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Abstract.	
  Currently 52% of the world’s population resides in urban areas and as a consequence, approximately 70% 
of fossil fuel emissions of CO2 arise from cities. This fact in combination with large uncertainties associated with 10	
  
quantifying urban emissions due to lack of appropriate measurements makes it crucial to obtain new measurements 
useful to identify and quantify urban emissions. This is required, for example, for the assessment of emission 
mitigation strategies and their effectiveness. Here we investigate the potential of a satellite mission like Carbon 
Monitoring Satellite (CarbonSat), proposed to the European Space Agency (ESA) − to retrieve the city emissions 
globally, taking into account a realistic description of the expected retrieval errors, the spatiotemporal distribution of 15	
  
CO2 fluxes, and atmospheric transport. To achieve this we use (i) a high-resolution modeling framework consisting 
of the Weather Research Forecasting model with a greenhouse gas module (WRF-GHG), which is used to simulate 
the atmospheric observations of column averaged CO2 dry air mole fractions (XCO2), and (ii) a Bayesian inversion 
method to derive anthropogenic CO2 emissions and their errors from the CarbonSat XCO2 observations. We focus 
our analysis on Berlin in Germany using CarbonSat’s cloud-free overpasses for one reference year. The dense (wide 20	
  
swath) CarbonSat simulated observations with high-spatial resolution (approx. 2 km x 2 km) permits one to map the 
city CO2 emission plume with a peak enhancement of typically 0.8-1.35 ppm relative to the background. By 
performing a Bayesian inversion, it is shown that the random error (RE) of the retrieved Berlin CO2 emission for a 
single overpass is typically less than 8 to 10 MtCO2 yr-1 (about 15 to 20% of the total city emission). The range of 
systematic errors (SE) of the retrieved fluxes due to various sources of error (measurement, modeling, and 25	
  
inventories) is also quantified. Depending on the assumptions made, the SE is less than about 6 to 10 MtCO2 yr-1 for 
most cases. We find that in particular systematic modeling-related errors can be quite high during the summer 
months due to substantial XCO2 variations caused by biogenic CO2 fluxes at and around the target region. When 
making the extreme worst-case assumption that biospheric XCO2 variations cannot be modeled at all (which is 
overly pessimistic), the SE of the retrieved emission is found to be larger than 10 MtCO2 yr-1 for about half of the 30	
  
sufficiently cloud-free overpasses, and for some of the overpasses we found that SE may even be on the order of 
magnitude of the anthropogenic emission. This indicates that biogenic XCO2 variations cannot be neglected but 
must be considered during forward and/or inverse modeling. Overall, we conclude that CarbonSat is well suited to 
obtain city-scale CO2 emissions as needed to enhance our current understanding of anthropogenic carbon fluxes and 
that CarbonSat or CarbonSat-like satellites should be an important component of a future global carbon emission 35	
  
monitoring system. 

1. Introduction 

One of the main objectives of any climate policy initiative is to limit atmospheric greenhouse gas emissions 
resulting from anthropogenic activity to a level that minimizes adverse modification of the climate system. An 
essential component in attaining this goal is the accurate quantification of emissions at national and state levels in 40	
  
order to independently verify the implemented climate change mitigation and adaptation measures. In the context of 
CO2, cities are significant contributors of emissions, giving rise to approximately 70 % of the total anthropogenic 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2015-960, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 17 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



	
   2	
  

emissions (Canadell et al., 2010). However, there exist large uncertainties associated with quantifying urban 
emissions. This makes it difficult to assess the efficacy of any emission management schemes at urban scales.  

While mitigation efforts are being taken in some cities around the globe, they lack objective, observation-based 
methods to verify their outcomes (Pacala et al., 2010). Some observation-based attempts have been made with a 
focus on deriving city-scale emissions in a variety of urban environments (Bergeron and Strachan, 2011; Levin et 5	
  
al., 2011; Mays et al., 2009; Wang et al., 2010; Zimnoch et al., 2010). However, none of these approaches is able to 
account for CO2 emissions from urban areas with the accuracy required for verification, nor are they easily 
adaptable to other locations. As a result our current emission estimates are purely based on inventories (bottom-up 
approach), which have large uncertainties due to many unresolved processes related to spatial and temporal 
heterogeneity of emission fluxes and local transport phenomena (Amstel et al., 1999; Gregg et al., 2008; Marland, 10	
  
2008; White et al., 2011). Recent revelations about the inaccuracy of the knowledge of motor vehicle emissions 
emphasize this point.  

As uncertainties, otherwise known as the sum of systematic and stochastic error, usually increase with increasing 
spatial resolution, emission estimates are not often available at a scale relevant for urban emissions (Oda and 
Maksyutov, 2011). This is problematic in terms of judging the effectiveness of emission reduction schemes or 15	
  
designing new management strategies for emission trading. Furthermore, uncertainties in emission estimates impose 
important limitations on regional carbon budget estimations derived by most atmospheric inverse frameworks (top-
down approach), in which anthropogenic emission fluxes are assumed to be well-known (Corbin et al., 2010; 
Göckede et al., 2010; Gurney et al., 2002, 2005). 

The key limitations to constrain emission fluxes at urban scales via inverse modeling are the unavailability of direct, 20	
  
continuous and high frequency atmospheric CO2 measurements representing CO2 enhancement in urban domains, as 
well as the inability of current inverse modeling systems to capture the fine-scale variability caused by the 
atmospheric transport and emission processes at a scale relevant for urban emissions (e.g. Bréon et al., 2015). An 
assessment study based on ground-based measurements indicated potential drawbacks of using CO2 surface 
measurements for emission verification, and strongly recommended the use of sufficiently accurate column 25	
  
averaged CO2 dry air mole fractions, denoted as XCO2, measured from the ground and/or space as the best approach 
to detect and quantify emissions and emission trends from urban regions (McKain et al., 2012). An effective 
observation-based scheme is able to disentangle anthropogenic emissions from CO2 fluxes originating from 
biosphere-atmosphere exchange.  

Despite its importance, none of the existing satellites has been specifically designed and focused on observing XCO2 30	
  
at urban scales. However the first attempt to detect and quantify anthropogenic urban area CO2 emissions from 
space was initiated with the launch of SCIAMACHY onboard ENVISAT (2002-2012) (Burrows et al., 1995; 
Bovensmann et al., 1999), which had a variety of atmospheric trace gas targets and applications. This has been 
followed by TANSO onboard GOSAT (launched in 2009) (Kuze et al., 2009)  

Analysis of SCIAMACHY XCO2 retrievals revealed that regionally elevated atmospheric XCO2 over highly 35	
  
populated regions correlates well with anthropogenic CO2 emissions in terms of relative emission increase per year 
(Schneising et al., 2008, 2013). However, these analyses are limited to large and intense emission regions owing to 
the coarse spatial resolution (~ 60 km x 30 km) of the SCIAMACHY measurements. Reuter et al. (2014) also 
presents results related to anthropogenic CO2 emissions for large areas using an assessment of SCIAMACHY XCO2 
and NO2 retrievals.  40	
  

By using GOSAT observations, Kort et al. (2013) reported significant enhancements of XCO2 over megacities 
(3.2±1.5 ppm for Los Angeles and 2.4±1.2 ppm for Mumbai), and argued that these enhancements can be exploited 
to track anthropogenic emission trends over megacities. However, constraining fossil fuel CO2 emissions by using 
GOSAT XCO2 retrievals is limited by the sparseness of the GOSAT data (Keppel-Aleks et al., 2013). Another 
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satellite mission, OCO-2, has been launched in 2014, with the aim of measuring global XCO2 with the precision, 
resolution, and coverage needed to characterize CO2 sources and sinks at regional scales (≥ 1000km) (Crisp et al., 
2004). In additional to these, there have been some recent attempts to utilize ground-based measurements of XCO2 
to constrain emissions from cities such as Los Angeles (Wong et al., 2015) and Berlin (Hase et al., 2015). 

In an effort to overcome these limitations and to achieve XCO2 observations with the precision and accuracy, 5	
  
spatiotemporal coverage, resolution, and sensitivity to near-surface concentration variations that are required to 
derive emissions at urban scales, a satellite mission has been proposed to the European Space Agency (ESA): 
Carbon Monitoring Satellite (CarbonSat) (Bovensmann et al., 2010). CarbonSat aims to measure XCO2 and XCH4 at 
a high spatial resolution (approx. 2 km × 2 km), with good spatial coverage via continuous imaging across a wide 
swath. The goal swath width is 500 km, but a smaller swath width will likely be implemented to limit cost (ESA, 10	
  
2015).  

