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Point-by-point response to review comments on manuscript acp-2015-997 
“Determination of Primary combustion source organic carbon-to-elemental carbon (OC/EC) 
ratio using ambient OC and EC measurements: Secondary OC-EC correlation minimization 
method” 
 
By Cheng Wu and Jian Zhen Yu 
 
 
We thank the two anonymous reviewers for their constructive comments. Our point-by-point 
responses to the review comments are listed below. Changes to the manuscript are marked in blue in 
the revised manuscript. The marked manuscript is submitted together with this response document. 
 
Anonymous Referee #1 

Dear Editor, this MS presents a statistical assessment of an alternative method to quantify secondary 
organic carbon (SOC) in ambient air samples. This method is an alternative to the classic EC tracer 
method. It is a useful assessment of an alternative method which seems to perform rather well, and 
therefore merits publication. Reading is somewhat complicated due to the frequent use of 
abbreviations (eg, fSOC), though. A more fluent writing style would help the reader. 

Author’s Response: We add a table (also shown below) in the revised main text to help readers to 
have a quick check of abbreviations used in the paper. We believe this would be more reader-friendly 
than looking for definitions that scattered in the main text. Please see below for point-by-point 
response to reviewers’ comments. 

 

Table 1. Acronyms and Abbreviations 
Abbreviation Definition 
EC elemental carbon
EC1, EC2 EC from source 1 and source 2 in the two-source scenario 
fEC1 fraction of EC from source 1 to the total EC
fSOC ratio of SOC to OC
MRS minimum R squared method
MRS' A variant of MRS that use EC from individual sources as input 
MT Mersenne twister pseudorandom number generator
n sample size in MT data generation
OC organic carbon 
OC/EC OC to EC ratio 
(OC/EC)pri primary OC/EC
OC/EC10% OC/EC at 10% percentile 
OC/ECmin minimum OC/EC
OCnon-comb OC from non-combustion sources
PDF probability density function of a distribution
POC primary organic carbon
ROA ratio of averages
RSD relative standard deviation
RSDEC RSD of EC  
RSDPOC RSD of POC 
RSDSOC RSD of SOC 
SOC secondary organic carbon
SOCsvP SOC formed from semi-volatile POC
ϒ_pri ratio of the (OC/EC)pri of source 2 to source 1
εEC , εOC measurement uncertainty of EC and OC
ϒunc relative measurement uncertainty
_RSD the ratio between the RSD values of (OC/EC)pri and EC 
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Some specific comments: 

- line 75: I believe Pio et al propose yet another method, using a subset of samples with 5% lowest 
ratios and discarding the 3 lowest... I don’t have the exact reference right now, but please add.  
 
Author’s Response: Suggestion taken. The reference (Pio et al., 2011) is now added in the main text.  
 

Lines 74-78  
“Combinations of the fixed percentile and the minimum (OC/EC)pri approaches were also 
used in order to accommodate different sample sizes available.  For example, Pio et al. 
(2011) suggested using the lowest 5% subset to obtain the (OC/EC)pri, and if the sample 
size of 5% subset is less than three, the lowest three data points are used to determine 
(OC/EC)pri.” 

 
Reference 
Pio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., Oliveira, C., de la Campa, 
A. S., Artinano, B., and Matos, M.: OC/EC ratio observations in Europe: Re-thinking the approach for 
apportionment between primary and secondary organic carbon, Atmos Environ, 45, 6121-6132, DOI 
10.1016/j.atmosenv.2011.08.045, 2011. 
 
- line 90: any reason why the Millet method was overlooked?  
 
Author’s Response:  One reason is that Millet’s original paper focused on VOCs, and the MRS 
approach was used to calculate primary ratio of VOCs/EC to differentiate primary and secondary 
VOCs. A second reason we believe is a lack of evaluation work for this method. As a result, the 
approach initially proposed by Millet et al did not draw much attention from the OC/EC measurement 
community. 
 
- line 211: please elaborate on why the OCEC10% method provides worse results  
 
Author’s Response: Based on the observational data we have, the ambient conditions most likely 
falls into the scenario between scenario A and B (Figure 3). As such, OC/EC10% is further away from 
the true OC/ECpri than OC/ECmin, resulting larger bias.  
 
- line 226: I don’t understand the different behavior of the OCEC10% amend the OCECmin methods, 
given that they are both subsets of the total dataset with specific characteristics of representing 1% 
and 10%. Why is their behavior different?  
 
Author’s Response: Change of fSOC not only changes the position of OC/EC distribution relative to 
OC/ECpri distribution, but can also alter the width of OC/EC distribution. Because the subset methods 
rely on percentile of OC/EC, once the OC/EC distribution is widened, the relative position between 
OC/ECmin and OC/EC10% is also changed and this results in a non-linear response in SOC differences, 
 
 
- section uncertainty: with some analytical methods (e.g., TOT) the uncertainty is mostly constant 
(0,1-0,2 micrograms/cm2), please discuss how this would affect the results in this section.  
 
Author’s Response: Under the scenario of constant absolute uncertainty, the performance of MRS 
(Figure R1, 0.2 μg m-3) is similar to that assuming a fix proportional measurement uncertainty (Figure 
R2, 10% measurement uncertainty). Both Figures R1 and R2 are included in the revised main text as 
Figure 8. 
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Figure R1. SOC estimation bias as a function of sample size, assuming fixed absolute measurement 
uncertainty for OC and EC (0.2 μgC m-3). For each sample size, 500 repeat runs were conducted. The 
circles represent mean of 500 repeat runs, the whiskers represent one standard deviation. Parameters 
used for testing: Repeat runs = 500; N = 20~8000; EC = 8±4 μgC m-3; (OC/EC)pri = 0.5; POC = 4 ±2 
μgC m-3, fSOC =40%, and SOC = 2.67±1.33 μgC m-3. 
 

 
Figure R2. SOC estimation bias as a function of sample size, assuming a fixed relative measurement 
uncertainty of 10% for OC and EC. For each sample size, 500 repeat runs were conducted. The open 
circle represents the mean of 500 repeat runs, and the whisker represents one standard deviation. 
Parameters used for testing: Repeat runs = 500; N = 8000; EC = 8±4 μgC m-3; (OC/EC)pri = 0.5; POC 
= 4 ±2 μgC m-3, fSOC =40%, and SOC = 2.67±1.33 μgC m-3. 
 
- line 317, please clarify what the authors mean by "the irrelevance of EC and SOC", it is unclear to 
me 
 
Author’s Response: We now rephrased as “the independence of EC and SOC”, by which we mean 
that SOC and EC come from uncorrelated sources. 
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Anonymous Referee #2 

Generally Comments 

Typically the EC tracer method, when used in estimating the secondary organic carbon (SOC), relies 
on three conditions– 1) the relatively constant (OC/EC)pri	over the period of study; 2) the random 
nature of SOC formation relative to EC; and 3) a subset of dataset without significant SOC 
contributions. The OC/EC10%or OC/ECmin	essentially utilize the subset in Condition #3 to derive the 
(OC/EC)pri	 if it does have an unique value. Any deviations from the conditions as well as 
measurement uncertainties will lead to bias in determining (OC/EC)pri. In some environments where 
SOC dominates, the third condition is generally impossible to be met. This study, through an 
extensive test, shows that the third condition is not necessary in calculating (OC/EC)pri, if an 
algorithm, i.e., minimum R2	 (MRS), is used looking for (OC/EC)pri	that yields SOC least correlated 
with EC. Without further examinations, the reviewer thinks that MRS is probably mathematically 
rigorous for any datasets satisfying the first two conditions and, additionally, with sufficient size and 
accuracy. It can perform better than OC/EC10%	or OC/ECmin	most of the time because Condition 3 is 
fortuitous, as described by the authors. 
While the reviewer agrees that MRS should be used instead of OC/EC10%or OC/ECminin calculating 
SOC, particularly for a large dataset which can support meaningful correlation analysis, MRS does 
not solve fundamental problems in the EC tracer method. The (OC/EC)priis by no means constant, as 
it varies with source contributions from day to day and season to season. SOC is likely correlated with 
EC because in urban areas many SOC precursors originate from the same combustion sources as EC. 
This paper demonstrates that when Conditions 1 and 2 are in doubt, MRS produces erroneous results. 
MRS results are also sensitive to measurement uncertainty that impacts the correlation coefficients. 
These limitations, however, are not emphasized adequately in the abstract, which sounds almost like 
MRS has tackled all these issues. These issues, still, can only be solved by using multivariate or 
chemical mass balance analysis with additional markers. 
 

