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 14 

Abstract 15 

We use the GLOMAP global aerosol model evaluated against observations of surface 16 

particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of 17 

biomass burning on tropical aerosol over the period 2003 to 2011. Previous studies report a 18 

large underestimation of AOD over regions impacted by tropical biomass burning, scaling 19 

particulate emissions from fire by up to a factor 6 to enable the models to simulate observed 20 

AOD. To explore the uncertainty in emissions we use three satellite-derived fire emission 21 

datasets (GFED3, GFAS1 and FINN1). In these datasets the tropics accounts for 66-84% of 22 

global particulate emissions from fire. With all emission datasets GLOMAP underestimates dry 23 

season PM2.5 concentrations in regions of high fire activity in South America and 24 

underestimates AOD over South America, Africa and Southeast Asia. When we assume an 25 

upper estimate of aerosol hygroscopicity, underestimation of AOD over tropical regions 26 

impacted by biomass burning is reduced, relative to previous studies. Where coincident 27 

observations of surface PM2.5 and AOD are available we find a greater model underestimation 28 

of AOD than PM2.5, even when we assume an upper estimate of aerosol hygroscopicity. 29 

Increasing particulate emissions to improve simulation of AOD can therefore lead to 30 
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overestimation of surface PM2.5 concentrations. We find that scaling FINN1 emissions by a 1 

factor of 1.5 prevents underestimation of AOD and surface PM2.5 in most tropical locations 2 

except Africa. GFAS1 requires emission scaling factor of 3.4 in most locations with the 3 

exception of Equatorial Asia where a scaling factor of 1.5 is adequate. Scaling GFED3 4 

emissions by a factor of 1.5 is sufficient in active deforestation regions of South America and 5 

Equatorial Asia, but a larger scaling factor is required elsewhere. The model with GFED3 6 

emissions poorly simulates observed seasonal variability of surface PM2.5 and AOD in regions 7 

where small fires dominate, providing independent evidence that GFED3 underestimates 8 

particulate emissions from small fires. Seasonal variability of both PM2.5 and AOD is better 9 

simulated by the model using FINN1 emissions. Detailed observations of aerosol properties 10 

over biomass burning regions are required to better constrain particulate emissions from fires. 11 

 12 

1. Introduction 13 

Open biomass burning is an important source of trace gases and particulate matter (PM) to the 14 

atmosphere (Crutzen and Andreae, 1990; Andreae and Merlet, 2001; Van der Werf et al., 2010). 15 

Biomass burning emissions can influence weather (Kolusu et al., 2015; Gonçalves et al., 2015; 16 

Tosca et al., 2015) and climate (Ramanathan et al., 2001; Tosca et al., 2013; Jacobson, 2014) 17 

directly, by scattering and absorbing solar radiation (Johnson et al., 2008; Sakaeda et al., 2011), 18 

and indirectly, by modifying cloud properties (Andreae et al., 2004; Feingold et al., 2005; Tosca 19 

et al., 2014). The influence of biomass burning aerosol on surface radiation can have subsequent 20 

impacts on the biosphere. For example, smoke plumes from biomass burning have been 21 

observed to increase plant productivity, through increasing the amount of diffuse radiation 22 

(Oliveira et al., 2007; Doughty et al., 2010), which has been shown to be a regionally important 23 

process over the Amazon (Rap et al., 2015). PM from biomass burning can substantially 24 

degrade regional air quality leading to adverse effects on human health (Emmanuel, 2000; 25 

Frankenberg et al., 2005; Johnston et al., 2012; Jacobson, 2014; Reddington et al., 2015).  A 26 

better understanding of particulate emissions is needed to improve predictions of the impacts 27 

of biomass burning on climate and air quality. Here we use a global aerosol model with tropical 28 

observations of surface PM and aerosol optical depth (AOD) to better understand the impact of 29 

tropical fires on atmospheric aerosol. 30 

The spatial and temporal distribution of fires depends on climate, vegetation and human 31 

activities. At the global scale, fire emissions are dominated by burning in the tropics (van der 32 
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Werf et al., 2010).  Anthropogenic activity can increase the occurrence of fires either directly, 1 

through deforestation fires and agricultural residue burning (van der Werf et al., 2010), or 2 

indirectly, through land-use/land-cover change that acts to increase the fire susceptibility of the 3 

land surface e.g. forest fragmentation in the Amazon (Cochrane and Laurance, 2002) and large-4 

scale drainage of peatlands in Indonesia (Field et al., 2009; Carlson et al., 2012). Human activity 5 

can also reduce the occurrence of fires, directly through fire suppression and indirectly through 6 

reducing and fragmenting fuel loads which limits fire spread (Bistinas et al., 2014).  Over the 7 

21st century, predicted changes in rainfall and temperature may increase forest water stress and 8 

subsequent fire occurrence in tropical forests (Cox et al., 2008; Golding and Betts, 2008; Malhi 9 

et al., 2009). The incidence of fire and resulting emissions are therefore sensitive both to 10 

changing climate and changes in land-use (Heald and Spracklen, 2015).  11 

High temporal and spatial variability in biomass burning emissions coupled with the difficulties 12 

involved in conducting measurements in remote tropical regions lead to major challenges for 13 

their quantification. In recent years, global estimates of biomass burning emission fluxes have 14 

mostly been obtained using satellite remote sensing (e.g., van der Werf et al., 2006, 2010; Reid 15 

et al., 2009; Wiedinmyer et al., 2011; Kaiser et al., 2012; Zhang et al., 2012; Ichoku and Ellison, 16 

2014), which provides long-term observations with relatively high spatial coverage. A range of 17 

satellite products and methods are utilised to derive fluxes of aerosol and gas-phase species 18 

emitted from fires. The most common methods use satellite-retrieved burned area, active fire 19 

counts, and/or fire radiative power (FRP) in combination with biogeochemical models (when 20 

using burned area) and/or species-specific emission factors obtained from laboratory 21 

experiments and field observations (e.g., Hoelzemann et al., 2004; Ito and Penner, 2004; 2005; 22 

van der Werf et al., 2006, 2010; Wiedinmyer et al., 2006; 2011; Schultz et al., 2008; Kaiser et 23 

al., 2012). Large uncertainties are associated with satellite observations of fires and with the 24 

various methods used to calculate emissions fluxes from the observational data (e.g. Ito and 25 

Penner, 2005; Reid et al., 2009; Konovalov et al., 2014) 26 

Previous studies using satellite-derived emissions and atmospheric models to investigate the 27 

properties and impacts of biomass burning aerosol have found a persistent underestimation of 28 

AOD observed in most tropical biomass burning regions (Matichuk et al., 2007; 2008; Chin et 29 

al., 2009; Petrenko et al., 2012; Kaiser et al., 2012; Ward et al., 2012; Tosca et al, 2013; Pereira 30 

et al., 2016). In general, modelling studies have required biomass burning emissions or 31 

concentrations of biomass burning aerosol to be increased by factors ranging from ~1.5 to ~6 32 

in order to match satellite and ground based observations of AOD (Matichuk et al., 2007; 2008; 33 
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Johnson et al., 2008; Sakaeda et al., 2011; Johnston et al., 2012; Kaiser et al., 2012; Tosca et 1 

al., 2013; Marlier et al., 2013). The underestimation of AOD observed in biomass burning 2 

regions has been attributed to a number of factors (see e.g., Kaiser et al., 2012) including: i) 3 

underestimation of biomass burning emission fluxes; ii) errors in modelling the atmospheric 4 

distribution and properties of biomass burning aerosol; and iii) uncertainties in the calculation 5 

of AOD.  6 

Uncertainties associated with the derivation of emission fluxes arise from errors present in the 7 

satellite-detection of active fires or burned area (e.g. obscuring of the surface by clouds and 8 

smoke, satellite spatial resolution and detection limits, and satellite overpass time), as well as 9 

uncertainties in emission factors and fuel consumption estimates. For example, Randerson et 10 

al. (2012) suggest that emission datasets based on relatively coarse burned area data (detection 11 

limit of ~100 Ha), result in an underestimation of global area burned by ~35%, although this 12 

error is not sufficient to fully explain the underestimation of AOD discussed above. Inadequate 13 

representation of biomass burning aerosol in models, including errors in the modelled aerosol 14 

size distribution, chemical composition, ageing processes, vertical and horizontal transport 15 

(including fire emission injection heights) and dry/wet removal from the atmosphere, could also 16 

contribute to an underestimation of AOD. The contribution of secondary organic aerosol (SOA) 17 

from the oxidation of volatile organic compounds in biomass burning plumes is also a large 18 

uncertainty (Jathar et al., 2014; Shrivastava et al., 2015). In the calculation of AOD itself, the 19 

uncertainties associated with the assumed optical properties of biomass burning aerosol e.g. 20 

their refractive indices, hygroscopicity (uptake of water onto the aerosol), and/or mixing state 21 

(i.e. treated as core/shell mixtures, internally/externally mixed etc.) may also contribute to this 22 

negative model bias in AOD. 23 

Using only AOD to evaluate estimates of biomass burning aerosol emissions can be misleading 24 

because AOD depends on many factors in addition to aerosol abundance. Scaling biomass 25 

burning emissions to match observed AOD could therefore lead to inaccurate model 26 

representation of biomass burning aerosol concentrations and, subsequently, errors in model 27 

predictions of the air quality and climate effects of biomass burning aerosol. Although there 28 

has been extensive use of AOD retrievals to evaluate model predictions of biomass burning 29 

aerosol, thus far there have been relatively few studies to use aerosol measurements to 30 

thoroughly evaluate these models (e.g., Liousse et al., 2010; Daskalakis et al., 2015).  31 

In this study, we evaluate a global aerosol microphysics model against observations of aerosol 32 

mass concentrations in addition to AOD. Our aim is to understand the discrepancy between 33 
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bottom-up and top-down estimates of particulate emissions from tropical fires. We compare 1 

three different biomass burning emission inventories in our global model, investigating regional 2 

differences between emissions and helping to constrain emissions for future modelling studies. 3 