In this study, we investigated two potential measurement swath widths: 500 km (goal requirement) and 240 km 
(breakthrough requirement). As a result of its relatively wide swath and high spatial resolution, CarbonSat is 
designed to disentangle natural and anthropogenic sources of CO2 and CH4 from localized sources such as cities, 
power plants, methane seeps, and landfills, by utilizing its unique greenhouse gas imaging capability achieved by its 15	
  
high spatiotemporal coverage and resolution. More details on the mission and the current instrument concept are 
given in Buchwitz et al. (2013a) and in ESA, 2015. 

The goal of the present study is to assess an instrument like CarbonSat's capability to quantify emission patterns of 
moderate to strong localized sources, taking into account a realistic description of the retrieval errors as given in 
Buchwitz et al. (2013a), the spatiotemporal distributions of CO2 emissions, and atmospheric transport. Here we 20	
  
present results focusing on Berlin in Germany, being a large city, but not a megacity. According to the classification 
of Globalization and World Cities (GaWC) for the year 2012 (http://www.lboro.ac.uk/gawc/gawcworlds.html), 
Berlin is categorized as a “Beta level” city that provides a moderate economic contribution to the world economy. 
Berlin is located in the northeast of Germany (see Fig. 1) and is relatively isolated, i.e. it is not a part of a large 
agglomeration of several cities. This permits us to clearly identify the anthropogenic CO2 emission plume of Berlin 25	
  
from a single CarbonSat “XCO2 image”. We use a high-resolution modeling framework, comprising the Weather 
Research Forecasting (WRF) model combined with a greenhouse gas module (WRF-GHG, Beck et al., 2011) and 
the Vegetation Photosynthesis Respiration Model (VPRM) to simulate CO2 mixing ratios for a domain centered on 
Berlin. An analysis is carried out for CarbonSat’s cloud-free overpasses for one reference year by applying a simple 
Bayesian inversion scheme to estimate the emission budget with associated uncertainty. A preliminary analysis 30	
  
using a least-squares-fitting algorithm was reported in Buchwitz et al. (2013b), but here we present more detailed 
analysis, which differs from the previous study as follows: the present study (1) uses high-resolution model 
simulations for each cloud-free CarbonSat overpass over Berlin for the simulated year 2008, (2) prescribes the 
updated emission inventory including hourly variations, (3)  utilizes a Bayesian inversion approach, and (4) 
examines more scenarios to extend the error analysis study. 35	
  

2. WRF-GHG inverse modeling system 

A high-resolution inverse modeling system, utilizing atmospheric XCO2 measurements at high spatial and temporal 
resolution, is used to retrieve the CO2 emissions at an urban scale. It comprises two components: the WRF-GHG 
model linking atmospheric transport and the fluxes to realistically represent the distribution of atmospheric CO2 
mixing ratios, and a Bayesian inversion technique to optimize the fluxes. One primary objective is to quantify the 40	
  
uncertainties in the retrieved anthropogenic CO2 emission fluxes resulting from typical and reasonable estimates of 
the systematic and random error of the XCO2 measurements for an instrument like CarbonSat for the spatial 
resolution of 2km x 2km and the uncertainty in a priori knowledge of the surface flux of CO2. For this, we used 
WRF-GHG forward simulations as the “true” representation of the atmospheric CO2 concentrations and the 
associated fluxes as the “true fluxes” to be retrieved.  Hence the deviation in the retrieved fluxes (via inverse 45	
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optimization) relative to the “true fluxes” is caused by the CarbonSat simulated observation errors and the modeling 
errors (including the use of different emission inventories) depending on different scenarios analyzed. Each 
component of the inverse modeling system is described in the following.  

2.1. WRF-GHG forward model simulations 

The present study uses the WRF-GHG (version WRFv3.4) forward simulations of CO2 concentrations at high spatial 5	
  
(10 km × 10 km) and temporal (1 hour) resolutions for all of CarbonSat’s overpasses over Berlin in the year 2008. 
The WRF-GHG modeling system has already been used in several regional studies and has shown remarkable 
performance in capturing fine-scale spatial variability of CO2 mixing ratios (e.g. Ahmadov et al., 2007, 2009; Pillai 
et al., 2010, 2011, 2012). The model domain describes a region (spatial extent of ~ 900 km × 900 km) centered over 
Berlin (Fig.1) and the simulations use 41 vertical levels (the thickness of the lowest layer is about 18 m). 10	
  
Simulations are conducted separately for each day for a period of 30 hours, including a meteorological spin-up time 
of 6 hours starting at 18 UTC the previous day. 

The initial and lateral boundary conditions of the meteorological variables, the sea surface temperature (SST) and 
the soil initialization fields for each run are prescribed from the European Centre for Medium-Range Weather 
Forecasts (ECMWF) model analysis data (http://www.ecmwf.int) with a spatial resolution of about 25 km and 6-15	
  
hourly temporal intervals. As initial atmospheric CO2 fields and the lateral boundary concentrations, simulations use 
global CO2 concentration simulations by the atmospheric Tracer transport Model 3 (TM3) with a spatial resolution 
of 4° × 5°, 19 vertical levels and a temporal resolution of 3 hours (Heimann and Körner, 2003). TM3 simulations 
used for this study are generated by a forward transport simulation of fluxes that have been optimized using a global 
network of CO2 observing stations (Rödenbeck, 2005). Biospheric fluxes within the regional domain are calculated 20	
  
online in WRF-GHG with a diagnostic biospheric model, the Vegetation and Photosynthesis and Respiration Model 
(VPRM), utilizing remote sensing products and meteorological data at high temporal and spatial resolutions 
(Mahadevan et al., 2008). To obtain more realistic estimates of biospheric fluxes, a set of parameters in the VPRM, 
specific for each vegetation class, have been optimized against eddy flux observations obtained during the 
CarboEurope IP experiment at various sites (21 measurements sites) under different vegetation types within Europe 25	
  
(Pillai et al., 2012). An overview of the flux optimization is shown in Fig. 2. Regional oceanic fluxes are neglected 
here since their contribution is insignificant in the context of the present study. 
 
2.1.1. Fossil fuel emission fluxes 

The anthropogenic CO2 emission fluxes are based on the EDGAR (Emission Database for Global Atmospheric 30	
  
Research, version 4.1, year 2008) global inventory with a spatial resolution of 0.1° x 0.1°. EDGAR is an annually 
varying database, but we apply time factors in order to provide hourly emissions. The time factors for seasonal, 
daily, and diurnal variations are based on the step-function time profiles published on the former EDGAR website: 
http://themasites.pbl.nl/images/temporal-variation-TROTREP_POET_doc_v2_tcm61-47632.xls (see Kretschmer et 
al. (2014); Steinbach et al. (2011) for further details). WRF-GHG simulations using these EDGAR emissions are 35	
  
treated as the real distribution of atmospheric CO2 (hereafter referred to as “true CO2 conc.”), and the associated 
EDGAR fluxes as “true fluxes”. 

In order to examine the impact of the spatio-temporal distribution of fossil fuel emission structures on atmospheric 
CO2 and to quantify the associated uncertainties in the optimized fluxes, we use different emission data as the prior 
emissions, namely those compiled by the Institut für Energiewirtschaft und Rationelle Energieanwendung (IER 40	
  
inventory), University of Stuttgart, (http://carboeurope.ier.uni-stuttgart.de) for the year 2000, at a spatio-temporal 
resolutions of 10 km and 1 hour. Temporal variations in the IER inventory include traffic rush hours, difference in 
power demand between weekdays and weekends, domestic heating, and air conditioning (Pregger and Friedrich, 
2007). While utilizing the IER year 2000 database to represent the simulation year (2008), we apply scaling factors 
in a manner similar to that in Pillai et al. (2011) to preserve the temporal emission pattern differences between 45	
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weekdays and weekends.  Simulations using the IER database are used as the current knowledge about the 
atmospheric concentration for the inverse optimization described in Sec. 4.3. 

Both these emission fluxes are re-gridded to WRF-GHG’s 10 km Lambert Conformal Conic projection grid, 
conserving the total mass of emissions. These hourly fluxes are added separately to the first model layer, and 
transported separately as tagged tracers. Figure 3 shows a spatial map of the averaged EDGAR and IER emission 5	
  
fluxes over all the cloud-free overpasses at a certain hour as well as their differences for the model domain. Strong 
emissions associated with large industrial areas and cities can be seen well in both inventories. In general, both 
emission inventories show good consistency in terms of spatial emission structures; however significant differences 
in emission intensities (magnitude) between the inventories, especially for large cities and power plants, are 
common (Fig. 3c). These differences are larger for emissions resulting from power plants than for those from cities. 10	
  
Figure 4 shows the temporal variability of urban-scale emission fluxes in hourly, weekly and monthly averaged time 
scales for a region around Berlin (~ 100 km × 100 km). For Berlin emissions, considerable differences in temporal 
variations are found between both inventories, with maximum values of 22.5, 18.5, and 24.0 MtCO2yr-1 for hourly, 
weekly and monthly averaged timescales respectively. As compared to the IER inventory, the EDGAR inventory 
shows consistently larger emissions for Berlin. The seasonal variability exhibited by EDGAR Berlin emissions is 15	
  
substantially larger than that of the IER inventory. Larger emissions are seen in the EDGAR inventory in winter 
months, with values approximately a factor of 1.5 higher than those in summer months. This results from the 
increased demand of domestic heating in winter. In terms of the seasonal variability of the Berlin city emissions, the 
IER inventory shows a relatively small difference in winter-summer emission patterns (temporal) as compared to 
EDGAR, and shows overall larger emissions in winter. Both inventories show lower emissions during weekends, 20	
  
consistent with the reduced demand of transportation and power consumption. The hourly averaged Berlin emissions 
provided by both inventories display peak values during 7 to 9 am and 5 to 7 pm (local times), reflecting morning 
and evening rush hours in terms of city traffic. Interestingly the IER Berlin emissions show “delayed” morning rush 
hours on weekends, with a maximum value around 11 am (local time).   

