively. Grey

areas represent frequency distributions, green dashed lines represent cumulative frequency
distributions, red lines represent normal fitting, blue lines represent log-normal fitting. D represent
the Kolmogorov—Smirnov statistic, C represent critical value. If D<C, the samples follow

corresponding distribution.
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MK Rush hour (7:00 - 9:00) OC/EC
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Figure S5. Frequency distribution of OC/EC ratio observed at Mong Kok (MK), a roadside site in
Hong Kong. OC/EC ratio of road site MK can represent the (OC/EC),, in Hong Kong. Grey areas
represent frequency distributions, green dashed lines represent cumulative frequency distributions,
red lines represent normal fitting, blue lines represent log-normal fitting. D represent the
Kolmogorov-Smirnov statistic, C represent critical value. If D<C, the samples follow corresponding
distribution.
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Figure S6. Schematic diagram of pseudorandom number generation for two primary emission
sources. The data series (EC;, EC, and SOC), which are generated by Mersenne twister (MT)
pseudorandom number generator, statistically follow log-normal distribution, but the sequence of
each data point is randomly assigned.
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Figure S7. Variation of bias of SOC determination with measurement uncertainty under four
different (OC/EC),i (a) (OC/EC)i = 0.5, (b) (OC/EC)yri =1, (c) (OC/EC)pi=2, and (d) (OC/EC),i =6,
demonstrating dependence on ¥, While no effects by (OC/EC),.

The different representations of (OC/EC),include ratio of averages (ROA), minimum R square
method (MRS), OC/EC1%, OC/ECnmin. Fixed input parameters: N=8000; EC = 2+1 pgm™, and fsoc=60%.
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2. Single source scenario: (OC/EC),,; with lognormal distribution

The procedure of data generation considering lognormal distribution in (OC/EC),, is illustrated
in Figure S8 and implemented by scripts written in Igor Pro. EC is first generated with the following
parameters specified: sample size, mean and relative standard deviation (RSD%) of the whole data
set . The EC data set statistically follows log-normal distribution, while the sequence of each data
point is randomly assigned. Next, a log-normally distributed (OC/EC),, data set, is generated, with a
given sample size, mean and RSD. POC is then calculated by multiplying EC and (OC/EC),,. SOC data
is independently generated in a similar way to that for EC. The synthesized OC is then the sum of
POC and SOC. OC and EC data sets generated in this way are used to evaluate the accuracy of SOC
estimates by different implementations of the EC tracer method.

In ambient atmospheric environments, due to the co-emission of POC and EC, high R*(POC, EC)
(i.e., correlation coefficient between POC and EC) is expected. In order for the simulated data set to
retain this relationship, we found that the ratio between the RSD values of (OC/EC),, and EC data
(referred to y_gsp for convenience) is a key factor and needs to be constrained. Figure S10 shows R
(POC, EC) deteriorates as y_gsp of the simulated data sets increases. At y_gsp > 20%, R%*(POC, EC) falls
below 0.95. In our numerical experiments, y_rsp is constrained to be 10% to maintain the high
correlation between POC and EC.

We note that the simulated (OC/EC), is not a single value, reflecting its variable nature under
realistic atmospheric environments. Multiple parameters are available to describe the (OC/EC), as
summarized in Table S1, including slope obtained through Deming regression (DR), ratio of averages
(ROA) POC against EC, median of ratios (MER), mode of ratios (MDR), average of ratios (AOR). It is
necessary to select one of these parameters as the reference (OC/EC),; to evaluate the performance
of (OC/EC), estimation by MRS. Studies by Chu (2005) and Saylor et al. (2006) both suggest ROA
being the best estimator of the expected primary OC/EC ratio. Therefore, the deviations of various
(OC/EC),ri representations from ROA as a function of y_gsp are examined in Figure S9. Increasing bias
in MDR, MER and DR are observed as a function of y_gsp While the deviation of (OC/EC),; by MRS
from ROA is within 5% throughout a range of y_gsp from 0 to 100%. This result clearly demonstrates
the robustness of MRS in (OC/EC),,; estimation.

