
1 
 

Characteristics of total gaseous mercury (TGM) concentrations in an 1 
industrial complex in southern Korea: Impacts from local sources  2 
 3 
Yong-Seok Seo1, 2, Seung-Pyo Jeong1, Thomas M. Holsen3, Young-Ji Han4, Eunhwa Choi5, Eun 4 
Ha Park1, Tae Young Kim1, Hee-Sang Eum1, Dae Gun Park1, Eunhye Kim6, Soontae Kim6, 5 
Jeong-Hun Kim7, Jaewon Choi8, Seung-Muk Yi1, 2, * 6 
 7 
1Department of Environmental Health, Graduate School of Public Health, Seoul National 8 
University, 1 Gwanak, Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea 9 
 10 
2Institute of Health and Environment, Seoul National University, 1 Gwanak, Gwanak-ro, 11 
Gwanak-gu, Seoul 151-742, South Korea 12 
 13 
3Department of Civil and Environmental Engineering, Clarkson University, Potsdam, 14 
NY13699, USA 15 
 16 
4Department of Environmental Science, Kangwon National University, 192-1, Hyoja-2-dong, 17 
Chuncheon, Kangwondo, 200-701, South Korea 18 
 19 
5Asian Institute for Energy, Environment & Sustainability, Seoul National University, 1 20 
Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea 21 
 22 
6Department of Environmental, Civil and Transportation Engineering, Ajou University, 23 
Woncheon-dong, Yeongtong-gu, Suwon, 443-749, South Korea 24 
 25 
7Division of Air Pollution Engineering, Department of Climate and Air Quality Research, 26 
National Institute of Environmental Research, Hwangyong-ro 42, Seogu, Incheon, 404-708, 27 
South Korea 28 
 29 
8University of Pennsylvania, Philadelphia, PA19104, USA   30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
*Address correspondence to Dr. Seung-Muk Yi, Graduate School of Public Health, Seoul 40 
National University, 1 Gwanak, Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea 41 
E-mail) yiseung@snu.ac.kr  42 
Telephone) 82-2-880-2736 43 
Fax) 82-2-745-9104 44 



Page 2 / 38 

2 
 

Abstract 45 

Total gaseous mercury (TGM) concentrations were measured every 5 min in Pohang, 46 

Gyeongsangbuk-do, Korea during summer (17 August~23 August 2012), fall (9 October~17 47 

October 2012), winter (22 January ~29 January 2013), and spring (26 March~3 April 2013) 48 

to: 1) characterize the hourly and seasonal variations of atmospheric TGM concentrations, 2) 49 

identify the relationships between TGM and co-pollutants, and 3) identify likely source 50 

directions and locations of TGM using conditional probability function (CPF), conditional 51 

bivariate probability function (CBPF) and total potential source contribution function 52 

(TPSCF).  53 

The TGM concentration was statistically significantly highest in fall (6.7 ± 6.4 ng m-3), 54 

followed by spring (4.8 ± 4.0 ng m-3), winter (4.5 ± 3.2 ng m-3) and summer (3.8 ± 3.9 ng m-55 

3). There was a weak but statistically significant negative correlation between the TGM 56 

concentration and ambient air temperature (r = -0.08) (p < 0.05). Although the daytime 57 

temperature (14.7 ± 10.0 ºC) was statistically significantly higher than that in the nighttime 58 

(13.0 ± 9.8 ºC) (p < 0.05), the daytime TGM concentration (5.3 ± 4.7 ng m-3) was statistically 59 

significantly higher than those in the nighttime (4.7 ± 4.7 ng m-3) (p < 0.01), possibly due to 60 

local emissions related to industrial activities and activation of local surface emission 61 

sources. The observed ΔTGM/ΔCO was significantly lower than that of Asian long-range 62 

transport, but similar to that of local sources in Korea and in US industrial events suggesting 63 

that local sources are more important than that of long-range transport. CPF, CBPF and 64 

