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Abstract. Forecasting atmospheric CO2 daily at the global
scale with a good accuracy like it is done for the weather is a
challenging task. However, it is also one of the key areas of
development to bridge the gaps between weather, air quality
and climate models. The challenge stems from the fact that5

atmospheric CO2 is largely controlled by the CO2 fluxes at
the surface, which are difficult to constrain with observations.
In particular, the biogenic fluxes simulated by land surface
models show skill in detecting synoptic and regional-scale
disturbances up to sub-seasonal time-scales, but they are sub-10

ject to large seasonal and annual budget errors at global scale,
usually requiring a posteriori calibration. This paper presents
a scheme to diagnose and mitigate model errors associated
with biogenic fluxes within an atmospheric CO2 forecast-
ing system. The scheme is an adaptive calibration referred15

to as Biogenic Flux Adjustment Scheme (BFAS) and it can
be applied automatically in real time throughout the forecast.
The BFAS method generally improves the continental budget
of CO2 fluxes in the model by combining information from
three sources: (1) retrospective fluxes estimated by a global20

flux inversion system, (2) land-use information, (3) simulated
fluxes from the model. The method is shown to produce en-
hanced skill in the daily CO2 10-day forecasts without re-
quiring continuous manual intervention. Therefore, it is par-
ticularly suitable for near-real-time CO2 analysis and fore-25

casting systems.

1 Introduction

Earth-observing strategies focusing on carbon cycle system-
atic monitoring from satellites, flask and in situ networks
(Ciais et al., 2014; Denning et al., 2005) are leading to an30

increasing number of near-real-time observations available
to systems such as those developed in the framework of the

European Union Copernicus Atmosphere Monitoring Ser-
vice (CAMS). CAMS uses the Numerical Weather Predic-
tion (NWP) Integrated Forecasting system for Composition35

(C-IFS) of the European Centre for Medium range Weather
Forecasts (ECMWF) to produce near-real-time global atmo-
spheric composition analysis and forecasts, including CO2

(Agustí-Panareda et al., 2014) along with other environmen-
tal and climate relevant tracers (Flemming et al., 2009; Mor-40

crette et al., 2009; Massart et al., 2014). The purpose of
the real-time CO2 analysis/forecasting system is to provide
timely products that can be used by the scientific community
among other users. For example, those working on new in-
struments, field experiments, satellite retrieval products, re-45

gional models requiring boundary conditions, or planning
flight campaigns.

The present monitoring of global atmospheric CO2 relies
on observations of atmospheric CO2 from satellites – e.g.
Greenhouse Gases Observing Satellite (GOSAT, www.gosat.50

nies.go.jp); Orbiting Carbon Observatory 2 (OCO-2, oco.jpl.
nasa.gov) – and flask and in situ networks – e.g. National
Oceanic and Atmospheric Administration Earth System Re-
search Laboratory (NOAA/ESRL, www.esrl.noaa.gov/gmd);
Integrated Carbon Observation System (ICOS, icos-atc.lsce.55

ipsl.fr); Environment Canada (www.ec.gc.ca/mges-ghgm) –
which are assimilated by global tracer transport models to in-
fer changes in atmospheric CO2 (e.g. Massart et al., 2015) or
by flux inversion systems (e.g. Peylin et al., 2013) to estimate
the large-scale surface fluxes of CO2.60

The current C-IFS CO2 analysis is produced by assimi-
lating CO2 data retrieved from GOSAT by the University of
Bremen (Heymann et al., 2015), as well as all the meteoro-
logical data that is routinely assimilated in the operational
meteorological analysis at ECMWF. Massart et al. (2015)65

have shown that the atmospheric data assimilation system
alone cannot completely remove the biases in the background
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atmospheric CO2 associated with the accumulation of errors
in the CO2 fluxes from the model. This happens because cur-
rently the CO2 surface fluxes in the IFS data assimilation70

system cannot be constrained by observations. The model
biases in atmospheric CO2 also present a problem for the
data assimilation system because its optimisation relies on
the assumption that both model and observations are unbi-
ased. It is therefore imperative to remove any large biases75

before assimilating observations. In this paper, we present a
method to reduce the atmospheric CO2 model biases by ad-
justing the CO2 surface fluxes in a near-real-time CO2 anal-
ysis/forecasting system, such as the one used by C-IFS at
ECMWF.80

Many different methods already exists to adjust CO2

fluxes by using observations of atmospheric CO2 within flux
inversion systems (Rödenbeck et al., 2003; Gurney et al.,
2003; Peters et al., 2007). However, these are not all suit-
able for the C-IFS real-time monitoring system. Flux inver-85

sion systems adjust the fluxes by either inferring the model
parameters in Carbon Cycle Data Assimilation Systems also
known as CCDAS (Rayner et al., 2005; Scholze et al., 2007;
Rayner et al., 2011), or the fluxes themselves (Houweling
et al., 2015). CCDAS has the advantage of working in prog-90

nostic mode once the model parameters have been optimised.
Nevertheless, it can also be prone to aliasing information to
the wrong model parameter when the processes that con-
tribute to the variability of atmospheric CO2 are not properly
represented in the model or missing altogether. Estimating95

directly the CO2 fluxes does not rely on the accurate rep-
resentation of complex/unknown processes in the CO2 flux
model, but the resulting optimised fluxes do not have predic-
tive skill. Both approaches generally use long data assimila-
tion windows of several weeks to years in order to be able to100

constrain the global mass of CO2 by relying mainly on high
quality in situ flask and continuous observations which are
relatively sparse in time and space. This general requirement
for long assimilation windows is incompatible with the cur-
rent NWP framework (e.g. a 12-h window is currently used105

in the IFS). In addition to that, the CO2 observations from
flask and most in situ stations used by these flux inversion
systems are not available in near-real time.

Considering all the aspects mentioned above, a Biogenic
Flux Adjustment Scheme (hereafter called BFAS) suitable110

for the NWP framework is proposed which aims to combine
the best characteristics of both flux inversion approaches.
Namely, the mass constraint from the optimised fluxes is
used to correct the biases of the modelled CO2 fluxes while
keeping the predictive skill of the modelled fluxes at syn-115

optic scales. The main objective of BFAS is to reduce the
large-scale biases of the background atmospheric CO2. This
should improve the representation of the atmospheric CO2

large-scale gradients, and thereby also lead to a better fore-
cast of atmospheric CO2 synoptic variability.120

The details of the flux adjustment scheme are provided in
Sect. 2. Section 3 describes the IFS experiments done to test

the impact of BFAS on the atmospheric CO2 forecast. From
the experiments, different aspects of the flux adjustment can
be monitored (i.e. the scaling factors and the resulting bud-125

get) as shown in Sect. 4. The resulting atmospheric CO2 fore-
cast fit to observations after applying BFAS is presented in
Sect. 5. The potential use of BFAS for model development
and the possibility of including BFAS in the data assimila-
tion system are discussed in Sect. 6. Finally, Sect. 7 gives a130

summary of the flux adjustment achievements and possible
developments for the future.