The significant difference between these inventories in both temporal and spatial scales implies that our current 25	
  
knowledge of urban-scale emissions is inadequate, even for Central Europe, which is relatively well characterized in 
terms of emissions compared to many other parts of the world. Note that a part of these emission differences is 
likely due to the different data compilation years of the IER and EDGAR inventories. This “knowledge gap” is also 
important in inverse-modeling-based estimations of the source-sink distribution of CO2, in which fossil fuel fluxes 
are generally assumed to be known. How critical the effect of this assumption is depends on the impact of these 30	
  
differences in emissions (emission uncertainties) on modeled atmospheric mixing ratios, as well as on the transport 
errors that are included in the model-data mismatch error in the inverse modeling framework. The impact of 
emission uncertainties is further discussed in Sec. 4.1. 

2.2. Inverse optimization technique 

The inverse optimization utilizes observational constraints to adjust a subset of parameters 𝝀  out of model 35	
  
parameters 𝒑 in the surface flux model 𝒇𝒎 𝒑  in order to obtain a modeled concentration consistent with the 
observations. Hence the anthropogenic atmospheric concentration 𝒄 (column averaged dry air mole fraction) at 
different locations and times can be represented as: 

𝒄 − 𝒄!" = 𝐅  𝒇𝒎 𝝀 +   𝜺!""#"         (1) 

Here, the matrix 𝐅 links the atmospheric concentration to a vector 𝒇𝒎 𝝀  whose dimension is equal to the total 40	
  
number of surface flux elements, multiplied by total time steps. The vector 𝒄!" is the background column averaged 
dry air mole fraction i.e. the concentration due to the advection of upstream tracer concentrations. For the inversion, 
𝒇𝒎 𝝀  is assumed to be linearly dependent on 𝝀 and is expressed as: 
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𝒇𝒎 𝝀   =   𝛟    𝝀            (2) 

where  𝝀 represents a vector of daily scaling factors of surface fluxes, and  𝛟 represents the surface flux field over 
the model domain. 

A linear model is obtained by combining Eq(s). 1 and 2: 

𝒚 = 𝐊  𝝀   +   𝜺!""#"              (3)  5	
  

where the measurement vector 𝒚  is given by 

 𝒚 =   𝒄 − 𝒄!"                                   (4) 

and, 𝒄!" is obtained by linearizing the model with a reference state 𝝀! = 0 (see Eq. 1).  

The Jacobian matrix that represents the sensitivity of the observations 𝒚 to the state vector 𝝀 is given by 

 𝐊 =   𝐅  𝛟           (5) 10	
  

The state vector and the Jacobian matrix are further described in Sec. 3.2. A priori knowledge of the surface fluxes, 
  𝝀!"#$", along with their uncertainties is incorporated in the Bayesian formulation. The term, 𝜺!""#", is assumed to 
follow the Gaussian distribution described by the error covariance matrices of the measurements, 𝐒𝒆 and the prior 
estimate,  𝐒𝒑𝒓𝒊𝒐𝒓. The posterior estimate of 𝝀 is obtained by minimizing the cost function, 𝐽, which is given as: 

𝐽   𝝀 = (𝒚 − 𝐊  𝝀)!𝐒𝒆
!! 𝒚 − 𝐊  𝝀 +   (𝝀 −   𝝀!"#$")!𝐒!"#$"

!!(𝝀 −   𝝀!"#$")   (6) 15	
  

Analytically solving for the minimum of Eq. (4) gives the optimal estimate of the state vector of the scaling factors 
𝝀, as well as the associated error covariance matrix of 𝝀, termed as the posterior uncertainty, 𝐒!.  These are 
expressed as follows (Rodgers, 2000): 

𝝀 =    (𝐊!  𝐒𝒆
!!  𝐊 +   𝐒!"#$"

!!)!!(𝐊!  𝐒𝒆
!!  𝒚 +   𝐒!"#$"

!!𝝀𝒑𝒓𝒊𝒐𝒓)     (7) 

𝐒! =    (𝐊!  𝐒𝒆
!!  𝐊 +   𝐒!"#$"

!!)!!        (8) 20	
  

3. Bayesian Inversion of CarbonSat measurements 

3.1. Pseudo observations 

The inversion utilizes a one year dataset of CarbonSat simulated observations at a spatial resolution of 2 km × 2 km, 
generated using the WRF-GHG forward model (10 km × 10 km) as described in Sect. 2.1 and CarbonSat’s retrieval 
error (2 km × 2 km), estimated using an error parameterization scheme based on the measurement characteristics as 25	
  
described in Buchwitz et al. (2013a). The error parameterization scheme, described in detail in Buchwitz et 
al.(2013a), is based on six parameters consisting of solar zenith angle (SZA) and scattering-related parameters such 
as albedo in the near-infrared (NIR) and the first shortwave-infrared (SWIR-1) bands, cirrus optical depth (COD), 
cirrus top height (CTH), and aerosol optical depth (AOD) at 550 nm. We use the “Level 2 error dataset” (L2e files), 
described in Buchwitz et al. (2013a), that contains the random and systematic errors of CarbonSat’s XCO2 retrievals 30	
  
based on the error parameterization scheme. CarbonSat is assumed to follow an orbit similar to NASA’s Terra 
satellite (www.nasa.gov/terra/), but with an equator crossing time of 11:30 a.m. Hence, for specifying the 
CarbonSat’s geolocation, the L2e files utilize the geolocation provided in the Terra Level 1 dataset for the year 
2008, but modified to consider the difference in equator crossing time. This dataset contains fields such as geodetic 
coordinates, ground elevation, and solar and satellite zenith angles etc., determined using the spacecraft attitude and 35	
  
orbit, a digital elevation model, and information derived from various other datasets such as the Filled Land Surface 
Albedo Product, generated from MOD43B3 (http://modis-atmos.gsfc.nasa.gov/ALBEDO/) at a spatial resolution of 
1 minute (2 km at equator, and < 1 km at the poles), which is used to account for surface albedo. The cirrus 
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parameters are represented using a spatiotemporally smoothed (8o × 8o and 3 months) dataset of COD and CTH, 
originally derived from CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) onboard CALIPSO (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations, Winker et al., 2009). Global aerosol data products 
from the “GEMS project” (http://gems.ecmwf.int/) at a spatiotemporal resolution of 1.125o × 1.125o and 12 hourly 
are used to account for aerosols (AOD).  This dataset is based on the assimilation of MODIS data and we use the 5	
  
AOD at 550 nm. As described in Buchwitz et al. (2013a), the L2e dataset only contains those Carbonsat simulated 
observations which are approximately cloud-free as determined using a cloud mask obtained from MODIS Terra 
(using the MODIS cloud cover data product (MOD35) at a spatial resolution of about 1 km × 1 km). As the 
remaining ground pixels may still suffer from cloud contamination (e.g., due to “too high” amounts of thin cirrus) or 
other disturbances, a quality filtering scheme is applied which is based on retrieved (e.g., COD and AOD) and 10	
  
known quantities (e.g., SZA). The quality filtering scheme is described in Buchwitz et al. (2013a) and we use here 
only those ground pixels which are considered “good” according to this scheme. 

Initially, we have identified all the potentially useful Berlin overpasses, i.e., overpasses where at least some 
CarbonSat simulated observations are present over Berlin and surroundings for a given CarbonSat orbit. We found 
that the maximum number of observations is obtained during the summer months due to most favorable observation 15	
  
conditions (less clouds for extended time periods and regions, high SZA, etc.). In total, there are 41 days (orbits) of 
potentially useful overpasses over Berlin for the year 2008 for a swath width of 500 km. Note that the number of 
overpasses are smaller in the figures shown later. This is because of an additional quality filtering procedure applied 
after the inverse optimization that is based on retrieved random errors, as explained later. 

