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Abstract. The spatial resolution of global climate models
with interactive aerosol and the observations used to evalu-
ate them is very different. Current models use grid-spacings
of ∼ 200 km, while satellite observations of aerosol use so-
called pixels of ∼ 10 km. Ground site or air-borne obser-5

vations concern even smaller spatial scales. We study the
errors incurred due to different resolutions by aggregating
high-resolution simulations (10 km grid-spacing) over either
the large areas of global model grid-boxes ("perfect" model
data) or small areas corresponding to the pixels of satel-10

lite measurements or the field-of-view of ground-sites ("per-
fect" observations). Our analysis suggests that instantaneous
RMS differences of perfect observations from perfect global
models can easily amount to 30–160%, for a range of ob-
servables like AOT (Aerosol Optical Thickness), extinction,15

black carbon mass concentrations, PM2.5, number densities
and CCN (Cloud Condensation Nuclei). These differences,
due entirely to different spatial sampling of models and ob-
servations, are often larger than measurement errors in real
observations. Temporal averaging over a month of data re-20

duces these differences more strongly for some observables
(e.g. a three-fold reduction i.c. AOT), than for others (e.g. a
two-fold reduction for surface black carbon concentrations),
but significant RMS differences remain (10-75%). Note that
this study ignores the issue of temporal sampling of real ob-25

servations, which is likely to affect our present monthly error
estimates. We examine several other strategies (e.g. spatial
aggregation of observations, interpolation of model data) for
reducing these differences and show their effectiveness. Fi-
nally, we examine consequences for the use of flight cam-30

paign data in global model evaluation and show that signifi-
cant biases may be introduced depending on the flight strat-
egy used.

1 Introduction

Airborne aerosols are a fascinating component of the Earth’s 35

atmosphere. They come in a bewildering variety of shapes,
sizes and compositions. More importantly, they can affect
the radiative budget and energy and hydrological balances
of the atmosphere (Angstrom, 1962; Twomey, 1974; Al-
brecht, 1989; Hansen et al., 1997; Lohmann and Feichter, 40

2005, 1997). Dust aerosols may transport nutrients for the
biosphere over long distances (Swap et al., 1992; Vink and
Measures, 2001; McTainsh and Strong, 2007; Maher et al.,
2010; Lequy et al., 2012) and air pollution aerosol can pose
health hazards for humans (Dockery et al., 1993; Brunekreef 45

and Holgate, 2002; Ezzati et al., 2002; Smith et al., 2009;
Beelen et al., 2013). Aerosols have also been suggested as
disease vectors (Ballester et al., 2013). For a recent review of
some of these aspects, see Fuzzi et al. (2015).

Models provide powerful tools to explore the role of 50

aerosols, but require evaluation against observations in or-
der to quantify their skill and detect possible model er-
rors. AEROCOM is an international community of scientists
(http://aerocom.met.no) involved in evaluating global aerosol
models (Kinne et al., 2006; Schulz et al., 2006; Textor et al., 55

2006, 2007; Huneeus et al., 2011; Koch et al., 2009; Quaas
et al., 2009; Koffi et al., 2012) but model evaluations are also
routinely performed by individual research groups around
the world. It is therefore surprising that evaluation strategies
themselves have received relatively little scrutiny. 60

Due to constraints on computational resources, global
aerosol-climate models are currently run at spatial resolu-
tions of ∼ 200 km. This of course limits their ability to re-
solve fine-scale structure (Benkovitz and Schwartz, 1997;
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Weigum et al., 2012) which will affect the comparison of
global model data with observations: models and observa-
tions represent averages over different spatial areas. Satellite
remote sensing observations are made for nominal pixels of
10 km as for MODIS (MODerate resolution Imaging Spec-5

troradiometer) or 17 km as for MISR (Multi-angle Imaging
SpectroRadiometer) or 3 km as for SEVIRI (Spinning En-
hanced Visible and InfraRed Imager). Ground stations from
AERONET can be estimated to sample no more than 5 km
horizontally away from the site. In-situ measurements see10

even less of the atmosphere surrounding them. Yet, observed
aerosol fields are known to exhibit variations over relatively
short distances of 10 to 100 km (Anderson et al., 2003; Ko-
vacs, 2006; Santese et al., 2007; Shinozuka and Redemann,
2011; Schutgens et al., 2013). Note that the spatial resolution15

of global models also impacts global model data due to the
non-linear nature of many physical and chemical processes
(Qian et al., 2010; Gustafson et al., 2011; Stroud et al., 2011;
Weigum et al., 2015), but that is not the topic of this paper.

Recently, the disparity of spatial scales between global20

models and observations has attracted some attention. Us-
ing satellite retrieved solar surface radiation estimates to as-
sess spatial representativeness, Hakuba et al. (2014a, b) es-
timated differences of 1–2% resp. 2–3% in 5-year seasonal
means between either 1o×1o or 3o×3o areas and point mea-25

surements. Cavanaugh and Shen (2015); Director and Bornn
(2015) showed that the standard deviation, skewness and kur-
tosis of climate data (e.g. temperature) can be be significantly
different between point values and gridded values (in their
analysis means were identical by construction).30

We use high-resolution model simulations (with a 10 km
grid-spacing) to simulate both perfect global model data and
perfect observations. These data are considered perfect in
the sense that they are both derived from the same high-
resolution simulation that we treat as the truth. In fact, the35

only difference between the global model data and observa-
tions is the area over which the high-resolution simulation
is averaged (see Sect. 3). No measurement errors are added
to the observations. The high-resolution simulations allow us
to build up statistics of the difference between observations40

and model data, under a large variety of scenarios. In particu-
lar, we consider different observables like AOT, PM2.5, num-
ber densities and CCN for different regions on the globe. We
also evaluate a variety of averaging and interpolation strate-
gies designed to bring model data and observations closer to-45

gether. These high-resolution model simulations provide us
with a toy model of what happens when global model data
are evaluated with observations, ignoring both model and ob-
servation errors.

Since we simulate global model data as an average over50

the high-resolution data, a very relevant question is: ’what
average is appropriate?’. This question is closely tied to the
question of what the grid-point value of a global model rep-
resents and will be addressed later.

Section 2 introduces the three different models and 6 dif- 55

ferent regions for which we have high-resolution simula-
tions. We also explain how the simulated fields were turned
into observables. Section 3 describes in more detail how both
global model data and observations are generated from the
high-resolution simulations. In particular, Sect. 3.1 discusses 60

various interpretations that may be given to a global model’s
grid-point value. Section 4 then introduces the concept of
spatial sampling as a source of error through some exam-
ples. More substantive statistics can be found in Sect. 5, 6,
7, 8 and 9. An evaluation of several strategies to reduce spa- 65

tial sampling differences is given in Sect. 10. A preliminary
analysis of the consequences of spatial sampling for the use
of flight campaign data can be found in Sect. 11. The paper
concludes with a summary (Sect. 12)

Note that Sect. 3.2 contains some general guidelines to in- 70

terpreting many of the figures and statistics that appear in this
paper.