 4 

2. Observations 5 

To evaluate the simulated distribution of PM at the surface, we use long-term in-situ 6 

measurements of PM2.5 (particulates with aerodynamic diameters < 2.5 µm) mass 7 

concentrations conducted at four ground stations in the Amazon region (Alta Floresta, Porto 8 

Velho, Santarem and Manaus). The location and observation period are detailed for each station 9 

in Table S1 in the supplementary material. Figure S1 shows the measured PM2.5 concentrations 10 

at each station between 2003 and 2011, demonstrating the data coverage. 11 

The PM2.5 measurements were made using gravimetric filter analysis and the measurement 12 

duration ranges from less than 1 day to more than 10 days. Particles were sampled under 13 

ambient relative humidity (RH) conditions (typically in the range of 80-100% RH). The 14 

sampled filters were weighed after 24 hours of equilibration at 50% RH and 20oC. Amazonian 15 

submicrometer aerosol particles have growth factors of ~1.1-1.3 at 90% RH (Zhou et al, 2002; 16 

Rissler et al., 2006) so we estimate that water represents roughly ~10-20% of the PM2.5 mass 17 

concentrations at measurement conditions. Uncertainties related to filter handling, sampling 18 

and analysis are estimated as 15% of particle mass. Further information on the measurements 19 

conducted at the Manaus and Porto Velho stations can be found in Artaxo et al. (2013). Our 20 

evaluation of PM2.5 is restricted to Amazonia since there are few long-term observations of 21 

PM2.5 in other tropical regions impacted by biomass burning. 22 

The measurement stations at Porto Velho and Alta Floresta are located in the arc of 23 

deforestation and are strongly impacted by fresh biomass burning emissions (Fig. 1). The 24 

Santarem and Manaus stations are located within forest reservations and are impacted by 25 

transported regional biomass burning emissions in the dry season. The Santarem station is 26 

located in Para, where the number of fire hotspots observed by satellites during the dry season 27 

are typically a factor of ~10 great than the number observed in Amazonas, where the Manaus 28 

station is located. Thus in the dry season, PM2.5 concentrations measured at Santarem are 29 

typically higher than those measured at Manaus.  30 

To evaluate the simulated distribution of AOD, we use observations of spectral columnar AOD 31 

measured by the Aerosol Robotic Network (AERONET) using ground-based Cimel sun 32 
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photometers (Holben et al., 1998). Specifically, we use Level 2.0 (quality assured) daily average 1 

AOD retrieved at 440 nm from 27 AERONET stations detailed in Table S1. We selected 2 

stations located within regions influenced by tropical biomass burning (Southeast and 3 

Equatorial Asia, Central and Southern Africa, and the Amazon region in South America) that 4 

have more than one year of relatively continuous data (automatic cloud screening leads to gaps 5 

in the dataset) between 2003 and 2011. We note that whilst the majority of cloud-contaminated 6 

AOD data is removed; comparisons with co-located Micro-Pulse Lidar Network observations 7 

indicate that some contamination from thin cirrus clouds may remain, possibly leading to small 8 

positive biases in observed AOD (Huang et al., 2011; Chew et al., 2011). 9 

To compare modelled and observed PM2.5 and AOD, daily-mean model output was linearly 10 

interpolated to the location (latitude, longitude and altitude above sea level) of each ground 11 

station. Model data that corresponded to gaps in the observation datasets were removed prior 12 

to calculating monthly-mean values used in the analysis. The modelled PM2.5 concentration is 13 

calculated for dry aerosol, omitting the contribution of water to the total mass, thus modelled 14 

PM2.5 concentrations may be underestimated compared to the observations, which include 15 

some contribution from the mass of water. 16 

 17 

3. Model description 18 

3.1 Global aerosol microphysics model 19 

The global distribution of aerosol was simulated using the 3-D Global Model of Aerosol 20 

Processes (GLOMAP; Spracklen et al., 2005a,b; Mann et al., 2010), which is an extension to 21 

the TOMCAT chemical transport model (Chipperfield, 2006). Simulations were run for the 22 

period 2003 to 2011. Large scale atmospheric transport and meteorology in TOMCAT are 23 

specified from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses, 24 

updated every 6 hours and linearly interpolated onto the model time-step. The model runs at a 25 

horizontal resolution of 2.8˚×2.8˚ with 31 vertical model levels between the surface and 10 hPa. 26 

The vertical resolution in the boundary layer ranges from ~60 m near the surface to ~400 m at 27 

~2 km above the surface. GLOMAP has been extensively evaluated in previous studies against 28 

aerosol observations (Mann et al., 2010, 2014; Spracklen et al., 2011a,b; Schmidt et al., 2012; 29 

Scott et al., 2014; Reddington et al., 2011, 2013, 2014). Below we describe the features of the 30 

model relevant for this study, please see Spracklen et al. (2005a) and Mann et al. (2010) for 31 

more detailed descriptions of the model.          32 
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GLOMAP simulates the mass and number of size resolved aerosol particles in the atmosphere, 1 

including the influence of aerosol microphysical processes on the particle size distribution. 2 

These processes include nucleation, coagulation, condensation, ageing, hygroscopic growth, 3 

cloud processing, dry deposition, and nucleation/impact scavenging. The aerosol particle size 4 

distribution is represented using a two-moment modal scheme with seven log-normal modes 5 

(Mann et al., 2010). Within each mode, aerosol particles are treated as internally mixed. 6 

GLOMAP treats the following aerosol species: black carbon (BC), particulate organic matter 7 

(POM), sulphate (SO4), sea spray and mineral dust. Biogenic SOA is formed in the model via 8 

the reaction of biogenic monoterpenes with O3, OH and NO3, which produces a gas-phase 9 

oxidation product that condenses with zero vapour pressure onto pre-existing aerosol 10 

(Spracklen et al., 2006, 2008). Concentrations of oxidants are specified using monthly-mean 3-11 

D fields at 6-hourly intervals from a TOMCAT simulation with detailed tropospheric chemistry 12 

(Arnold et al., 2005) linearly interpolated onto the model time-step. Monthly mean emissions 13 

of biogenic monoterpenes are taken from the Global Emissions InitiAtive (GEIA) database 14 

(Guenther et al., 1995). Size-resolved emissions of mineral dust are prescribed from daily-15 

varying emissions fluxes provided for AEROCOM (Dentener et al., 2006).  16 

For this study, anthropogenic emissions of sulphur dioxide (SO2), BC and organic carbon (OC) 17 

were specified using the MACCity emissions inventory (Lamarque et al., 2010; Granier et al., 18 

2011), which provides annually varying emissions for the period 1979-2010. For simulations 19 

in the year 2011 we used MACCity anthropogenic emissions from 2010. Biomass burning 20 

emissions of SO2, BC and OC were specified using three different satellite-derived emission 21 

datasets, which are described in detail in Section 3.3. We convert OC to POM using a prescribed 22 

POM:OC ratio of 1.4, which is at the lower end of the range prescribed in other global models 23 

(1.4 to 2.6) (Tsigaridis et al., 2014). The fire emissions were injected into the model over six 24 

ecosystem-dependent altitudes between the surface and 6 km recommended by Dentener et al. 25 

(2006). In the regions studied in this paper (South America, Africa and Southeast Asia), the fire 26 

emission injection heights range between the surface and an altitude of ~3 km asl. The largest 27 

fraction of the fire emissions, ranging from ~99% of emissions in Equatorial Asia to 88% in 28 

Indochina, are injected below 1 km asl (or at surface level if the altitude of the model level 29 

exceeds 1 km asl). Analysis of smoke plume heights has demonstrated that most smoke 30 

emissions from fires occur within the boundary layer (Val Martin et al., 2010). 31 

Primary carbonaceous aerosol particles are assumed to be non-volatile and are emitted into the 32 

model with a fixed log-normal size distribution, assuming a number median diameter of 150 33 
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nm for biomass burning emissions and 60 nm for fossil fuel emissions and modal width (σ) of 1 

1.59. Several previous studies have investigated the impacts of the uncertainty in the assumed 2 

emission size distribution on simulated aerosol and cloud condensation nuclei concentrations 3 

(Pierce et al., 2007; Pierce and Adams, 2009; Reddington et al., 2011; 2013; Lee et al., 2013) 4 

and aerosol radiative forcing (Bauer et al., 2010; Spracklen et al., 2011b; Carslaw et al., 2013). 5 

An assumption of a number median diameter of 150 nm for biomass burning emissions is 6 

reasonably consistent with measurements of the size distributions of fresh biomass burning 7 

aerosol from grassland (100 – 125 nm) and deforestation (100 – 130 nm) fires (Reid et al., 2005 8 

and references therein). Once emitted into the model, the components of primary carbonaceous 9 

aerosol (BC and OC) are assumed to mix instantaneously and are initially treated as non-10 

hygroscopic. Once these particles have accumulated 10 monolayers of soluble material 11 

(assumed to be SOA and H2SO4) through condensation, they are transferred directly to the 12 

corresponding soluble Aitken or accumulation mode to account for ageing. For a discussion of 13 

the treatment of organic aerosol within global aerosol models see Tsigaridis et al. (2014). 14 

3.2 Calculation of aerosol optical depth 15 

AOD was calculated from the simulated aerosol size distribution using Mie theory assuming 16 

spherical particles (Grainger et al., 2004) that are externally mixed within each log-normal 17 

mode. For this study, modelled AOD was calculated at a wavelength of 440 nm using 18 

component-specific refractive indices at the closest wavelength available (468 nm) from 19 

Bellouin et al. (2011). Water uptake plays a significant role in determining AOD, altering the 20 

refractive index and the size distribution of the aerosol. The water uptake for each soluble 21 

aerosol component is calculated on-line in the model according to Zdanovskii-Stokes-Robinson 22 

(ZSR) theory, which estimates the liquid water content as a function of solute molarity (Stokes 23 

and Robinson, 1966). For POM in the soluble modes, we assign a hygroscopicity consistent 24 

with a water uptake per mole at 65% of that of SO4 (Mann et al., 2010). This is an upper estimate 25 

of aerosol hygroscopicity. In section 4.1.3 we explore the sensitivity of simulated AOD to 26 

different assumptions on aerosol hygroscopicity as well as aerosol refractive indices and aerosol 27 

mixing state. The resulting daily-mean wet radii and refractive indices are used to calculate the 28 

daily-mean aerosol extinction. Using hourly-mean values of water uptake increased simulated 29 

daily AOD on average by less than 1%. 30 
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3.3 Biomass burning emissions 1 