Author’s Response: Thanks for the very insightful comments. We agree that (OC/EC)pri varied from 
day to day and season to season in reality and this limitation is intrinsic in the EC tracer method 
regardless different approaches in implementing the EC tracer method, unless it is applied in a time 
frame small enough that variations of (OC/EC)pri is almost negligible. Limits posed by the nature of 
ambient ECOC data are inherent to the EC tracer method and common to all the variants of the EC 
tracer method. This study focuses on evaluating different (OC/EC)pri determination approaches within 
the EC tracer method, with the aim to identify the best approach in applying the EC tracer method. We 
have revised the wording in the abstract and in main text to emphasize the limitations of the EC tracer 
method and the MRS approach. Please see below the specific revisions in our point-by-point response 
to reviewers’ comments. 

 

Specific Comments 

Abstract: Please describe the assumptions of MRS, datasets that are suitable for MRS analysis, and 
potential errors while in the same time shortening the abstract. Just saying MRS is better than 
OC/EC10%or OC/ECminis not meaningful because all the three could be very wrong in some cases. 
 
Author’s Response: We have made the following revisions in the abstract to clearly state the 
assumptions of MRS. 
 

Line 28: 
“The hypothetical (OC/EC)pri that generates the minimum R2(SOC,EC) then represents the actual 
(OC/EC)pri ratio if variations of EC and SOC are independent and (OC/EC)pri is relatively constant 
in the study period.” 

 
Line 38-41: 
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“…MRS provides an unbiased SOC estimation when measurement uncertainty is small. MRS 
results are sensitive to the magnitude of measurement uncertainty but the bias would not exceed 23% 
if the uncertainty is controlled within 20%.” 
 

We also shortened slightly the abstract by condensing a few sentences and removing the following 
sentence (this background information is spelled out in the introduction section). 

 
“The general concept embodied in the MRS method was initially proposed by Miller et al 
(2005), but has not been evaluated for accuracy or utility since its debut.” 

  
 
Line 97-102: While using simulated data is insightful, it offers no proof. The authors may explore if 
there is a true “proof” from mathematical or statistical derivations that MRS will yield true (OC/EC)pri	
if SOC is indeed random and the dataset is big enough. This may also answer the question- how big is 
big? MRS does not seem suitable for a dataset with only dozens of points. 
 
Author’s Response:  
We agree that the simulated data alone does not offer proof, as there is no guarantee that the simulated 
data capture all the essential features of real-world data. In response to this comment, we conducted a 
series of sensitivity tests to evaluate the SOC estimation dependency on sample size, which was varied 
from 20 to 8000. For each sample size, 500 repeat runs were tested, assuming a single value OC/ECpri 
with a measurement uncertainty of 10%. The results are in Fig. R2, showing the average and the 
standard deviation for each sample size. The standard variation of SOC bias by MRS decreases with 
increased sample size while the mean of SOC bias remains a constant small value (2%). The standard 
variation of SOC bias is ~±30% at the lowest tested sample size (n = 20), and decreases to less than 
15% at n =60 (the sample size of one-year sampling from an every-six-day sampling program) and to 
less than 10% at n = 200. Other scenarios considering OC/ECpri with a distribution and different fSOC 
are discussed in SI. Figure R2 will be included in the main text. 
 
A new section (as shown below) is added to the manuscript to address the sample size question. 

 
Figure R2. SOC estimation bias as a function of sample size, assuming a fixed relative measurement 
uncertainty of 10% for OC and EC. For each sample size, 500 repeat runs were conducted. The open 
circle represents the mean of 500 repeat runs, and the whisker represents one standard deviation. 
Parameters used for testing: Repeat runs = 500; N = 8000; EC = 8±4 μgC m-3; (OC/EC)pri = 0.5; POC 
= 1 ±0.5 μgC m-3, fSOC =40%, and SOC = 0.67±0.34 μgC m-3. 
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Lines 331-356: 

“2.4 Impact of sample size 

MRS rely on correlations of input variables and it is expected that MRS performance is sensitive to 
the sample size of input dataset. This section examines the sensitivity on sample size by the three 
(OC/EC)pri representations and aims to provide suggestions for an appropriate sample size when 
applying MRS on ambient OCEC data. Sample sizes ranging from 20 ~ 8000 are tested and for 
each sample size 500 repeat runs are conducted to obtain statistically significant results. Both Case 
A (i.e., a constant relative uncertainty of 10%) and Case B (i.e., a constant absolute uncertainty of 
±0.2 μgC m-3 for both OC and EC) are considered. The measurement uncertainties in case B are 
generated separately by MT following a uniform distribution within the range of ±0.2 μgC m-3. 
The measurement uncertainties of POC and SOC are then back-calculated following the 
uncertainty propagation formula (Harris, 2010) and assuming the ratio of εPOC /εSOC is the same as 
POC/SOC ratio (controlled by fSOC).  

The mean SOC bias by MRS is very small (<3%) for all sample sizes while the standard deviation 
of SOC bias decreases with sample size (Figure 8). The standard deviation of SOC bias is ~±30% 
at the lowest test sample size (n = 20), and decreases to less than ±15% at n = 60 (the sample size 
of one-year sampling from an every-six-day sampling program) and to less than ±10% at n = 200. 
Similar patterns are observed between Case A (Figure 8a) and Case B (Figure 8b) for MRS and 
OC/EC10%. For OC/ECmin, a larger bias is observed in Case B than Case A for all sample sizes, as 
SOC bias by OC/ECmin is more sensitive to measurement uncertainty in the range of 0~10% as 
shown in Figure 7b. The standard deviation of SOC bias by OC/ECmin and OC/EC10% both 
decreases with sample size as shown in Figure 8. The mean SOC bias of OC/ECmin decrease with 
increased sample size while OC/EC10% is insensitive to sample size. The sample size dependency of 
all three (OC/EC)pri representations is not sensitive to fSOC as shown in Figure S16. Other scenarios 
considering (OC/EC)pri with a distribution and different fSOC are discussed in SI.” 

 
 
Line 116-118: How good are the K-S statistics?  In other words, how well did the pseudorandom 
number generator reproduce the statistics in the original dataset? 
 
Author’s Response: The K-S statistics for ambient measured data are shown in Figures S1-S4 (This 
information is now also mentioned in the main text). In Igor Pro’s Kolmogorov–Smirnov test, D 
represents the K-S statistic, C represent critical value. If D<C, the samples follow the corresponding 
distribution (e.g., normal or log-normal distribution). The majority of the data can pass the K-S test for 
log-normal distribution and some exhibit a bimodal distribution. For the performance of the MT 
pseudorandom number generator, we conduct a series of K-S tests on the generated data for 5000 runs, 
which show 94.4% data having D small than C (Fig. R3). Hence, we believe the pseudorandom 
number generator could produce the data following preset characteristics. Figure R3 is added to the SI 
and referred to in the main text. 
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Figure R3 Performance of the MT pseudorandom number generator evaluated by K-S test. The 
histogram in grey represents D statistic value in K-S test and the red dashed-line represents C. The 
dash line in green represents cumulative distribution of D. Data with D<C, i.e., data that strictly follow 
the log-normal distribution, account for 94.4% in 5000 runs. 
 