2 The regional models

Three different regional models were used to create high-
resolution simulated fields (10 km, 1 hour) of common ob- 75

servables: AOT, extinction, PM2.5, black carbon mass con-
centration, number densities and CCN. Fig. 1 shows the sim-
ulation regions, and Table 1 summarises the most important
information on these simulations.

WRF-Chem (Grell et al., 2005; Fast et al., 2006) was run 80

for three regions using the MADE/SORGAM aerosol mod-
ule (Ackermann et al., 1998; Schell et al., 2001), and one
region using the GOCART bulk aerosol scheme. The me-
teorology was nudged to NCEP-FNL operational analysis
data. The West-Europe and Oklahoma runs used emission 85

scenarios (TNO MEGAPOLI-2005 or US National Emis-
sions Inventory NEI-2005) with imposed 24-hour cycles
for the anthropogenic emissions. These regions are charac-
terised by fairly localised spatially-fixed sources. The Congo
experiment used daily biomass burning emissions derived 90

from MODIS fire counts and is characterised by highly lo-
calised sources that differ in location from day to day. The
MADE/SORGAM module assumes the aerosol to exist in
three modes (Aitken, accumulation and coarse) of varying
species mixtures (sulfate, nitrate, organic and black carbon, 95

sea salt and dust). MADE/SORGAM explicitly treats nitrates
and SOA (secondary organic aerosol).

An expanded version of EMEP/MSC-W (Simpson et al.,
2012) that includes calculations of aerosol bulk optical prop-
erties (based on work by Hess et al. (1998) and Chin et al. 100

(2002)) was run at a 0.1
◦ × 0.1

◦
grid, using ECMWF-IFS

meteorology for 2008 and TNO-INERIS emissions for 2009
for Europe. Emissions of black carbon were derived from
the emissions of primary PM2.5, using EMEP standard split-
factors (per country and sector). Monthly, day-of-week and 105

hourly temporal profiles were applied to the annual emis-
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sions. The EMEP chemical scheme includes approximately
160 reactions. The aerosols are represented as bulk-mass dis-
tributed between a fine fraction (including sulfate, nitrate,
ammonium, organic and black carbon sea salt and dust) and
a coarse fraction (nitrate, sea-salt and dust). Ammonium ni-5

trate is calculated with the equilibrium model MARS, and
the formation of coarse nitrate from nitric acid depends on
the relative humidity. SOA is calculated using the VBS ap-
proach. For all details see Simpson et al. (2012) and refer-
ences therein.10

NICAM-SPRINTARS (see Goto et al. (2015) and ref-
erences therein) was run in global mode with a stretched
grid that had a resolution of 11 km over a part of Honshu
(the largest island of Japan). Its meteorology was nudged to
NCEP-FNL reanalysis data. SPRINTARS uses a mass bulk15

scheme with individual modes for sulfate, organic carbon,
black carbon and bins for sea-salt and dust. Two different
organic/black carbon mixtures are also represented by indi-
vidual modes. Anthropogenic emissions of black carbon and
the SO4 precursor gas SO2 had a prescribed diurnal cycle.20

SOA were treated in the simple manner of scaling aerosol
emissions. Nitrate aerosol were ignored in this SPRINTARS
simulation.

Both EMEP and SPRINTARS do not calculate number
densities as prognostic variables (SPRINTARS can diagnose25

them from assumed size distributions) and consequently did
not provide those fields for our analysis. Both EMEP and
SPRINTARS data were regridded from their original model
grids to regular grids with 10 km spacings.

2.1 Observable parameters30

In this sub-section we discuss how well our models are able
to simulate aerosol properties (see Table 2) as they would be
observed. All of the models provided AOT, extinction and
(dry) PM2.5, although WRF-Chem calculates AOT and ex-
tinction for 600 nm and EMEP and NICAM-SPRINTARS35

for 550 nm.
Real black carbon measurements by SP2 (single particle

soot photometer) require a minimum black carbon content
per particle. In models with mass bulk schemes, particles ei-
ther contain only black carbon or none at all. Modal aerosol40

schemes also cannot properly simulate SP2 measurements,
due to the instantaneous redistribution of black carbon mass
over many particles of mixed species which leads to very low
concentrations per particle (Kipling et al., 2013). We decided
to ignore this minimum black carbon content and used the to-45

tal black carbon concentration as provided by the models.
Real number density measurements dry out the particles

before selecting only those above a certain diameter. Hence,
N10 and N50 refer to number densities of particles with dry
diameters in excess of 10 or 50 nm. WRF-Chem provides50

only modal number densities at ambient humidities. Based
on auxiliary model data, we estimated that ’taking out’ the
water has at most a 10% effect on N10 or N50 values. We

also concluded that this may increase the spatial sampling
errors we are studying. Furthermore, the model calculates 55

the equilibrium of the ammonia & nitric-acid & sulfuric-acid
& water system (Seinfeld and Pandis, 2006), and ’drying-
out’ particles involves much more than simply removing the
water (it would lead to a shift in the equilibrium). Currently
WRF-Chem provides no mechanism to simulate this aspect 60

of observed number densities. So we decided for a practical
approach and use ambient number densities to calculate N10
and N50.

3 Simulating observational and global model data

This section briefly describes the main methodology used 65

in this paper. Using the high resolution simulated fields, we
have generated both perfect observations and perfect global
model data. The high resolution field v has a regular recti-
linear horizontal grid (10× 10 km), and a regular temporal
spacing (1 hour). Only the vertical spacing is non regular 70

and differs among the models. The field v can be thought
of as 3 or 4-dimensional data cubes vxyt or vxyzt where
x= 1 . . .nx and y = 1 . . .ny are indices to the horizontal co-
ordinates, z = 1 . . .nz is an index to the vertical coordinate
and t= 1 . . .nt is an index to the time coordinate. In the fol- 75

lowing, the z coordinate is ignored for brevity’s sake. A sin-
gle perfect observation Oxyt at time t and location x,y is
simulated by:

Oxyt = vxyt. (1)

A perfect global model grid point’s value Mxyt can be 80

simulated by averaging vxyt over a global model grid-box
area (2∆x+ 1)× (2∆y+ 1) in the high-resolution field:

Mxyt =

∆x∑
i=−∆x

∆y∑
j=−∆y

wijvx+i;y+j;t, (2)

where ∆x and ∆y represent the longitudinal and latitudi-
nal half-sizes of a grid-box, as measured in the coordinate 85

indices. Here w is a normalised weighting function (to be
defined later). Note that perfect model data can only be cal-
culated on an inner domain of the high-resolution region of
1 + ∆x≤ x≤ nx −∆x;1 + ∆y ≤ y ≤ ny −∆y.

