

1 Supporting Information for
2
3

4 **Characteristics of total gaseous mercury (TGM) concentrations in an
5 industrial complex in southern Korea: Impacts from local sources**

6
7 Yong-Seok Seo^{1,2}, Seung-Pyo Jeong¹, Thomas M. Holsen³, Young-Ji Han⁴, Eunhwa Choi⁵, Eun
8 Ha Park¹, Tae Young Kim¹, Hee-Sang Eum¹, Dae Gun Park¹, Eunhye Kim⁶, Soontae Kim⁶,
9 Jeong-Hun Kim⁷, Jaewon Choi⁸, Seung-Muk Yi^{1,2,*}

10
11 ¹Department of Environmental Health, Graduate School of Public Health, Seoul National
12 University, 1 Gwanak, Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea

13
14 ²Institute of Health and Environment, Seoul National University, 1 Gwanak, Gwanak-ro,
15 Gwanak-gu, Seoul 151-742, South Korea

16
17 ³Department of Civil and Environmental Engineering, Clarkson University, Potsdam,
18 NY13699, USA

19
20 ⁴Department of Environmental Science, Kangwon National University, 192-1, Hyoja-2-dong,
21 Chuncheon, Kangwondo, 200-701, South Korea

22
23 ⁵Asian Institute for Energy, Environment & Sustainability, Seoul National University, 1
24 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea

25
26 ⁶Department of Environmental, Civil and Transportation Engineering, Ajou University,
27 Woncheon-dong, Yeongtong-gu, Suwon, 443-749, South Korea

28
29 ⁷Division of Air Pollution Engineering, Department of Climate and Air Quality Research,
30 National Institute of Environmental Research, Hwangyong-ro 42, Seogu, Incheon, 404-708,
31 South Korea

32
33 ⁸University of Pennsylvania, Philadelphia, PA19104, USA

34
35
36
37
38
39
40
41
42
43 *Address correspondence to Dr. Seung-Muk Yi, Graduate School of Public Health, Seoul
44 National University, 1 Gwanak, Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea
45 E-mail) yiseung@snu.ac.kr
46 Telephone) 82-2-880-2736
47 Fax) 82-2-745-9104

48

49 **Fig. S1. Frequency of counts of measured wind direction occurrence by season in this**
 50 **study.**

51

52

53 Fig. S2. Sectoral contribution of emissions of (a) South Korea, (b) Gyeongsangbuk-do
54 and (c) Pohang for CO, NOx, SOx, TSP VOC and NH₃.

55

56 **Sectoral contribution of emissions**

57 In South Korea, the NOx emissions were highest, followed by VOC, CO, SOx, NH₃, TSP,
58 PM₁₀ and PM_{2.5} (Fig. S2(a)). In Gyeongsangbuk-do, the NOx emissions were highest,
59 followed by CO, VOC, SOx, NH₃, and TSP, PM₁₀ and PM_{2.5} which is similar trend to South
60 Korea (Fig. S2(b)). However, Pohang showed a different pattern with the highest NOx
61 emissions, followed by SOx, VOC, CO, TSP, PM₁₀, PM_{2.5} and NH₃ (Fig. S2(c)).

62 Point source (combustion in energy industries + combustion in manufacturing industries +
63 production processes + waste treatment and disposal) in South Korea accounted for
64 1,226,609 tons (34.6% of total emissions in South Korea) of the air pollutants.

65 Gyeongsangbuk-do has a similar trend with 106,439 tons (35.8% of total emissions in
66 Gyeongsangbuk-do) of the air pollutants. However, Pohang has a significantly high
67 contribution with 56,144 tons (69.2% of total emissions in Pohang) of the air pollutants.

68 Area source (non-industrial combustion + storage and distribution of fuels + solvent
69 utilization + agriculture + other area sources) in South Korea accounted for 1,055,461 tons
70 (29.8% of total emissions in South Korea) of the air pollutants. Gyeongsangbuk-do has a
71 similar trend with 90,982 tons (30.6% of total emissions in Gyeongsangbuk-do) of the air
72 pollutants. However, Pohang has a less contribution with 6,903 tons (8.5% of total emissions
73 in Pohang) of the air pollutants.

74 Mobile source (road transport + non-road transport) in South Korea accounted for
75 1,261,782 tons (35.6% of total emissions in South Korea) of the air pollutants.
76 Gyeongsangbuk-do has a similar contribution with 99,709 tons (33.6% of total emissions in
77 Gyeongsangbuk-do) of the air pollutants. Pohang also has a lower contribution with 18,048
78 tons (22.3% of total emissions in Pohang) of the air pollutants.

79

80 **Table S1. Source Classification Categories (SCC) in CAPSS. The fugitive dust and**
 81 **biomass were excluded.**

Emission characteristics	SCC1 (11)	SCC2 (42)	SCC3 (173)
Point source	Combustion in energy industries	<ul style="list-style-type: none"> - Public power - District heating plants - Petroleum refining plants - Commercial power 	4
	Combustion in manufacturing industries	<ul style="list-style-type: none"> - Process furnace - Combustion plants - Other 	44
	Production processes	<ul style="list-style-type: none"> - Processes in other industries - Processes in wood, paper and pulp industries - Processes in inorganic chemical industries - Processes in petroleum industries - Processes in food and drink industries - Ammonia consumption - Processes in organic chemical industries - Processes in iron and steel industries 	44
	Waste treatment and disposal	<ul style="list-style-type: none"> - Waste incineration - Other waste treatment 	5
Area source	Non-industrial combustion	<ul style="list-style-type: none"> - Commercial and institutional plants - Plants in agriculture, forestry and aquaculture - Residential plants 	5
	Storage and distribution of fuels	<ul style="list-style-type: none"> - Gasoline distribution 	3
	Solvent utilization	<ul style="list-style-type: none"> - Paint application - Electronic Degreaser - Dry cleaning - Other use of solvents and related activities 	15
	Agriculture	<ul style="list-style-type: none"> - Enteric fermentation - Cultures with fertilizers 	10
	Other area sources	<ul style="list-style-type: none"> - Forest and other vegetation fires - Animals 	3
Mobile source	Road transport	<ul style="list-style-type: none"> - Passenger cars - Light-duty vehicles - Recreational vehicles - Taxis - Buses - Special purpose vehicles - Trucks - Motorcycles 	18
	Non-road transport	<ul style="list-style-type: none"> - Construction machinery and equipment - Agricultural machinery - Ships - Railways - Aircrafts 	22

82 *The numbers represent the number of sources.

83

Fig. S3. Frequency distribution of TGM during sampling period. Note that TGM was measured every 5-min.

85

86 **Fig. S4. Comparisons of CPF and CBPF plots for TGM and CO higher than average**
 87 **concentration. The radial axes of CPF and CBPF are the probability and the wind**
 88 **speed (m s^{-1}), respectively.**

Fig. S5. The diurnal variations of co-pollutants concentrations and meteorological data during the sampling periods. The error bars represent standard error.

94

95 **Fig. S6. Comparison of TGM, co-pollutants and meteorological data between daytime**
96 **and nighttime. Note that TGM was presented with hourly average concentration.**