3.2. Definition of the state vector and Jacobian matrix 20	
  

In the present study, the state vector 𝝀   (the scalable parameter of the emission flux) corresponds to the scaling factor 
of emission fluxes for a trimmed model domain, i.e., a region around Berlin (spatial extent: approximately 100 km × 
100 km, hereafter referred to as the “target region” (TR). The temporal resolution of 𝝀 is set to be daily, assuming no 
spatial variations within the target region. The prior value of this scaling factor, 𝝀!"#$", is set to unity. 
 25	
  
The Jacobian matrix 𝐊 relates the measurement vector 𝒚 to the state vector  𝝀, and has elements that represent the 
response in mixing ratios to the emission fluxes (see Eq. 5). Since we do not have an adjoint model, these sensitivity 
functions are derived by perturbing each element of the emission flux field 𝛟 over the target region by small 
increment and applying the forward model (WRF-GHG) to obtain the resulting perturbed concentration field  (𝐂 +
∆𝐂) over the target region. Hence, 𝐊 is calculated as follows: 30	
  

K = C+ ΔC−C
Φperturbed − Φ

TR
∑

TR
∑

                                                                                                                                      (9) 

The posterior estimate of the scaling factor, 𝝀, is derived by minimizing the cost function, 𝐽   𝝀 , as given in Eq.7. 

3.3. Error covariance matrices 

Bayesian inversion utilizes error covariance matrices to account for the measurement error and the prior flux error 
variances and co-variances. The measurement error covariance matrix,   𝐒𝒆, is constructed by specifying the XCO2 35	
  
random errors (single measurement precision) derived using the error parameterization scheme described in Sect. 
3.1. Note that the XCO2 random error is primarily determined by the instrument signal-to-noise performance (but 
also to some extent by the retrieval algorithm, see Buchwitz et al. (2013a)) and is typically about 1.2 ppm (for the 
assumed threshold requirement signal-to-noise ratio performance assumption used by Buchwitz et al., 2013a) except 
for some especially unfavorable conditions such as low albedo and high SZA scenarios. Transport model uncertainty 40	
  

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2015-960, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 17 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



	
   8	
  

is neglected here since the objective of current study is to quantify the uncertainty in the retrieved fluxes due to 
CarbonSat’s retrieval errors only. 

The prior flux uncertainty,   𝐒𝒑𝒓𝒊𝒐𝒓, is set uniformly to 40 % of the total emission over the target region to ensure that 
the difference between the “true” and prior fluxes is appropriately considered. We consider the fact that the 
increased variability of emissions at the high resolution (as it is used in this study) leads to increased uncertainty due 5	
  
to the lack of information about the emission processes at the required spatial and temporal resolutions. The 
magnitude of  𝐒𝒑𝒓𝒊𝒐𝒓 is specified here based on the approximate difference between the IER and the EDGAR 
inventories over the target region. Any error correlations are neglected; hence   𝐒𝒑𝒓𝒊𝒐𝒓 is set to be a diagonal matrix.  

4. Results: Estimation anthropogenic XCO2 enhancement and retrieved flux uncertainty over Berlin 

In this study, we use anthropogenic XCO2 enhancement, which is defined as the enhancement in XCO2 resulting 10	
  
from local anthropogenic emissions relative to the background concentration. The tagged tracer option in WRF-
GHG stores XCO2 enhancement resulting from EDGAR emissions separately, and we use this field to represent 
anthropogenic XCO2 enhancement.    The uncertainty in the retrieved emission attributed by CarbonSat’s retrieval 
error is a function of the anthropogenic XCO2 enhancement over Berlin, the number of potential observations in and 
around Berlin, and the retrieval uncertainty (random and systematic components). In this manner we take into 15	
  
account the influence of these parameters to achieve a robust estimation of the retrieved surface emission 
uncertainty or error. 

4.1. Local anthropogenic XCO2 enhancement 

The XCO2 enhancements resulting from anthropogenic emissions over Berlin are estimated in order to assess 
whether these emission enhancements are detectable by an instrument having the performance of CarbonSat i.e. to 20	
  
assess whether the resulting plumes are statistically significant and robust, thereby enabling the changes or trends in 
anthropogenic emission over the cities. 

Figure 5 shows the “true” anthropogenic XCO2 enhancement on a reference day (24th June 2008), the anthropogenic 
XCO2 enhancement based on the IER inventory, and the difference in XCO2 enhancement due to the difference in 
emission inventories. From Fig. 3a and Fig. 5a, it can be concluded that, given the availability of a satellite 25	
  
instrument which is able to precisely detect the associated XCO2 mixing ratio enhancements ranging from 0.80 to 
1.35 ppm at a high spatial resolution and adequate spatial coverage, anthropogenic emissions from a city the size of 
Berlin and other localized emission sources can be estimated from space with sufficient accuracy. It should be noted 
that the magnitude of detectable anthropogenic XCO2 enhancements is likely to be underestimated in our study 
because the “true” fields of XCO2 variations are simulated at a 10 km spatial resolution instead of CarbonSat’s 30	
  
resolution (~2 km × 2 km).  

Noteworthy is that the spatial and temporal difference in EDGAR and IER emission inventories gives rise to a 
notable XCO2 mixing ratio difference between 0.4 and 1.0 ppm. For Berlin, this is about 40% of the total “true” 
XCO2 enhancement. It should be noted that surface concentrations show larger relative differences than the column 
dry mole fraction for CO2, XCO2, because of their higher sensitivity to the change in surface fluxes. Hence this 35	
  
result indicates the importance of characterizing emission uncertainties, even for the region where fossil emissions 
are often considered to be “well-quantified“ in comparison to the biospheric carbon balance. Neglecting this 
uncertainty term would lead to significant biases in the net carbon exchange estimations, particularly when 
assimilating concentration measurements closer to emission sources such as cities.  

4.2. Uncertainty of the retrieved Berlin emissions 40	
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In this section, we show the results obtained by inverting CarbonSat simulated observations over the target region, 
taking into account different sources of possible errors including CarbonSat measurement errors and modeling 
errors. Inversions are performed separately for each potentially useful CarbonSat overpass (see above) to derive the 
total emission flux and its error over the target region.  

The systematic error (SE) of the retrieved emission fluxes, which are specific for each source of errors or 5	
  
combination of errors, are determined separately by defining six scenarios represented by S01 through S06  (Table 
1). These scenarios are described in the following subsections, while additional scenarios S07 – S11 are presented 
and discussed separately in Sect. 4.3.  Note that the distance from the center of the target region to one of its 
boundaries is roughly 50 km, which corresponds to a time of approximately 3 hours for air parcels travelling with a 
velocity of 4.5 ms−1. This means that the observed local CO2 emission plume is not only determined by the emission 10	
  
at the time of the overpass, but also during a time interval of several hours before the time of the overpass. This is 
taken into account when modeling the CO2 emission plume. For the inversion, it is assumed that the time 
dependence of the emissions in the time period of up to several hours (3 to 6 hours) before the overpass is at least 
reasonably well known except for the scenarios S07 to S11. As noted earlier, the “true” XCO2 variations in this 
study are based on 10 km spatial resolution instead of 2 km in CarbonSat simulated observations.  For the inversion 15	
  
results, we assume negligible representation error arising from these spatial scale mismatches. Based on 
meteorological conditions, the representation error introduced by decreasing the horizontal resolution from 2 km to 
10 km can be approximately 0.5 ppm on average for CO2 concentrations at the surface (Tolk et al., 2008). However, 
it is expected that the representation error for XCO2 between these horizontal scales will be much lower than that for 
CO2 concentration at surface (see Pillai et al., 2010).  20	
  

Before analyzing SE for the different scenarios, we first present the random error (RE) of the retrieved emission. RE 
is caused by the measurement noise, i.e., by the random part of the measurement error; hence it is independent of the 
above-mentioned SE scenarios. In the optimal case, the instrument noise is determined by the shot noise of the 
detector arrays. In practice, there are additional sources of noise such as read out noise, digitization noise etc. Figure 
7 shows the random errors of the retrieved emissions over the target region, obtained by inverting the entire one-year 25	
  
data set of simulated CarbonSat XCO2 retrievals. As explained above, we have investigated two different swath 
widths, 500 km and 240 km. The results are shown only for the days where the number of CarbonSat simulated 
observations around the target region is sufficiently dense (covering the emission plume and its surroundings) to 
obtain a retrieved emission random error of less than 25 %, i.e., we use the a posteriori random error of the retrieved 
emission as a quality criterion (as also done in Buchwitz et al. (2013b)). This number, labeled as “N” useful 30	
  
overpasses, is 25 for a swath width of 500 km and 17 for a swath width of 240 km. As can be seen in Fig. 7, 
decreasing the swath width not only reduces the number of useful overpasses, but also increases the RE of the 
retrieved fluxes for some overpasses. The RE of the retrieved emission (from a single overpass) is usually found to 
be less than 20% (approximately 10 MtCO2 yr−1) of the emission fluxes for both swath widths. 