In the case that the location of the observation and the grid- 90

point coincide, an instantaneous spatial sampling error can
now be defined as:

εxyt =Oxyt −Mxyt (3)

where we use the perfect model value as a reference, since it
is the model value that we want to evaluate in actual compar- 95

isons of observational and model data. It is straightforward
to define a relative sampling error for time-averaged data by

εxyt =

(
k=t+∆t∑
k=t−∆t

Oxyt −Mxyt

)
/

(
k=t+∆t∑
k=t−∆t

Mxyt

)
, (4)
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where 2∆t+ 1 is an arbitrary averaging interval. Using the
global model value (instead of the observation) as reference
prevents denominators from becoming zero.

A subset of the data cube of our regional simulations is
used to build up error statistics. In addition to the limitation5

imposed by the Eq. 2 (already discussed), the outer 50 km of
the simulated region was excluded from our analysis to re-
duce boundary effects. Similarly, the first two days of each
simulation were used as a spin-up and excluded from anal-
ysis. At various points in our analysis, we have studied the10

sensitivity of our results to these choices but found no signif-
icant impact.

3.1 Interpretation of the grid-point value

We generate the global model grid-point value Mxyt as a
weighted average of the high-resolution simulation over a15

large area, see Eq. 2. The weighting function w represents
our interpretation of the global model’s grid-point value. The
question is what are realistic w like for actual global models?

A numerical grid with spacing L can represent standing
or travelling waves with a wavelength of in theory 2L and20

in practice 4L− 6L. This suggests that the grid-point value
of a low resolution model is at best some average of a high
resolution simulation over the grid-box L×L. Moreover, at
horizontal resolutions of ∼ 200 km, there is no evidence that
actual global models have converged numerically (Pope and25

Stratton, 2002; Roeckner et al., 2006; Williamson, 2008).
As the resolution of global models is increased, various as-
pects of the models are tweaked to obtain best agreement
with either observations or reanalysis datasets (see Pope and
Stratton for a very clear description). Diffusion is adapted30

to prevent numerical instabilities and the gravity-wave drag
coefficients are modified according to the resolution of the
orography. Best known, various parameters related to sub-
grid cloud processes are tuned to obtain radiative balance at
the top-of-atmosphere. Our point here is that the strategy for35

tweaking the global model to best reflect an observational
or reanalysis dataset effectively determines w, although this
is never explicitly discussed. In addition, models are tuned
for only a few parameters for which abundant observations
or reliable reanalysis data are available (e.g. pressure, tem-40

perature). There is no reason to assume that other parame-
ters require the same weighting function, as these models are
non-linear.

Hence we argue that w is fundamentally unknown (and
may actually vary with time and location). To conduct our45

analysis, we therefore assumed three different weighting
functions and performed sensitivity studies (to be described
later). The weighting function most used in this paper is a
constant value throughout the grid-box. This corresponds to
the mental model that many scientists have of the physics50

processes that occur in a grid-box. The other two weighting
functions favour the area near the grid-point more than the
outer edges of the grid-box. One weighting function uses a

linear profile (highest at the grid-point, zero at the edge) and
another uses a Dirac-δ (centred at the grid-point). The latter 55

we consider a rather unlikely choice of w but it does cor-
respond to the case where the model has numerically con-
verged.

3.2 Some conventions used in this paper

This paper contains many figures and statistics of spatial 60

sampling error distributions. Instead of repeating the same
information, some aspects are explained here. Error distri-
butions are always given for either instantaneous (’hourly’)
or monthly data over a single region, see Table 1. These er-
ror distributions are quantified through Root-Mean-Square 65

(RMS) values or quantiles. They represent typical errors per
region (over no more than a month), which should not be
mistaken for the typical error in any one longitude/latitude
location. We use the so-called parametric 7-number summary
of the 2, 9, 25, 75, 91 and 98% quantiles q of the errors be- 70

cause for a normal distribution these quantiles are equally
spaced. Any skewness or extended wings in a distribution
will be readily visible. In particular, we often refer to the
inter-quantile ranges ∆q50 = q75 −q25, ∆q82 = q91 −q9 and
∆q96 = q98 − q2. In e.g. Fig. 5 different shades of grey are 75

used to denote these interquantile ranges: light grey for ∆q96,
medium grey for the ∆q82 and dark grey for ∆q50. The solid
blue line represents the median error. In Fig. 6, box-whisker
plots show the error distributions. Different widths of the bars
are used to denote different inter-quantile ranges: narrow for 80

∆q96, medium for ∆q82 and wide for ∆q50. The black rect-
angle represents the median error and the black circle the
mean error. In a few figures, additional error distributions are
shown using colored lines: the ∆q50, ∆q82 and ∆q96 ranges
will be indicated by resp. solid, dashed and dotted lines. 85

The standard measure of uncertainty, the standard devia-
tion, is half the q84.1−q15.9 inter-quantile range. For a Gaus-
sian distribution, ∆q50 is 1.35 times the standard deviation,
and ∆q82 is 2.68 times the standard deviation. For a Gaus-
sian distribution with zero mean, the standard deviation and 90

the RMS value will of-course agree.

4 Examples of spatial sampling errors

In Fig. 2, we show instantaneous simulated AOT and surface
black carbon concentration after 10 days in the WRF-Chem
W-Europe run. By comparing the field in a small 10×10 km 95

box to the average of a large 210× 210 km box surround-
ing it (approximate size of present-day global model grid
box), we assess spatial sampling errors. The centre of the
large box we refer to as grid-point (of the global model). By
moving these two boxes together throughout the region, we 100

can build up statistics of spatial sampling errors (also shown
in Fig. 2). These errors can reach ∼ 100% and form coherent
patterns several global model grid-boxes large. Time series
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of the global model and observed values at a single location
are shown in Fig. 3. In the case of AOT, we see that the per-
fect observation can both over- and under-estimate the per-
fect model value with variations on a time-scale of a day or
so. The black carbon time-series, on the other hand, shows5

systematic underestimation by the perfect observation over
long periods for most of the month (note that events of over-
estimation also occur but on smaller time-scales). Although
these time-series vary a lot throughout the region, this exam-
ple is nevertheless typical.10

Since these spatial sampling errors are substantial, it
makes sense to try and reduce them by temporally averag-
ing the data. In Fig. 4, we show monthly averaged simu-
lated AOT and surface black carbon concentration from the
same run. The spatial sampling errors in monthly averaged15

observations are also shown in Fig. 4. They are smaller than
the errors for instantaneous fields but still quite substantial
(up to ∼ 20% for AOT and ∼ 65% for black carbon). Note
also that the error patterns have become larger and more co-
herent. As a matter of fact, notice how closely the patterns20

in sampling errors for black carbon agree with its emission
sources. Except that sampling errors are negative (and quite
large) where concentrations are quite low: when defining ar-
eas downstream from sources where the aerosol is suppos-
edly well-mixed spatially it is important to consider the grid-25

box size of the model which is evaluated as much as the
length-scales involved in the actual aerosol processes.