The below text is added to the manuscript to describe whether the pseudorandom number generate 
reproduce the statistics in the original dataset. 
 

Lines 142-145: 
“For the verification of the log-normality of MT generated data, a series of K-S tests on the 
generated data for 5000 runs are conducted. As shown in Figure S6, 94.4% of runs pass the K-S test. 
Hence the performance of MT can satisfy the log-normal distributed data generation requirement in 
this study”. 

 
Line 126: Eqs. (4)-(5) do not work for all datasets. They are probably asymptotes when datasets are 
large enough in size. 
 
Author’s Response: We agree that they do not necessarily work for all datasets. The reason for 
translating mean and standard deviations into μ and is that the MT pseudorandom number generator 
in Igor Pro only accepts μ and σ as input parameters, while mean and standard deviations are the 
parameters that can be obtained from ambient measurements.  
 
Line 136: Mention here that the case with combustion-related SOC is discussed later. 
 
Author’s Response: Suggestion taken. The text below is included in the revised manuscript: 
   

Line 140: 
“The case with combustion-related SOC is briefly discussed in section 3.”  

 
Line 151-152: The results of log-normally distributed (OE/CC)pri	should be summarized in the text if 
possible. 
 
Author’s Response: Suggestion taken. The below text is added to the section 2.2.1: 
 

Lines 219-225: 
“For the representation of (OC/EC)pri in the simulated data as lognormally distributed data, analysis 
is also performed to evaluate SOC estimation bias as a function of RSDEC, RSDSOC, and fSOC. Table 
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S2 summarizes the results obtained with adopting most probable ambient conditions (i.e., RSDEC: 
50-100%, fSOC: 40-60%). SOC bias by MRS is within 4% when measurement uncertainty is ignored. 
In comparison, SOC bias by OC/ECmin is more sensitive to assumption of log-normally distributed 
(OC/EC)pri than single value (OC/EC)pri, including the dependency on RSDEC and RSDSOC with 
varied fSOC..” 
 

Line 220-222: It is not clear if fEC1	was varied from sample to sample in a single test or only varied 
from test to test. If the former, how could you make sure EC1 and EC2 are highly correlated? 
 
Author’s Response:  fEC1	was varied from test to test. The text is now clarified as below: 

 
Lines 229-231: 
“By varying fEC1 (proportion of source 1 EC to total EC) from test to test, the effect of 
different mixing ratios of the two sources can be examined.” 

 
Line 284-286: Since POC and SOC are not directly measured, what is the meaning to simulate their 
measurement uncertainty? 
 
Author’s Response:  Once OC and EC data are considered to have measurement uncertainty, the 
derived quantities POC and SOC (using Eq (1) and Eq (2)) consequently also have associated 
uncertainty, which can be calculated following uncertainty propagation principle. For the evaluation of 
SOC estimation, SOC calculated from the EC tracer method needs to be compared with “true SOC 
plus associated uncertainty”. That’s the reason why we calculated the uncertainties of POC and SOC  
 
Line 384: How were the six subsets selected? 
 
Author’s Response: With a given one-year data set, there are six possible extractions of daily data 
sets corresponding to the assumed every-six-day sampling schedule, i.e., set 1:{Day 1, 7, 13,..}, set 2: 
{Day 2, 8, 14,..}, set 3: {Day 3, 9, 15,..}, etc. The text below is added to clarify this point: 
 

Lines 368-371: 
“The one-year data yields six subsets of daily samples, corresponding to six possible schedules of 
sampling days with the every-six-day sampling frequency. The MRS calculation produces the 
OC/ECpri in the range of 2.37 – 2.75…”  

 
Line 360-362: Emphasize that this only happens when measurement uncertainties are small. 
 
Author’s Response: Suggestion taken. This sentence is revised as below: 
 

Lines 408-413: 
“In the scenarios of a single primary source and two well-correlated primary combustion sources, 
SOC estimates by MRS are unbiased while OC/ECmin and OC/EC10% consistently underestimate 
SOC when measurement uncertainty is neglected. When measurement uncertainty is considered, all 
three approaches produce biased SOC estimates, with MRS producing the smallest bias. The bias by 
MRS is less than 25% when measurement uncertainty is within 20% and fSOC is not lower than 
20%.” 
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Abstract 14 

Elemental carbon (EC) has been widely used as a tracer to track the portion of co-emitted 

primary organic carbon (OC) and, by extension, to estimate secondary OC (SOC) from 16 

ambient observations of EC and OC. Key to this EC tracer method is to determine an 

appropriate OC/EC ratio that represents primary combustion emission sources (i.e., 18 

(OC/EC)pri) at the observation site. The conventional approaches include regressing OC 

against EC within a fixed percentile of the lowest (OC/EC) ratio data (usually 5-20%) or 20 

relying on a subset of sampling days with low photochemical activity and dominated by local 

emissions. The drawback of these approaches is rooted in its empirical nature, i.e., a lack of 22 

clear quantitative criteria in the selection of data subsets for the (OC/EC)pri determination. 

We examine here a method that derives (OC/EC)pri through calculating a hypothetical set of 24 

(OC/EC)pri and SOC followed by seeking the minimum of the coefficient of correlation (R2) 

between SOC and EC. The hypothetical (OC/EC)pri that generates the minimum R2(SOC,EC) 26 

then represents the actual (OC/EC)pri ratio if variations of EC and SOC are independent and 

(OC/EC)pri is relatively constant in the study period. This Minimum R Squared (MRS) 28 

method has a clear quantitative criterion for the (OC/EC)pri calculation. This work uses 

numerically simulated data to evaluate the accuracy of SOC estimation by the MRS method 30 
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and to compare with two commonly used methods: minimum OC/EC (OC/ECmin) and OC/EC 

percentile (OC/EC10%). Log-normally distributed EC and OC concentrations with known 32 

proportion of SOC are numerically produced through a pseudorandom number generator. 

Three scenarios are considered, including a single primary source, two independent primary 34 

sources, and two correlated primary sources. The MRS method consistently yields the most 

accurate SOC estimation. Unbiased SOC estimation by OC/ECmin and OC/EC10% only occurs 36 

when the left tail of OC/EC distribution is aligned with the peak of the (OC/EC)pri 

distribution, which is fortuitous rather than norm. In contrast, MRS provides an unbiased 38 

SOC estimation when measurement uncertainty is small. MRS results are sensitive to the 

magnitude of measurement uncertainty but the bias would not exceed 23% if the uncertainty 40 

is within 20%.  

  42 
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1 Introduction 

Organic carbon (OC) and elemental carbon (EC) are among the major components of fine 44 

particular matter (PM2.5) (Malm et al., 2004). EC is a product of carbon fuel-based 

combustion processes and is exclusively associated with primary emissions whereas OC can 46 

be from both direct emissions and be formed through secondary pathways. Differentiation 

between primary organic carbon (POC) and secondary organic carbon (SOC) is indispensable 48 

for probing atmospheric aging processes of organic aerosols and formulating effective 

emission control policies. However, direct SOC measurement is not yet feasible, as there 50 

lacks knowledge of its chemical composition at the molecular level. Due to its exclusive 

origin in primary combustion sources, EC was first proposed by Turpin and Huntzicker (1991) 52 

to serve as the tracer to track POC from primary combustion sources and, by extension, to 

estimate SOC as SOC is simply the difference between OC and POC. This EC tracer method 54 

only requires measurements of OC and EC. Due to its simplicity, the EC tracer method has 

been widely adopted in studies reporting ambient OC and EC measurements (e.g., Castro et 56 

al., 1999;Cao et al., 2004;Yu et al., 2004). If OC and EC concentrations are available and 

primary OC from non-combustion sources (OCnon-comb) is negligible, SOC can be estimated 58 

using EC as the tracer for combustion source POC (Turpin and Huntzicker, 1995): 