4.2.1. Impact of CarbonSat measurement errors (scenario S01) 35	
  

Here, we focus on scenario S01, and estimate the uncertainty in the retrieved emission fluxes caused exclusively by 
CarbonSat measurement errors. For this, we assume that the XCO2 variability in the target region is dominated by 
the anthropogenic CO2 emission and that there is negligible XCO2 variability due to biogenic fluxes over the target 
region, or that this biogenic component can be modeled well, and thus can be subtracted from the observations 
without introducing any modeling-related errors.  40	
  

The systematic measurement error of the CarbonSat simulated observations over the target region for a typical day 
(24th June 2008) for S01 is shown in Fig. 8a. This is estimated using the error parameterization scheme of Buchwitz 
et al. (2013a), as shortly described in Sec. 3.1. The mean systematic measurement error over the target region is 
about 0.25 ppm for this day.  For the scenario S01, the “observed” anthropogenic XCO2 by CarbonSat is thus the 
sum of this measurement error (Fig. 8a) and the “true” anthropogenic XCO2. Fig. 9a shows the observed 45	
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anthropogenic XCO2 enhancement for S01 over the target region during the overpass on 24th June 2008. For the 
comparison, the corresponding “true” anthropogenic XCO2 enhancement, i.e. without any source of errors, is shown 
in Fig. 9g. The “true” emission plume, originating almost from the centre of the target region, can be clearly seen 
with a maximum value of about 0.90 ppm.  As can be seen, the observed CarbonSat XCO2 pattern (Fig. 9a) differs 
from the “true” XCO2 pattern (Fig. 9g) by the measurement errors (Fig. 8a); hence the retrieved emission via 5	
  
inversion typically differs from the “true” emission that results in a systematic error (SE) of the retrieved emission. 
The extent of this systematic error depends on how well the systematic measurement error correlates with the “true” 
XCO2 pattern.  

Figure 10 shows the systematic errors of the retrieved emissions for CarbonSat overpasses over the target region 
obtained by inverting the entire one-year data set of simulated CarbonSat XCO2 retrievals for the scenario S01. 10	
  
Shown are the results for swath widths of 500 km and 240 km for all “N” useful overpasses (days). Overall, the 
absolute magnitude of the systematic errors of the retrieved emissions for both swath widths for the scenario S01 is 
found to be less than 10% for most of the overpasses (about 75% of the “N” useful overpasses for the year 2008), 
which corresponds to about 5.3 MtCO2 yr−1. For the 500 km swath width in S01, the mean and standard deviation of 
the SE for all “N” useful overpasses is -2.4 MtCO2 yr-1  (-4.5%) and 3.2 MtCO2 yr-1  (6.2%), respectively (see also 15	
  
Table 1). In general, we find that the two different swath widths have a negligible impact on the daily SE of the 
retrieved emissions. 

4.2.2. Impact of CarbonSat measurement errors with worst-case aerosol related biases (scenarios S02 and 
S04) 

Note that in the previous section we have used the CarbonSat systematic XCO2 retrieval errors as provided by the 20	
  
error parameterization scheme described in Buchwitz et al. (2013a). However, as explained in Buchwitz et al. 
(2013b), this scheme may underestimate aerosol related biases if the spatially (not aggregated) high-resolution 
CarbonSat simulated observations are used for applications like the one used here. The reason is that aerosol-related 
retrieval biases have been computed using quite smooth model aerosol input data sets, which might not be sufficient 
to represent the aerosol plume over Berlin. 25	
  

To consider this, an additional error term has been defined which is referred to as “high resolution aerosol error” in 
this manuscript. In this sub-section we present results for scenario S02, where the measurement error used for S01 
described in the previous section has been replaced by the high-resolution aerosol error contribution to the 
systematic measurement error. We also present results for scenario S04, where the measurement error is the sum of 
the S01 and S02 errors. 30	
  

The method of computing the “high resolution aerosol error” is described in detail in Buchwitz et al. (2013b). Here 
we describe it briefly as follows. A local AOD enhancement has been computed by scaling the observed 
anthropogenic XCO2 spatial pattern, i.e., the AOD enhancement is assumed to be perfectly correlated with the CO2 
emission plume of interest (see Fig. 8b and Fig. 9b). Furthermore, a quite high scaling factor has been used (the 
AOD change, ∆AOD at 550 nm is 0.2 per 4 ppm of local anthropogenic ∆XCO2). Overall, these are worst-case 35	
  
assumption that are supposed to result in upper limits of systematic XCO2 errors due to aerosols and resulting errors 
of the retrieved emissions. For a more detailed discussion see Buchwitz et al. (2013b). 

The resulting SEs of the retrieved emissions for scenario S02 are found to be negative, indicating systematic 
underestimation of retrieved emissions (see Fig. 11). As can be seen, the absolute magnitudes of errors are slightly 
higher than those for S01. The mean and standard deviation of SE for S02, considering all “N” useful overpasses 40	
  
and the 500 km swath width, are -4.0 MtCO2 yr-1 (-7.3%) and 2.3 MtCO2 yr-1   (3.1%) respectively.  

Another scenario, S04, investigates the impact of both high-resolution aerosol related errors (used for S02) and the 
“default” CarbonSat measurement errors (used for S01) on retrieving anthropogenic emissions. Inversions are 
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performed by utilizing these two sources of error, i.e. the XCO2 systematic error for S04 is the sum of XCO2 
systematic error specified in S01 and S02 (see Fig(s). 8d and 9d)). As expected, the SE of the retrieved emission for 
S04 is found to be higher than those of S01 and S02, and their values are close to the linear sum of systematic 
emission errors for S01 and S02 (see Table 1).  As already explained, the definition of S04 likely represents the 
possible worst-case measurement scenario in particular with respect to aerosol related errors.        5	
  

4.2.3. Impact of biospheric modeling error (S03, S05, S06) 

In this section, we explore the impact of modeling error on retrieving Berlin city emissions. In the last two sections, 
it is assumed that the spatial variability introduced by the biogenic component of XCO2 in the target region is well 
known or sufficiently small that it can be ignored. However, in reality there are notable perturbations caused by the 
spatial variability of biogenic XCO2 in the target region that cannot be ignored. As an example, Fig. 8c illustrates the 10	
  
biogenic XCO2 variability in the target region during a CarbonSat overpass.  Most critical in terms of this 
uncertainty is how well the biogenic XCO2 pattern is correlated with the anthropogenic XCO2 pattern. In this case, 
the uncertainty in the retrieved emissions depends on how accurately the biogenic fluxes can be modeled, as well as 
the associated transport model uncertainty in simulating the biogenic XCO2 pattern. Note that we assume negligible 
transport uncertainty for the anthropogenic XCO2 pattern in order to distinguish the retrieved emission errors due 15	
  
only to the biogenic XCO2 pattern. In order to account for this modeling-related error, we consider scenario S03. In 
S03, we assume an extreme case where biogenic XCO2 cannot be modeled at all; hence biogenic XCO2 is treated as 
the “perturbation” seen in the measurement vector (𝑦) of the inversion system (see Fig(s). 8c and 9c). However, it 
should be noted that in reality biospheric modeling uncertainty is not expected to be as high as this assumption. As 
can be seen in Fig. 2, a simple biosphere model such as VPRM used in this study could capture 50 to 65% of the 20	
  
biospheric flux variability in most of the cases (squared correlation coefficient (VPRM vs. observations), R2 ~ 0.50-
0.65).  

The systematic errors of the retrieved emissions for S03 are found to be significantly higher compared to the errors 
for the above-mentioned scenarios than those for S01 and S02 (see Fig. 12). Noteworthy is that this uncertainty is 
not related to CarbonSat measurement errors, but arises due to the inability of the model to simulate the biospheric 25	
  
contribution. Hence this uncertainty should be treated as model-related error. Due to the extreme assumption of 
modeling error in S03, the uncertainty values reported in this section have to be considered as the extreme upper 
limits of the possible total uncertainties in the retrieved fluxes due to biogenic modeling error. Despite this, the SE 
of the retrieved emission for S03 is within the range of 20 to 25% (10 to 15 MtCO2 yr−1) for most of the scenes 
although we assumed the largest uncertainty in modeling biogenic XCO2. The reason for this is that the spatial 30	
  
biospheric XCO2 pattern in the target region that “disturbs” the inverse system typically differs from the 
anthropogenic XCO2 pattern in many of the good CarbonSat overpasses, enabling these two sources/sinks 
(anthropogenic and biogenic) to be disentangled reasonably well. 