The effectiveness of temporal averaging is shown in Fig. 5,
where the spatial sampling errors are shown as a function
of averaging period. Time-averaging does decrease spatial30

sampling errors but not as fast as one would expect if in-
stantaneous sampling errors behaved like independent Gaus-
sian noise. This is understandable because the persistence of
emission sources and flow patterns in the atmosphere create
temporal correlations in the fields of a few hours to a few35

days. Note that AOT is more strongly (beneficially) affected
by time-averaging than surface black carbon concentrations.

5 Agreement among models

Before studying these spatial sampling errors in more detail,
we consider how (dis)similar they are among different mod-40

els. The Europe region simulated by EMEP encompasses the
W-Europe region simulated by WRF-Chem MADE and so
these two models allow ready intercomparison for May 2008,
see Fig. 6. We see that both instantaneous and monthly errors
as predicted by WRF-Chem and EMEP are of similar magni-45

tude although WRF-Chem generally produces larger errors.
Error magnitudes for different observables behave similarly
among WRF-Chem and EMEP: monthly errors for AOT and
surface black carbon are the smallest resp. largest errors.
EMEP monthly error maps (see Fig. 7) also look similar to50

WRF-Chem results (Fig. 4), especially for black carbon sur-
face concentrations.

It would be interesting to understand the reason for the
differences. From global model studies in the context of AE-
ROCOM (e.g. Myhre et al. (2013); Randles et al. (2013); 55

Stier et al. (2013)), we know that such attribution is diffi-
cult and here we limit ourselves to pointing out some obvi-
ous differences between WRF-Chem and EMEP. First, there
are differences in emission inventories and sea-salt emis-
sion parametrisations. Second, although both models were 60

nudged to reanalysis data, transport will be different due
to different dynamical cores and vertical resolution (WRF-
Chem uses twice the vertical resolution as EMEP). For simi-
lar reasons wet and dry deposition are different. Both models
also use a very different aerosol scheme (mass bulk or two 65

moment scheme). All of this will affect aerosol life-times,
which in turn will affect the spatio-temporal variability of
aerosol.

It should also be pointed out that EMEP shows quite a
bit of month-to-month variation: e.g. January 2008 errors for 70

AOT and March 2008 errors for surface black carbon con-
centration are markedly bigger than those estimated for May.

The most important point here is that both models suggest
spatial sampling errors of similar magnitude with similar spa-
tial patterns. 75

6 Different observables and different regions

Figure 8 shows relative spatial sampling errors (either instan-
taneous or monthly) for all observables and the three WRF-
Chem MADE regions (see also Tab. 1 and Fig. 1). Instanta-
neous RMS errors are large: from 20 % up to 160% depend- 80

ing on observable and region (the RMS errors are calculated
over a single region for the full month, see Table 1). There are
clear and (mostly) systematic differences among the three re-
gions in that W-Europe shows the largest errors and Congo
the smallest. This may be related to the overall wind-flow: 85

Congo shows the most laminar flow (and hence most coher-
ent aerosol plumes), while W-Europe shows a very turbu-
lent flow (we do not wish to discount other effects like the
spatio-temporal distribution of sources but a full explanation
is outside this paper’s scope). Two observables (black carbon 90

concentrations near 2 km AGL for all three regions and sur-
face CCN at S = 0.02% in W-Europe) show errors down to
-100%. In the case of black carbon, this is due to narrow
black carbon plumes travelling through an otherwise pris-
tine air layer: the observation often sees the pristine air but 95

the model always includes contributions from the plume. In
the case of CCN, the background CCN at S = 0.02% is very
low, especially close to sources where many small particles
are emitted. But once in a while a plume of larger particles
travels over giving rise to much larger CCN at low super- 100

saturation S = 0.02%.
The monthly errors can be reduced quite a bit compared

to the instantaneous errors. For many observables, RMS er-
rors are 5–15%, although for observables like surface black
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carbon concentrations and N10 it can be resp. 30–50% and
30–80%, with individual errors reaching over 100%. Congo
represents quite a different situation from the other two re-
gions: the reduction due to averaging is much less, and in
the case of surface N10 there is actually a slight increase in5

errors. An important difference between W-Europe & Okla-
homa on one hand and Congo on the other is that the first
have mostly fixed aerosol sources with a prescribed diurnal
cycle. The latter has emission sources (fires) in different lo-
cations from day to day.10

Figure 9 shows relative spatial sampling errors for the
other 3 regions, all simulated by models with mass-bulk
schemes for aerosol. In general, spatial sampling errors ap-
pear to be a bit smaller than in Fig. 8, but note the excep-
tion of extinction near 2km AGL. Monthly sampling errors15

over ocean are very low, due to spatial correlations in the
near-surface wind-speeds that cause sea-salt aerosol emis-
sion. But large errors are found for extinction over ocean
near 2 km AGL, that seem partly due to isolated plumes of
sea-salt but mostly due to a broken cloud field that rains out20

sea-salt locally. Both instantaneous and monthly errors over
Japan become larger if only observations over the land area
are considered. The Japan region includes parts of the Japan
sea and the North Pacific ocean that account for more than
80% of the simulated area. Also, the Japan simulation, like25

the Congo simulation, shows rather laminar flow from meso-
scale to synoptic scale. Finally, simple statistics like in Fig. 9
cannot convey that over an extended region like Europe there
are areas with systematically small or large sampling errors
due to source locations and orography (see also Fig. 4 and 7).30

In the case of actual observations, there may be quite a
bit of intermittency in their temporal sampling suggesting
that the spatial sampling decreases we have shown here for
monthly averages represent a best case scenario.

7 Vertical distribution of sampling errors35

The vertical distribution of spatial sampling errors can be
very different depending on observable and region. Fig-
ures 10 and 11 show the instantaneous and monthly relative
spatial sampling error profiles for extinction, N10 and black
carbon concentrations.40

We see that although errors are typically largest at and
near the surface, this does not preclude large errors higher
up in the atmosphere. The instantaneous errors for black car-
bon concentrations actually show largest errors from 2 to 7
km AGL. This is due to black carbon plumes in a relatively45

pristine background, which also explains why the error dis-
tribution is so clear skewed to negative values (observation
sees the pristine background while the model also includes
plumes). Black carbon’s only source is surface emission, but
both extinction and N10 also have sources throughout the tro-50

posphere (nucleation, condensation and in-cloud production

of sulfate) which likely explains the difference between these
observables.

For the monthly errors, most profiles show secondary max-
ima in sampling errors well above the surface. 55

We have analysed the sampling errors at their original
model levels, which for these simulations occur at fairly con-
stant altitude above ground. Note that the errors estimated in
this subsection do not take into account that a global model’s
grid-box may have a vertical extent larger than that of our 60

regional simulations. Taking this into account would only in-
crease the estimated errors. The profiles of spatial sampling
errors for the bulk mass simulations are rather constant and
therefore not discussed here.