/ 	                                             (1) 60 

/                                      (2) 

where (OC/EC)pri is the OC/EC ratio in freshly emitted combustion aerosols, and OCtotal and 62 

EC are available from ambient measurements. Abbreviations used in this study are 

summarized in Table 1. 64 

The key step in the EC tracer method is to determine an appropriate OC/EC ratio that 

represents primary combustion emission sources (i.e., (OC/EC)pri) at the observation site. 66 

Various approaches in deriving (OC/EC)pri reported in the literature are either based on 

emission inventory (Gray et al., 1986) or ambient observation data. Using ambient 68 

observation data, three approaches are the most common:  1) regressing measured OC vs. EC 

data from times of low photochemical activity and dominated by local emissions; 2) 70 

regressing measured OC vs. EC data on a fixed percentile of the lowest OC/EC ratio (usually 

5-20%) data to represent samples dominated by primary emissions (Lim and Turpin, 72 

2002;Lin et al., 2009;Pio et al., 2011); and 3) simply taking the minimum OC/EC ratio during 

the study period to approximate (OC/EC)pri (Castro et al., 1999). Combinations of the fixed 74 
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percentile and the minimum (OC/EC)pri approaches were also used in order to accommodate 

different sample sizes available.  For example, Pio et al. (2011) suggested using the lowest 76 

5% subset to obtain the (OC/EC)pri, and if the sample size of 5% subset is less than three, the 

lowest three data points are used to determine (OC/EC)pri. These approaches have the 78 

drawback in that there is not a clear quantitative criterion in the data selection for the 

(OC/EC)pri determination. Millet et al. (2005) was the first to propose an algorithm that 80 

explores the inherent independency between pollutants from primary emissions (e.g., EC) and 

products of secondary formation processes (e.g., SOC) to derive the primary ratios (e.g., 82 

(OC/EC)pri) for species with multiple source types. More specifically, for the determination 

of (OC/EC)pri, the assumed (OC/EC)pri value is varied continuously. At each hypothetical 84 

(OC/EC)pri, SOC is calculated for the data set and a correlation coefficient value (R2) of EC 

vs. SOC (i.e., R2(EC,SOC)) is generated. The series of R2(EC,SOC) values are then plotted 86 

against the assumed (OC/EC)pri values. If variations of EC and SOC are independent, the 

assumed (OC/EC)pri corresponding to the minimum R2(EC,SOC) would then represent the 88 

actual (OC/EC)pri ratio. Such an approach obviates the need for an arbitrary selection 

criterion, as the algorithm seeks the minimum point, which is unique to the dataset. However, 90 

this method has largely been overlooked, with only one study reporting its use (Hu et al., 

2012) since its debut, which may be a result of a lack of evaluation of its method performance. 92 

Hereafter for the convenience of discussion, we call this method the minimum R squared 

(MRS) method, with a conceptual illustration of the MRS method shown in Figure 1. A 94 

computer program written in Igor Pro (WaveMetrics, Inc. Lake Oswego, OR, USA) is 

developed to feasible MRS calculation and it is available from 96 

https://sites.google.com/site/wuchengust. 

With ambient OC and EC samples, the accuracy of estimated SOC by different (OC/EC)pri 98 

methods is difficult to evaluate due to the lack of a direct SOC measurement. The objective 

of this study is to investigate, through numerical simulations, the bias of SOC estimates by 100 

three different implementations of the EC tracer method. Hypothetic EC, OC, and (OC/EC)pri 

datasets with known break-down of POC and SOC values are numerically synthesized, then 102 

SOC is estimated and compared with the “true” SOC as defined by the synthetic datasets. As 

such, bias of SOC estimates using the various implementations of the EC tracer method can 104 

be quantified. 

2 Evaluation of the Minimum R Squared Method 106 

2.1 Data generation 
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We first examine ambient OC and EC for the purpose of identifying distribution features that 108 

can serve as the reference basis for parameterizing the numerical experiments. The one-year 

hourly EC and OC measurement data from three sites in the PRD (one suburban site in 110 

Guangzhou, a general urban site and a roadside site in Hong Kong, with more than 7000 data 

at each site), are plotted in Figure S1 in the supplemental information (SI) document for the 112 

whole year datasets and Figures S2-S4 for the seasonal subsets using the Nansha site as the 

example. A brief account of the field ECOC analyzers and their field operation is provided in 114 

the SI document. A detailed description of the measurement results and data interpretation for 

the sites will be given in a separate paper. The distributions of measured OC, EC and OC/EC 116 

are fitted by both normal and log-normal distribution curves and then examined by the 

Kolmogorov–Smirnov (K-S) test. The K-S statistic, D, indicates that log-normal fits all three 118 

distributions better than the normal distribution (D values are shown in Figure S1-S4). 

Therefore, log-normal distributions are adopted to define the OC, EC and OC/EC 120 

distributions during data generation in our numerical experiments. Statistics of these ambient 

OC and EC, along with a few other measurements reported in the literature, are summarized 122 

in Table 2 and are considered as the reference for data generation to better represent the real 

situation. 124 

The probability density function (PDF) for the log-normal distribution of variable x is: 

f x; μ, σ
√

                                             (3) 126 

The two parameters, μ and σ, of the log-normal PDF are related to the average and standard 

deviation of x through the following equations: 128 

μ ln 0.5 ln 1                                              (4) 

σ ln	 1                                                           (5) 130 

First, realistic average and standard deviation values of EC, (OC/EC)pri, and OC (e.g. Figure 

S1 – S5) are adopted to calculate	μ and σ. Then pseudo random number generator use μ and σ 132 

to synthesize EC and OC data sets. 

The Mersenne twister (MT) (Matsumoto and Nishimura, 1998), a pseudorandom number 134 

generator, is used in data generation. MT is provided as a function in Igor Pro. The system 

clock is utilized as the initial condition for generation of pseudorandom numbers. The data 136 

generated by MT has a very long period of 219937 – 1, permitting large data size and ensuring 
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that pseudorandom numbers are statistically independent between each data generation. The 138 

latter feature ensures the independent relationship between EC and non-combustion related 

SOC data. The case with combustion-related SOC is briefly discussed in section 3. MT also 140 

allows assigning a log-normal distribution during pseudorandom number generation to 

constrain the data. For the verification of the log-normality of MT generated data, a series of 142 

K-S tests on the generated data for 5000 runs are conducted. As shown in Figure S6, 94.4% 

of runs pass the K-S test. Hence the performance of MT can satisfy the log-normal distributed 144 

data generation requirement in this study. In a previous study, Chu (2005) used a variant of 

sine functions to simulate POC and EC, which limited the data size to 120, and the frequency 146 

distributions of POC and EC exhibited multiple peaks, a characteristic that is not realistic for 

ambient measurements. The key information utilized in the EC tracer method is the 148 

correlation between EC and POC as well as the irrelevance between EC and SOC. The time 

series information is not needed in EC tracer method, making pseudorandom number 150 

generator a good fit for the evaluation purpose. 

The procedure of data generation for the single emission source scenario is illustrated in 152 

Figure 2 and implemented by scripts written in Igor Pro. EC is first generated with the 

following parameters specified: sample size (n), average and relative standard deviation 154 

(RSD%) of the whole data set (see SI). The EC dataset statistically follows a log-normal 

distribution, while the sequence of each data point is randomly assigned. POC is then 156 

calculated by multiplying EC by (OC/EC)pri (Eq. 1). For simplicity, (OC/EC)pri is set to be a 

single value, while an analysis incorporating randomly generated log-normally distributed 158 

(OC/EC)pri values can be found in the SI material, and a brief summary is given in section 2.2. 