2 Methodology

Any atmospheric CO2 analysis/forecast system requires a
flux adjustment of some sort in order to constrain the bud-135

get of sources/sinks a the surface and avoid the growth
of mean errors in the atmospheric background (Agustí-
Panareda et al., 2014). The scientific question addressed in
this paper is how to use the best information we have in near-
real time to adjust the fluxes in a way that reduces the bias of140

the atmospheric CO2 in the model with the minimum deteri-
oration of the synoptic skill to predict day-to-day variability.

Agustí-Panareda et al. (2014) documented the configura-
tion of the CO2 forecasting system and showed that the large
biases in atmospheric CO2 are consistent with errors associ-145

ated with the budget of CO2 surface fluxes, in particular the
Net Ecosystem Exchange (NEE) modelled by the CTESSEL
carbon model (Boussetta et al., 2013) within the C-IFS.

There are three main reasons for modelling NEE fluxes
online as opposed to using offline fluxes such as optimized150

fluxes from flux inversion systems directly in the model: (i)
the coupling of CO2 biogenic fluxes with the atmospheric
model can lead to improvements in both the understanding
of interactions between ecosystems and the evolution of CO2

in the atmospheric boundary layer (Lu et al., 2001; Moreira155

et al., 2013) and the forecast skill of energy and water cycle
fluxes in NWP models (Boussetta et al., 2013); (ii) the use of
offline fluxes would entail a loss of information and the in-
troduction of topographical inconsistencies when downscal-
ing fluxes from low resolution (e.g. typically a few degrees160

in optimized fluxes) to high resolution (e.g. currently 9 km
in ECMWF NWP model); (iii) the non-availability of these
offline fluxes in near-real time implies the interannual vari-
ability of the NEE fluxes (Schaefer et. al., 2002) cannot be
represented.165

The challenge remains of how to reduce the large-scale
biases associated with the modelled fluxes in real time. Be-
cause these biogenic fluxes are modelled online, a one-off
scaling of the fluxes using a climatology of the annual global
budget (Nassar et al., 2010; Chen et al., 2013) or re-scaling170

locally the NEE in order to get a better fit with the seasonal
cycle (Messerschmidt et al., 2013; Keppel-Aleks et al., 2012)
are not suitable methods, as we do not know the annual bud-
get of the model in real-time.
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Optimised fluxes from flux inversion systems constitute175

the best available estimate of the CO2 fluxes given the ob-
served variations of CO2 in the atmosphere at global scales.
Thus, they can provide a reference benchmark for the mod-
elled fluxes. The large-scale biases in the CO2 fluxes can be
diagnosed by computing the budget (i.e. integrated) differ-180

ences between modelled fluxes and optimised fluxes over
continental and supra-synoptic spatial and temporal scales
(≥ 1000 km, 10 days). Working with budgets over scales be-
yond the synoptic scale allows the detection of large-scale bi-
ases without interfering with the synoptic skill of the model.185

It is important to note that there are uncertainties and
limitations that should be considered when using optimised
fluxes. Optimised fluxes are computed with flux inversion
systems at low resolutions (∼ hundreds of km) compared
to the NWP resolution used for the CO2 forecasts (∼ tens190

of km), and they are most reliable at continental and supra-
synoptic scales. Moreover, they have the limitation of not be-
ing available in near-real time, unlike the meteorological ob-
servations or CO2 satellite retrievals (Massart et al., 2015).
Because of that, a climatology of the optimised fluxes has to195

be used as a reference.
Finally, optimised fluxes only provide information on

the total CO2 flux because flux inversion systems are not
able to attribute the CO2 variability to the different pro-
cesses controlling the fluxes, such as vegetation, anthro-200

pogenic sources and fires. Generally, from all these fluxes,
the land CO2 fluxes from vegetation and soils in mod-
els are associated with high uncertainty (Le Quéré et al.,
2015). For this reason, the Global Carbon Project provides
the CO2 budget from land vegetation – also known as the205

land sink – as a residual to close the carbon budget (see
www.globalcarbonproject.org/carbonbudget). Following the
land sink residual approach, the optimised NEE can be com-
puted as the residual of optimised fluxes by subtracting the
other prescribed fluxes. A set of 10-day mean budgets of this210

residual NEE from optimised fluxes is then computed daily
for different regions and vegetation types over a period of
10 years to build the NEE climatology that can be used as a
reference. In order to account for the inter-annual variability
of NEE, the reference climatology is also adjusted with an215

inter-annual variability factor obtained from the model.
The flux adjustment scheme essentially estimates the bias

of the modelled NEE budget with respect to the reference
NEE budget for each region and vegetation type as a scaling
factor α:220

α=
fO

fM
(1)

where f is the 10-day mean NEE budget computed daily over
a specific vegetation type and region, fO is the reference bud-
get based on the MACC-13R1 optimised fluxes (Chevallier
et al., 2010), and fM is the budget of the modelled fluxes.225

Figure 1 shows how the BFAS scheme interacts with the
model to produce the flux-corrected atmospheric CO2 fore-

cast. First of all, the uncorrected NEE fluxes from the model
are retrieved. Then their budget is compared with the budget
of the NEE climatology from the optimised fluxes adjusted230

with the NEE anomaly from the model. The scheme produces
maps with scaling factors of the biogenic fluxes before the
forecast run. Subsequently, these maps are then used to scale
the forecast of NEE. There are three major building blocks
required for the computation of these scaling factors:235

– The computation of the NEE budget using temporal
and spatial aggregation criteria (e.g. 10 days, vegetation
types, different regions).

– A reference NEE dataset used to diagnose the model
biases (e.g. optimised fluxes from global flux inversion240

systems such as the MACC-13R1 dataset from Cheval-
lier et al. (2010)).

– The partition of the NEE adjustment into the two mod-
elled ecosystem fluxes that make up the NEE flux: i.e.
Gross Primary Production (GPP) associated with photo-245

synthesis and ecosystem respiration (Reco) documented
by Boussetta et al. (2013).

These different aspects are discussed in further detail below
in Sect. 2.1 to 2.4.