8 Impact of grid-box size and shape 65

8.1 Impact of latitude

Although our high resolution simulations were made at dif-
ferent latitudes on Earth, so far we have assumed that the
global model grid-box size is equal to the grid-box size of
a T63 grid at the equator (210 by 210 km). At higher lati- 70

tudes, the longitudinal extent of the grid-box shrinks (at least
for rectangular grids), which may reduce spatial sampling er-
rors. This is explored in Fig. 12. As we can see, smaller lon-
gitudinal extent leads to smaller errors although the effect is
rather mild. When the longitudinal extent is halved, errors in 75

monthly-averaged fields decrease between 10 and 30% of the
original errors, with ∼ 20% a very typical value. Also, larger
errors are usually less affected than smaller errors although
the differences are not very big. Spatial sampling errors in in-
stantaneous fields behave very similar (not shown), although 80

fields that show very large errors (like surface BC or surface
CCN at S = 0.02%) tend to show less improvement (∼ 10%)
when the grid-box longitudinal extent is halved.

Note that the longitudinal extent only has an impact on
spatial sampling errors because there are spatial and tempo- 85

ral correlations in the aerosol fields. If these fields were inde-
pendent random noise, decreasing longitudinal extent would
barely have an impact on sampling errors.

8.2 Impact of grid-box size

The impact of model resolution is also easily explored, see 90

Fig. 13. Monthly sampling errors decrease by 10 to 50% from
T63 (210 by 210 km) to T106 (125 by 125 km, a third of the
T63 grid-box area), with 40% a rather typical value. Surface
observations are less affected with decreases of ∼ 30%, es-
pecially N10 whose spatial sampling errors in all three simu- 95

lations only decreased by ∼ 20% when the grid-box size was
halved. For instantaneous values (not shown), the typical re-
duction in sampling error is smaller, ∼ 30%, especially for
surface fields: ∼ 20%.

As with the longitudinal extent, gridbox-size only has an 100

impact because of the spatial and temporal correlations in
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the aerosol fields. A field of independent random noise ex-
hibits sampling errors quite independently of gridbox-size
(unless the box, and the number of values therein, becomes
very small).

9 Observations offset from the grid point5

So far we have considered observations at the exact grid-
point of a global model’s grid-box which is a useful start-
ing point but also quite unrealistic. For a sample of randomly
distributed observations in a 210 by 210 km grid-box, only
2% will be within 10 km of the grid-point and 50% will be10

more than 84 km away from it. By considering observations
located throughout the grid-box, and not just its centre, it is
possible to show how monthly sampling errors increase with
distance of the observation to the grid-point, see Fig. 14. As
a matter of fact, 50% of possible AOT observations have er-15

rors at least twice as large as found for an observation at the
grid-point. Observations in the very corners of the grid-box
exhibit errors three times as large.The increase of sampling
errors with distance to the grid-point for surface black carbon
concentrations is not as large but still significant.20

That sampling errors increase with distance may be sur-
prising but can be explained. The evolution of aerosol across
a global model grid-box may differ quite a bit due to differ-
ences in sources, flow and deposition (especially wet). Nev-
ertheless, as is well known from observations, aerosol ex-25

hibits correlations over several 10s of km (Anderson et al.,
2003; Kovacs, 2006; Santese et al., 2007; Shinozuka and
Redemann, 2011; Schutgens et al., 2013) and our high-
resolution simulations are no different. Hence, an observa-
tion at the centre of a grid-box will correlate strongly with a30

large part of that grid-box while an observation in the upper-
right corner will only correlate strongly with (part of) the
upper-right quadrant of that grid-box but less so with the
lower-left quadrant. It is important to realise that aerosol in
individual 10× 10 km2 boxes cannot be considered as inde-35

pendent and identically distributed (i.i.d.) random variables.
If aerosol behaved like i.i.d. random variables, sampling er-
rors would not increase with distance.

Figure 15 shows box-whisker plots of monthly sampling
errors for several observables, either at the grid-point, or at40

a distance of 70 or 100 km, for the W-Europe region. Sim-
ilar results can be shown for Oklahoma and Congo, where
the relative increase with distance is often (but not always)
larger. For all three regions and all observables, the increase
for ∆q82 at 70 km is between 1.2− 2.3× and the increase45

at 100 km is between 1.4− 3.4×. Instantaneous spatial sam-
pling errors increase less fast with distance but still signifi-
cantly: typical increases for ∆q82 at 70 km is 1.3 for AOT
and 1.2 for surface black carbon concentration (i.e. monthly
averaging is more beneficial for an observation at the grid-50

point than one at 70 km distance).

As discussed before (Sect. 3.1), the meaning of a global
model’s grid-point value is not obvious. So far we have as-
sumed that the grid-point value is the unweighted average
of the high-resolution field over the global model’s grid-box 55

(i.e. a constant weighting function w). Here, we explore how
the sampling errors depend on different weighting functions.
Fig. 16 shows how a constant, linear or Dirac-δ weighting
function affects sampling errors as a function of distance
to the grid-point. For the Dirac-δ weighting function, sam- 60

pling errors are equal to zero at a distance of zero: the global
model’s value is equal to the observation (since both are per-
fect). But as distance increases, so will the spatial sampling
errors. Actually, for distances larger than ∼ 30 km, the three
very different weighting functions give rather similar sam- 65

pling errors (but notice that more localised weighting func-
tions yield larger errors as expected). Since for randomly dis-
tributed observations, only ∼ 6% would be closer than 30
km to the grid-point, we feel it is justified to conclude that
the shape of the weighting function has only a small impact 70

on statistics of spatial sampling errors. The spatio-temporal
variation of the field is far more important.

10 Strategies for reducing sampling errors

The typical sampling errors when the observation is at the
model grid-point are lower than those for an observation off- 75

set from the grid-point. It seems unlikely that we can devise
strategies to reduce "centre-of-grid-box" errors, other than
temporal averaging (see Sect. 6) or further averaging global
model data (and their associated observations) over multi-
ple grid-boxes. But the sampling errors for observations off- 80

set from a grid-point might be reduced by proper screening,
interpolation within the model grid, or considering multiple
observations at the same time.

10.1 Observations close to the model grid-point

As Fig. 14 shows, the smallest spatial sampling errors oc- 85

cur for observations close to the model grid-point. As a
matter of fact, within a distance of 30 km, there is hardly
any change in the errors (note: this figure uses the constant
weighting function). To keep sampling errors as small as pos-
sible, one might only select observations that are within 30 90

km of a model grid-point. For a T63 grid-box at the equator
(210×210 = 44100 km2), that implies only 6% of randomly
distributed observations would be usable, a substantial reduc-
tion of potential observational data. For an upper distance of
50 km, this increases to 18% of observations, still represent- 95

ing a significant loss of observational data.
One benefit of selecting only observations close to the

grid-point is that here the impact of the weighting function
is most pronounced (see also Fig. 16). So within 30 km of
the grid-point, spatial sampling errors may actually be very 100

small if the weighting function is highly localised. Since it is
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impossible to know the actual weighting function, it may be
difficult to assess whether it is localised or not.