TPSCF indicated that the main sources of TGM were iron and manufacturing facilities, the 65 

hazardous waste incinerators and the coastal areas. 66 
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1. Introduction  70 

Mercury (Hg) is an environmental toxic and bioaccumulative trace metal whose emissions 71 

to the environment have considerably increased due to anthropogenic activities such as 72 

mining and combustion processes (Pirrone et al., 2013; Streets et al., 2011). Hg can be 73 

globally distributed from the sources through atmospheric transport as gaseous elemental 74 

form (Bullock et al., 1998; Mason and Sheu, 2002). However, the origins of atmospheric 75 

mercury are local and regional (Choi et al., 2009) as well as hemispherical and global 76 

(Durnford et al., 2010). In addition to the general background concentration of Hg in the 77 

global atmosphere, local Hg emissions contribute to the Hg burden and it contribute to the 78 

background concentration much of which represents anthropogenic releases accumulated 79 

over the decades (UNEP, 2002). 80 

Hg in the atmosphere exists in three major inorganic forms including gaseous elemental 81 

mercury (GEM, Hg0), gaseous oxidized mercury (GOM, Hg2+) and particulate bound 82 

mercury (PBM, Hg(p)). GEM which is the dominant form of Hg in ambient air, (>95%) has a 83 

relatively long residence time (0.5~2 years) due to its low reactivity and solubility (Schroeder 84 

and Munthe, 1998). However, GOM has high water solubility and relatively strong surface 85 

adhesion properties (Han et al., 2005), so it has a short atmospheric residence time (~days). 86 

PBM is associated with airborne particles such as dust, soot, sea-salt aerosols, and ice crystals 87 

(Lu and Schroeder, 2004) and is likely produced, in part, by adsorption of GOM species such 88 

as HgCl2 onto atmospheric particles (Gauchard et al., 2005; Lu and Schroeder, 2004; Sakata 89 

and Marumoto, 2005; Seo et al., 2012; Seo et al., 2015). 90 

Atmospheric Hg released from natural (e.g., volcanoes, volatilization from aquatic and 91 

terrestrial environments) (Pirrone et al., 2010; Strode et al., 2007) and anthropogenic sources 92 

(e.g., coal combustion, cement production, ferrous and non-ferrous metals manufacturing 93 
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facilities, waste incineration and industrial boilers) (Pacyna et al., 2010; Pacyna et al., 2006; 94 

Pacyna et al., 2003; Pirrone et al., 2010; Zhang et al., 2015) when introduced into terrestrial 95 

and aquatic ecosystem through wet and dry deposition (Mason and Sheu, 2002) can undergo 96 

various physical and chemical transformations before being deposited. Its lifetime in the 97 

atmosphere depends on its reactivity and solubility so that, depending on its form, it can have 98 

impacts on local, regional and global scales (Lin and Pehkonen, 1999; Lindberg et al., 2007). 99 

A portion of the Hg deposited in terrestrial environments through direct industrial discharge 100 

or atmospheric deposition is transported to aquatic system through groundwater and surface 101 

water runoff (Miller et al., 2013). A previous study also reported that Hg directly released 102 

into terrestrial and aquatic ecosystems from industrial effluent has influenced surface water, 103 

sediment and biological tissue (Flanders et al., 2010). Significant spatial variations in 104 

atmospheric Hg deposition near urban and industrial areas are due to local anthropogenic 105 

sources including municipal waste incinerators, medical waste incinerators, electric power 106 

generating facilities and cement kilns (Dvonch et al., 1998), ferrous and non-ferrous metal 107 

processing, iron and steel manufacturing facilities, oil and coal combustion (Hoyer et al., 108 

1995), and other forms of industrial combustion (Brown et al., 2015). Miller et al. (2013) also 109 

reported that local sources of elemental Hg are typically industrial processes including retort 110 

facilities used in the mercury mining industry to convert Hg containing minerals to elemental 111 