2.1 Computation of NEE budget250

The biases of the NEE fluxes that we aim to correct are partly
linked to model parameter errors that depend on vegeta-
tion type and to errors in the meteorological/vegetation state
which are region-dependent (e.g. radiation, LAI, temperature
and precipitation). In addition to that, the global optimised255

fluxes used as reference do not currently have a strong con-
straint from observations at small spatial and temporal scales
due to the sparse observing network of atmospheric CO2.
Therefore, the NEE biases are not diagnosed at the model
grid-point scale, but as biases in the NEE budget over conti-260

nental regions for different vegetation types and over a period
of 10 days. The 10-day regional budget provides an indicator
on the large-scale biases. Moreover, 10 days is a period that
can be used in the current framework of the C-IFS global at-
mospheric CO2 forecasting system. Figure 2 shows how the265

uncorrected NEE from the past forecasts can be combined
to compute the 10-day mean budget before each new fore-
cast. The 1-day forecasts initialised from the previous seven
days are used together with the last 3-day forecast available
in order to create a 10-day window around the initial date270

of the new forecast. This 10-day time window is slightly
shifted to the past because otherwise forecasts longer than
3-days would be required to compute the budget while errors
in the meteorology affecting the fluxes grow with forecast
lead time. Chevallier and Kelly (2002) found that forecast275

errors associated with the location of extra-tropical weather
systems affecting the cloud cover and temperature gradients
– which in turn will affect the NEE errors – are very small

http://www.globalcarbonproject.org/carbonbudget/
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at day 1. These errors continue to be small up to day 3, but
they can grow rapidly with forecast lead time (see Haiden280

et al., 2015, for details on the IFS forecast error evaluation).
The different regions have been selected according to latitu-
dinal band characterised by seasonal cycle (northern hemi-
sphere, tropics and southern hemisphere), continental region
and vegetation type.285

In the IFS the vegetation types follow the BATS classifi-
cation (Dickinson et al., 1986), which is widely used in me-
teorological and climate models. The vegetation classifica-
tion is designed to distinguish between roughness lengths for
the computation of the momentum, heat and moisture trans-290

fer coefficients in the modelling of the fluxes from surface
to atmosphere. However, the BATS vegetation types are not
always suitable for the modelling of the CO2 fluxes. For ex-
ample, the interrupted forest type which constitutes around
25 % of the high vegetation cover encompasses many dif-295

ferent types of vegetation, including Tropical Savanna and a
combination of remnants of forest or open woods lands with
field complexes. This could be an important source of error in
some regions. For this reason, BFAS allows the introduction
of new vegetation types for diagnosing the NEE biases. Trop-300

ical Savanna which covers large areas in the tropical region
has been added as a subtype of the interrupted forest vegeta-
tion type by using the Olson Global Ecosystem classification
(Olson, 1994a, b, edc2.usgs.gov/glcc/globdoc2_0.php).

Figure 3 shows the distribution of the dominant vegeta-305

tion types used in BFAS. Land cover maps from GLCC ver-
sion 1 (edc2.usgs.gov/glcc/glcc.php) are used to compute the
land cover of the dominant high and low vegetation types
at each grid point. In BFAS, only one dominant vegetation
type is used to classify each grid point, and this must cover310

more than 50 % of the grid box. Model grid points with less
than 50 % vegetation cover are not used. The comparison of
the modelled NEE with the optimised NEE fluxes is done
by computing 10-day budgets for each of the 16 vegetation
types (see Table 1) and 9 different regions (see Fig. 3).315

2.2 Reference NEE budget

The residual NEE from optimised fluxes provides the refer-
ence for the flux adjustment scheme. Currently, there is no
operational centre providing CO2 optimised fluxes at global
scale in near-real time. We have chosen to use the MACC320

optimised fluxes (Chevallier et al., 2010) which are deliv-
ered around September each year for the previous year. The
MACC optimised CO2 fluxes are regularly improved and
their high quality has been recently shown by Kulawik et al.
(2015). Chevallier (2013) provides an evaluation of the in-325

verted CO2 fluxes for 2010.
The computation of the residual is done by subtracting

the prescribed fluxes used in the C-IFS CO2 forecast over
land from the total optimised flux. The prescribed CO2 fluxes
from biomass burning and anthropogenic emissions in the330

CO2 forecast are not the same as the ones used as prior fluxes

in the MACC flux inversion system. Not only they are from
different sources, but they are also used at different resolu-
tions. This means that there might be fires represented in one
and not the other, or with different emission intensities, as335

it is the case for anthropogenic hotspots at high versus low
resolutions. Thus, in order to avoid the transfer of inconsis-
tencies between the prescribed and prior fluxes into the NEE
residual, the regions with very high anthropogenic emissions
(larger than 3× 106 g C m−2 s−1) and fires are filtered out.340

A climatology of these reference NEE fluxes is created us-
ing the last 10 available years and it is updated every time a
new year is available. Thus, allowing for slow decadal vari-
ations in the NEE reference. Figure 4 shows a comparison
of the optimised flux budget in 2010 and its climatology for345

the crop vegetation type in North America. The inter-annual
variability of the optimised flux budget is depicted by the
standard deviation around the 10-year climatology. The ref-
erence NEE climatology is then adjusted to account for the
inter-annual variability of the land sink fluxes as follows:350

fO = fOclim + γσ
(
fOclim

)
, (2)

where f is the 10-day NEE budget for a specific region
and vegetation type, f

O

is the reference budget, fOclim and
σ(fOclim) are the climatological mean and standard devia-
tion of the optimised flux budget respectively from 2004 to355

2013, and γ is the corresponding standardised anomaly of the
NEE budget from the model with respect to the same period.
γ can be positive or negative. It represents the inter-annual
variability factor used to adjust the reference climatological
NEE budget and it is given by360

γ =
fM− fMclim

σ (fMclim)
(3)

where fM is the model NEE budget, fMclim is the climato-
logical mean budget from the model and σ(fMclim) is the
standard deviation of the model NEE budget denoting the
typical amplitude of its inter-annual variability for the same365

period as the climatology of the optimised flux budget (i.e.
2004 to 2013).

The γ inter-annual variability factor is multiplied by the
standard deviation of the optimised residual NEE budget –
representing the typical amplitude of inter-annual variability370

– in order to offset the reference climatological NEE budget.
In this way, the inter-annual variability of the reference NEE
follows the inter-annual variability of the model NEE with
the same anomaly sign, while keeping its amplitude con-
strained by the standard deviation of the optimised flux bud-375

get. Note that the use of this factor is optional. By setting it to
zero, the model budget can be constrained by the optimized
flux climatology. The rationale for applying this factor in the
C-IFS system is based on the fact that inter-annual variabil-
ity of the NEE budget is strongly linked to the inter-annual380

variability of climate variables such as precipitation and tem-
perature (Schaefer et. al., 2002). Since information on these

edc2.usgs.gov/glcc/globdoc2_0.php
http://edc2.usgs.gov/glcc/glcc.php
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climate variables is readily available in the C-IFS system, it
is worth exploring its impact on the CO2 forecast. A prelim-
inary assessment of the impact of including the inter-annual385

variability factor was performed by comparing experiment
with and without the factor. Results confirmed a small but
positive impact (see Supplement). Details on the computa-
tion of this factor are given in the next section.