10.2 Aggregating observations over the model grid-box

It has been suggested (e.g. Sayer et al. (2010)) that aggregat-
ing observations over a model grid-box is the best strategy5

for comparing models with observations. Obviously, such
a strategy is only possible for satellite data that provide
contiguous wide swath observations (e.g. MODIS, MISR,
POLDER, SEVIRI). Moreover, it can be expected that the
success of this strategy depends on the weighting function10

that is applicable. Figure 17 shows relative spatial sampling
errors in case of observations that are spatially aggregated
before comparison to the model (it is assumed the aggrega-
tion is space-filling). Here the model grid-point and the cen-
tre of the aggregated observations coincide. As a result, sam-15

pling errors go to zero for the constant weighting function
as the observational aggregation approaches the extent of the
grid-box. For the linear weighting function, we see that er-
rors initially become smaller as the aggregation increases and
then grow again as the observational aggregation approaches20

the extent of the grid-box. Still, sampling errors are halved
when aggregating observations over the full grid-box so there
is clearly a benefit. The extreme weighting function of the
Dirac-δ obviously leads to large errors.

For actual satellite measurements it will be difficult to ob-25

serve the complete grid-box, due to e.g. cloud cover, sun glint
or high surface albedo. Sayer et al. (2010) show that in the
case of AATSR observations (nominal 10×10 km pixel) and
the GEOS-Chem model (5

◦ × 4
◦

grid-box) it is extremely
unlikely that more than 50% of a model grid-box would be30

covered by observations, that is: space-filling aggregations
over global model grid-boxes are very unlikely.

10.3 Multiple observations in a model grid-box

Instead of a space-filling aggregation, one could average
multiple observations in the same grid-box before compari-35

son to the grid-point value and hopefully reduce sampling er-
rors. The idea here is that if the observations are sufficiently
far apart and represent fairly independent samplings of the
field within the grid-box, their average should be distributed
closer to the (weighted) grid-box average than an individual40

observation. This is similar to the previous sub-section, ex-
cept far fewer observations are needed and no space-filling
aggregation is required. This strategy may be employed for
surface sites as well as for satellite data.

Figure 18 show errors in case of 4 independently dis-45

tributed observations throughout the grid-box. Clearly, aver-
aging multiple observations helps to reduce spatial sampling
errors, even when the Dirac-δ weighting function is assumed!
But note that this improvement is less in case of more lo-
calised weighting functions. For the constant weighting func-50

tion, we also see that smallest errors now occur not at a dis-

tance of 0 km, but at a distance of 50 to 70 km (for the linear
weighting function this minimum shifts closer to the grid-
point). This is quite understandable: close to the grid-point
multiple observations are clustered together. Hence they will 55

not be very different. As distance increases, the randomly
distributed observations sample more of the grid-box. Obvi-
ously, using more observations than 4 will give better results
(not shown).

Note that Fig. 18 does not suggest that any set of 4 ob- 60

servations reduces sampling errors: if those observations are
very close together, averaging them will hardly improve on
the error.

10.4 Interpolating model data among grid-points

By interpolating the model data to the location of an observa- 65

tion, it may be possible to reduce spatial sampling errors for
observations located away from the model grid-point. The
idea is to construct virtual model data for a virtual grid-
box centred on the observation. This interpolation can be
performed in different ways; here we consider linear inter- 70

polation and distance-weighted averaging. Figure 19 shows
that linear interpolation i.c. of a constant weighting function
clearly has a beneficial effect on spatial sampling errors, es-
pecially for observations far from the global model’s grid-
point. Notice that from about 80 km distance, errors become 75

constant and no longer increase with distance (they are al-
ways larger than the errors for an observation at the grid-
point). Obviously, the impact depends on weighting function
and interpolation method, as shown in Fig. 20. Figure 20
shows that interpolation is most beneficial for observations 80

farthest from the grid-point and can actually lead to larger
errors close to the grid-point (especially for distant-weighted
averaging). Interestingly, the more localised the weighting
function, the more beneficial the interpolation (presumably
because the global model data are now identical to obser- 85

vations at the grid-point). Finally, this figure shows that lin-
ear interpolation performs better than distance-weighted av-
erage. This holds for all observables and all regions we con-
sidered.

Much the same conclusions can be stated for instantaneous 90

values, except that the beneficial impact of interpolation is
less pronounced.

11 Flight campaigns

Unlike satellite or ground-site observations, measurements
taken during a flight campaign cannot be properly aver- 95

aged over time (at least on time-scales from days to months
and longer). To simulate the (nearly) instantaneous measure-
ments during horizontal legs of flight campaigns, we use nar-
row tracks: 10 km wide and 210 km long, centred on the
grid-point and running in either East-West or North-South 100

direction. Profiles of spatial sampling errors for such flight
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campaign data can be seen in Fig. 21. Compared to instan-
taneous point observations (also shown), the flight campaign
observations are less affected by spatial sampling issues be-
cause they sample a larger part of the grid-box. Even so, sig-
nificant instantaneous RMS errors exist, varying between 10-5

41% for extinction, 10-46% for N10 and 21-100% for black
carbon concentrations at different altitudes and for different
regions (these errors are for a best case scenario: a grid-box
long flight path centred on the grid-point). For Congo, spatial
sampling errors can be quite different depending on whether10

the flight path runs North-South or East-West Around 6 km
AGL prevailing wind flows are East-West, resulting in sim-
ilarly orientated plumes. If the flight track observations are
within and along such a plume, spatial sampling errors will
be large and positively biased. If the flight track observations15

are across such a plume, errors will be smaller and (over a
large domain) unbiased.

The Congo results highlight a particular issue with flight
campaign data: if the flight tracks have deliberately been
chosen to follow observed aerosol plumes, perfect observa-20

tions will overestimate perfect model values by significant
amounts.

Almost vertical legs of flight campaigns should experience
errors like those discussed for point observations, Sec. 7. No-
tice that we do not consider the vertical extent of a global25

model’s grid-box in our analysis.

12 Conclusions

The spatial resolutions of current global aerosol models and
the observations used to evaluate them are very different.
Model grid-point values are representative of areas of ∼30

200× 200 km2 but individual observations seldom see more
than ∼ 10× 10 km2 of the atmosphere. This difference in
’field-of-view’ should affect the evaluation of models with
observations but has received little attention in the literature.
We believe our paper is the first systematic and qualitative35

study of the differences between a perfect model and perfect
observations due to spatial sampling.

Using high-resolution simulations for 6 different regions
by 2 different regional models and 1 global model, we show
that spatial sampling errors can be substantial across a range40

of observables (AOT, extinction, PM2.5, black carbon con-
centrations, number concentrations and CCN). These spatial
sampling errors fluctuate in time and space, depending on
emission sources, grid locations, weather and aerosol pro-
cesses. Ultimately, they constitute a noise that will be present45

in any model evaluation and that can not be eliminated en-
tirely unless model grid sizes become smaller than observa-
tional fields-of-view.