In this study we compare three different satellite-derived datasets of biomass burning 2 

emissions: the Global Fire Emissions Database version 3 (GFED3; van der Werf et al., 2010), 3 

the National Centre for Atmospheric Research Fire Inventory version 1.0 (FINN1; Wiedinmyer 4 

et al., 2011) and the Global Fire Assimilation System version 1.0 (GFAS1; Kaiser et al., 2012). 5 

The key aspects of these emission inventories are summarised in Table 1. We complete 6 

GLOMAP simulations for the period 2003 to 2011 where all three emission datasets are 7 

available. 8 

GFED3 provides monthly-mean fire emissions of aerosol and gas-phase species from 1997 to 9 

2011 at 0.5°×0.5° resolution (van der Werf et al., 2010). GFED3 emissions are derived using 10 

the monthly-mean time series of global burned area estimates from Giglio et al. (2010). For 11 

1997-2000, the fire emissions are based on burned area derived from the TRMM Visible and 12 

Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data and 13 

estimates of plant productivity derived from observations from the Advanced Very High 14 

Resolution Radiometer (AVHRR). For November 2000 onwards, the fire emissions are based 15 

on estimates of burned area, active fire detections, and plant productivity from the MODerate 16 

resolution Imaging Spectroradiometer (MODIS) instrument on-board the Terra and Aqua 17 

satellites. To derive total carbon emissions the satellite datasets are combined with estimates of 18 

fuel loads and combustion completeness for each monthly time step from the Carnegie-Ames-19 

Stanford-Approach biogeochemical model. The carbon emission fluxes are converted to trace 20 

gas and aerosol emissions using species specific emission factors complied by Andreae and 21 

Merlet (2001). From 2003 onwards, GFED3 fire emissions are available on a daily time step, 22 

developed using detections of active fires from MODIS (Mu et al., 2011). Daily GFED3 fire 23 

emissions were implemented in GLOMAP for the period 2003-2011. 24 

FINN1 provides daily fire emissions of aerosol and gas-phase species from 2002 to 2012 on a 25 

1 km2 grid (Wiedinmyer et al., 2011). FINN1 fire emissions are based on detections of active 26 

fires (specifically their location and timing) from the MODIS Fire and Thermal Anomalies 27 

Product (Giglio et al., 2003). FINN1 also uses the MODIS Land Cover Type product to specify 28 

land cover classes and the MODIS Vegetation Continuous Fields product to identify the 29 

fractions of tree and non-tree vegetation, and bare ground. Specifically, the emitted mass (E) of 30 

a certain species (i) is calculated using the following equation (Seiler and Crutzen, 1980): 31 

𝐸𝑖 = 𝐴(𝑥, 𝑡) × 𝐵(𝑥) × 𝐹𝐵 × 𝑒𝑓𝑖       (1) 32 
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Where A is the area burned at time t and location x, B is the biomass loading at location x, FB 1 

is the fraction of that biomass that is burned and ef is the emission factor of species i. For each 2 

fire count the area burned, A, is assumed to be 0.75 km2 for fires detected on grassland and 3 

savannah land cover classes, and 1 km2 for those detected on all other land cover classes 4 

following Wiedinmyer et al. (2006) and Al-Saadi et al. (2008). Adjustments are made to the 5 

assumed burned area if the fire pixel extends partially over bare ground (reducing the burned 6 

area by the percentage of bare area assigned to that pixel). Estimates of biomass loading, B, are 7 

taken from Hoelzemann et al. (2004) and are assumed to be land cover specific. The fraction of 8 

biomass assumed to burn, FB, in each fire pixel is determined as a function of tree cover using 9 

relationships from Ito and Penner (2004) (see Wiedinmyer et al., 2006). Emission factors, ef, 10 

for each species are taken from Akagi et al. (2011). 11 

GFAS1 provides daily fire emissions of aerosol and gas-phase species from March 2000 to 12 

2013 at 0.5°×0.5° resolution (Kaiser et al., 2012). Like FINN1, GFAS1 uses the observed geo-13 

location of active fires from the MODIS instrument. However, GFAS1 also makes use of the 14 

NASA fire products (MOD14 and MYD14) that provide quantitative information on the 15 

radiative power of detected fires (Justice et al., 2002; Giglio, 2005). The FRP fields are 16 

corrected for observation gaps due to partial cloud-cover by assuming the same FRP areal 17 

density throughout the grid cell. Data assimilation is used to further fill observation gaps using 18 

information from earlier FRP observations (see Kaiser et al., 2012). Spurious signals from 19 

volcanoes, gas flares and other industrial activity are removed from the data. The FRP is 20 

converted to the combustion rate of dry matter using land-cover-specific conversion factors 21 

based on data from GFED3 (Heil et al., 2010; Kaiser et al., 2012). As for GFED3, species 22 

emission rates are calculated using updated emission factors based on Andreae and Merlet 23 

(2001). 24 

Table 1 gives the total annual amounts of BC and OC aerosol emitted from fires over the tropics 25 

for each emission inventory. The total BC and OC emitted from fires in the tropics make up 77-26 

84% and 66-77%, respectively of the global total emissions. FINN1 has the greatest tropical 27 

OC emission, with emissions being 47% greater than in GFAS1 and 30% greater than GFED3. 28 

Emission of BC is more consistent, with FINN1 BC emissions being 13% greater than GFAS1 29 

and 1% greater than GFED3. This results in different OC:BC emission ratios between the 30 

datasets with the mean ratio across the tropics varying from 10.0 in FINN1, 7.9 in GFED3 and 31 

7.1 in GFAS1.   32 
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Figure 1a-c shows the spatial distribution of annual total biomass burning emissions of OC from 1 

each fire inventory averaged over the period of 2003 to 2011. There are similarities in the 2 

general spatial distributions of fire emissions, with all three inventories showing maximum 3 

emissions over the tropical savannah and humid subtropical regions of Africa, the arc of 4 

deforestation in Amazonia, coastal regions of Indonesia (Sumatra and Kalimantan), northern 5 

Australia, and parts of Indochina (particularly Cambodia, Laos and Myanmar). However, Figs. 6 

1d-f show that there are strong regional differences between the different emission inventories. 7 

Differences between FINN1 and GFAS1 (Fig. 1e) and FINN1 and GFED3 (Fig. 1f) are more 8 

spatially organised than differences between GFAS1 and GFED3 (Fig. 1d), which are more 9 

spatially heterogeneous.  10 

Over Africa, GFED3 gives higher OC emissions in northern tropical savannah and southern 11 

humid subtropical regions, with GFAS1 and FINN1 giving higher emissions than GFED3 at 12 

the boundaries of these regions and over central Africa. Over Australia, GFED3 gives the 13 

highest OC emissions estimates over the tropical savannah region of northern Australia, with 14 

GFAS1 giving the highest emissions in the dryer grassland and desert regions further south.  15 

Over South America the picture is more complex. In general, FINN1 and GFAS1 emission 16 

estimates are higher in northern and eastern Brazil than GFED3, with GFAS1 giving the highest 17 

emissions over eastern areas and FINN1 over northern Brazil. FINN1 emissions are generally 18 

higher than GFAS1 and GFED3 over the central and southern Amazon region (particularly over 19 

the state of Mato Grosso), Peru and generally over northern South America. GFED3 emissions 20 

are higher than FINN1 and GFAS1 in northern parts of Bolivia and the northern part of the state 21 

of Rondônia in the arc of deforestation. 22 

Over South Asia, Indochina and Equatorial Asia, FINN1 gives higher emissions than both 23 

GFED3 and GFAS, particularly over Bangladesh, Myanmar and Laos, with the exception of 24 

the coastal peatland regions of Sumatra and Kalimantan where GFAS1 and GFED3 give higher 25 

emissions than FINN1. The differences in emissions over Indonesia may be explained by a 26 

potentially improved representation of tropical peat fire emissions in GFED3 and GFAS1 27 

relative to FINN1 (Andela et al., 2013).  28 

 29 
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4. Results 1 

4.1 Overview of all comparisons 2 

4.1.1 Particulate matter concentrations in the Amazon region 3 

Figure 2 shows simulated versus observed multi-annual monthly mean PM2.5 concentrations 4 

at each of the four ground stations in the Amazon region (see Fig. 1 for site locations). To 5 

quantify the agreement between model and observations, we use the Pearson correlation 6 

coefficient (r) and normalised mean bias factor (NMBF) as defined by Yu et al. (2006): 7 

𝑁𝑀𝐵𝐹 =  
(∑ 𝑀𝑖 − ∑ 𝑂𝑖)

|∑ 𝑀𝑖 − ∑ 𝑂𝑖|
[exp (|ln

∑ 𝑀𝑖

∑ 𝑂𝑖
|) − 1] 8 

where M and O represent the multi-annual monthly mean model and observed values, 9 

respectively, for each month i. A positive NMBF indicates the model overestimates the 10 

observations by a factor of NMBF+1. A negative NMBF indicates the model underestimates 11 

the observations by a factor of 1–NMBF. 12 

Figure 2 demonstrates the important contribution of biomass burning to PM2.5 concentrations 13 

across the region: there is a strong improvement in the agreement between model and 14 

observations when biomass burning emissions are included in the model (Fig. 2b-d; NMBF =-15 

0.62 to -0.25, r2=0.77-0.83) relative to the simulation without fire emissions (Fig. 2a; NMBF= 16 

-1.85, r2=0.44).  17 

The overall bias between model and observations is smallest with FINN1 emissions (NMBF= 18 

-0.25) compared to GFED3 (NMBF= -0.49) or GFAS1 (NMBF= -0.62), with simulated 19 

monthly mean concentrations mostly within a factor of ~2 of the observations. The correlation 20 

between model and observations across all sites is relatively similar between the three emission 21 

datasets, with a slightly stronger correlation with GFED3 emissions (r2=0.83) compared to 22 