Additionally, we define other scenarios, S05 and S06, to investigate the impact of the biogenic modeling errors in 
combination with other error sources, such as CarbonSat measurement errors and high-resolution aerosol related 35	
  
errors. Systematic error estimations for these scenarios are summarized in Table 1 and these results suggest that a 
dominant part of the retrieved emission error is caused by the unknown biogenic variability.   

4.3. Inversion Experiment using different prior emission fluxes (S07-S11) 

The inversion results presented so far have not taken into account the impact of imperfect knowledge of the spatial 
pattern of emission fluxes and the different time dependences of the emissions; hence the inverse optimization 40	
  
adjusts only the amplitude of the emission plume corresponding to the anthropogenic CO2 emission in the target 
region. Although the error arising from these unknown spatial emission structures is not directly related to 
CarbonSat measurement errors, we attempt to perform an experiment using two different flux inventories, with one 
of the flux inventories representing the prior fluxes and the other as the “true” fluxes. The experiment is designed 
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with an inversion set-up, which is essentially the same as that described in Sect. 3.3, but with the following 
exception: Here the prior emission fluxes are prescribed from the IER emission inventory (Fig. 3b); hence the 
modeled anthropogenic XCO2 is based on IER emission fluxes (see Fig. 5b and Sec. 2.1.1).  Similar to the sections 
above, the EDGAR emission inventory is considered to be the “true” fluxes and the measurement vector (𝑦) which 
corresponds to CarbonSat simulated observations is based on the EDGAR emission inventory as described in sec. 5	
  
3.1. The retrieved posterior fluxes of this inversion optimization are compared with “true” fluxes to estimate the 
retrieved posterior flux errors and to assess how well inversion studies can benefit from CarbonSat measurements in 
the case of discrepancy between “true” and prior fluxes in terms of spatial patterns of distribution.  

Similar to the above section, systematic errors of the retrieved fluxes are estimated specifically for each source of 
errors or combination of errors by defining scenarios S07 through S11 (see Table 1). It should be noted that the IER 10	
  
and EDGAR fluxes are not entirely different in terms of temporal variations, though the magnitude of the emissions 
in the target region is notably different. However, there exists a dissimilarity of approximately 70% of the spatial 
patterns between these two inventories (based on the correlation of spatial variability between two inventories, R2 ~ 
0.30) in the target region. 

For most of the overpasses, the random errors of the retrieved emission fluxes over the target region (single 15	
  
overpass) are found to be less than 20% (approximately 10 MtCO2 yr−1) of the emission fluxes for both swath widths 
(not shown). These values are comparable to those shown in Fig. 7, indicating the potential of CarbonSat simulated 
observations to retrieve surface fluxes, even when uncertainties in the spatial pattern of the prior emission fluxes are 
present. Figure 13 shows the SE of the retrieved emissions estimated for the scenario S08, where CarbonSat 
measurement errors are considered in addition to the uncertainty in the spatial pattern of the prior fluxes.  For both 20	
  
swath widths, the estimated SE for S08 is found to be less than 10 MtCO2 yr−1 in many instances (for about 55 to 
75% of useful overpasses). Systematic errors for other scenarios are summarized in Table 1. Depending on the error 
sources, the inversion experiment shows that the mean and standard deviation of SE, considering all “N” useful 
overpasses and the 500 km swath width, ranges from -0.12 to -9.0 MtCO2 yr-1 and 14.6 to 19.2 MtCO2 yr-1 
respectively.  Furthermore, the systematic errors of the retrieved emission fluxes for both swath widths are found to 25	
  
be lower than the systematic error of the prior fluxes (estimated based on “true” fluxes) except for a very few cases, 
providing confidence in the inverse results although only a simple inverse optimization methodology is used.  

5. Discussion and clean pixel method 

In this section, we discuss the merits of instrument like CarbonSat for retrieving emission fluxes and its potential in 
disentangling anthropogenic and biogenic CO2 fluxes over cities like Berlin.  Caveats related to the simple inversion 30	
  
approach used here are discussed. 

For the study of CO2 emissions, it is necessary to assess whether local anthropogenic XCO2 enhancements are large 
enough to be detected by using the retrieved XCO2 data products from the satellite-borne instrument, taking into 
account the measurement noise. Figure 14 presents an overview of “true” anthropogenic XCO2 emission 
enhancements together with the associated CarbonSat retrieval uncertainty over the target region around Berlin for a 35	
  
one year time period. The analysis shows that anthropogenic XCO2 enhancements around Berlin are well above the 
retrieval biases for most of the overpasses and the number of potential observations, after filtering out the 
contaminated pixels, is large enough to minimize the random error component. Given the availability of such a 
dense sampling coverage with similar retrieval biases, one can be confident in utilizing CarbonSat’s observations for 
retrieving city emission trends or absolute emission fluxes via appropriate inverse modeling.   40	
  

In a real scenario the question arises whether it is possible to clearly separate local anthropogenic XCO2 
enhancements from CarbonSat’s total column measurements, which are in addition influenced by biospheric sources 
or sinks. Moreover, in order to isolate the XCO2 enhancement caused by local sources (such as city emissions), it is 
necessary to specify the “background” signal, representing the CO2 column without any influence of local fluxes. 
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These additional biospheric and background influences can be ignored if the target city is well isolated from other 
strong urban sources and/or active biospheric regions as well as has negligible local biospheric activity. However, 
only a few cities or urban areas meet the above criteria, and a typical European city, in general, has considerable 
local or nearby biogenic influences. Under these conditions it is necessary to disentangle biogenic, anthropogenic 
and background contributions from CarbonSat’s observations. To assess the relative contribution of biogenic and 5	
  
anthropogenic sources, one can utilize additional tracers (e.g. CO, NOX) and/or isotopic ratios (e.g. ∆14C) as 
demonstrated by Newman et al. (2013). In the time frame of a potential CarbonSat mission, Sentinel-5 will be 
providing data on CO and tropospheric NO2 (Ingmann et al., 2012), which when combined with CarbonSat data 
allows for the attribution of air masses originating from fossil fuel combustion.  Depending on the extent of the 
variability and the possible uncertainties, we can also rely on the biospheric and global model simulations to 10	
  
differentiate different source-sink contributions. 

In this study, we describe an approach to estimate the anthropogenic Berlin XCO2 enhancements from 
measurements made by and data products retrieved from the proposed instrument CarbonSat. In this manner, we 
assess its capability to track the anthropogenic enhancements in our target region and thereby retrieve or infer 
emissions. As our target region around Berlin is mostly isolated from other urban sources, we use a simple “clean-15	
  
pixel” method, similar to that used by Kort et al. (2013)  to differentiate local anthropogenic XCO2 from other 
background and biospheric surface fluxes. We have chosen boundary pixels of our target region in the upwind 
direction as “clean pixels”, assuming that the observations from these pixels typically represent background XCO2 
values without any local influence. The WRF simulated wind direction in the lower atmosphere yields the upwind 
direction of the target region. Berlin XCO2 enhancements are estimated by differentiating these plumes in the 20	
  
simulated CarbonSat observations over the target region (see Fig. 14). As is shown, the temporal patterns of the 
estimated anthropogenic enhancement are in general consistent with those of the true anthropogenic enhancement. 
This approach is thus able to isolate anthropogenic XCO2 enhancements with a mean bias (mean of the difference 
between estimated and “true” enhancements) of 0.12 ppm, a standard deviation of the difference σd = 0.17 ppm, and 
a squared correlation coefficient R2 = 0.92.  25	
  

 One source of bias on the XCO2 enhancement estimated by the clean-pixel method is when the dominant biogenic 
perturbations in the target region have different patterns than those of the chosen “clean” boundary region. Another 
possibility is the failure of the clean-pixel method to represent background XCO2 concentration based on clean 
boundary pixels. The tagged tracer option in WRF-GHG allows us to investigate this further by utilizing the 
modeled biogenic and background CO2 concentrations generated by WRF-GHG. We found that most of the 30	
  
deviations in the estimated XCO2 enhancement are caused by the background “noise”, indicating that the XCO2 
from the “clean” boundary pixels do not always represent the background values in our case.  Note that the above-
mentioned bias is not related to any CarbonSat measurement errors, but due to the simplicity of the approach 
adopted to estimate anthropogenic XCO2 enhancements. We found negligible influence of biospheric fluxes in the 
target region, which can bias the XCO2 enhancement estimated by the clean-pixel method (not shown).  35	
  

By assuming that the biospheric patterns are accurately modeled and that these biogenic signals can be subtracted 
from the measurement vector to isolate the anthropogenic contribution of XCO2, our simple inversion system is 
constructed such that it takes into account the impact of CarbonSat sampling errors on the retrieved city emissions 
over Berlin. The applicability of our results to a scenario where these assumptions are not valid needs to be 
examined, but the current set-up is not well suited for this purpose since we have not taken into account additional 40	
  
state vectors for biospheric contributions. On the other hand, the current setup allows us to investigate the extremely 
pessimistic scenario where we assume that we cannot model the biospheric contribution at all (see Sec. 4.2.3).  