Assuming observations that do not coincide with the
global model’s grid-point but are offset by 80 km (54% of50

randomly located observations in a 210× 210 km grid-box
will be further away), the following statistics are offered.

For instantaneous data, RMS spatial sampling errors (de-
fined as observation minus global model value) are larger
than 30%, typically between 40 and 80% and may go up 55

to 160% (depending on observable and region). These errors
are typically positively skewed and highly non-Gaussian. For
monthly data, RMS sampling errors are larger than 10%, typ-
ically between 10 and 40% and may go up to 75% (depend-
ing on observable and region). 60

This noise can however be reduced: we have explored the
impact of spatial or temporal averaging of data as well as
selection of observations based on distance to a grid-point
or interpolation of model data to the location of an observa-
tion. Our study suggests that while increased model resolu- 65

tion will of course be beneficial, resolutions will need to be 4
times higher (50×50 km2 grid-box area) before spatial sam-
pling errors become significantly smaller. In the mean time,
we recommend that both model data and observations are
spatio-temporally averaged to ensure best agreement. Here 70

the model data must first be spatially interpolated to and tem-
porally collocated with the observation. Optimal averaging
procedures will depend on the spatio-temporal sampling of
the observations, the characteristics of the observable and
the requirements of the scientific community, so we offer 75

no single prescription although the results in this paper pro-
vide some guidelines. Optimal strategies for evaluating mod-
els with observations need to receive more attention from re-
searchers.

Our results suggest that caution is needed when using in- 80

situ measurements in global model evaluation. These mea-
surements consistently led to larger spatial sampling errors
than remote sensing measurements like AOT. For instance,
monthly surface black carbon concentrations & number den-
sities for our simulations have RMS spatial sampling errors 85

of at least 30% and and up to 80%. Best case scenarios for
flight campaign data still allowed spatial sampling errors of
100% and typically the observation would underestimate the
model.

Regarding the large sampling errors in case of black car- 90

bon, other species (e.g. sulfate, sea-salt) were not explicitly
analysed in this paper but show different results (not shown).
Sulfate errors tend to be rather small, probably due to the
multitude of sources and relatively long-life times. Sea-salt,
on the other hand, shows large and systematic monthly sam- 95

pling errors along coast lines (unsurprisingly). Given the size
of our global model’s grid-box, these errors extend quite far
into land or over sea. The important point here is that sam-
pling errors for species mass concentrations can be very dif-
ferent dependent on species and hence have a big impact on 100

the evaluation of a model’s particle speciation.
It is likely that the spatial sampling errors estimated in this

paper are under-estimates. First, Qian et al. (2010) showed
that model spatial variability over 75 km increased signifi-
cantly (by 60 to 100%) when model resolution changed from 105

15 to 3 km. Our current high-resolution simulations have res-
olutions of 10 km. Second, our high-resolution simulations
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do not resolve fine-structure below 10 km while many in-
situ measurements actually have fields-of-view on the order
of millimetres to centimetres (e.g. particle inlets). Third, our
models are more limited in the spatio-temporal variation of
their emission sources than reality due to assumed and con-5

stant diurnal patterns in anthropogenic emissions. Finally,
even high-resolution models will have to take a broad view
of aerosol and describe average properties (e.g. mass and/or
number densities) instead of modelling individual aerosols in
all their variety.10

On the other hand, it is possible that in areas far away from
sources (e.g. the free troposphere over the remote ocean)
aerosol has mixed sufficiently to strongly reduce spatial sam-
pling errors (e.g. HIPPO measurements over the Pacific, see
also Weigum et al. (2012)). Our simulations do not really al-15

low us to explore this scenario.
In the interest of comparing likes to likes, this paper does

not consider that real observations may have very intermit-
tent temporal sampling. Nor does it consider the impact
that precipitation may have on spatio-temporal variability of20

aerosol (Gryspeerdt et al., 2015, for example). These issues
are the subject of further investigation.
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Figure 2. Snapshots of the simulated field and the relative spatial sampling error in the observation of AOT and surface black carbon
concentration, over W-Europe exactly 10 days into the simulation by WRF-Chem MADE. Also shown are two square boxes (10× 10 and
210×210 km) and a single location (fat dot), south of Calais, France. Note that the high-resolution simulations encompass the whole region
shown, while our analysis is only made for the colored domain.
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Figure 3. Timeseries of global model (red) and observed (black)
AOT and surface black carbon concentration as simulated at a loca-
tion south of Calais (France) by WRF-Chem MADE, see also Fig. 2.
The grey area to the left shows the model’s spin-up period.
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Figure 4. Monthly average of the simulated field and the relative spatial sampling error in the observation of AOT and surface black carbon
concentration, as simulated over W-Europe by WRF-Chem MADE. Note that the high-resolution simulations encompass the whole region
shown, while our analysis is only made for the colored domain.
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Figure 5. Relative spatial sampling error as a function of averaging
period. The thin black lines are prognosis of the 9 and 91% quan-
tiles in case these errors behaved like independent Gaussian errors
(i.e. 1/

√
n, with n the number of observations). Results from WRF-

Chem MADE over W-Europe. Further explanation in Sec. 3.2.
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Figure 6. Relative spatial sampling errors (for either instantaneous
or monthly data, note the different vertical axes) over the W-Europe
region as calculated by WRF-Chem MADE (left bar) and EMEP
(right bar) in May 2008. Further explanation in Sec. 3.2.
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Figure 7. Monthly average of the simulated field and the relative spatial sampling error in the observation of AOT and surface black carbon
concentration, as simulated over W-Europe by EMEP. This can be compared to results for WRF-Chem MADE as shown in Fig. 4 but note
that the colour bars have different ranges to bring out spatial patterns better.

                
−1.0

−0.5

0.0

0.5

1.0

1.5
Instantaneous data

                
−1.0

−0.5

0.0

0.5

1.0

1.5

R
e
la

tiv
e
 e

rr
o
r

AO
T

su
rfa

ce
 e

xt
in
c.

ex
tin

c.
 (2

 k
m

)

su
rfa

ce
 B

C
 c
on

c.

BC
 c
on

c.
 (2

 k
m

)

PM
2.

5

su
rfa

ce
 N

10

N
10

 (2
 k
m

)

su
rfa

ce
 N

50

N
50

 (2
 k
m

)

su
rfa

ce
 C

C
N
 (0

.0
2%

)

C
C
N
 (2

 k
m

, 0
.0

2%
)

su
rfa

ce
 C

C
N
 (1

.0
%

)

C
C
N
 (2

 k
m

, 1
.0

%
)

                
−0.5

0.0

0.5

1.0
Monthly data

                
−0.5

0.0

0.5

1.0

R
e
la

tiv
e
 e

rr
o
r

AO
T

su
rfa

ce
 e

xt
in
c.

ex
tin

c.
 (2

 k
m

)

su
rfa

ce
 B

C
 c
on

c.

BC
 c
on

c.
 (2

 k
m

)

PM
2.