FINN1 (r2=0.77) and GFAS1 (r2=0.79). 23 

The NMBF and correlation between model and observations are shown for the individual 24 

stations in Fig. 3a. Correlations are calculated between simulated and observed multi-annual 25 

monthly mean concentrations to evaluate the ability of the model to simulate seasonal 26 

variability in aerosol. In general, the model with fire emissions overestimates observed PM2.5 27 

concentrations at the forest site near Manaus (mean NMBF=0.57) but underestimates observed 28 

PM2.5 concentrations at the sites that are more strongly impacted by biomass burning (Porto 29 
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Velho, Alta Floresta and Santarem; mean NMBF= -0.60). Figure 3 demonstrates that the 1 

relatively small bias with the FINN1 emissions in Fig. 2 is partly due to an overestimation of 2 

PM2.5 concentrations at Manaus (NMBF=0.98), but also due to smaller model biases at the 3 

three other sites (-0.51 to -0.11) compared to GFED3 (-0.76 to -0.48) and GFAS1 (-1.26 to -4 

0.39). 5 

Figure 4 shows the multi-annual average seasonal cycle in observed and simulated PM2.5 6 

concentrations at the four measurement sites (the full time-series at each site is shown in Fig. 7 

S1 in the supplementary material). The model with biomass burning emissions simulates the 8 

observed seasonal variability in PM2.5 concentrations over the Amazon region, characterised 9 

by high concentrations in the local dry season (between ~June to ~December depending on the 10 

site) and relatively low concentrations in the wet season. At Porto Velho, Santarem and Alta 11 

Floresta, the model underestimates observed PM2.5 concentrations during the dry season and 12 

has relatively good agreement during the wet season. This suggests that the negative model bias 13 

in the dry season is largely due to uncertainty in the biomass burning emissions rather than 14 

anthropogenic emissions, biogenic SOA or microphysical processes in the model. The model 15 

overestimates PM2.5 concentrations observed at Manaus all year round, but particularly during 16 

the dry season. This positive model bias may be due to several factors including a possible 17 

overestimation of biogenic SOA over tropical forests and/or the model resolution, which is not 18 

fully capturing the gradient in PM2.5 concentrations between the arc of deforestation and the 19 

relatively undisturbed forest near Manaus.  20 

In previous work we carried out a detailed model sensitivity analysis that accounted for the 21 

uncertainty in the emissions (including biomass burning) and in the model processes such as 22 

wet removal and dry deposition of aerosol (Lee et al., 2013). This analysis confirms that the 23 

parametric uncertainty in modelled PM2.5 concentrations at these four stations is dominated by 24 

the uncertainty in the biomass burning emissions flux in the dry season and by the yield of 25 

biogenic SOA in the wet season, rather than the removal processes in the model.  26 

Figure 4 demonstrates the differences in the spatial and temporal variability between the three 27 

fire emission datasets, with different emissions capturing the observations better in different 28 

months and locations. The model with GFED3 emissions captures the average seasonal 29 

variability in PM2.5 observed at Alta Floresta (Fig. 4; r2=0.69) and Porto Velho (r2=0.94) 30 

reasonably well. In particular, better simulating the peak in dry season concentrations at Porto 31 

Velho than both FINN1 (r2=0.72) and GFAS1 (r2=0.85) emissions. However, PM2.5 32 

concentrations observed towards the end of the biomass burning season at Alta Floresta 33 



14 
 

(September – November) and Porto Velho (October – November) are not well captured by 1 

GFED3 emissions, leading to larger biases at these sites (NMBF= -0.73 and -0.48, respectively) 2 

than with FINN1 emissions (-0.51 and -0.41, respectively). At Santarem, the model with 3 

GFED3 emissions underestimates observed PM2.5 concentrations throughout the dry season, 4 

leading to a relatively large model bias and poor correlation with the observations (NMBF= -5 

0.76, r2=0.39). Agreement with the observations at this site is improved with either FINN1 6 

(NMBF= -0.11, r2= 0.76) or GFAS1 (NMBF= -0.39, r2= 0.75) emissions (discussed further in 7 

Sect. 4.2). 8 

If we consider the inter-annual variability in simulated and observed PM2.5 concentrations 9 

(Figure S2), we find that the results are consistent with the evaluation of the simulated seasonal 10 

cycle. The smallest bias between model and observations is with the FINN1 emissions (NMBF= 11 

-0.22) compared to GFED3 (NMBF= -0.36) or GFAS1 (NMBF= -0.48). One notable point is 12 

that the model with GFED3 emissions simulates the highest PM2.5 concentrations for the 2010 13 

drought year, relative to the model with GFAS1 or FINN1 emissions, leading to improved 14 

agreement with observations at Porto Velho (see Figs. 3a, 4a and S2). 15 

In summary, the model captures the seasonal cycle and inter-annual variability of observed 16 

PM2.5 reasonably well at biomass burning influenced sites in the Amazon. However, the model 17 

underestimates observed concentrations in the dry season suggesting that the biomass burning 18 

aerosol emission fluxes in all three emission inventories (GFED3, FINN1, GFAS1) may be 19 

underestimated. We explore this further in Section 4.3. 20 

4.1.2 Aerosol optical depth in tropical biomass burning regions 21 

Figure 5 shows the simulated versus observed multi-annual monthly mean AOD at 440 nm at 22 

each of the AERONET sites displayed in Fig. 1 (simulated and observed annual means are 23 

compared in Fig. S3). Agreement between model and observed AOD is improved substantially 24 

when biomass burning emissions are included in the model (Fig 5; NMBF= -0.40 to -0.18, 25 

r2=0.62-0.69) compared to the simulation without fire emissions (NMBF= -0.69, r2=0.22). As 26 

for PM2.5, the bias in AOD across all sites is smallest with the FINN1 emissions (NMBF= -27 

0.18) compared to GFED3 (NMBF= -0.34) or GFAS1 (NMBF= -0.40). The model with FINN1 28 

emissions also shows slightly improved correlation with the observations (r2=0.69) relative to 29 

GFED3 (r2=0.67) and GFAS1 (r2=0.62). 30 

Figure 6a shows the NMBF and correlation between simulated and observed multi-annual 31 

monthly mean AOD at the individual AERONET sites, grouped by region. In South America, 32 
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the bias in modelled AOD is smallest with the FINN1 emissions (mean NMBF= -0.47) 1 

compared to GFED3 (-0.69) and GFAS1 (-0.89) emissions, which is consistent with 2 

comparisons between modelled and observed PM2.5 in Amazonia (Sect. 4.1.1). In Indochina, 3 

the model with FINN1 emissions also gives the smallest bias (mean NMBF= -0.02), relative to 4 

GFED3 (-0.21) and GFAS1 (-0.23). In Africa, the model bias is smallest with GFED3 emissions 5 

(mean NMBF= -0.78) compared to GFAS1 (-0.90) and FINN1 (-0.96). In Equatorial Asia, the 6 

model bias is small and does not vary substantially between the different emission datasets 7 

(FINN: 0.02, GFAS: -0.01, GFED: -0.02). In terms of temporal agreement between model and 8 

observations, the correlation is noticeably stronger with GFED3 (mean r2 =0.52) in Africa and 9 

with FINN1 (mean r2=0.75) in Indochina, relative to the other emission datasets. 10 

In general, the model with fire emissions captures the seasonal variability in observed AOD 11 

best in South America (mean r2=0.90) and captures the magnitude of observed AOD best in 12 

Southeast Asia (Equatorial Asia: mean NMBF= -0.00; Indochina: mean NMBF= -0.14). The 13 

agreement between model and observations in Africa is relatively poor, with substantial 14 

underestimation of observed AOD (mean NMBF= -0.88). The negative model bias in Africa is 15 

unlikely to be solely due to an underestimation of biomass burning aerosol and is likely 16 

complicated by a contribution from dust (Pandithurai et al., 2001; Sayer et al., 2014; Cesnulyte 17 

et al., 2014; Queface et al., 2011). There is better agreement between the model and observed 18 

AOD at Ascension Island, which observes aged biomass burning aerosol from the African 19 

continent (Sayer et al., 2014), with all three emission inventories (mean NMBF= -0.38, 20 

r2=0.84). This suggests that the model is able to capture outflow of biomass burning emissions 21 

from Africa.  22 

At the South American sites located in regions of high biomass burning activity associated with 23 

deforestation fires (Abracos Hill, Rio Branco, Ji Parana SE and Alta Floresta), there is a small 24 

improvement in the correlation with observed AOD with FINN1 (r2=0.96-0.98) and GFAS1 25 

(r2=0.94-0.97) emissions relative to GFED3 (r2=0.79-0.88). At these sites, AOD observed at 26 

the tail end of the biomass burning season (~October-November) is better captured by GFAS1 27 

and FINN1 than GFED3, leading to the improved correlation relative to GFED3. The model 28 

with GFED3 is generally better able to capture observed AOD at the peak of the biomass 29 

burning season (~August-September) than GFAS1 and FINN, which is largely due to relatively 30 

high GFED3 emission estimates for the drought years 2007 and 2010 (see Fig. S1). These 31 

results are consistent with comparisons with observed PM2.5 concentrations at Porto Velho and 32 

Alta Floresta (Sect. 4.1.1). 33 
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At the AERONET sites located in Equatorial Asia and the Philippines (Singapore, Bandung, 1 

Manila Observatory, ND Marbel Univ) an improved performance of either the GFAS1 or 2 

GFED3 emission inventories may be expected over FINN1 (Andela et al., 2013) due to their 3 

improved representation of tropical peatlands (in Indonesia and Malaysian Borneo) in their 4 

biome maps (van der Werf et al., 2010). The agreement between AOD observed at Bandung, 5 

Indonesia and the model is marginally improved with GFED3 (NMBF= -0.14, r2=0.52) or 6 

GFAS1 (NMBF= -0.15, r2=0.47) relative to FINN1 (NMBF= -0.18, r2=0.34). However, at the 7 

other sites we find no strong indication of an improved performance with GFED3 (NMBF= -8 

0.06 to 0.13, r2=0.15-0.24) or GFAS1 (NMBF= -0.03 to 0.14, r2=0.13-0.56) relative to FINN1 9 