As discussed in the conceptual diagram (Figure 3), distribution width and distance between
(OC/EC),ri and OC/EC distributions could vary in ambient samples. This is challenging for OC/ECyos
and OC/EC., because they rely on the position of left tail of OC/EC distribution. The accuracy of SOC
estimates by OC/EC;q4 and OC/EC,,, methods has a strong dependence on RSDg, RSDsoc and fsoc,
which control the distance and widths of the two peaks. Therefore, sensitivity tests are performed
by varying these parameters: RSD¢c, RSDsoc and fspc. As shown in Figure S10, OC/ECy04 and OC/ECnin
exhibit strong dependence on RSDg¢: and fsoc. When RSDgc is larger, the SOC underestimation will be
smaller. When fsgc <60%, SOC bias can be either overestimation or underestimation as a function of
RSDgc. Sensitivity test on RSDsoc and fsoc are examined in Figure $S12. When fsoc <20%, the OC/ECin
approach overestimates SOC, which increase with RSDsoc. When fsoc >20%, the OC/EC,,i» approach
underestimates SOC, which decrease with RSDsoc. The OC/ECy4% approach always underestimates
SOC but the degree of underestimation decreases with higher RSDsoc. Sensitivity test on yy,. and
fsoc are examined in Figure S12. MRS and the OC/EC., approach tend to overestimate SOC if yyn,
become higher. SOC underestimation by OC/ECyoy decrease as yy,. becomes higher. SOC bias values
by MRS, OC/ECyp4 and OC/EC., are all reduced when fsoc is higher. Considering a reasonable
measurement uncertainty (Yyne < 20%), MRS is shown to provide the best performance, then

S-8



followed by OC/EC,. OC/ECioy exhibits the largest bias among three approaches. SOC bias
dependency on (OC/EC), and EC concentration is also tested as shown in Figures S13 and S14. The
results show that the SOC estimate bias by the MRS, OC/EC.i, and OC/ECyo, methods due to
elevated yy,. does not depends on (OC/EC),; and EC concentration, except OC/EC.i, when
(OC/EC),ri =6 (Figure S13d). Results of sensitivity tests discussed above are summarized in Table S2
considering most possible ambient conditions.

Table S1. Various ways representing (OC/EC),; and abbreviation of terms used in this numerical
study

Representation of (OC/EC), Input parameters Remarks
average of ratios(AOR) POC EC POC/EC
median of ratios(MER) POC EC POCJEC

mode of ratios(MDR) POCEC
ratio of averages (ROA) POCEC POC/EC
deming regression (DR) POCEC Slope of regression
minimum R square method
OCEC MRS
(MRS)
OC/ECuin OCEC Minimum OC/EC
OC/ECygy% OCEC OC/EC at 10%

Table S2. Summary of numerical study results in scenarios 1 (S1) considering (OC/EC),; with
lognormal distribution under most probable general ambient conditions*. "+" represent SOC

overestimation, "-" represent underestimation.

SOC bias due to tested parameter

Tested
parameter MRS OC/EChin OC/EC1o%
RSDgc +4% +20% -45% ~ -40%
Scenario 1 RSDsoc +4% -20% ~ 0% -50% ~ -20%
Single source fsoc +4% +20% -50% ~-20%
Yunc +10% +25% -45%

*Most probable general ambient conditions: RSDgc 50~100%; fsoc 40~60%; ¥ yne 20%;
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Figure S8. Schematic diagram of pseudorandom number generation. The data series (EC, (OC/EC),
and SOC), which are generated by Mersenne twister (MT) pseudorandom number generator,
statistically follow log-normal distribution, but the sequence of each data point is randomly
assigned.
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Figure S9. Deviation of various representation of (OC/EC),from the ratio of averages (ROA) as a
function of (OC/EC),, RSD to EC RSD ratio (y_gsp). Representation of (OC/EC),including: average of
ratios(AOR), median of ratios(MER), mode of ratios(MDR), deming regression (DR), minimum R