5

su
rfa

ce
 N

10

N
10

 (2
 k
m

)

su
rfa

ce
 N

50

N
50

 (2
 k
m

)

su
rfa

ce
 C

C
N
 (0

.0
2%

)

C
C
N
 (2

 k
m

, 0
.0

2%
)

su
rfa

ce
 C

C
N
 (1

.0
%

)

C
C
N
 (2

 k
m

, 1
.0

%
)

Figure 8. Relative spatial sampling errors (for either instantaneous
or monthly data, note the different vertical axes) for all WRF-Chem
MADE regions (left bar: W-Europe; centre bar: Oklahoma; right
bar: Congo). Further explanation in Sec. 3.2.
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Figure 9. Relative spatial sampling errors (for either instantaneous
or monthly data, note the different vertical axes) for three regions
simulated with mass-bulk schemes (left bar: Europe; middle bar:
Ocean; right bar: Japan). Black carbon concentrations over Ocean
are zero and so are related spatial sampling errors. Further explana-
tion in Sec. 3.2.
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Figure 10. Relative spatial sampling error (instantaneous data) as
a function of model level (left vertical axis) and altitude above
ground level (AGL, right vertical axis) for extinction, N10 and black
carbon concentrations. Results for the WRF-Chem MADE simula-
tions. Further explanation in Sec. 3.2.
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Figure 11. Relative spatial sampling error (monthly data) as a func-
tion of model level (left vertical axis) and altitude above ground
level (AGL, right vertical axis) for extinction, N10 and black car-
bon concentrations. Results for the WRF-Chem MADE simula-
tions. Further explanation in Sec. 3.2.

200 180 160 140 120 100 80
−0.3

−0.2

−0.1

−0.0

0.1

0.2

0.3
AOT 600nm

200 180 160 140 120 100 80
Longitudinal extent [km]

−0.3

−0.2

−0.1

−0.0

0.1

0.2

0.3

R
e

la
tiv

e
 e

rr
o

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20o 30o 40o 50o 60o

50%:  0.9
82%:  0.8
96%:  0.8

200 180 160 140 120 100 80
−1.0

−0.5

0.0

0.5

1.0
surface BC conc.

200 180 160 140 120 100 80
Longitudinal extent [km]

−1.0

−0.5

0.0

0.5

1.0

R
e

la
tiv

e
 e

rr
o

r

 

 

 

 

 

 

 

 

 

 

20o 30o 40o 50o 60o

50%:  0.8
82%:  0.9
96%:  0.9

Figure 12. Relative spatial sampling errors (monthly data) as a
function of longitudinal extent of the grid-box (due to latitude).
Near the top horizontal axis, latitudes are given. Near the bottom
horizontal axis, the ratios of ∆q25,∆q82 and ∆q96 at two dif-
ferent longitudinal extents (110 over 210 km) are given. Results
from WRF-Chem MADE over W-Europe. Further explanation in
Sec. 3.2.
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Figure 13. Relative spatial sampling errors (monthly data) as a
function of grid-box size. Near the top horizontal axis, standard
spectral grid sizes are shown. Near the bottom horizontal axis, the
ratios of ∆q25,∆q82 and ∆q96 at two different grid-box sizes (110
and 210 km) are given. Results from WRF-Chem MADE over W-
Europe. Further explanation in Sec. 3.2.
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Figure 14. Relative spatial sampling error (monthly data) as a func-
tion of distance of the observation to the grid-point. Near the bottom
horizontal axis, the ratios of ∆q25,∆q82 and ∆q96 at a distance of
80 and 0 km are given. Results from WRF-Chem MADE over W-
Europe. Further explanation in Sec. 3.2.
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Figure 15. Relative spatial sampling error (monthly data) as a func-
tion of distance of the observation to the grid-point. The numbers
near the top horizontal axis show the increase of ∆q82 at resp. 70
and 100 km relative to 0 km. Results from WRF-Chem MADE over
W-Europe. Further explanation in Sec. 3.2.
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Figure 16. Relative spatial sampling error (monthly data) as a
function of distance of the observation to the grid-point, for three
different weighting functions. Results from WRF-Chem MADE
over W-Europe. The usual inter-quantile ranges ∆q50 (solid), ∆q82
(dashed) and ∆q96 (dotted) are shown.
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Figure 17. Relative spatial sampling error (monthly data) as a func-
tion of aggregation extent of the AOT observations, using three dif-
ferent weighting functions. The centre of the aggregated observa-
tions is assumed to coincide with the model’s grid-points. In the
lower right corner, the ratios of ∆q25,∆q82 and ∆q96 at two differ-
ent aggregation extents (210 to 0 km) are given. Results from WRF-
Chem MADE over W-Europe. Further explanation in Sec. 3.2.
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Figure 18. Relative spatial sampling error (monthly data) for 4 ran-
domly distributed sites as a function of distance to the grid-point,
assuming two different weighting functions. The red lines indicate
the errors for a single site (see also Fig. 14). Results from WRF-
Chem MADE over W-Europe. Further explanation in Sec. 3.2.
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Figure 19. Relative spatial sampling error (monthly data) i.c. of lin-
ear interpolation of model values to the observation, as a function of
distance to the grid-point. The red lines indicate the errors without
interpolation (see also Fig. 14). Results from WRF-Chem MADE
over W-Europe. Further explanation in Sec. 3.2.
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Figure 20. Change (relative to Fig. 14) in ∆q82 (for monthly rela-
tive sampling errors) due to interpolation, as a function of distance
to the grid-point. All three weighting functions and two interpola-
tion methods are considered. Similar graphs for ∆q50 and ∆q96 can
be shown.
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Table 1. Simulations analysed in this study

region size [km2] period model scheme comments

W-Europe 1280× 1280 May 2008 WRF-Chem MADE 2-moments modal
Oklahoma 1190× 1190 March 2007 WRF-Chem MADE 2-moments modal
Congo 2090× 2090 March 2007 WRF-Chem MADE 2-moments modal
Ocean 1270× 1270 March 2007 WRF-Chem GOCART mass bulk
Europe 4000× 3100 January - June 2008 EMEP mass bulk
Japan 1500× 1250 August 2007 NICAM SPRINTARS mass bulk

Table 2. Simulated observables

AOT extinction PM2.5 BC conc. N10, N50 CCN

WRF-Chem MADE X X X X X X
WRF-Chem GOCART X X X
EMEP X X X X
NICAM-SPRINTARS X X X X
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Figure 21. Relative spatial sampling error (for measurements dur-
ing horizontal legs of a flight campaign) as a function of model level
(left vertical axis) and altitude above ground level (AGL, right ver-
tical axis) for extinction, N10 and black carbon concentrations. The
grey shaded error ranges are for North-South flights. Similar error
ranges for East-West flights are shown in black lines. The results of
Fig. 10 are also shown in red lines. The usual inter-quantile ranges
∆q50 (solid), ∆q82 (dashed) and ∆q96 (dotted) are shown. Further
explanation in Sec. 3.2.