(NMBF= 0.04 to 0.17, r2=0.16-0.42). At most of these sites the model does not simulate a strong 10 

contribution of biomass burning to AOD, likely due to their urban locations, which may explain 11 

why we do not see a substantial difference in the performances of the three emission datasets. 12 

Long-term ground-based retrievals of AOD located outside the influence of urban environments 13 

are lacking in Equatorial Asia.   14 

At the African AERONET sites, observed AODs are generally better captured by the model 15 

with GFED3 emissions (mean NMBF= -0.78, r2=0.52) than with FINN1 (mean NMBF= -0.96, 16 

r2=0.35) or GFAS1 (mean NMBF= -0.90, r2=0.41) emissions. Andela et al. (2013) report that 17 

the GFED3 emissions flux of carbon monoxide (CO) is higher than GFAS1 or FINN1 for humid 18 

savannah regions, where the burned area product may observe more cloud covered fires than 19 

active-fire detection. This feature may explain the improved simulation of AOD with GFED3 20 

over Africa. Andela et al. (2013) also report that the FINN1 emission estimates of CO are lower 21 

than both GFED3 and GFAS1 in global savannah regions, with the largest spatial deviation 22 

found in humid savannahs where fire size is large. This may suggest that the assumed fire size 23 

in FINN1 for savannah fires (0.75 km2) could be too small for humid savannah fires in Africa, 24 

contributing to an underestimation of AOD in this region. 25 

4.1.3 Overview of PM2.5 and AOD evaluation 26 

In the previous sections we have evaluated the model against ground based observations of 27 

PM2.5 and AOD. In general, we find that the model is negatively biased against observations 28 

in regions strongly influenced by biomass burning. However, the model bias in surface PM2.5 29 

concentrations is generally smaller than for AOD over South America, where observations of 30 

both quantities are available (NMBFPM2.5= -1.85 to -0.25, NMBFAOD= -2.38 to -0.40; see Figs. 31 

2 and S4). If we compare average model biases (with fires) in multi-annual monthly mean 32 
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PM2.5 and AOD (for 2003-2004) at locations where AERONET stations are in close proximity 1 

to the PM2.5 measurement stations, we find a larger model bias in AOD at Santarem/Belterra 2 

(NMBFPM2.5 = -0.61, NMBFAOD = -1.15), but the reverse at Alta Floresta (NMBFPM2.5 = -0.64, 3 

NMBFAOD = -0.42).  4 

These results suggest that although the negative model bias in PM2.5 and AOD may be partly 5 

due to an underestimation of biomass burning aerosol emissions (due to uncertainties associated 6 

with fire detection and subsequent calculations of emission fluxes), there are likely to be other 7 

factors contributing to the model discrepancy in AOD that do not affect modelled surface 8 

PM2.5 concentrations. These factors include uncertainties in the calculation of AOD that are 9 

largely associated with assumptions made about the aerosol optical properties (assumed 10 

refractive indices), mixing state (external/internal mixing) and hygroscopic growth of the 11 

aerosol. We investigate the sensitivity of simulated AOD to these assumptions below. 12 

As described in Sect. 3.2, to calculate AOD at 440 nm we use component-specific refractive 13 

indices from Bellouin et al. (2011) for a wavelength of 468 nm (1.500 – 0.000i for POM and 14 

1.750 – 0.452i for BC). To test the sensitivity of AOD to the choice of refractive indices, we 15 

applied the refractive indices tested by Matichuk et al. (2007) for smoke aerosol (1.54 – 0.025i 16 

calculated by Haywood et al. (2003) for young smoke aerosol over southern Africa; 1.51 – 17 

0.024i and 1.52 – 0.019i retrieved by an AERONET station, Ndola in Zambia, located close to 18 

smoke sources) to the BC and POM components in our model., We find that the modelled AOD 19 

is relatively insensitive to the choice of complex refractive index within the range of values 20 

tested here (altering the magnitude of AOD by less than 5%), which is in agreement with 21 

Matichuk et al. (2007). Although the range of refractive indices tested is relatively narrow 22 

(Matichuk et al., 2007), this result suggests that uncertainty in the assumed refractive indices is 23 

unlikely to explain the discrepancy in simulated AOD. 24 

We also find that the AOD is fairly insensitive to the mixing state assumption, with limited 25 

difference in simulated AOD between assuming optical properties derived from an external 26 

mixture of aerosol species and an internal (volumetrically-averaged) mixture. Figure S5 shows 27 

the simulated versus observed multi-annual monthly mean AOD at AERONET sites when 28 

assuming external and internal mixing and indicates that the difference is less than 5%, with 29 

internal mixing causing slightly higher AOD at the AERONET sites. However, we note that 30 

the internal mixing assumption used in this study does not take into account the lensing effects 31 

of coating BC with organic aerosol, which has been shown to interact with the aerosol 32 

absorption in a non-linear way (Saleh et al., 2015). 33 
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As described in Sect. 3.2, the hygroscopic growth of the aerosol is calculated in the model using 1 

the ZSR scheme. To test the sensitivity of AOD to aerosol hygroscopic growth, we instead use 2 

the κ-Köhler water uptake scheme, based upon the Köhler equation with a single hygroscopic 3 

parameter, κ, defining the water uptake for different chemical species (Petters and Kreidenweis, 4 

2007) (see description of method in Sect. S1 of the supplementary material). For the SO4 and 5 

sea spray components in the model we used the mean values of κ for ammonium sulphate and 6 

sodium chloride for subsaturated air masses (0.53 and 1.12, respectively) from Petters and 7 

Kreidenweis (2007). BC is considered entirely hydrophobic in this model when using this 8 

scheme. A wide range of κ values have been reported for organic aerosol (~0.01-0.25; Petters 9 

and Kreidenweis, 2007) and biomass burning particles specifically (0.02-0.8; DeMott et al., 10 

2009; Petters et al., 2009). Engelhart et al. (2012) reported κ values of between 0.06 and 0.6 for 11 

primary biomass burning aerosol in a smog chamber (fuels representative of North American 12 

wildfires), with photochemical ageing reducing the range of κ values to 0.08 to 0.3, with 13 

biomass burning SOA having κ values of 0.11. We assume a κ value for POM (0.1) based upon 14 

aerosol samples, largely composed of SOA, collected at the Manaus ground station (TT34) 15 

during the 2008 Amazonian Aerosol Characterization Experiment (AMAZE-08) (Gunthe et al., 16 

2009). We test the sensitivity of simulated AOD to different κ values for both SO4 and POM. 17 

Figure 7 shows a comparison between AOD simulated using ZSR and the κ-Köhler scheme. 18 

Using the κ-Köhler scheme and κ defined above, the water uptake is reduced relative to the 19 

ZSR scheme, reducing the simulated AOD on average by a factor of 1.6 (range 1.1 to 2.3) at 20 

AERONET sites (see Figs. 7a and 7b). This large reduction relative to ZSR is in part from the 21 

assumption that the SO4
2- component behaves as ammonium sulphate rather than the more 22 

hygroscopic sulphuric acid, and the reduced water uptake for POM. To explore the sensitivity 23 

to assumed κ values we increased κ values separately for SO4 and POM. Assuming a higher κ 24 

for sulfate (1.19 as for sulphuric acid, Fig, 7c) results in simulated AOD being a factor 1.25 25 

lower than ZSR. Assuming a higher κ for both sulfate (1.19) and for POM (0.2) results in 26 

simulated AOD being a factor of 1.18 lower. Our results highlight the large uncertainty present 27 

in the simulated AOD due to aerosol hygroscopicity. AOD simulated with ZSR (assuming 28 

sulfuric acid and high water uptake for organics) appears to be an upper estimate for water 29 

uptake. This result is confirmed by comparing simulated AOD and mass extinction efficiencies 30 

for the two water uptake cases against observations and values from other global aerosol models 31 

(see Sect. S2 and Table S2). 32 
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Calculated AOD is also sensitive to errors in relative humidity (Myhre et al., 2009), which are 1 

here taken from ECMWF re-analysis. Since water uptake is not a linear function of RH, 2 

calculated AOD will also be sensitive to spatial resolution of the aerosol and RH fields. Coarse 3 

spatial resolution (here 2.8°) will not capture fine scale variability in RH that will influence 4 

measurements from AERONET stations. A higher resolution model would be required to test 5 

how sensitive the simulated AOD is to the spatial resolution of the aerosol and RH fields and 6 

whether or not increasing the resolution improves the agreement with observed AOD (and 7 

reduces the discrepancy between the model performance in AOD and PM2.5). Bian et al. (2009) 8 

showed that increasing the resolution of the RH field from 2°x2.5° to 1°x1.25° can increase 9 

simulated AOD by ~10% in biomass burning regions. This suggests the coarse resolution of 10 

our global models may partly explain the underestimation of AOD and the larger discrepancies 11 

with observed AOD compared to PM2.5. 12 

Errors may also exist in the model representation of biomass burning aerosol, for example in 13 

the modelled particle size distribution, altering simulated optical properties of the aerosol and 14 

thus calculated AOD. In addition, since AOD is a column-integrated quantity, an 15 

underestimation of AOD may be due to an underestimation of aerosol concentrations aloft since 16 

we have shown that the model agrees relatively well with PM2.5 concentrations observed at the 17 

surface. 18 

Further uncertainties in the model representation of biomass burning aerosol are associated with 19 

the conversion of OC to organic matter (OM), which would affect both PM2.5 concentrations 20 

and AOD predicted by the model. Increasing the assumed OM:OC ratio would increase the 21 

total simulated mass of biomass burning aerosol. In our model we assume a relatively low 22 

OM:OC ratio of 1.4 compared to previous studies on biomass burning aerosol. Kaiser et al. 23 

(2012) use a value of 1.5, but note this ratio is low compared to values of around 2.2 proposed 24 

for aged pollution and biomass burning aerosols by Turpin and Lim (2001), Pang et al. (2006) 25 

and Chen and Yu (2007) and a value of 2.6 used by Myhre et al. (2003) for biomass burning 26 

aerosol in southern Africa. These larger OM:OC ratios could account for in-plume (sub-grid) 27 

atmospheric oxidation and subsequent SOA formation observed in some biomass burning 28 

plumes (Vakkari et al., 2014). In future work we need to include the formation of semi-volatile 29 