2.3 The inter-annual variability factor390

The computation of the inter-annual variability factor γ re-
quires a model climate consistent with the forecast (i.e. same
meteorological analysis, same model version and same reso-
lution). Producing a consistent model climate is not a trivial
requirement, because both the operational model version and395

analysis system can change frequently with new updates and
new observations, and high resolution forecasts spanning a
period of 10 years (i.e. 2004 to 2013) are expensive. A fea-
sible solution has been found where the standardised NEE
anomaly from the model is computed using the operational400

Ensemble Prediction System (ENS) forecasts and hindcasts
which are part of the ECMWF monthly forecasting system
(Vitart et al., 2008; Vitart, 2013, 2014). Every Monday and
Thursday the operational ENS is not only run for the actual
date, but also for the same calendar day of the past 20 years.405

These hindcasts have the same resolution and model ver-
sion as the ENS forecasts and they constitute a valuable data
set used for the post-processing and calibration of the NWP
forecasts from the medium-range (10 days) up to one month
lead times (Hagedorn et al., 2012). The ensemble of fore-410

casts is made of 5 members (10 members since 2015) using
perturbed initial conditions (Lang et al., 2015) and stochas-
tic physics in order to represent forecast uncertainty (Palmer
et al., 2009).

As the hindcasts are not performed daily, it is not possible415

to aggregate consecutive 1-day forecasts into a 10-day period
to compute a mean budget as shown in Fig. 2. In order to cir-
cumvent this, the mean budget is computed by averaging the
1-day forecast NEE from all the ensemble members avail-
able in the hindcasts. This is done for each year from 2004420

to 2013 to preserve consistency with the NEE climatology
from the optimised fluxes. The model climate fMclim given
by the 10-year mean budget and its typical inter-annual vari-
ability σ

(
fMclim

)
can then be obtained by calculating the

mean value and standard deviation respectively over that pe-425

riod. Similarly, the model budget fM is calculated from the
NEE ensemble mean of the ENS forecast for the current date
using the same number of ensemble members as the ENS
hindcasts. The standardised anomaly γ is finally obtained by
subtracting the 10-year mean budget from the current budget430

and dividing the anomaly by the standard deviation. Since
the hindcasts are available every Monday and Thursday, γ
is only updated twice a week. These updates are routinely
monitored during the forecast (see Sect. 4).

2.4 Partition of NEE adjustment435

The final stage in the flux adjustment is the attribution of the
NEE correction to the different biogenic fluxes in the model.
The residual NEE from optimised fluxes only provides infor-
mation on the total flux from the land ecosystem exchange.
While in land vegetation models, NEE is the combination of440

two opposing fluxes: Gross Primary Production (GPP) and
the ecosystem respiration (Reco). Given that we have no in-
formation on whether the NEE error is associated with the
GPP or the Reco fluxes, a strategy has to be defined in or-
der to partition the NEE correction into GPP and Reco. The445

underlying strategy used here is to have the smallest flux ad-
justment possible. Namely, the scaling factors should be as
close to 1 as possible.

The first step is to distinguish between the positive and
negative values of the NEE scaling factor (α). A positive450

NEE scaling factor implies the budget of the NEE in the
model has the correct sign but the wrong magnitude. In that
case, the scaling of the flux will be smallest if the dominant
component of NEE is scaled. That is to say, the flux correc-
tion will be applied to GPP during the growing season and455

to Reco during the senescence period. Whereas if the scaling
factor is negative – i.e. the modelled NEE has the wrong sign
– only the flux with smallest magnitude is corrected (GPP or
Reco) to ensure the scaling factor of the modelled fluxes is
always positive.460

The scaling factor α is then converted into a scaling factor
for the dominant component of the NEE flux. If the magni-
tude of GPP is larger than the magnitude of Reco, then the
scaling factor for GPP and Reco are defined as follows:

αGPP =
αNEE−Reco

GPP
465

αReco
= 1.0 (4)

Similarly, if |Reco|> |GPP| then

αGPP = 1.0

αReco =
αNEE−GPP

Reco
(5)

This partition the flux adjustment is a modelling choice470

based on minimum flux adjustment criteria. Other solutions
might be possible given additional information on either GPP
or Reco budgets.

The αGPP and αReco
factors are computed for each vege-

tation type and region and then re-mapped as 2-d fields us-475

ing the dominant vegetation type map in Fig. 3. The resulting
maps for αGPP and αReco are subsequently passed to the car-
bon module in the land surface model in order to scale GPP
and Reco.
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3 CO2 forecast simulations480

Several simulations have been performed in order to
test the impact of BFAS on the atmospheric CO2 fore-
casts (see Table 2). All the simulations use the C-IFS
CO2 forecasting system (Agustí-Panareda et al., 2014)
based on the IFS model (www.ecmwf.int/en/forecasts/485

documentation-and-support). They all share the same trans-
port. The only difference between them is the CO2 surface
fluxes they use as described in Table 2. The impact of BFAS
is assessed by comparing the simulations using modelled
NEE fluxes without BFAS (CTRL) and with BFAS (BFAS).490

The BFAS simulation is also compared with the simulations
using optimised fluxes (OPT) and a climatology of optimised
fluxes (OPT-CLIM). Both OPT and OPT-CLIM simulations
constitute a benchmark because they are driven by the refer-
ence fluxes used in BFAS. From these experiments we expect495

to see the forecast from BFAS to be closer to the benchmark
forecasts (in particular OPT-CLIM) than to the CTRL fore-
cast.

The forecasts are performed using the cyclic configuration
described by Agustí-Panareda et al. (2014) with a spectral500

resolution of TL255, equivalent to around 80 km in the hor-
izontal, and 60 vertical levels. They are initialised daily at
00:00 UTC with ECMWF operational analysis, while the at-
mospheric CO2 is cycled from one forecast to the next, as in
a free run. The simulations span the period from 1 January505

to 31 December 2010. This period has been selected because
of the large variety of observations available to evaluate the
BFAS performance on the atmospheric CO2 forecasts. The
CO2 initial conditions on 1 January 2010 are from the at-
mospheric CO2 analysis using GOSAT CO2 retrievals (Hey-510

mann et al., 2015).