SOC data is independently generated in a similar way to that for EC. The sum of POC and 160 

SOC then yields the synthesized OC. OC and EC data generated in this way are used to 

calculate SOC by different implementations of the EC tracer method. The bias of SOC 162 

estimation can then be evaluated by comparing the calculated SOC with the ‘true’ SOC 

values. Data generation for the scenarios with two primary emission sources is similar to the 164 

single source scenario and the steps are illustrated in Figure S7. 

2.2 Scenario Study 166 

Three scenarios are considered. Scenario 1 (S1) considers one single primary emission source. 

Scenario 2 (S2) considers two correlated primary emission sources, i.e., two sets of EC, POC, 168 

and each source has a single but different (OC/EC)pri value. An example of S2 is combined 

vehicular emissions from diesel-fuel and gasoline-fuel vehicles. These two sources of 170 
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vehicular emissions have different (OC/EC)pri,  but often share a similar temporal variation 

pattern, making them well correlated. Scenario 3 (S3) considers two independent primary 172 

emission sources and simulates an ambient environment influenced by two independent 

primary emission sources, e.g. local vehicular emissions (lower (OC/EC)pri) and regional 174 

biomass burning (higher (OC/EC)pri).  

In the following numerical experiments, three (OC/EC)pri estimation methods are examined 176 

and compared, including MRS, OC/EC10% and OC/ECmin. As a single point, OC/ECmin, in 

ambient samples may be subjected to large random uncertainties, thus data with the lowest 178 

1% OC/EC are adopted instead to derive the OC/ECmin.  

2.2.1 Single primary source scenario 180 

Both OC/EC10% and OC/ECmin methods rely on a subset of ambient OC and EC data to 

approximate (OC/EC)pri. Figure 3 provides a conceptual illustration of the relationships 182 

between (OC/EC)pri and the ambient OC/EC data, both are described to exhibit a log-normal 

distribution. As primary emissions move away from sources and aging processes start in the 184 

atmosphere, SOC is added to the particle OC fraction, elevating OC/EC above (OC/EC)pri. 

This in effect broadens the OC/EC distribution curve and shifts the distribution to the right 186 

along the OC/EC axis, and the degree of broadening and shift depends on degree of aging 

process. The conventional EC tracer method using OC/EC10% and OC/ECmin assumes that the 188 

left tail of ambient OC/EC distribution is very close to (OC/EC)pri. This assumption, however, 

is fortuitous, rather than the norm. Two parameters, the distance between the means of the 190 

(OC/EC)pri and ambient OC/EC distributions and the relative breadth of the two distributions, 

largely determines the closeness of the approximation of OC/EC10% and OC/ECmin to 192 

(OC/EC)pri. The distance between the two distributions depends on the fraction of SOC in OC 

(i.e., fSOC), while the width of the ambient OC/EC distribution is closely associated with RSD 194 

of SOC (RSDSOC) and the width of the (OC/EC)pri distribution is reflected in RSDPOC and 

RSDEC. As shown in Figure 3a, only an appropriate combination of distance of the two 196 

distribution means and variances could lead to a close approximation of  the (OC/EC)pri by 

OC/EC10% or OC/ECmin (i.e., the left tail of OC/EC distribution). If the ambient aerosol has a 198 

significant fSOC shifting the ambient OC/EC distribution such that its left tail is beyond 

(OC/EC)pri (Figure3b), then the left tail would overestimate (OC/EC)pri. Underestimation of 200 

(OC/EC)pri could also happen in theory as shown in Figure 3c if the ambient minimum 

OC/EC (left tail) is less than the mean of the (OC/EC)pri distribution (i.e., under conditions of 202 

very small fSOC). 



 8

The above analysis reveals fSOC, RSDSOC, RSDPOC, and RSDEC are key parameters in 204 

influencing the accuracy of SOC estimation. As a result, they are chosen in the subsequent 

sensitivity tests in probing the SOC estimate bias under conditions of different carbonaceous 206 

aerosol compositions.  

SOC estimation bias in S1 as a function of RSDSOC and RSDEC are shown in Figures 4a and 208 

4b. The SOC estimate by MRS is not affected by the magnitude of RSDEC and RSDSOC, and 

is in excellent agreement with the true values (Figure 4).  In comparison, SOC by OC/EC10% 210 

and OC/ECmin is consistently biased lower and the degree of negative bias becomes larger 

with decreasing RSDSOC or RSDEC. The OC/EC10% method always produces larger negative 212 

bias than the OC/ECmin method. At RSDSOC and RSDEC at 50%, SOC estimate has a -14% 

bias by (OC/EC)min and  a -45% bias by OC/EC10%. These results confirm the hypothesis 214 

illustrated in the conceptual diagram (Figure 3) that the validity of using the left tail of 

OC/EC distribution depends on the distance of its distribution mean from (OC/EC)pri and the 216 

distribution breadth. Both OC/EC10% and the OC/ECmin methods underestimate SOC and the 

degree of underestimation by the OC/EC10% method is worse. 218 

For the representation of (OC/EC)pri in the simulated data as lognormally distributed data, 

analysis is also performed to evaluate SOC estimation bias as a function of RSDEC, RSDSOC, 220 

and fSOC. Table S2 summarizes the results obtained with adopting most probable ambient 

conditions (i.e., RSDEC: 50-100%, fSOC: 40-60%). SOC bias by MRS is within 4% when 222 

measurement uncertainty is ignored. In comparison, SOC bias by OC/ECmin is more sensitive 

to assumption of log-normally distributed (OC/EC)pri than single value (OC/EC)pri, including 224 

the dependency on RSDEC and RSDSOC with varied fSOC. 

2.2.2 Scenarios assuming two primary sources  226 

In the real atmosphere, multiple combustion sources impacting a site is normal. We next 

evaluate the performance of the MRS method in scenarios of two primary sources and 228 

arbitrarily dictate that the (OC/EC)pri of source 1 is lower than source 2. By varying fEC1 

(proportion of source 1 EC to total EC) from test to test, the effect of different mixing ratios 230 

of the two sources can be examined. Common configurations in S2 and S3 include: 

ECtotal=2±0.4 μgC m-3; fEC1 varies from 0 to 100%; ratio of the two OC/ECpri values (_pri) 232 

vary in the range of 2~8. 

In Scenario 2 (i.e., two correlated primary sources), three factors are examined, including fEC1, 234 

_pri and fSOC, to probe their effects on SOC estimation. By varying fEC1, the effect of 



 9

different mixing ratios of two sources can be examined, as fEC1 is expected to vary within the 236 

same ambient dataset as a result of spatiotemporal dynamics of air masses. MRS reports 

unbiased SOC, irrespective of different fEC1 and fSOC or _pri (Figure 5). In comparison, SOC 238 

by OC/EC10% and OC/ECmin are underestimated. The degree of underestimation depends on 

fSOC, e.g., -12% at fSOC = 25% versus -20% at fSOC =40% in the OC/ECmin method while the 240 

magnitude of underestimation has a very weak dependence on fSOC in the OC/EC10% method, 

staying around  -40 % as fSOC is doubled from 20% to 40%. The degree of SOC bias by 242 

OC/EC10% and OC/ECmin are independent of fEC1 and _pri, as SOC bias is associated with 

RSDEC, RSDSOC and fSOC. Since two primary sources are well correlated, RSDEC is equivalent 244 

between the two sources. As a result, the overall RSDEC is constant when fEC1 and _pri vary, 

and the SOC bias is independent of fEC1 and _pri  246 

In summary, in scenarios of two well-correlated primary combustion sources, MRS always 

produces unbiased SOC estimates while OC/ECmin and OC/EC10% consistently underestimate 248 

SOC, with OC/EC10% producing larger negative bias. 