SOA in biomass burning plumes that has been shown to be important (Konovalov et al., 2015; 30 

Shrivastava et al., 2015). 31 
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4.2 Small-scale fires 1 

The GFED3 fire emissions are known to underestimate contributions from small-scale fires 2 

(smaller than ~100 ha) that are below the detection limit of the global burned area product 3 

derived from MODIS (Randerson et al., 2012). However, many of these small fires generate 4 

thermal anomalies that can be detected by satellites (Randerson et al., 2012). This means that 5 

fire inventories using active fire detections to derive emissions (FINN1 and GFAS1) will better 6 

capture these small fires (Kaiser et al., 2012). Kaiser et al. (2012) demonstrate that GFAS1 7 

includes emissions from small fires that are omitted in GFED3. Some of the differences 8 

between the spatial patterns of emissions seen in Fig. 1 are likely due to missing small fires in 9 

GFED3. 10 

This result is corroborated by our comparisons between modelled and observed PM2.5 11 

concentrations at Santarem in the north region of Brazil (Sect. 4.1.1), where the poor agreement 12 

between the observations and model with GFED3 emissions (NMBF= -0.76, r2=0.39) is 13 

substantially improved by using either of the active-fire based emission inventories (FINN: 14 

NMBF= -0.11, r2= 0.76; or GFAS: NMBF= -0.39, r2= 0.75). Randerson et al. (2012) show that 15 

in the region surrounding the Santarem station there is a particularly high small fire fraction of 16 

total burned area, which explains why the GFED3 emissions do not capture the observations in 17 

this region of Brazil. This result is consistent with comparisons between modelled and observed 18 

AOD at the nearby AERONET station, Belterra. At this station, the model better captures the 19 

observed AOD with either FINN1 (NMBF= -0.85, r2=0.84) or GFAS1 (NMBF= -1.02, r2=0.81) 20 

emissions than with GFED3 emissions (NMBF= -1.58, r2=0.29).  21 

The improved representation of small fire emissions in FINN1 and GFAS1 may also explain 22 

the improved agreement between modelled and observed PM2.5 (Sect. 4.1.1) and AOD (Sect. 23 

4.1.2) towards the end of the burning season (~October-November) in Amazonia. Kaiser et al. 24 

(2012) report that GFAS1 exhibits slightly longer fire seasons in South America than GFED3. 25 

Fires occurring at the tail end of the biomass burning season may be smaller in size and thus 26 

better captured by using an active-fire based emission inventory (GFAS1 and FINN1 27 

emissions). While at the peak of the burning season in Amazonia, when fires are potentially 28 

larger, the comparisons in Sects. 4.1.1 and 4.1.2 suggest that GFED3 emissions capture the 29 

observations better than FINN1 or GFAS1. 30 

In Indochina, there is improved agreement between simulated and observed AOD with FINN1 31 

emissions (Fig. 6a; NMBF= -0.26 to 0.19, r2=0.14-0.98) relative to both GFED3 (NMBF= -32 
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0.54 to -0.08, r2=0.11-0.84) and GFAS1 (NMBF= -0.51 to -0.08, r2=0.03-0.83). Figure 8 1 

compares the model with different emissions against observations at the nine AERONET sites 2 

in Indochina. FINN1 emissions lead to an improved correlation with observations at all sites 3 

and a reduced root mean square model error at six sites compared to GFED3 and GFAS1. Figure 4 

9 compares the multi-annual average seasonal cycle in AOD at four sites in Thailand. The 5 

model with GFED3 and GFAS1 emissions underestimates AOD observed during the dry season 6 

(~January – May), whereas the model with FINN1 emissions captures the magnitude of dry 7 

season AOD reasonably well. 8 

AERONET sites in Indochina (located in north and central Thailand and Vietnam) are 9 

influenced by local agricultural burning (Li et al., 2013; Lin et al., 2013; Sayer et al., 2014) of 10 

sugarcane and rice crop residues (Gadde et al., 2009; Sornpoon et al., 2014). Agricultural fires 11 

are typically smaller than other fire types (e.g., deforestation, grassland/savannah and forest), 12 

with burned areas of ~0.3 to ~16 ha reported for individual agricultural fires in the US (McCarty 13 

et al., 2009) and Africa (Eva and Lambin, 1998). The prevalence of small fires in Indochina 14 

may explain why FINN1 emissions result in better prediction of AOD compared to GFED3 in 15 

this region.  16 

We do not find an improved prediction of AOD with GFAS1 compared to GFED3 in this 17 

region, although this would be expected since GFAS1 better captures emissions from small 18 

fires than GFED3 (Kaiser et al., 2012). However, the GFAS1 FRP is converted to dry matter 19 

burned using GFED3 data (Heil et al., 2010; Kaiser et al., 2012), which may lead to an 20 

underestimation of small fire emissions in some regions. Conversely, FINN1 assumes a 21 

relatively large burned area of 1 km2 (100 ha) for individual agricultural fires and therefore may 22 

overestimate emission fluxes in agricultural fire regions. However, since many small fires may 23 

be undetected as fire hotspots by MODIS (due to factors such as the small size of the fires, 24 

orbital gaps, persistent cloud cover and the timing of satellite overpass i.e. the potential to miss 25 

fires events), by oversizing the area of individual burns, the FINN1 emissions may compensate 26 

for missing fire detections in this region (B. Yokelson, personal communication, 2014). 27 

4.3 Scaling biomass burning emissions 28 

Previous model simulations, summarised in Table 2, underestimate AOD in regions impacted 29 

by biomass burning. To improve simulation of AOD, these studies have scaled particulate 30 

emissions from biomass burning (or aerosol concentrations) by a factor of 1.02 to 6. We have 31 

found that our model with three different fire emission datasets also underestimates both PM2.5 32 
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and AOD across tropical regions (although to a lesser extent in Southeast Asia). In this section 1 

we explore the impact of scaling biomass burning emissions on simulated AOD and PM2.5 2 

concentrations. We performed two sensitivity simulations with each emission inventory where 3 

we perturbed the biomass burning emission fluxes of BC and POM upwards by factors of 1.5 4 

and 3.4 (as recommended for GFED3 and GFAS1 by Kaiser et al. (2012)). 5 

Figures 3b and 3c show the NMBF and correlation between simulated and observed multi-6 

annual monthly mean PM2.5 concentrations for the two simulations with scaled biomass 7 

burning emissions. The outcome of scaling the emissions by a factor of 1.5 depends on the site 8 

location. At the sites strongly impacted by biomass burning, the model bias in PM2.5 is reduced 9 

(FINNx1.5: -0.16 to 0.08; GFEDx1.5: -0.67 to -0.15; GFASx1.5: -0.89 to -0.22) with little 10 

change in the correlation. At the preserved forest site near Manaus, the positive model bias is 11 

increased (FINNx1.5: 1.33; GFASx1.5: 0.69; GFEDx1.5: 0.66). The outcome of scaling the 12 

emissions by a factor of 3.4 depends on both the site location and the emission dataset. The 13 

model bias is increased at all sites with FINN1 emissions (0.63-2.72), with mixed results for 14 

GFED3 (-0.39 to 1.18) and GFAS1 (-0.16 to 1.25) emissions. Any scaling of the emissions 15 

leads to an overestimation of PM2.5 at Manaus with all three emission datasets. 16 

In summary, a scaling factor of 1.5 applied to the FINN1 emissions is adequate for the model 17 

to capture surface PM2.5 concentrations observed in regions of high fire activity in the Amazon 18 

region. In contrast, the GFAS1 emissions require a larger scaling factor (closer to 3.4) for the 19 

model to capture surface PM2.5 observed at these sites.  20 

The results of scaling the GFED3 emissions are more complex. Scaling GFED3 emissions by 21 

a factor of 1.5, the model bias becomes relatively small at Alta Floresta (-0.36) and Porto Velho 22 

(-0.15) but remains large and negative at Santarem (-0.67). Scaling the emissions by a factor of 23 

3.4 reduces the model bias at Santarem (-0.39), but leads to an overestimation of PM2.5 at the 24 

other three sites (0.33-1.18). At Santarem, scaling GFED3 emissions by a factor 3.4 only 25 

marginally improves agreement with the observations; the correlation remains below 0.5 and 26 

model bias remains negative (despite a positive model bias at the other sites). This is because 27 

GFED3 emission fluxes in the peak biomass burning season months in the region of Santarem 28 

(November and December) are very low or non-existent, likely due to an omission of small 29 

fires (Sect. 4.2), thus there are very few emissions to scale. This result suggests that even by 30 

scaling GFED3 emissions by a large factor it is still possible to underestimate PM from fires in 31 

regions influenced by emissions from small fires. 32 
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Figures 6a and 6b show the NMBF and correlation between simulated and observed multi-1 

annual monthly mean AOD with scaled biomass burning emissions. For the model with GFAS1 2 

emissions, scaling by a factor of 3.4 reduces the model bias at all but one site in Indochina, 3 

Africa and South America (relative to the simulations without scaling or with a scaling factor 4 

of 1.5), resulting in the best overall match to observed AOD in these regions. In Equatorial Asia 5 

the scaling required to capture observed AOD depends on the site location (two sites require no 6 

scaling and two sites require a scaling factor of either 1.5 or 3.4).  7 

For GFED3 emissions, scaling by a factor of 3.4 results in the best overall match to observed 8 

AOD in Africa and Indochina, but leads to an increased model bias at half the sites in South 9 

America. However, even with a scaling factor of 3.4, the model with GFED3 emissions 10 

continues to underestimate observed AOD in north Brazil (Belterra; NMBF= -0.94), indicating 11 

that a large scaling factor does not fully compensate for the likely omission of small fire 12 

emissions in this inventory (Sect. 4.2). The overall result of scaling GFED3 emissions in 13 

Equatorial Asia is the same for GFAS1 emissions. 14 

Scaling FINN1 emissions by a factor of 3.4 improves the agreement with observed AOD in 15 