4 Monitoring the flux adjustment

The flux adjustment is monitored by plotting time series of
the flux scaling factors for each vegetation type and region.
For example, Fig. 5 shows the GPP and Reco scaling fac-515

tors for the crop vegetation type which is present in all re-
gions. The values range from 0.5 to 6. These coefficients
are computed daily before the beginning of each forecast
and they are kept constant throughout the forecast. Gener-
ally, there is a slow variation of the coefficients from one520

day to the next. This is expected since the coefficients are
obtained from large-scale budgets computed over a 10-day
period. The map of the GPP and Reco scaling factors applied
to adjust the modelled biogenic fluxes on 15 March 2010 is
shown in Fig. 6. These maps can be very useful to monitor525

the flux adjustment because they can provide alerts on the
regions with largest biases to model developers.

The effect of the flux adjustment on the NEE budget is
shown in Fig. 7. The adjusted biogenic fluxes should always
lead to an NEE budget close to the budget of the optimised530

NEE climatology. However, the fit will also depend on the
degree of inter-annual variability of the model determined by
parameter γ in Eq. (3). Figure 8 displays the monitoring of γ
given by the standardised NEE anomaly of the model. Posi-
tive values mean the CO2 source is larger than normal and/or535

the CO2 sink is lower than normal with respect to the 10-
year mean budget of the model, covering the same period as
the reference climatology. Conversely, negative values cor-
respond to a smaller than normal source and/or larger than
normal sink. When γ is larger than 1, the model anomaly is540

larger than 1σ. This indicates the possible occurrence of an
extreme event. Prolonged extreme events – such as droughts
– would have an effect on the NEE budget and the computa-
tion of the biogenic flux adjustment.

5 Impact of the flux adjustment545

The impact of BFAS is shown by comparing the atmo-
spheric CO2 from the BFAS forecast to the CTRL forecast,
and to the benchmark forecasts with optimised fluxes (OPT
and OPT-CLIM) at several observing sites. Four sites from
the NOAA/ESRL atmospheric baseline observatories (www.550

esrl.noaa.gov/gmd/obop, Thoning et al., 2012) are used to
evaluate the reduction of the large-scale biases in the well-
mixed background air. In addition, four Total Carbon Col-
umn Observing Network stations (GGG2014 TCCON data,
Wunch et al., 2011, see Table 3 and www.tccon.caltech.edu)555

are also used to assess the impact on the atmospheric CO2

column-average dry molar fraction. Finally, three continental
sites from the NOAA/ESRL tall tower network (www.esrl.
noaa.gov/gmd/ccgg/towers, Andrews et al., 2014) are used
to investigate the impact of BFAS on the synoptic skill of the560

forecasts. The results are grouped into the impacts on bias
reduction and synoptic skill in the following two sections. A
comprehensive evaluation of the uncertainty reduction in the
BFAS simulation based on all the ? in situ flask and contin-
uous observations, as well as the NOAA/ESRL aircraft ver-565

tical profiles (Sweeney et al., 2015) is also provided in the
Supplement.

5.1 Biases in atmospheric CO2

Figure 9 demonstrates that BFAS is very effective at reduc-
ing the atmospheric CO2 biases in the background air at570

all the NOAA/ESRL continuous baseline stations. The bi-
ases in the CTRL forecast range from −1.9 to −4.5 ppm;
whereas, the BFAS forecast has biases of −0.5 ppm or less
over the whole year. These values are close to the annual
biases of the OPT and OPT-CLIM experiments ranging be-575

tween −0.4 and 0.5 ppm. The monthly biases in BFAS can
be larger than its annual biases. For example, there is a bias
of up to −1 ppm from March to September in the southern
hemisphere (Fig. 9c, d). This bias is thought to originate in
the tropical regions and transported to the southern hemi-580

www.ecmwf.int/en/forecasts/documentation-and-support
www.ecmwf.int/en/forecasts/documentation-and-support
www.ecmwf.int/en/forecasts/documentation-and-support
www.esrl.noaa.gov/gmd/obop
www.esrl.noaa.gov/gmd/obop
www.esrl.noaa.gov/gmd/obop
www.tccon.caltech.edu
www.esrl.noaa.gov/gmd/ccgg/towers
www.esrl.noaa.gov/gmd/ccgg/towers
www.esrl.noaa.gov/gmd/ccgg/towers
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sphere as shown by a preliminary comparison with IASI CO2

(Crevoisier et al., 2009) (not shown here). The bias starts to
grow at the end of the growing season during summer time.
This is also the case for the high latitude station at Barrow,
where there is a negative bias of a few ppm from the last week585

of July to the end of September as shown in Fig. 9a. In sum-
mary, BFAS is not able to completely remove the negative
model bias at the end of the growing season. In the north-
ern hemisphere at the end of winter and throughout spring
(from March to May) there is a positive model bias, i.e. the590

atmospheric CO2 is overestimated in the model. Although
the OPT and OPT-CLIM simulations also have a slight posi-
tive bias in winter, this positive bias is enhanced in the BFAS
simulation.

At the TCCON sites (Fig. 10), the atmospheric CO2595

column-average dry molar fraction also shows the same large
bias reduction in BFAS with respect to CTRL. The magni-
tude of the BFAS annual biases in the atmospheric column is
generally less than 1 ppm, slightly higher than the OPT and
OPT-CLIM biases (less than 0.5 ppm), but much lower than600

the CTRL biases (from 1.5 to 3.3 ppm). The results at the TC-
CON sites are consistent with those from the NOAA/ESRL
baseline sites. Namely, in the northern hemisphere there is a
growing overestimation of the atmospheric CO2 at the end
of winter (around March). While at the end of the growing605

season in both northern and southern hemispheres (August
and March respectively) there is a growing negative bias, i.e.
an overestimation of the sink. One hypothesis that could ex-
plain why BFAS is not able to achieve as small a bias as the
forecast with optimised fluxes lies in the fact that the opti-610

mised NEE used as a reference in BFAS is computed as a
residual after removing the effect of fires and anthropogenic
fluxes. Inconsistencies in the fire and anthropogenic emis-
sions used by the optimised fluxes and the model will lead to
errors in the optimised residual NEE. These inconsistencies615

are mainly associated with the use of different resolutions.
Further investigation is required to address this issue.

5.2 Synoptic variability of atmospheric CO2

The CO2 forecast has been shown to have high skill in
simulating the synoptic variability of atmospheric CO2 (see620

Agustí-Panareda et al., 2014), except during the spring
months, coinciding with an early start of the CO2 drawdown
period in the model. For this reason, we have examined the
impact of BFAS on the synoptic variability of daily mean
atmospheric CO2 at three continental NOAA/ESRL tower625

sites in March. Over this period, the day-to-day variability
of atmospheric CO2 at those sites is associated with the ad-
vection of atmospheric CO2 by baroclinic synoptic weather
systems as they impinge on the large-scale continental gra-
dient of atmospheric CO2. Table 4 clearly demonstrates that630

with BFAS the synoptic forecast skill is greatly improved at
all sites, with correlation coefficients between simulated and
observed atmospheric CO2 exceeding 0.8. The improvement

is particularly striking at Park Falls (Wisconsin, USA) and
West Branch (Iowa, USA) at the centre of North America,635

where the correlation coefficients in CTRL are very low (i.e.
below 0.5). The OPT and OPT-CLIM forecasts have gener-
ally high correlation coefficients, comparable to BFAS. Only
at the level closest to the surface, the values are slightly lower
than BFAS. This can be explained by the fact that the MACC-640

13R1 optimised fluxes do not comprise synoptic variability.
Thus, when the synoptic variability of the fluxes contributes
to the atmospheric CO2 variability, the correlation coeffi-
cients are smaller.