As for Scenario 3 in which two independent primary sources co-exist, SOC estimates by 250 

MRS could be biased and the degree and direction of bias depends on fEC1. Figure 6a shows 

the variation of SOC bias with fEC1 when fSOC is fixed at 40%. The variation of SOC bias by 252 

MRS with fEC1 follows a pseudo-sine curve, exhibiting negative bias when fEC1< 50% (i.e., 

EC is dominated by source 2, the higher (OC/EC)pri source) and positive bias when fEC1> 50% 254 

and the range of bias are confined to -20% to -40% under the condition of fSOC=40%. In 

comparison, the OC/ECmin and OC/EC10% methods again consistently underestimate SOC by 256 

more than -50%, with the bias worsened in the OC/EC10% method.  

The bias variation range becomes narrower with increasing fSOC in the MRS method, as 258 

shown by the boxplots for four fSOC conditions (20%, 40%, 60%, and 80%) in Figure 6b. The 

MRS-derived SOC bias range is reduced from -20–+40% at fSOC = 40% to -10–+20% at fSOC 260 

= 60%, further to -6–+10% at fSOC = 80%. In the other two methods, the SOC bias does not 

improve with increasing fSOC.  Dependence of the SOC estimation bias on _pri is examined in 262 

Figure 6c showing the higher _pri induces a higher amplitude of the SOC bias. If OC is 

dominated by SOC (e.g., fSOC =80%), SOC bias by MRS is within 10%.  264 

A variant of MRS implementation (denoted as MRS') is examined, with the important 

difference that EC1 and EC2, attributed to source 1 and source 2, respectively, are used as 266 

inputs instead of total EC. With the knowledge of EC breakdown between the two primary 
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sources, (OC/EC)pri1 can be determined by MRS from EC1 and OCtotal. Similarly (OC/EC)pri2  268 

can be calculated by MRS from EC2 and OCtotal. SOC is then calculated with the following 

equation: 270 

/ /                       (6) 

MRS' produces unbiased SOC, irrespective of the different carbonaceous compositions 272 

(Figure 6). However, we note that there is a great challenge in meeting the data needs of 

MRS' as EC1 and EC2 are not available. 274 

In scenario 3, the simulation results imply that three factors are associated with the SOC bias 

by MRS, including: fEC1, _pri and fSOC. The first factor controls whether SOC bias by MRS is 276 

positive or negative. The latter two affect the degree of SOC bias. For high fSOC conditions, 

the bias could be acceptable. If EC1 and EC2 can be differentiated for calculating individual 278 

(OC/EC)pri of each source, unbiased SOC estimation is achievable regardless of what values 

fEC1, _pri and fSOC take. 280 

2.3 Impact of measurement uncertainty 

In the preceding numerical analysis, the simulated EC and OC are not assigned any 282 

measurement uncertainty; however, in reality, every EC and OC measurement is associated 

with a certain degree of measurement uncertainty. We next examine the influence of OC and 284 

EC measurement uncertainty on SOC estimation accuracy by different EC tracer methods. 

Two uncertainty types are tested, i.e., constant relative uncertainty (Case A); constant 286 

absolute uncertainty (Case B). This section mainly focuses on sensitivity tests assuming 

different degree of Case A uncertainties. Results assuming Case B uncertainties are discussed 288 

in the next section. The uncertainties are assumed to follow a uniform distribution and 

generated separately by MT. It is also assumed that the uncertainty (εEC or εOC) is 290 

proportional to the concentration of EC and OC through the multiplier  (i.e., relative 

measurement uncertainty). 292 

                                                             (7) 

                                                             (8) 294 

In order to compare the estimated SOC with simulated  SOC with , the measurement 

uncertainties of POC and SOC are then back-calculated following the uncertainty 296 

propagation formula and assuming the same relative measurement uncertainty for POC and 

SOC (Harris, 2010) 298 
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                                                          (9) 

                                                 (10) 300 

                                                 (11) 

The simulated EC, POC and SOC with measurement uncertainties (abbreviated as ECsimulated, 302 

POCsimulated and SOCsimulated respectively) are determined as: 

                                                       (12) 304 

                                                (13) 

                                                 (14) 306 

Sensitivity tests of SOC estimation as a function of relative measurement uncertainty ( ) 

and fSOC is performed as shown in Figure 7 by comparing the estimated SOC with 308 

. Fixed input parameters include: n=8000; EC = 2±1 μgC m-3; (OC/EC)pri = 0.5. 

Studies by Chu (2005) and Saylor et al. (2006) both suggest ratio of average POC to average 310 

EC (ROA, see SI for details) is the best estimator of the expected primary OC/EC ratio 

because it is mathematically equivalent to the true regression slope when the data contains no 312 

intercept. ROA is confirmed as the best representation of (OC/EC)pri for SOC estimation, 

which shows no bias towards or fSOC change. MRS overestimates SOC and the positive 314 

bias increases with  while decreases with fSOC (Figure 7). The SOC estimates by 

OC/ECmin and OC/EC10% exhibit larger bias than those by MRS. For example, as shown in 316 

Figure 7a, when fSOC =20% and  = 10%, the bias of SOC by MRS, OC/EC10% and 

OC/ECmin is 8%, -28% and 36%, respectively. With increasing fSOC, the bias of SOC by 318 

OC/ECmin decreases while the bias of SOC by OC/EC10% increases when  = 10-20%. 

MRS always demonstrates the best performance in SOC determination amongst the three 320 

(OC/EC)pri estimation methods. When  could be controlled within 20%, the SOC bias by 

MRS does not exceed 23% when fSOC=20%. If the fSOC ratio falls in the range of 60-80% and 322 

 is <20%, the OC/ECmin  has a similar performance as MRS, but SOC by OC/EC10% still 

shows a large bias (~41%) (Figures 7c and 7d).  324 

Sensitivity studies of SOC estimation as a function of  and (OC/EC)pri are performed and 

the results are shown in Figure S8. In all the three (OC/EC)pri representations, SOC estimates 326 

are sensitive to  but insensitive to the magnitude of (OC/EC)pri. In the single primary 

source scenario (S1), it is proved that the performance of MRS regarding SOC estimation is 328 
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mainly affected by  and to a less degree by fSOC. Other variables such as (OC/EC)pri and 

EC concentration do not affect the accuracy of SOC estimation. 330 

2.4 Impact of sample size 

MRS relies on correlations of input variables and it is expected that MRS performance is 332 

sensitive to the sample size of input dataset. This section examines the sensitivity on sample 

size by the three (OC/EC)pri representations and aims to provide suggestions for an 334 

appropriate sample size when applying MRS on ambient OCEC data. Sample sizes ranging 

from 20 ~ 8000 are tested and for each sample size 500 repeat runs are conducted to obtain 336 

statistically significant results. Both Case A (i.e., a constant relative uncertainty of 10%) and 

Case B (i.e., a constant absolute uncertainty of ±0.2 μgC m-3 for both OC and EC) are 338 

considered. The measurement uncertainties in case B are generated separately by MT 

following a uniform distribution within the range of ±0.2 μgC m-3. The measurement 340 

uncertainties of POC and SOC are then back-calculated following the uncertainty 

propagation formula (Harris, 2010) and assuming the ratio of εPOC /εSOC is the same as 342 

POC/SOC ratio (controlled by fSOC).  