Africa (at all sites), but generally leads to overestimation and increased model bias at sites in 16 

South America and Southeast Asia. Scaling FINN1 emissions by a factor of 1.5 is adequate to 17 

capture observed AOD at the majority of sites in South America (mean NMBF= -0.16), with 18 

no scaling required for the majority of sites in Indochina (mean NMBF= 0.02) and Equatorial 19 

Asia (mean NMBF= 0.02).  20 

We note that even with a scaling factor of 3.4 applied to the biomass burning emissions, the 21 

model underestimates observed AOD at the African AERONET sites with all three fire 22 

emission inventories (mean NMBF= -0.31). This may indicate that a larger scaling factor is 23 

required to capture observations in this region. However, using a too high scaling factor is likely 24 

to compensate for model error e.g. too efficient removal of aerosol or underestimation of dust 25 

emissions, and therefore overestimate the contribution of biomass burning to AOD. The 26 

potential for compensation errors with emission scaling is relevant for all three regions. For 27 

example, in South America the model bias in AOD in the wet season (~December to May) is 28 

increased at four or more sites when the FINN1, GFED3, and GFAS1 emissions are scaled by 29 

a factor of 3.4, which may be an indication of compensation errors. Compensation errors are 30 

also likely to be occurring when emissions are scaled by a factor of 3.4 at sites in urban locations 31 

(see Table S1 for location classifications), where a global model is unable to capture sub-grid-32 

scale urban emissions. 33 
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5. Conclusions 1 

Particulate emissions from open biomass burning (landscape fires) are very uncertain. 2 

Numerous previous studies underestimate AOD in regions impacted by fires and scale 3 

particulate emissions by up to a factor of 6 to match observed AOD (see Table 2). We have 4 

used the GLOMAP global aerosol model evaluated against surface PM2.5 observations and 5 

AERONET AOD to better understand particulate emissions from tropical biomass burning.  6 

Simulated AOD is sensitive to a range of variables including i) vertical profile of aerosol, ii) 7 

aerosol optical properties, chemical composition, size distribution and hygroscopic growth, iii) 8 

relative humidity; and iv) model spatial resolution. In particular, we found that simulated AOD 9 

is very sensitive to the calculation of hygroscopic growth, with simulated AOD varying by a 10 

factor of ~1.6 between our upper and lower estimates of water uptake.  Here we assume an 11 

upper estimate of aerosol hygroscopic growth resulting in an upper estimate of AOD, reducing 12 

any emission scaling required to match observed AOD. 13 

We compared three different satellite-derived fire emission datasets (GFED3, GFAS1 and 14 

FINN1). Total pan-tropical particulate emission (BC+OC) varied by less than 30% between the 15 

different datasets. Regional differences were much larger (often exceeding 100%) leading to 16 

important differences in aerosol concentrations simulated by the global model. 17 

We found that GLOMAP underestimated both PM2.5 and AOD in regions strongly impacted 18 

by biomass burning, with all emission datasets. The largest underestimation of AOD occurred 19 

across Africa, which may be partly due to a large contribution of dust. The smallest 20 

underestimation of AOD occurred over Equatorial Asia, where the contribution of fire 21 

emissions to simulated AOD was also smallest. Overall, the smallest bias between model and 22 

both PM2.5 and AOD observations was found using FINN1 emissions. The model with FINN1 23 

emissions also best simulated the seasonal variability of AOD over Indochina, potentially 24 

because of the dominance of smaller fires in this region that are better captured by the FINN1 25 

dataset.  26 

In South America where we have coincident surface PM2.5 and AOD observations, 27 

underestimation of AOD is greater than underestimation of surface PM2.5, even though we 28 

assume upper estimates for aerosol water uptake. We suggest this discrepancy could be caused 29 

by errors in the calculation of AOD (see above). We caution against using observations of AOD 30 

to scale emissions before these issues are fully understood.    31 



25 
 

For each emission dataset we ran two additional simulations where we scaled emissions by 1 

factors of 1.5 and 3.4, within the range of previous studies (Table 2). We find that the scaling 2 

that results in the best agreement with observations is regionally variable and depends on the 3 

emission dataset used. With FINN1 emissions, PM2.5 concentrations and AOD in South 4 

America are well simulated when emissions are increased by 50%, whereas AOD in Africa is 5 

more consistent with a factor 3.4 scaling. In Southeast Asia, observed AOD is well simulated 6 

without any scaling applied; scaling FINN1 emissions by 50% generally leads to overestimation 7 

in this region. With GFAS1 emissions, PM2.5 concentrations in South America and AOD in 8 

South America, Africa and Indochina are best simulated when emissions are scaled by a factor 9 

3.4. With GFED3 emissions, observations of PM2.5 in north Brazil and AOD in Africa, 10 

Indochina and some regions of South America are also better simulated with a factor 3.4 11 

scaling; for PM2.5 concentrations and AOD observed in active deforestation regions of South 12 

America, a 50% scaling is sufficient. In Equatorial Asia, the results of scaling both GFAS1 and 13 

GFED3 emissions are mixed and depend on site location; overall observed AOD is captured 14 

best either without scaling or with a scaling factor of 1.5. 15 

A factor 1.5 scaling is within the uncertainty of emission datasets and is substantially smaller 16 

than the emission scaling applied by many other studies (see Table 2). We note that a factor 1.5 17 

scaling is within the uncertainty of assumed OM to OC ratios; we assume an OM:OC ratio of 18 

1.4 which is at the low end of other studies (Tsigaridis et al., 2014). We have treated biomass 19 

burning emissions as primary and non-volatile. Formation of semi-volatile SOA in biomass 20 

burning plumes may be important (Konovalov et al., 2015; Shrivastava et al., 2015) and needs 21 

to be explored in future work.  22 

Problems with the detection of small fires are an acknowledged issue for GFED3, which relies 23 

on detections of area burned to derive emissions (Randerson et al., 2012). Over regions that are 24 

likely dominated by small fires the model with GFED3 emissions substantially

underestimates both PM2.5 (north Brazil) and AOD (north Brazil and Thailand). The model 26 

with FINN1 emissions better simulates aerosol in these regions providing independent evidence 27 

that this dataset better represents emissions from small fires. We note that the most recent 28 

version of GFED emissions (GFED4) includes an estimate of emissions from small fires (Giglio 29 

et al., 2013). Future work should evaluate these emissions against aerosol observations to assess 30 

the representation of small fire emissions in the specific regions highlighted here. 31 

 32 
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An important finding of our study is the greater underestimation of AOD compared to surface 1 

PM2.5 in many tropical locations impacted by fires. We identified a number of potential causes 2 

for this discrepancy and note that there is the potential for compensating errors across these 3 

different uncertainties. AOD is sensitive to a range of variables meaning it offers a relatively 4 

poor constraint on the aerosol burden. A better top-down constraint of particulate emissions 5 

from tropical fires will require analysis of co-located aerosol optical, microphysical and 6 

chemical measurements (Brito et al., 2014; Andreae et al., 2015).   7 
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Table 1. Summary of biomass burning emission inventories used in this study: the Global Fire 1 

Emissions Database version 3 (GFED3), the National Centre for Atmospheric Research Fire Inventory 2 

version 1.0 (FINN1) and the Global Fire Assimilation System version 1.0 (GFAS1). For each emission 3 

inventory, the total amounts of black carbon (BC) and organic carbon (OC) aerosol emitted from fires 4 

over the tropical region (defined as 23.5°N to 23.5°S) are given for the 2003 to 2011 average. Numbers 5 

in parenthesis give the ratio to GFED3 emissions. 6 

 GFED3 GFAS1 FINN1 

Method 
MODIS burned area & 

biogeochemical model 

MODIS thermal 

anomaly product & 

fire radiative power 

MODIS thermal 

anomaly product & 

assumed burned area 

Spatial resolution 0.5° x 0.5° 0.5° x 0.5° 1 km x 1 km 

Temporal resolution 

Monthly (1997 – 

2011) 

Daily (2003 – 2011) 

Daily (2001 – 2015) Daily (2002 – 2013) 

Amount of OC emitted 

over tropics (Tg a-1) 
13.412 

11.731 

(0.87) 

17.282 

(1.29) 

Amount of BC emitted 

over tropics (Tg a-1) 
1.705 

1.532 

(0.90) 

1.724 

(1.01) 

OC:BC ratio over 

tropics 
7.87 7.66 10.02 

Reference 
Van der Werf et al., 

2010 
Kaiser et al., 2012 

Wiedinmyer et al., 

2011 

  7 
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Table 2. Summary of scaling factors applied in previous modelling studies to biomass burning emissions 1 

or modelled concentrations of biomass burning aerosol to match observations. Region abbreviations 2 

used in the table are defined in van der Werf et al. (2006): Northern Hemisphere South America 3 

(NHSA), Southern Hemisphere South America (SHSA), Northern Hemisphere Africa (NHAF), 4 

Southern Hemisphere Africa (SHAF), Southeast Asia including the Philippines (SEAS) and Equatorial 5 

Asia (EQAS). See van der Werf et al. (2006; 2010) for discussion of differences between GFED versions 6 

1, 2 and 3; on average GFED3 are 13% lower than GFED2 van der Werf et al. (2010), with total GFED2 7 

emissions lower than GFED1 in Central and Southern America and Southern Africa (van der Werf et 8 

al., 2006). 9 

 10 

Reference Biomass burning emission 

inventory 

Region of 

focus 

Details of scaling applied 

Myhre et al., 

2003 

Biomass burning BC emissions 

from the Global Emissions 

Inventory Activity (GEIA), 

based on Cooke and Wilson 

(1996); OC emissions from 

Liousse et al. (1996). 

Southern 

Africa 

Used a relatively high OM/OC ratio of 

2.6 and increased the modelled aerosol 

mass by 20% to account for mass 

fraction of inorganic components 

observed to be of 17% of the total 

mass. 

Matichuk et 

al., 2007 

GFED1 (van der Werf et al., 

2003) 

Southern 

Africa 

Multiple sensitivity studies were 

performed with the model including 

simulations with halved and doubled 

fire emissions.. 