The positive impact of BFAS on the CO2 synoptic vari-645

ability is illustrated in Fig. 11. The large synoptic variabil-
ity is characterised by the advection of CO2-rich anomalies
(with up to 10 ppm amplitude) as shown by the CO2 peaks on
10–12 March at Park Falls, and 8–9, 12–13 and 16–17 March
at West Branch. These CO2 anomalies originate from the ad-650

vection across the large-scale continental gradients of atmo-
spheric CO2 which ultimately reflect the large-scale distri-
bution of CO2 surface fluxes (Keppel-Aleks et al., 2012).
In the case study here, the CO2-rich air is located to the
south of the observing stations, as shown by the distribution655

of the monthly mean atmospheric CO2 depicting the large-
scale gradients across the continent at the level correspond-
ing to the height of the tall towers (Figs. 12a and 12b). In
the CTRL forecast, there is no monthly mean gradient south
of the stations (Fig. 12c). This explains why without BFAS660

the synoptic variability is very small and largely underesti-
mated throughout March. While in BFAS the gradient south
of the observing stations is very pronounced (Fig. 12d), fol-
lowing a similar pattern to OPT and OPT-CLIM. There are
still some differences between the three simulations. OPT-665

CLIM results in stronger gradients than OPT and BFAS en-
hances the gradient even further, leading to a slight over-
estimation of the synoptic variability. These differences in
the patterns of the atmospheric CO2 are directly linked to the
differences in the CO2 surface fluxes (Fig. 13). As expected,670

the flux adjustment from BFAS results in a flux pattern sim-
ilar to OPT-CLIM and OPT, with a stronger source to the
south of the observing stations. Whereas in CTRL there is a
large sink area south of the observing stations, in the region
of the Gulf of Mexico, consistent with the CTESSEL early675

growing season (Balzarolo et al., 2014).

6 Discussion

All the results from the BFAS experiments indicate that
BFAS is highly beneficial to the C-IFS CO2 forecasting sys-
tem, both in terms of reducing the atmospheric CO2 biases680

and improving the synoptic skill of the model. As shown in
Sect. 2, the scheme is simple and it is easy to implement and
run. Because BFAS essentially works as a layer on top of the
model, it can adapt to model changes with great flexibility.
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For all these reasons, BFAS is now part of the operational685

global C-IFS analysis and forecasting system.
Notwithstanding all the advantages of BFAS listed above,

there are also caveats that need to be considered, further
tested and addressed. A discussion of the current limitations
of BFAS is provided in this section, together with the poten-690

tial use of BFAS for model development, data assimilation
purposes and the implications for users.

6.1 Current limitations in BFAS

Optimised fluxes have uncertainties of their own and repre-
sent the large-scale variability of the CO2 surface fluxes on695

supra-synoptic time-scales. They only estimate the total flux
and the NEE residual approach can transfer biases from other
fluxes into the NEE. The use of a climatology also precludes
the correction of the inter-annual variability in the model.

The aggregation criteria of budget errors can be very chal-700

lenging because the error can originate from different aspects
of the model. Clearly, errors in model parameters associated
with vegetation type are a good candidate. However, in the
future errors in climate forcing, errors in LAI, missing pro-
cesses and other potential sources of error should also be con-705

sidered.
The partition of the NEE flux adjustment into the modelled

biogenic fluxes (GPP and Reco) is currently ad-hoc, leading
to the transfer of errors from GPP to Reco and vice-versa.
This problem could be addressed by using other independent710

datasets of GPP and Reco (e.g. Jung et al., 2011) that contain
additional information on how to partition the NEE adjust-
ment.

6.2 BFAS for model development

BFAS can run in both online and offline modes. Thus, it can715

provide a tool to diagnose regions that contribute to the er-
rors in the global budget resulting in large-scale errors of at-
mospheric CO2. The maps of biogenic flux scaling factors
can be used to compute maps of flux adjustment (e.g. ad-
justed NEE – original NEE) which can then be used to di-720

agnose model errors. The synthesis of the mean adjustments
into monthly model biases for different vegetation types can
then guide the effort to develop the carbon model further. For
example, in regions where the bias is consistent between dif-
ferent months, the corrected NEE could be used to re-tune725

model parameters such as the reference ecosystem respira-
tion or the mesophyll conductance, previously optimised by
Boussetta et al. (2013) using a subset of FLUXNET data.
Specific vegetation types can be identified where model im-
provements could be achieved by using information from730

BFAS. For instance, crops have the same large Reco scaling
(> 1.5) over all the northern hemisphere regions during win-
ter months when the ecosystem respiration is the dominant
component of NEE. This underestimation in the ecosystem
respiration can be addressed by modifying the value of the735

reference respiration parameter used for crops. In this case,
the same procedure used by Boussetta et al. (2013) could be
applied to optimise the specific model parameter using the
BFAS adjusted fluxes as pseudo-observations together with
the FLUXNET data.740

Further information on error sources in fluxes can be ob-
tained by comparing the corrected fluxes with the eddy co-
variance observations available in near-real time from the
Integrated Observation System (ICOS) Ecosystem Thematic
Centre (ETC, http://www.europe-fluxdata.eu). For example,745

preliminary comparisons have shown that there are large dif-
ferences in the model-observation fit between needle leaf ev-
ergreen (pine) trees in the boreal and Mediterranean regions.
This is consistent with results from Balzarolo et al. (2014),
and it highlights the need for a new sub-classification of the750

evergreen needle leaf forests in regions with Mediterranean
climate.

6.3 BFAS in the data assimilation framework

Currently, BFAS is only designed to be used as a bias correc-
tion computed before each forecast by using a reference data755

set based on optimised fluxes. In the future, BFAS could be
adapted to work within a data assimilation (DA) framework
in the IFS. To start with, the specification of uncertainties as-
sociated with both the reference data set and the model fluxes
and the covariance of those uncertainties would allow a more760

optimal estimation of the flux adjustment. These uncertain-
ties can be obtained from the flux inversion systems for the
optimised fluxes and from the ECMWF ENS forecasts for
the model fluxes.