The mean SOC bias by MRS is very small (<3%) for all sample sizes while the standard 344 

deviation of SOC bias decreases with sample size (Figure 8). The standard deviation of SOC 

bias is ~±30% at the lowest test sample size (n = 20), and decreases to less than ±15% at n = 346 

60 (the sample size of one-year sampling from an every-six-day sampling program) and to 

less than ±10% at n = 200. Similar patterns are observed between Case A (Figure 8a) and 348 

Case B (Figure 8b) for MRS and OC/EC10%. For OC/ECmin, a larger bias is observed in Case 

B than Case A for all sample sizes, as SOC bias by OC/ECmin is more sensitive to 350 

measurement uncertainty in the range of 0~10% as shown in Figure 7b. The standard 

deviation of SOC bias by OC/ECmin and OC/EC10% both decreases with sample size as shown 352 

in Figure 8.The mean SOC bias of OC/ECmin decrease with increased sample size while 

OC/EC10% is insensitive to sample size. The sample size dependency of all three (OC/EC)pri 354 

representations is not sensitive to fSOC as shown in Figure S16. Other scenarios considering 

(OC/EC)pri with a distribution and different fSOC are discussed in SI. 356 

2.5 Impact of sampling time resolution 

Besides hourly measurements of EC and EC by online aerosol carbon analyzers, the MRS 358 

method could also be applied to offline measurements of OC and EC based on filters 

collected over longer durations (i.e., 24 h), which are more readily available around the world. 360 
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To explore the impact of sampling duration (e.g., hourly vs. daily), we here use one-year 

hourly data at the suburban site of Guangzhou to average them into longer intervals of 2-24 h. 362 

The 24 h-averaged samples yield a (OC/EC)pri of 2.53, 12% higher than the (OC/EC)pri 

derived from hourly data (2.26). This comes as a result of that OC/EC distributions are 364 

narrowed when the averaging interval lengthens (Figure 8), leading to elevation of the MRS-

derived (OC/EC)pri. As many PM2.5 speciation networks adopt a sampling schedule of one 366 

24-h sample every six days, we further extract the every-six-day samples to do the MRS 

calculation. The one-year data yields six subsets of daily samples, corresponding to six 368 

possible schedules of sampling days with the every-six-day sampling frequency. The MRS 

calculation produces the OC/ECpri in the range of 2.37 – 2.75 (5-22% higher than the 370 

OC/ECpri from the hourly data).  This example illustrates that if 24-h sample ECOC data are 

used, SOC would be biased slightly lower in comparison with those derived from the hourly 372 

data. 

3 Caveats of the MRS method in its applications to ambient data 374 

Table 3 summarizes the performance in terms of SOC estimation bias by the different 

implementations of the EC tracer method, assuming typical variation characteristics for 376 

ambient ECOC data.  When employing the EC tracer method on ambient samples, it is clear 

that MRS is preferred since it can provide more accurate SOC estimation.  378 

If the sampling site is dominated by a single primary source (similar to Scenario 1), MRS can 

perform much better than the traditional OC/EC percentile and minimum approaches. Two 380 

issues should be paid attention to when applying MRS: (1) MRS relies on the independence 

of EC and SOC. This assumption could be invalid if a fraction of SOC is formed from semi-382 

volatile POC (here referred as SOCsvP) (Robinson et al., 2007). Since POC is well correlated 

with EC, this SOCsvP would be attributed to POC by MRS, causing SOC underestimation. 384 

The interference of SOCsvP will be discussed in a separate paper. (2) OCnon-comb will be 

attributed to SOC if only EC is used as a tracer. If OCnon-comb is small compared to SOC, such 386 

approximation is acceptable. Otherwise quantification of its contribution is needed. If a stable 

tracer for OCnon-comb is available, determination of OCnon-comb contribution by MRS is possible, 388 

since this scenario is mathematically equivalent to S3 (e.g., relabel EC2 to tracer of OCnon-

comb and POC to OCnon-comb).  390 

If the sampling site is influenced by two correlated primary sources with distinct (OC/EC)pri 

(Scenario 2, e.g. urban areas that have vehicular emission from both gasoline and diesel), 392 
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MRS is still much more reliable than the traditional OC/EC percentile and minimum 

approaches. If the sampling site is influenced by two independent primary sources with 394 

distinct (OC/EC)pri (Scenario 3, e.g. vehicular emission and biomass burning), SOC 

estimation by MRS is better than the other two conventional methods. But it should be noted 396 

that possible bias may exist and the magnitude of bias depends on the relative abundance 

between the two sources. If tracers are available to demarcate the EC contributions by the 398 

different primary sources, unbiased SOC estimation is possible by employing these tracers in 

MRS. 400 

4 Conclusions 

In this study, the accuracy of SOC estimation by EC tracer method is evaluated by comparing 402 

three (OC/EC)pri determination approaches using numerically simulated data. The MRS 

method has a clear quantitative criterion for the (OC/EC)pri calculation, while the other two 404 

commonly used methods, namely minimum OC/EC (OC/ECmin) and OC/EC percentile (e.g. 

OC/EC10%), are empirical in nature. Three scenarios are considered in the numerical 406 

simulations to evaluate the SOC estimation bias by the different EC tracer methods assuming 

typical variation characteristics for ambient ECOC data. In the scenarios of a single primary 408 

source and two well-correlated primary combustion sources, SOC estimates by MRS are 

unbiased while OC/ECmin and OC/EC10% consistently underestimate SOC when measurement 410 

uncertainty is neglected. When measurement uncertainty is considered, all three approaches 

produce biased SOC estimates, with MRS producing the smallest bias. The bias by MRS is 412 

less than 25% when measurement uncertainty is within 20% and fSOC is not lower than 20%. 

In the scenario of two independent primary sources, SOC by MRS exhibit bias but still 414 

perform better than OC/ECmin and OC/EC10%. If EC from each independent source can be 

differentiated to allow calculation of individual (OC/EC)pri for each source, unbiased SOC 416 

estimation is achievable. Sensitivity tests of OC and EC measurement uncertainty on SOC 

estimation demonstrate the superior accuracy of MRS over the other two approaches. 418 

Sensitivity tests show that MRS produces a mean SOC values with a very small bias for all 

sample sizes while the precision worsens as the sample size decreases. For a dataset with a 420 

sample size of 60, SOC bias by MRS is 2±15%. When the sample is 200, the results by MRS 

are improved to 2±8%. It is clear that when employing the EC tracer method to estimate SOC, 422 

MRS is preferred over the two conventional methods (OC/EC10% and OC/ECmin) since it can 

provide more accurate SOC estimation. We also evaluated the impact of longer sampling 424 
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duration on derived (OC/EC)pri and found that if 24-h sample ECOC data are used, SOC 

would be biased slightly lower in comparison with those derived from the hourly data.  426 
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Table 1. Acronyms and Abbreviations 
 

Abbreviation Definition 

EC elemental carbon 
EC1,EC2 EC from source 1 and source 2 in the two sources scenario 
fEC1 fraction of EC from source 1 to the total EC 
fSOC ratio of SOC to OC 
MRS minimum R squared method 
MRS' a variant of MRS that use EC from individual sources as input 
MT Mersenne twister pseudorandom number generator 
n sample size in MT data generation 
OC organic carbon 
OC/EC OC to EC ratio 
(OC/EC)pri primary OC/EC 
OC/EC10% OC/EC at 10% percentile  
OC/ECmin minimum OC/EC 
OCnon-comb OC from non-combustion sources 
PDF probability density function of a distribution 
POC primary organic carbon 
ROA ratio of averages 
RSD relative standard deviation 
RSDEC RSD of EC  
RSDPOC RSD of POC 
RSDSOC RSD of SOC 
SOC secondary organic carbon 
SOCsvP SOC formed from semi-volatile POC 
ϒ_pri ratio of the (OC/EC)pri of source 2 to source 1 
εEC , εOC measurement uncertainty of EC and OC 
ϒunc relative measurement uncertainty 
_RSD the ratio between the RSD values of (OC/EC)pri and EC 
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Table 2. Summary of statistics of OC and EC in ambient samples 

Location Site Type 
Sampling 

Period 
Time 

resolution
RSDEC

(%) 
RSDSOC 

(%) 

SOC 
estimation 

method 

fSOC 
mass fraction (%) Ref 

Avg Min Max 

Hong Kong, 
PRD 

Suburban 

July 2006, 
local days 

24 hr 

  