Matichuk et 

al., 2008 

GFED2 (van der Werf et al., 

2006) 

South 

America 

Smoke source function was scaled up 

by a factor of 6.. 

Johnson et 

al., 2008 

Biomass burning emissions 

following Dentener et al. 

(2006): GFED1 (van der Werf 

et al., 2004) for year 2000 or a 

5-year (1997–2001) average 

(not specified) 

West 

Africa 

Increased mass concentration of 

biomass burning AOD by a factor of 

2.4.. 

Chin et al., 

2009 

Calculated using dry mass 

burned dataset from GFED2 

(van der Werf et al., 2006) 

Global No scaling applied, but used emission 

factors of BC (1 g kg−1) and OC (8 g 

kg−1) that are 40–100% higher than 

commonly used values (Andreae and 

Merlet, 2001). 

Sakaeda et 

al., 2011 

Aerosol fields taken from 

MATCH chemical transport 

model 

Southern 

Africa 

OC and BC masses were increased by 

a factor of 2 over 10°N–30°S and 

20°W–50°E. 

Johnston et 

al., 2012 

GFED2 (van der Werf et al., 

2006) 

Global Scalar adjustments made for 14 

continental scale regions: NHSA 

(2.48-2.7), SHSA (1.9-3.3), NHAF 

(1.02-1.08), SHSA (1.68-2.01), SEAS 

(2.43-3.08), EQAS (2.3-2.72). Scaling 

factors were applied to modelled 

surface fire PM2.5 to match satellite 

observations of AOD (non-fire aerosol 

was also scaled). 

Kaiser et al., 

2012 

GFED3 and GFASv1.0 Global Model was biased low in South 

America and Africa by factors of 4.1 

and 3.0. Recommended a global 
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enhancement of 3.4 for PM emissions 

from fires. 

Ward et al., 

2012 

Calculated from Kloster et al. 

(2010, 2012) CLM3 

simulations of global fire area 

burned; using emission factors 

from Andreae and Merlet 

(2001) and updates from 

Hoelzemann et al. (2004). 

Compared against GFED2. 

Global Scalar adjustments were made for 

continental scale regions following 

Johnston et al. (2012) with slight 

modifications: SHSA (2.0), NHAF 

(1.0), SHAF (3.0), SEAS (1.5), EQAS 

(3.0). Scaling factor directly applied to 

model fire emissions. 

Tosca et al., 

2013 

GFED3  Global Biomass burning BC and OC 

emissions scaled by factor of 2 

globally with additional regional 

scaling factors applied: South America 

(2.4), Africa (2.1), Southeast Asia 

(1.67). 

Marlier et 

al., 2013 

GFED3 Southeast 

Asia 

Total aerosol burden scaled by 1.02-

1.96 (depending on model), with 

additional scaling factors of 1.36-2.26 

applied to fire aerosol.. 

  1 
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 1 

Figure 1. (a)-(c) Total annual emissions of organic carbon (OC) in Gg(C) a-1 averaged over the period 2 

of January 2003 to December 2011 from (a) GFED3, (b) GFAS1 and (c) FINN1. Black circles mark the 3 

locations of the four aerosol measurement stations and black crosses mark the locations of the 27 4 

AERONET stations (see Table S1). (d)-(f) Absolute difference in 2003-2011 mean annual OC emissions 5 

between GFAS1, GFED3 and FINN1 (d) GFAS1 minus GFED3 (e) GFAS1 minus FINN1 (f) GFED3 6 

minus FINN1. The FINN1 OC emissions (with a 1 km x 1 km horizontal resolution) were aggregated 7 

onto a grid of 0.5° x 0.5° degree resolution to compare with GFED3 and GFAS1. 8 
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 1 

Figure 2. Simulated versus observed multi-annual monthly mean PM2.5 concentrations at each ground 2 

station in the Amazon region for the model (a) without biomass burning emissions, and with (b) GFED3, 3 

(c) GFAS1 and (d) FINN1 emissions. Multi-annual monthly mean concentrations were calculated by 4 

averaging over all years of data available between January 2003 and December 2011 to obtain an 5 

average seasonal cycle at each station. The normalised mean bias factor (NMBF; Yu et al., 2006) and 6 

Pearson’s correlation (r2) between modelled and observed PM2.5 concentrations are shown in the top 7 

left corner. 8 

  9 
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 1 

Figure 3. Normalised mean bias factor (NMBF; Yu et al., 2006) and Pearson’s correlation coefficient 2 

(r2) between modelled and observed multi-annual monthly-mean PM2.5 concentrations at each of the 3 

four ground stations in Amazonia. Results are shown for four model simulations: without fires (noBBA), 4 

and with each of the three biomass burning emissions inventories: GFED3, GFAS1, FINN1. (a) No 5 

scaling applied to the fire emissions; (b) particulate (BC/OC) fire emissions scaled up globally by a 6 

factor 1.5; (c) particulate (BC/OC) fire emissions scaled up globally by a factor of 3.4. The dashed lines 7 

indicate NMBFs of -1 and 1, which equate to an underestimation and overestimation, respectively, of a 8 

factor of 2. The dotted line indicates an r2 value of 0.5.  9 
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 1 

Figure 4. Average seasonal cycles in observed (black) and simulated (colour) multi-annual monthly 2 

mean PM2.5 concentrations at four ground stations in the Amazon region: (a) Porto Velho (2009-2011); 3 

(b) Manaus (2008-2011); (c) Santarem (2003-2006); and (d) Alta Floresta (2003-2004). Multi-annual 4 

monthly mean concentrations were calculated by averaging over all years of available observation data 5 

between January 2003 and December 2011. The modelled results are shown for four simulations: 6 

without biomass burning (purple), with GFED3 emissions (red), with GFAS1 emissions (blue) and with 7 

FINN1 emissions (green). The error bars show the standard deviation of the mean of the observed and 8 

simulated values, which represents the inter-annual and intra-monthly variability in the daily mean 9 

PM2.5 concentrations.  10 
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 1 

Figure 5. Simulated versus observed multi-annual monthly mean AOD at 440 nm at each AERONET 2 

station. The model is shown (a) without biomass burning emissions, and with (b) GFED3, (c) GFAS1 3 

and (d) FINN1 emissions. As for Fig. 2, the multi-annual monthly mean AODs were calculated using 4 

all years of daily mean data available between January 2003 and December 2011 to obtain an average 5 

seasonal cycle at each station. AERONET stations located in South America are shown in blue; stations 6 

in Southeast Asia are shown in green (stations in Equatorial Asia and Indochina in light and dark green, 7 

respectively); and stations in Africa are shown in orange. The normalised mean bias factor (NMBF) and 8 

Pearson’s correlation (r2) between modelled and observed PM2.5 concentrations are shown in the top 9 

left corner.  10 
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 1 

Figure 6. Box and whisker plots of the normalised mean bias factor (NMBF) and Pearson’s correlation 2 

coefficient (r2) between modelled and observed multi-annual monthly-mean AOD at 440 nm for 3 

AERONET stations located in South America (8 sites), Equatorial Asia (4 sites), Africa (6 sites) and 4 

Indochina (9 sites). Results are shown for four model simulations: without fires (white), and with each 5 

of the three biomass burning emissions inventories: GFED3 (red), GFAS1 (blue), FINN1 (green). (a) 6 

No scaling applied to the fire emissions; (b) particulate (BC/OC) fire emissions scaled up globally by a 7 

factor 1.5; (c) particulate (BC/OC) fire emissions scaled up globally by a factor of 3.4.  The dashed lines 8 

indicate NMBFs of -1 and 1, which equate to an underestimation and overestimation, respectively, of a 9 

factor of 2. The dotted line indicates an r2 value of 0.5. 10 
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 1 

Figure 7. Simulated versus observed multi-annual monthly mean AOD at 440 nm at each AERONET 2 

station to demonstrate the sensitivity of simulated AOD to the calculation of aerosol water uptake. The 3 

model is with FINN1 fire emissions and simulated AOD is calculated assuming internal mixing with (a) 4 

ZSR water uptake scheme (identical to Fig. 5d); (b) κ-Köhler water uptake scheme: κ SO4=0.53, κ 5 

POM=0.1; (c) κ-Köhler water uptake scheme: κ SO4=1.19, κ POM=0.1; and (d) κ-Köhler water uptake 6 

scheme: κ SO4=1.19, κ POM=0.2. AERONET stations located in South America are shown in blue; 7 

stations in Southeast Asia are shown in green (stations in Equatorial Asia and Indochina in light and 8 

dark green, respectively); and stations in Africa are shown in orange. The normalised mean bias factor 9 

(NMBF) and Pearson’s correlation (r2) between modelled and observed PM2.5 concentrations are shown 10 

in the top left corner.  11 

 12 
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 1 

Figure 8. Taylor diagrams (Taylor, 2001) comparing monthly mean modelled and observed AOD (440 2 

nm) at 9 AERONET stations located in Indochina. The modelled and observed monthly mean AODs 3 

were calculated for every month with available daily mean data between January 2003 and December 4 

2011. The observations are represented by a point on the x-axis at unit distance from the y-axis. The 5 

results are shown for four simulations: without biomass burning (purple), and with GFED3 (red), 6 

GFAS1 (blue) and FINN1 (green) fire emissions. The model standard deviation and root mean square 7 

error (RMSE) are normalised by dividing by the corresponding observed standard deviation. The 8 

normalised standard deviation and RMSE values are marked by the grey-solid and grey-dashed lines 9 

respectively. The correlation coefficient (r) values are marked by the grey dotted lines.  10 
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 1 

Figure 9. Average seasonal cycles in observed (black) and simulated (colour) monthly mean AOD at 2 

440 nm at four AERONET stations in the Thailand: (a) Chiang Mai Met. Station; (b) Mukdahan; (c) 3 

Phimai; and (d) Ubon Ratchathani. Multi-annual monthly mean concentrations were calculated by 4 

averaging over all years of available daily mean observation data between January 2003 and December 5 

2011. The modelled results are shown for four simulations: without biomass burning (purple), and with 6 

GFED3 (red), GFAS1 (blue) and FINN1 (green) fire emissions. The error bars show the standard 7 

deviation of the mean of the observations. 8 