Including BFAS in the IFS DA framework needs further765

exploration. The IFS uses a short time window (currently
12 h) to assimilate meteorological observations from very
dense observing networks. With the short time window it is
not possible to properly constrain the slowly varying global
mass of the long-lived greenhouse gases due to the sparse-770

ness of their observing system. For instance, the current
GOSAT and OCO-2 CO2 observations do not cover high
latitudes in winter. However, if we combined the assimila-
tion of optimised fluxes (which already contain the global
mass constraint) with observations linked to local fluxes (e.g.775

solar-induced chlorophyll fluorescence products from satel-
lites, NEE eddy covariance observations and in situ atmo-
spheric CO2 observations) it might be possible to obtain an
optimal estimate of more local scaling factors, while still re-
specting the global mass constraint. The possibility of opti-780

mising the scaling factors in the DA system within the weak
constraint framework (Trémolet, 2006, 2007) also needs to
be explored in the future.

6.4 Aspects to be considered by users

The implementation of BFAS is straightforward. Therefore,785

it could be easily used by other models. The only require-

http://www.europe-fluxdata.eu
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ments are: (i) a reference budget which can be obtained from
a climatology of optimized fluxes (e.g. the MACC prod-
uct can be easily obtained from www-lscedods.cea.fr/invsat/
PYVAR14_MACC/V2/Fluxes/3Hourly and it is well doc-790

umented); (ii) past 10-day NEE simulated by the forward
model; (iii) the NEE anomaly of the forward model with re-
spect to its climate based on a 10-year simulation. The use of
the NEE anomaly is optional, as its impact is relatively small
(see Supplement).795

The underlying motivation of BFAS is to improve the
CO2 analysis and forecast for users (e.g. those working on
flux inversion systems, planning field experiments, or requir-
ing boundary conditions for regional models). For this rea-
son, it is paramount to provide information on all the in-800

put data going into BFAS. These are primarily continental-
scale climatological budgets from modelled NEE and op-
timized fluxes. There is also some input from the anthro-
pogenic emissions and the biomass burning emissions to ex-
tract the NEE as a residual from the optimized fluxes. The805

documentation of the specific components used in the C-
IFS BFAS system and their uncertainties can be found in
Boussetta et al. (2013), Chevallier et al. (2010); Cheval-
lier (2015), Janssens-Maenhout et al. (2012) and Kaiser
et al. (2012). The input data streams used in BFAS can810

be obtained from http://copernicus-support.ecmwf.int for
C-IFS NEE and GFAS biomass burning fluxes; from the
EDGAR database http://edgar.jrc.ec.europa.eu for the an-
thropogenic fluxes; and from www-lscedods.cea.fr/invsat/
PYVAR14_MACC/V2/Fluxes/3Hourly for the MACC opti-815

mized fluxes.
Since the BFAS product contains information from the

optimized fluxes, users should be aware that the opti-
mized fluxes assimilated most available background air-
sample monitoring sites (listed in the supplement of Cheval-820

lier (2015), see http://www.atmos-chem-phys.net/15/11133/
2015/acp-15-11133-2015-supplement.pdf). A specification
of the overall uncertainty associated with the BFAS simu-
lation and the resulting reduction with respect to the control
simulation is given in the Supplement.825

7 Summary

This paper addresses the challenge of designing an online
bias correction for an atmospheric CO2 analysis/forecasting
system. The overarching aim is to deliver an atmospheric
CO2 analysis and forecast that can be useful to the scien-830

tific community, e.g. working on data assimilation of atmo-
spheric CO2 observations, the development of the CO2 ob-
serving system and providing boundary conditions for CO2

regional modelling. Tunning model parameters and/or re-
scaling fluxes offline are not sufficient to garantee a bias re-835

duction in the system. Thus, an online adaptive system is re-
quired because errors in the meteorology can evolve as a re-
sult of regular operational NWP model upgrades and these

affect the NEE budget in the model. This is achieved in the
new biogenic flux adjustment scheme (BFAS) by a simple840

scaling of the 10-day NEE budgets for different vegetation
types and regions using a climatology of the MACC opti-
mised fluxes (Chevallier et al., 2010) as a reference, adjusted
to preserve the model inter-annual variability.

This paper shows that BFAS has a positive impact on845

the atmospheric CO2 forecast by greatly reducing the atmo-
spheric CO2 biases in background air and improving the syn-
optic variability in continental regions affected by ecosystem
fluxes. The improvement in the synoptic skill of the fore-
cast is associated with underlying changes in the large-scale850

gradient of the NEE fluxes where optimised fluxes provide
information.

BFAS has been recently implemented in the C-IFS opera-
tional CO2 forecast and analysis system, because of its sim-
plicity, adaptability to model changes and beneficial impact.855

In this paper, the C-IFS model is just providing an example
on how this method can be applied efficiently in an opera-
tional forecasting system. Other models could easily adopt
such as system as there are only a few components required
for its implementation (see section 6.4).860

As a diagnostic tool, BFAS has also the potential to pro-
vide feedback for model development. The use of BFAS in
the data assimilation framework will be explored in the fu-
ture.
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Table 1. Percentage of land grid points at model resolution TL255 (∼ 80 km) for each dominant vegetation type, i.e. more than half of the
grid point is covered by that vegetation type. A land grid point is defined by a land sea mask value greater than 0.5.

Vegetation Vegetation type Percentage of
Code land points

1 Crops, Mixed Farming 9.9
2 Short Grass 7.6
7 Tall Grass 6.3
9 Tundra 6.3
10 Irrigated Crops 2.2
11 Semidesert 13.5
13 Bogs and Marshes 0.8
16 Evergreen Shrubs 0.5
17 Deciduous Shrubs 2.4
3 Evergreen Needle leaf Trees 5.7
4 Deciduous Needle leaf Trees 2.4
5 Deciduous Broadleaf Trees 4.0
6 Evergreen Broadleaf Trees 12.1
18 Mixed Forest/woodland 3.3
19 Interrupted Forest 9.5
21 Tropical Savanna (new type) 4.8
– Remaining land points without vegetation 8.7
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Table 2. List of simulations with the same transport and different CO2 surface fluxes.

Experiment name CO2 surface fluxes

CTRL Biogenic fluxes from CTESSEL (Boussetta et al., 2013),
biomass burning fluxes from GFAS (Kaiser et al., 2012),
ocean fluxes from Takahashi et al. (2009),
and EDGAR v4.2 anthropogenic fluxes (Janssens-Maenhout et al., 2012)

OPT MACC-13R1 optimised fluxes (Chevallier et al., 2010) for 2010
OPT-CLIM MACC-13R1 optimised flux climatology (2004–2013)
BFAS Same fluxes as CTRL including BFAS
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Table 3. List of TCCON stations used in Fig. 10 ordered by latitude from North to South.