Although we utilize high-resolution forward simulations, at present our inversion system uses only one scaling 
factor for the entire target region for each useful overpass. This means that the current set-up cannot provide 
posterior estimates for each pixel or emission sector within the target region. In other words, the flexibility to 45	
  
capture the true spatial variation of fluxes is more limited in our simple inversion system than in pixel- or parameter-
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wise inversions. Using this simple inversion system may thus overestimate the retrieved flux uncertainty. While 
interpreting our results, one should keep in mind that we do not specify other important sources of errors in the 
inversion system such as transport error. As previously noted, the main focus of this study is to estimate the 
retrieved flux uncertainties that are caused only by CarbonSat’s measurement errors. However, these transport 
related errors, which provide proper weight to the observations depending on the capability of the transport model, 5	
  
need to be taken into account when estimating the total flux uncertainty via inverse modeling.   

6. Conclusion 

In the present study, we examine the potential of a satellite mission like CarbonSat for improving the current 
knowledge on the surface-atmosphere exchange of atmospheric CO2.  A significant contribution by the CarbonSat 
greenhouse gas (GHG) observations will be the ability to retrieve the emissions of localized (moderate to strong CO2 10	
  
and CH4) emission sources such as cities, power plants, methane seeps, etc., as a result of its unique sampling 
capability at high spatial resolution (approximately 2 km × 2 km) with a good spatial coverage using a much wide 
swath. To demonstrate this, we have simulated emissions from a medium-size city (in terms economic contribution 
and trade) and assessed the capability to retrieve anthropogenic emission fluxes for the city and its surrounding 
region (Berlin-centered target region investigated here: ~100 km × 100 km) from CarbonSat simulated observations. 15	
  

The study utilizes a Bayesian inversion approach based on the WRF-GHG modeling system at a high spatial 
resolution to optimize anthropogenic CO2 emissions for the target region using CarbonSat simulated observations 
for a time period of one year. The inverse system is designed in such a way that one can quantify the random and 
systematic errors of the retrieved anthropogenic emission fluxes for a given set of XCO2 measurement and modeling 
errors. The CarbonSat measurement errors are estimated using the error parameterization scheme of Buchwitz et al. 20	
  
(2013a), which takes into account different sources of uncertainties including scattering related errors. Based on the 
EDGAR emission inventory, the local anthropogenic XCO2 enhancement over Berlin is found to be approximately 
0.80 to 1.35 ppm. The latter is similar to the detectable limit of single CarbonSat ground pixels. However typically 
there will be several hundred observations available per overpass, sampling the emission plume and its surrounding. 
The impact of CarbonSat measurement errors on the retrieved emissions is assessed for two swath widths (240 km 25	
  
and 500 km). By performing a Bayesian inversion based on one year of CarbonSat simulated observations, we show 
that the random error of the retrieved Berlin CO2 emissions is typically less than 15 to 20% of the total city 
emissions. In other words, the CarbonSat measurements can be utilized in atmospheric top-down approaches to 
quantify emissions of medium sized cities such as Berlin with a precision better than 8 to 10 MtCO2 yr-1.   

In order to quantify the systematic error (SE) of the retrieved fluxes, we use different scenarios in terms of various 30	
  
sources of systematic error in the inversion system. For scenario S01, we use CarbonSat’s “default” XCO2 
systematic errors (retrieval biases) from Buchwitz et al. (2013a), and assume no biogenic XCO2 modeling error. For 
S01, we find that SE is in the range of 3 to 6 MtCO2 yr−1 for most of the cases (40 to 80% of the “good” overpasses 
as identified by the quality filtering procedure), indicating a high potential of utilizing CarbonSat’s measurements to 
retrieve city emissions. Based on the analysis using a one-year period of CarbonSat simulated observations, we 35	
  
show that narrowing the swath width (from 500 km to 240 km) decreases the total number of useful overpasses, as 
expected, but we do not find any significant difference between the single overpass SEs estimated for the two swath 
widths investigated here.  

As explained in Buchwitz et al. (2013b), the default XCO2 systematic errors only reflect aerosol related biases at 
quite low spatial resolution. On the spatial scale of the city of Berlin, aerosol-related biases may be larger. To 40	
  
consider this, we use the “worst-case” measurement scenario as used by Buchwitz et al. (2013b), in which we 
assume that the aerosol-related biases may be perfectly correlated with the signal of interest, which is the city CO2 
emission plume in combination with a high amount of aerosols in the plume.  For this, we define a scenario S04 and 
refer to this as “high resolution aerosol error” in this manuscript. The estimated emission uncertainty for this 
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scenario (S04) is found to be higher than that of S01, with mean and standard deviation of approximately -6.4 and 
4.2 MtCO2 yr−1 respectively.  

The above-mentioned results, however, are mostly dominated by the assumption that there is a negligible influence 
of biospheric fluxes that perturb the emission plume over the target region, or that these biospheric contributions can 
be modeled very well. By further investigating the extreme case in which the biospheric contribution is assumed to 5	
  
be totally unknown and treated as perturbation in the inversion system (scenario S03), we find that the single 
overpass SE of the retrieved emission is significantly increased to 8.5 ± 10.8 MtCO2 yr−1 (mean ± standard 
deviation). Nevertheless, the magnitude of the uncertainty is not overwhelmingly large over the target region, 
despite the worst-case assumption used here. It should be kept in mind that the above-mentioned uncertainty is not 
directly related to the performance of CarbonSat measurements, but more towards the models’ inability in 10	
  
simulating the biospheric contribution well. Hence, for the effective utilization of these measurements, the “noises” 
induced from other sources have to be taken into account, which requires careful design of the inverse optimization 
methodology using transport models at high resolution, enabling them to handle the information contained in those 
measurements. On comparing the results from different scenarios, we show that the systematic error of the retrieved 
fluxes depends largely on the accuracy of the CarbonSat simulated observations and more importantly on the 15	
  
modeling related errors.   

Further investigation by designing a synthetic inversion experiment is motivated by the possible impact of spatial 
structural variability of the emission fluxes, which is not considered in the above-mentioned inversions. We 
acknowledge that our current inversion set-up is too simple to examine how suitable CarbonSat measurements are 
for this purpose, as we use only one scaling factor for the entire target region. Nevertheless we find promising 20	
  
results from this experiment in which the modeled and true XCO2 concentrations are based on two distinct emission 
inventories (IER and EDGAR) differing in spatiotemporal patterns. By showing that the systemic error of the 
retrieved fluxes is lower than that of the prior fluxes (estimated based on true fluxes) in most of the cases, the results 
from the inversion experiment build confidence in our uncertainty estimations and ensure that the optimization is 
done correctly. The random error of the retrieved emissions for a single overpass is estimated to be less than 10 25	
  
MtCO2 yr−1 for both swath widths. Hence it is expected that given the availability of the high-resolution CarbonSat 
simulated observations, it is likely to deduce the structural patterns of the emission fluxes. Based on the above 
analysis, however, no firm conclusion can be made on the magnitude of the retrieved flux uncertainty when prior 
fluxes significantly deviate from true fluxes in representing the structural variations of emissions. For this purpose, a 
more sophisticated inverse methodology involving additional extended state vectors and calculation of the response 30	
  
function of the elements of the state vector (adjoint calculation) is required.   Since we use the same transport model 
to generate the (pseudo) observations and the influence functions, the inversion results shown here may be slightly 
optimistic. Although it is not within the scope of this study, the transport-related errors are expected to be non-
negligible and should be properly addressed in the inverse modeling applications of satellite data. 

Using the dense CarbonSat measurements in an inverse modeling framework at high resolution is expected to 35	
  
improve the inference of CO2 fluxes by disentangling different sources of variations. But to what extent one can 
differentiate regional contributions from different sources should be investigated in further detail. A preliminary 
analysis over the target region using the “clean-pixel” method as followed by Kort et al. (2013) provides 
encouraging results in isolating temporal patterns of local anthropogenic XCO2 enhancement.  