Hg and chlor-alkali facilities. 112 

The annual average national anthropogenic Hg emissions from South Korea in 2007 have 113 

been estimated to be 12.8 tons (range 6.5 to 20.2 tons); the major emission sources are coal 114 

combustion in thermal power plants (25.8%), oil refineries (25.5%), cement kilns (21%), 115 

incinerators (19.3%) including sludge incinerators (4.7%), municipal waste incinerators 116 

(MWIs) (3%), industrial waste incinerators (IWIs) (2.7%), hospital/medical/infectious waste 117 
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incinerators (HMIWIs) (8.8%), and iron manufacturing (7%) (Kim et al., 2010). Global 118 

anthropogenic Hg emissions were estimated to be 1960 tons in 2010 with East and Southeast 119 

Asia responsible for 777 tons (39.7%) (19.6 tons for Japan and 8.0 tons for South Korea) 120 

(AMAP/UNEP, 2013). China is the largest Hg emitting country in the world, contributing 121 

more than 800 tons (~ 40%) of the total anthropogenic Hg emissions (UNEP, 2008). 122 

Background atmospheric Hg concentrations in the northern hemisphere have decreased 123 

since 1996 (Slemr et al., 2003), as measured at the Global Atmosphere Watch (GAW) station 124 

at Mace Head, Ireland (Ebinghaus et al., 2011) and at the Canadian Atmospheric Mercury 125 

Network (CAMNet) (Temme et al., 2007). In urban areas in South Korea atmospheric TGM 126 

concentrations have also decreased over the last few decades due to the reduced fossil fuel 127 

(mainly anthracite coal) consumption (Kim et al., 2016; Kim and Kim, 2000). However, this 128 

decreasing trend is inconsistent with steady or increasing global anthropogenic Hg emissions 129 

since 1990 in the northern hemisphere (Streets et al., 2011; Weigelt et al., 2015; Wilson et al., 130 

2010). A previous study reported that the global anthropogenic Hg emissions are increasing 131 

with an average of 1.3% annual growth without including the artisanal and small-scale 132 

production sector (Muntean et al., 2014). 133 

Receptor models are often used to identify sources of air pollutants and are focused on the 134 

pollutants behavior in the ambient environment at the point of impact (Hopke, 2003). In 135 

previous studies, conditional probability function (CPF), which utilizes the local wind 136 

direction, and potential source contribution function (PSCF), which utilizes longer backward 137 

trajectories (typically 3-5 days), combined with concentration data were used to identify 138 

possible transport pathways and source locations (Hopke, 2003). While PSCF has been used 139 

primarily to identify regional sources, it has also been used to identify local sources (Hsu et 140 

al., 2003).  141 
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The objectives of this study were to characterize the hourly and seasonal variations of 142 

atmospheric TGM (the sum of the GEM and the GOM) concentrations, to identify the 143 

relationships between TGM and co-pollutant concentrations, and to identify likely source 144 

directions and locations of TGM using CPF, conditional bivariate probability function 145 

(CBPF) and total PSCF (TPSCF). 146 

 147 

2. Materials and methods 148 

2.1. Sampling and analysis 149 

TGM concentrations were measured on the roof of the Korean Federation of 150 

Community Credit Cooperatives (KFCCC) building (latitude: 35.992°, longitude: 129.404°, 151 

~10 m above ground) in Pohang city, in Gyeongsangbuk-do, a province in eastern South 152 

Korea. Gyeongsangbuk-do has a population of 2.7 million (5% of the total population and the 153 

third most populated province in South Korea) and an area of 19,030 km2 (19% of the total 154 

area of South Korea and the largest province geographically in South Korea). Pohang city has 155 

a population of 500,000 (1% of the total population in South Korea) and an area of 605.4 km2 156 

(1.1% of the total area in South Korea). It is heavily industrialized with the third largest steel 157 

manufacturing facility in Asia and the fifth largest in the world. There are several iron and 158 

steel manufacturing facilities including electric and sintering furnaces using coking in 159 