Site Latitude Longitude Altitude Reference
[degrees] [degrees] [m a.s.l]

Sodankylä 67.37 26.63 190.0 Kivi et al. (2014)
Białystok 53.23 23.02 160.0 Deutscher et al. (2014)
Lamont 36.60 −97.49 320.0 Wennberg et al. (2014)
Wollongong −34.41 150.88 30.0 Griffith et al. (2014)
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Table 4. Correlation coefficient of different forecast (FC) experiments (see Table 2) with observations at three NOAA/ESRL tall towers for
daily mean dry molar fraction of atmospheric CO2 in March 2010. The dash symbol means the correlation is not significant.

NOAA/ESRL Latitude, Sampling BFAS CTRL OPT OPT-CLIM
Tower site Longitude, level FC FC FC FC
(ID) Altitude [m]

Park Falls, 45.95◦ N, 30 0.843 0.338 0.794 0.797
Wisconsin 90.27◦ W, 122 0.931 0.508 0.893 0.883
(LEF) 472 m 396 0.919 – 0.875 0.881

West Branch, 41.72◦ N, 31 0.748 0.496 0.590 0.590
Iowa 91.35◦ W, 99 0.833 0.436 0.767 0.720
(WBI) 242 m 379 0.851 0.356 0.887 0.876

Argyle, 45.03◦ N, 12 0.857 0.839 0.808 0.893
Maine 68.68◦ W, 30 0.875 0.835 0.816 0.938
(AMT) 50 m 107 0.861 0.668 0.816 0.927
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Figure 1. Schematic showing how BFAS fits in the atmospheric CO2 forecasting system. BFAS is called before each forecast to compute the
scaling factors for the model NEE (i.e. GPP+Reco) based on the past archived forecasts. The maps of the scaling factors are then passed to
the model which applies the adjustment to the output biogenic CO2 fluxes from the land surface model. After combining the adjusted NEE
fields with the other prescribed CO2 fluxes, the resulting bias corrected fluxes are passed to the transport model to produce the atmospheric
CO2 forecast.
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Figure 2. Schematic to illustrate how the 10-day NEE budget from the model is computed in BFAS for the forecast at day D by retrieving
the past forecasts of accumulated NEE. Note that the retrieved NEE (computed by adding GPP and Reco) has not been corrected by BFAS.
The computation uses a set of 7 previous 1-day forecasts (initialised at D− 8, D− 7,D− 6,... until D− 2) together with the latest 3-day
forecast from the previous day (i.e. D− 1) as shown by the blue boxes.
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Figure 3. Dominant vegetation types based on the BATS classification used in the IFS and extended to include the tropical savanna subtype
(in purple, as defined by the Olson (1994a) classification) within the interrupted forest type (in light blue). The vegetation type codes are
described in Table 1. The nine regions used in the computation of the NEE budget are delimited by the black lines.
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Figure 4. Time series of 10-day mean NEE budget [GtC/day] associated with the crop vegetation type in North America from the MACC-
13R1 optimised flux data set in 2010 (red line) compared to its climatology (2004–2013) (yellow line). The yellow shading represents the
standard deviation of the optimised flux budget (for the same period) used to compute the inter-annual variability adjustment applied to the
reference climatology. Positive/negative values correspond to a source/sink of CO2.
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Figure 5. Time series of GPP and Reco flux scaling factors in blue and red lines respectively for the crop vegetation type in 2010 in the
different regions (see map in Fig. 3 depicting the extent of the crops within each region).
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Figure 6. Map of scaling factors for (a) GPP and (b) Reco on 15 March 2010.
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Figure 7. Time series of GPP (in blue), Reco (in red) and NEE (in green) daily budget [GtC/day] before and after the flux adjustment (see
dashed lines and solid lines respectively) for crops in 2010 in the different regions. The reference budget provided by the climatology of
MACC-13R1 optimised fluxes (2004–2013) and the MACC-13R1 optimised fluxes for 2010 are depicted by the black and magenta lines
respectively. Positive/negative values correspond to a source/sink of CO2.
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Figure 8. Time series of the standardised anomaly of the modelled NEE budget (γ in Eq. 3) for crops in 2010 in the different regions. Positive
values indicate larger/smaller CO2 sources/sinks than normal based on the mean climatological budget; whereas negative values correspond
to smaller/larger CO2 sources/sinks than normal.
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Figure 9. Daily mean atmospheric CO2 dry molar fraction [ppm] from NOAA/ESRL continuous baseline stations (black circles) at (a) Bar-
row, Alaska, USA (71.32◦ N, 156.61◦ W), (b) Mauna Loa, Hawaii, US (19.54◦ N, 155.58◦ W), (c) Tutuila, American Samoa, USA (14.25◦ S,
170.56◦ W), (d) South Pole, Antarctica (89.98◦ S, 24.8◦ W) and the different forecast experiments: BFAS (cyan), CTRL (red), OPT (green)
and OPT-CLIM (blue). See Table 2 for a description of the different experiments. The mean (bias) and standard deviation (SD) of the model
errors are shown at the top of each panel.
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Figure 10. Daily mean atmospheric CO2 column-average dry molar fraction [ppm] observed at four TCCON stations (see Table 3) as shown
by the black circles, and simulated by the different forecast experiments: BFAS (cyan), CTRL (red), OPT (green) and OPT-CLIM (blue). See
Table 2 for a description of the different experiments. The mean (δ) and standard deviation (σ) of the model errors are shown at the top of
each panel.
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Figure 11. Daily mean atmospheric CO2 dry molar fraction [ppm] in March 2010 from NOAA/ESRL tall towers (black circles) at (a) Park
Falls (Wisconsin, USA, 45.95◦ N, 90.27◦ W) and (b) West Branch (Iowa, USA, 41.72◦ N, 91.35◦ W) and the different forecast experiments:
BFAS (cyan), CTRL (red), OPT (green) and OPT-CLIM (blue) (see Table 2 for a description of the different experiments).
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Figure 12. Monthly mean atmospheric CO2 dry molar fraction [ppm] at the model level approximately corresponding to the highest sampling
height of the Park Falls and West Branch NOAA/ESRL tall towers (see black triangles) in March 2010 from (a) OPT-CLIM, (b) OPT,
(c) CTRL and (d) BFAS experiments (see Table 2 for a description of the different experiments).
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Figure 13. Monthly mean total CO2 flux [µmol m−2 s−1] in March 2010 from (a) OPT-CLIM, (b) OPT, (c) CTRL and (d) BFAS experiments
(see Table 2 for a description of the different experiments). The black triangles depict the location of the NOAA/ESRL tall towers plotted in
Fig. 11.