Overall, the present study demonstrates that an instrument like CarbonSat has high potential to provide important 40	
  
information on city CO2 emissions when exploiting the atmospheric XCO2 observations using a high-resolution 
inverse modeling system. Utilizing these measurements together with in-situ, airborne and other satellite 
measurements is expected to provide more detailed and reliable information on natural and anthropogenic fluxes, 
facilitating the monitoring of future climate mitigation strategies. 
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Table 1: Overview of different scenarios, SCE, which are used to investigate the systematic errors of the retrieved emissions.  The absolute mean and standard deviations 
are estimated for two swath widths (SW-500: 500 km and SW-240: 240 km) for all “N” useful overpasses and are expressed in both MtCO2 yr-1 and in %. Err-L, Err-H, 
and Err-B indicate errors attributed to CarbonSat measurement, high-resolution aerosol related errors, and biogenic modeling errors respectively. Err-Emi indicates 
whether inversion experiment uses different prior emission fluxes (see Sec. 4.3) 

SCE	
  	
   Err-­‐L	
  
	
  

Err-­‐H	
  
	
  

Err-­‐B	
  
	
  

Err-­‐Emi	
   Prior	
  flux	
   True	
  flux	
  
	
  

SE	
  (SW-­‐500)	
  
	
  (mean	
  
+std)	
  

%	
  

SE	
  (SW-­‐500)	
  
(mean	
  
+std)	
  
MtCO2	
  yr-­‐1	
  

SE	
  (SW-­‐240)	
  
(mean	
  
+std)	
  

%	
  

SE	
  (SW-­‐240)	
  
(mean	
  
+std)	
  
MtCO2	
  yr-­‐1	
  

S01	
  	
   ✔	
  	
   	
   	
   	
   EDGAR	
   EDGAR	
   -­‐4.5+6.2	
   -­‐2.4+3.2	
   -­‐5.6+5.4	
   -­‐3.0+2.9	
  

S02	
  	
   	
   ✔	
   	
   	
   EDGAR	
   EDGAR	
   -­‐7.3+3.1	
   -­‐4.0+2.3	
   -­‐6.8+3.0	
   -­‐3.6+1.9	
  

S03	
  	
   	
   	
   ✔	
   	
   EDGAR	
   EDGAR	
   19.3+23.9	
   8.5+10.8	
   21.2+24.5	
   9.3+10.8	
  

S04	
  	
   ✔	
   ✔	
   	
   	
   EDGAR	
   EDGAR	
   -­‐11.9+7.1	
   -­‐6.4+4.2	
   -­‐12.4+6.8	
   -­‐6.5+4.1	
  

S05	
  	
   ✔	
   ✔	
   ✔	
   	
   EDGAR	
   EDGAR	
   7.4+24.9	
   2.1+11.8	
   8.8+26.1	
   2.8+12.1	
  

S06	
  	
   ✔	
   	
   ✔	
  	
   	
   EDGAR	
   EDGAR	
   14.8+24.5	
   6.1+11.2	
   15.6+25.4	
   6.3+11.3	
  

S07	
  	
   	
   	
   	
   ✔	
 IER	
   EDGAR	
   -­‐10.3+27.6	
   -­‐5.2+15.4	
   -­‐11.7+24.9	
   -­‐7.9+17.1	
  

S08	
  	
   ✔	
   	
   	
   ✔	
 IER	
   EDGAR	
   -­‐11.9+27.6	
   -­‐6.0+15.7	
   -­‐15.1+22.7	
   -­‐9.6+16.2	
  

S09	
  	
   ✔	
  	
   ✔	
   	
   ✔	
 IER	
   EDGAR	
   -­‐17.4+25.0	
   -­‐9.0+14.6	
   -­‐20.7+20.7	
   -­‐12.3+15.4	
  

S10	
  	
   ✔	
   	
   ✔	
   ✔	
 IER	
   EDGAR	
   1.2+33.8	
   -­‐0.12+19.2	
   2.4+31.6	
   -­‐1.1+20.4	
  

S11	
  	
   ✔	
   ✔	
   ✔	
   ✔	
 IER	
   EDGAR	
   -­‐4.3+31.6	
   -­‐3.1+18.3	
   -­‐3.1+30.1	
   -­‐3.8+19.9	
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Figure 1: The Berlin-centered WRF-GHG model domain in Lambert Conformal Conic projection used in the study. The 
red rectangle represents the target region (100 km x 100 km) described in the Sec. 3.2 and the + sign indicates the central 
location of Berlin city. The color bar indicates the terrain height in meters.  5	
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Figure 2: Comparison between daily averaged carbon flux observations (Net Ecosystem Exchange, NEE)  and the VPRM 
model simulations. The black circles represent observations, and the orange and blue curves denote VPRM simulations 
before and after optimization with flux data respectively. 
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Figure 3: Fossil fuel combustion emission fluxes over the model domain at a spatial resolution of 10 km × 10 km, averaged 
for the CarbonSat overpass periods during the year 2008: (a) EDGAR emissions, (b) IER emissions, and (c) the difference 
between EDGAR and IER emissions (EDGAR - IER). All units are in MtCO2 per year per grid cell. 
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Figure 4: Temporal variability of EDGAR and IER emission fluxes, aggregated over the target region around Berlin (~ 
100 km × 100 km) averaged for different time scales for the year 2008: monthly (1st (top) panel), weekly (2nd panel) and 
hourly (3rd and 4th panels). The 4th panel shows the values representing only weekends, while the 3rd panel represents all 
days of the week. Hours are in UTC (local time CET = UTC+1). 5	
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Figure 5: Anthropogenic XCO2 enhancement on 24th June 2008 at 10:00 UTC (Local time: 12:00 CEST) (a) “true” XCO2 
enhancement (using EDGAR emissions), and (b) XCO2 enhancement when using IER emissions. Panel (c) shows the 
discrepancy in XCO2 enhancement due to the difference between EDGAR and IER emission inventories. All units are in 
ppm. 5	
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Figure 6: Anthropogenic flux over the target region based on (a) EDGAR inventory, and (b) IER inventory for all of 
CarbonSat’s “useful overpasses” corresponding to 500km swath width for the year 2008.  
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Figure 7: Precision (random errors (RE)) of the retrieved emission fluxes obtained by the inverse optimization using one 
year of CarbonSat simulated observations. Results of two different swath widths (SW) – 500 km (grey) and 240 km (red) 
– are shown.   𝐒𝒑𝒓𝒊𝒐𝒓 values are indicated with magenta bordered bars for visualizing the reduction in uncertainty. The top 
and bottom panels show RE in MtCO2 yr-1 and in % respectively. An overview of the statistical distribution of RE, 5	
  
separately for 500 km (grey) and 240 km (red) swath widths, is given inside the panel. The overall mean ± standard 
deviation is given outside the respective panels. The lower and upper limits of the X-axis (days of the year) is restricted 
accordingly as there are no good CarbonSat simulated observation during winter months. The arrow marker in the X-
axis indicates a particular day (24th June 2008) shown in Figs. 5, 8, and 9. 
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Figure 8: XCO2 systematic error over the target region on 24th June 2008, assuming a CarbonSat swath width of 500 km.  
The six scenarios (S01 to S06) are shown with a label inside the respective panel. For S01, S02 and S04, these errors are 
estimated using the error parameterization scheme of Buchwitz et al. (2013a). The other scenarios additionally utilize 
biogenic XCO2 variability in the target region (simulated by WRF-GHG) to derive XCO2 systematic errors.  Note that 5	
  
different color scales are used for S02 and S03. All units are given in ppm. 
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Figure 9: Observed anthropogenic XCO2 enhancement over the target region during a CarbonSat overpass on 24th June 
2008 (swath width: 500 km). Different panels show anthropogenic XCO2 enhancement, while considering XCO2 
systematic errors for different scenarios as shown in Fig.8.  The “True” XCO2 (fossil fuel (FF)) enhancement (i.e. without 
any uncertainties) is given in the bottom panel (g) for comparison. Note that an offset, labeled inside each panel, is 5	
  
subtracted from the anthropogenic XCO2 enhancement to better visualize the details (for the figure only). All units are 
ppm.	
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Figure 10: Systematic errors (SE) of the retrieved emission fluxes for S01, obtained by the inverse optimization using one 
year of CarbonSat simulated observations. Results of two different swath widths (SW) – 500 km (grey) and 240 km (red) 
– are shown.  The top and bottom panels show SE in MtCO2 yr-1 and in % respectively. An overview of the statistical 
distribution of SE, separately for 500 km (grey) and 240 km (red) swath widths, is given inside the panel. The overall 5	
  
mean +/- standard deviation is given outside the respective panels. 
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Figure 11: Same as Fig.10, but for S02, quantifying the impact of the worst-case assumption used for aerosol-related 
biases. 
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Figure 12: Same as Fig.10, but for S03, quantifying the impact of the worst-case modeling related errors by assuming that 
biogenic XCO2 variations cannot be modeled at all. 
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Figure 13: Similar to Fig. 10, but for the inversion experiment S08 using IER (a priori) and EDGAR (true) emission 
fluxes.  
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Figure 14: Anthropogenic XCO2 enhancements (“true” as well as those estimated by the clean-pixel method described in 
Sec. 5) and the CarbonSat’s measurement biases (maximum values) over the target region around Berlin (100 km × 100 
km) for all of CarbonSat’s useful overpasses for the year 2008 (swath width: 500 km). The orange curve denotes the total 
number of CarbonSat simulated observations per overpass in the target region.  5	
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