Gyeongsangbuk-do including Pohang. In addition, there are several coke plants around the 160 

sampling site. The Hyungsan River divides the city into a residential area and the steel 161 

complex. Hg emissions data from iron and steel manufacturing, and a hazardous waste 162 

incinerator were estimated based on a previous study (Kim et al., 2010) (Fig. 1). 163 

TGM concentrations were measured every 5 min during summer (17 August~23 August 164 

2012), fall (9 October~17 October 2012), winter (22 January ~29 January 2013), and spring 165 
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(26 March~3 April 2013) using a mercury vapor analyzer (Tekran 2537B) which has two 166 

gold cartridges that alternately collect and thermally desorb mercury. Ambient air at a flow 167 

rate of 1.5 L min-1 was transported through a 3 m-long heated sampling line (1/4” OD Teflon) 168 

in to the analyzer. The sampling line was heated at about 50 ºC using heat tape to prevent 169 

water condensation in the gold traps because moisture on gold surfaces interferes with the 170 

amalgamation of Hg (Keeler and Barres, 1999). Particulate matter was removed from the 171 

sampling line by a 47 mm Teflon filter.  172 

 173 

2.2. Meteorological data 174 

Hourly meteorological data (air temperature, relative humidity, and wind speed and 175 

direction) were obtained from the Automatic Weather Station (AWS) operated by the Korea 176 

Meteorological Administration (KMA) (http://www.kma.go.kr) (6 km from the site). Hourly 177 

concentrations of NO2, O3, CO, PM10 and SO2 were obtained from the National Air Quality 178 

Monitoring Network (NAQMN) (3 km from the site) (Fig. 1).  179 

Meteorological Setting. Fig. S1 shows the frequency of counts of measured wind direction 180 

occurrence by season during the sampling period. The predominant wind direction at the 181 

sampling site was W (20.9%) and WS (19.2%), and calm conditions of wind speed less than 182 

1 m s-1 occurred 7.6% of the time. Compared to other seasons, however, the prevailing winds 183 

in summer were N (17.0%), NE (16.4%), S (16.4%), and SW (15.8%). 184 

 185 

2.3. QA/QC 186 

Automated daily calibrations were carried out for the Tekran 2537B using an internal 187 

permeation source. Two-point calibrations (zero and span) were separately performed for 188 

each gold cartridge. Manual injections were performed prior to every field sampling 189 
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campaign to evaluate these automated calibrations using a saturated mercury vapor standard. 190 

The relative percent difference (RPD) between automated calibrations and manual injections 191 

was less than 2%. The recovery measured by directly injecting known amounts of four 192 

mercury vapor standards when the sample line was connected to zero air ranged from 92 to 193 

110% (99.4 ± 5.2% in average). 194 

 195 

3. Model descriptions 196 

3.1. Conditional Probability Function (CPF) 197 

CPF was originally performed to determine which wind directions dominate during high 198 

concentration events to evaluate local source impacts (Ashbaugh et al., 1985). It has been 199 

successfully used in many previous studies (Begum et al., 2004; Kim et al., 2003a; Kim et al., 200 

2003b; Xie and Berkowitz, 2006; Zhao et al., 2004; Zhou et al., 2004). CPF estimates the 201 

probability that the measured concentration will exceed the threshold criterion for a given 202 

wind direction. The CPF is defined as follows Eq. (1). 203 

 204 
𝐶𝐶𝐶𝐶𝐶𝐶∆𝜃𝜃 = 𝑚𝑚∆𝜃𝜃|𝐶𝐶≥𝑥𝑥

𝑛𝑛∆𝜃𝜃
                            (1) 205 

 206 

where, mΔθ is the number of samples from the wind sector θ having concentration C greater 207 

than or equal to a threshold value x, and nΔθ is the total number of samples from wind sector 208 

Δθ. In this study, 16 sectors (Δθ = 22.5º) were used and calm winds (≤ 1 m s-1) were excluded 209 

from the analysis. The threshold criterion was set at above the overall average TGM 210 

concentration (5.0 ng m-3). Thus, CPF indicates the potential for winds from a specific 211 

direction to contribute to high air pollution concentrations.  212 
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 213 