PMF 

25% 6% 79% 
(Hu et 

al., 
2010)

July 2006, 
regional 

days 
  65% 46% 89% 

Hong Kong, 
PRD 

Urban 
May 2011 – 
Apr. 2012 

1 hr 51%  
EC tracer

PMF 
   

(Huang 
et al., 
2014)

Guangzhou, 
PRD 

Rural July 2006 1 hr 154% 115% EC tracer 47%  80% 
(Hu et 

al., 
2012)

Guangzhou, 
PRD 

Suburban 
Feb 2012 – 
Jan 2013 

1 hr 86% 84% EC tracer 41% 0% 86% 
This 
study 

Beijing Urban 

Winter 
2005 

1 hr 

  

EC tracer

19%   
(Lin et 

al., 
2009)

Spring 2006   27%   
Summer 

2006 
  45%   

Fall 2006   23%   

Pittsburgh Suburban 
Jul. 2001 – 
Aug. 2002 

2-4 hr   EC tracer 38%   
(Polidori 

et al., 
2006)

Mt. Tai, 
China 

Rural 

Mar. – Apr. 
2007 

1 hr 
89%  

EC tracer
60%   (Wang et 

al., 
2012)

Jun. – Jul. 
2007 

69%  73%   

Jeju Island, 
Korea 

Rural 

May – Jun. 
2009 

1 hr 
53% 117%

EC tracer
31%   (Batmun

kh et al., 
2011)

Aug – Sep 
2009 

57% 102% 18%   
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Table 3. Summary of numerical study results under different scenarios a.  

 Tested 
parameter 

SOC bias 

 MRSb MRS'c OC/ECmin OC/EC10% 

Scenario 1 
Single source 

RSDEC ±4%  -13% ~ -7% -43% ~ -36% 
RSDSOC ±4%  -11% ~ -4% -42% ~ -22% 

 +10%  -12% ~ 20% -43% ~ -32% 
Scenario 2 

Two correlated 
sources 

fEC1 ±4%  -20% -40% 
_pri ±4%  -20% -40% 
fSOC ±4%  -20% -40% 

Scenario 3 
Two 

independent 
sources 

fEC1 -20%~40% ±10% -50% -60% 
_pri -20%~40% ±10% -50% -60% 

fSOC -20%~40% ±10% -50% -60% 

a Results shown here are obtained assuming the following ambient conditions:  RSDEC 50-100%; fSOC 40-60%; 
 20%;  

b "+" represents SOC overestimation and "-" represents underestimation;  
c MRS': In S3, EC1 and EC2 are used for SOC calculation. 
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Figure 1. Illustration of the minimum R square method (MRS) to determine OC/ECpri using 
one year of hourly OC and EC measurements at a suburban site in the Pearl River Delta, 
China. The red curve shows the correlation coefficient (R2) between SOC and EC as a 
function of assumed OC/ECpri. The black curve is the frequency distribution of the OC/EC 
ratio for the entire OC and EC data set. The shaded area in tan represents the cumulative 
frequency curve of OC/EC ratio. 
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Figure 2. Schematic diagram of pseudorandom number generation for the single emission 
source scenario that assumes (OC/EC)pri is a single value. The data series (EC and SOC), 
generated by Mersenne twister (MT) pseudorandom number generator, statistically follow a 
log-normal distribution, but the sequence of each data point is randomly assigned.  
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Figure 3. Conceptual diagram illustrating three scenarios of the relationship between 
(OC/EC)pri and ambient OC/EC measurements. Both are assumed to be log-normally 
distributed. (a) Ambient minimum (left tail) is equal to the peak of (OC/EC)pri . (b) Ambient 
minimum OC/EC (left tail) is larger than the mean of (OC/EC)pri. (c) Ambient minimum 
OC/EC (left tail) is less than the peak of (OC/EC)pri. 
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Figure 4.   Bias of SOC determination as a function of: (a) RSDEC; (b) RSDSOC. Different 
representation of (OC/EC)pri include: MRS, OC/ECmin and OC/EC10%.. Fixed input 
parameters: n = 8000, EC = 2±1 μgC m-3, (OC/EC)pri = 0.5, POC = 1 ±0.5 μgC m-3, fSOC 
=40%, and SOC = 0.67±0.34  μgC m-3. 
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Figure 5. SOC bias in Scenario 2 (two correlated primary emission sources of different 
(OC/EC)pri) as estimated by four different EC tracer methods denoted in red, blue and yellow. 
(a) SOC bias as a function of fEC1. Results shown here are calculated using fSOC = 40% as an 
example. (b) Range of SOC bias shown in boxplots for four fSOC conditions (20%, 25%, 30% 
and 40%). (c) Range of SOC bias shown in boxplots for four _pri conditions (2, 4, 6 and 8). 
The symbols in the boxplots are white circles for average, the line inside the box for median, 
the box boundaries representing the 75th and the 25th percentile, and the whiskers representing 
the 95th and 5th percentile. 
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Figure 6. SOC bias in Scenario 3 (two independent primary emission sources of different 
(OC/EC)pri) as estimated by four different EC tracer methods denoted in red, purple, blue and 
yellow. MRS’ differs from MRS in that EC1 and EC2 instead of total EC are used as inputs. (a) 
SOC bias as a function of fEC1. Results shown here are calculated using fSOC = 40% as an 
example. (b) Range of SOC bias shown in boxplots for four fSOC conditions (20%, 40%, 60% 
and 80%). (c) Range of SOC bias shown in boxplots for four _pri conditions (2, 4, 6 and 8). 
The symbols in the boxplots are white circles as average, the line inside the box as median, 
upper and lower boundaries of the box representing the 75th and the 25th percentile, and the 
whiskers above and below each box representing the 95th and 5th percentile. 
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Figure 7.   Bias of SOC determination as a function of relative measurement uncertainty 
( ) and SOC/OC ratio (fSOC) by different approaches of estimating (OC/EC)pri, including 
ratio of averages (ROA), minimum R square (MRS), OC/EC10%, and OC/ECmin. Fixed input 
parameters: n=8000, EC = 2±1 μgm-3, (OC/EC)pri = 0.5.  Variable input parameters: (a) fSOC 
=20%, SOC = 0.25±0.13 μgC m-3, (b) fSOC =40%, SOC = 0.67±0.33 μgC m-3, (c) fSOC =60%, 
SOC = 1.5±0. 75 μgC m-3, and (d) fSOC =80%, SOC = 4±2 μgC m-3 
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Figure 8.   SOC estimation bias as a function of sample size by different approaches of 
estimating (OC/EC)pri, including minimum R square (MRS), OC/EC10%, and OC/ECmin, (a) 
assuming a fixed relative measurement uncertainty of 10% for OC and EC; (b) assuming a 
fixed absolute measurement uncertainty for OC and EC (0.2 μg m-3). For each sample size, 
500 repeat runs were conducted. The circles represent mean of 500 repeat runs, the whiskers 
represent one standard deviation. Parameters used for testing: Repeat runs = 500, n = 
20~8000, EC = 8±4 μgC m-3, (OC/EC)pri = 0.5, POC = 4±2 μgC m-3, fSOC =40%, and SOC = 
2.67±1.33 μgC m-3. 
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Figure 9. OC/EC distributions assuming different average intervals from 2 to 24 h and the 
corresponding MRS-derived OC/ECpri. The bottom x-axis represents averaging interval (e.g. 1 h is the 
original data time resolution, 2 h referring average 1-h data into 2-h interval data, etc). The top x-axis 
represents the number of data point corresponding to the respective data averaging interval. 
Distributions of OC/EC ratio at various averaging intervals are shown as box plots (Empty circles: 
average, the line inside the box: median, the box boundaries: 75th and the 25th percentile, and the 
whiskers: 95th and 5th percentile). The red dots represent calculated (OC/EC)pri by MRS. 
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