square method (MRS). Input configurations: N=8000 EC = 4+2 pgm (OC/EC)pi = 2 SOC/OC ratio
(fsoc)=40% SOC = 5.3+2.6 ugm”
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(OC/EC),.; with lognormal distribution
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Figure S10. Bias of SOC determination as a function of RSD¢c and fsoc by different representation of
(OC/EC)pyi, including: ratio of averages (ROA), minimum R square method (MRS), OC/ECjy%, OC/ECpin.
Fixed input parameters: N=8000; EC = 241 ugm"a, and (OC/EC),=0.520.025. fsqoc is varied, with (a)
fsoc =20% SOC = 0.25+0.13 pgm™ (b) fsoc =40% SOC = 0.67+0.33 ugm™ (c) fsoc =60% SOC = 1.5+0. 75
ngm (d) fsoc =80% SOC = 4+2 pgm™
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Figure S11. Bias of SOC determination as a function of RSDsoc and fsoc by different representation of
(OC/EC)pri, including: ratio of averages (ROA), minimum R square method (MRS), OC/ECjy%, OC/ECwin.
Fixed input parameters: N=8000; EC = 2+1 ugm'3, and (OC/EC),=0.5£0.025. fsoc is varied, with (a)
fsoc =20% SOC = 0.25+0.13 pgm™ (b) fsoc =40% SOC = 0.67+0.33 ugm™ (c) fsoc =60% SOC = 1.5+0. 75
ngm (d) fsoc =80% SOC = 4+2 pgm™
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Figure S12. Bias of SOC determination as a function of relative measurement uncertainty (yy,.) and
(OC/EC),ri by different representation of (OC/EC),y, including: ratio of averages (ROA), minimum R
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square method (MRS), OC/EC,o4, OC/ECin. Fixed input parameters: N=8000; EC = 2+1 ugm'a, and
(OC/EC)4i=0.5%0.025. fsoc is varied, with (a) fsoc =20% SOC = 0.25+0.13 ugm'3 (b) fsoc =40% SOC =
0.67+0.33 ugm™ (c) fsoc =60% SOC = 1.5+0. 75 pgm™ (d) fsoc =80% SOC = 4+2 ugm™
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Figure S13. Bias of SOC determination as a function of measurement uncertainty and (OC/EC),; by
different representation of (OC/EC),;, including: ratio of averages (ROA), minimum R square
method (MRS), OC/ECigs, OC/ECin. Fixed input parameters: N=8000; EC = 2+1 ugm™, and fsoc=60%.
(OC/EC)yi is varied, with (a) (OC/EC),r = 0.5£0.025, (b) (OC/EC),r = 1£0.05, (c) (OC/EC),i =2 £0.1,
and (d) (OC/EC),i = 6+0.3
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Figure S14.

different representation of (OC/EC),, including: ratio of averages (ROA), minimum R square method
(MRS), OC/ECy0% and OC/ECy. Fixed input parameters: N=8000; (OC/EC),: = 0.5+0.025; and fsoc
=40%. EC and SOC input configurations are varied, with (a) EC = 0.520.25 ugm™, SOC = 0.167+0.083
ugm>, (b) EC = 2+1 ugm™, SOC = 0.6740.33 pgm™, (c) EC = 442 pgm™>, SOC = 1.32+0.66 ugm™, and (d)

EC = 8+4 ugm>, SOC = 2.64+1.32 ugm”™.
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3. An Igor program for MRS calcul

ation

An Igor Pro (WaveMetrics, Inc. Lake Oswego, OR, USA) based program with graphical user interface is

developed to make the calculation feasible and user friendly (Figure S15). Data input can be easily

accomplished through copy and paste from Excel directly. MRS calculation on subset of data is also available

(for example, monthly, hourly and seasonal subset data). The program can be downloaded from

https://sites.google.com/site/wuchengust.
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Figure $S15. MRS Igor program. The calculation can be done on different time scale including hourly,
monthly and seasonally. MRS can also be calculated on grouped data based on a text data column
provided by the user.
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