3.2. Conditional Bivariate Probability Function (CBPF) 214 

CBPF couples ordinary CPF with wind speed as a third variable, allocating the measured 215 

concentration of pollutant to cells defined by ranges of wind direction and wind speed rather 216 

than to only wind direction sectors.  217 

The CBPF is defined as follows Eq. (2). 218 

 219 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶∆𝜃𝜃,∆𝑢𝑢 = 𝑚𝑚∆𝜃𝜃,∆𝑢𝑢|𝐶𝐶≥𝑥𝑥
𝑛𝑛∆𝜃𝜃,∆𝑢𝑢

                          (2) 220 

 221 

where, 𝑚𝑚∆𝜃𝜃,∆𝑢𝑢 is the number of samples in the wind sector Δθ with wind speed interval ∆𝑢𝑢 222 

having concentration C greater than a threshold value x, and nΔθΔu is the total number of 223 

samples in that wind direction-speed interval. The threshold criterion was set at above the 224 

overall average TGM concentration (5.0 ng m-3). The extension to the bivariate case can 225 

provide more information on the nature of the sources because different source types such as 226 

stack emission sources and ground-level sources can have different wind speed dependencies 227 

(prominent at high and low wind speed, respectively). More detailed information is described 228 

in a previous study (Uria-Tellaetxe and Carslaw, 2014). 229 

 230 

3.3. Potential Source Contribution Function (PSCF) 231 

The PSCF model has been extensively and successfully used in the previous studies to 232 

identify the likely source areas (Cheng et al., 1993; Han et al., 2004; Hopke et al., 2005; Lai 233 

et al., 2007; Lim et al., 2001; Poissant, 1999; Zeng and Hopke, 1989). The PSCF is a simple 234 

method that links residence time in upwind areas with high concentrations through a 235 

conditional probability field and was originally developed by Ashbaugh et al. (1985). PSCFij 236 



Page 11 / 38 
 

11 
 
 

is the conditional probability that an air parcel that passed through the ijth cell had a high 237 

concentration upon arrival at the monitoring site and is defined as the following Eq. (3). 238 

 239 

ij

ij
ij n

m
PSCF =                                 (3) 240 

 241 

where, nij is the number of trajectory segment endpoints that fall into the ij-th cell, and mij is the 242 

number of segment endpoints in the same grid cell (ij-th cell) when the concentrations are higher 243 

than a criterion value as measured at the sampling site.  244 

High PSCF values in those grid cells are regarded as possible source locations. Cells including 245 

emission sources can be identified with conditional probabilities close to one if trajectories that 246 

have crossed the cells efficiently transport the released pollutant to the receptor site. Therefore, 247 

the PSCF model provides a tool to map the source potentials of geographical areas.  248 

The criterion value of PSCF for TGM concentration was set at above the overall average 249 

concentration (5.0 ng m-3) to identify the emission sources associated with high TGM 250 

concentrations and provide a better estimation and resolution of source locations during the 251 

sampling periods. The geographic area covered by the computed trajectories was divided into 252 

an array of 0.05º latitude by 0.05º longitude grid cells. As will be discussed in Section 5.3, 24 253 

h backward trajectories starting at every hour at a height of 10, 50, and 100 m above ground 254 

level were computed using the vertical velocity model because local sources are more 255 

important than that of long-range transport in this study (It should be noted that PSCF results 256 

using 48 h backward trajectories had similar results as the 24 h backward trajectories). Each 257 

trajectory was terminated if they exit the model top (5,000m), but advection continues along 258 

the surface if trajectories intersect the ground. To generate horizontally highly resolved 259 

meteorological inputs for trajectory calculations, the Weather Research and Forecast (WRF) 260 
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model was used to generate a coarse domain at a resolution of 27 km and a nested domain at 261 

a horizontal resolution of 9 km, which geographically covers northeast Asia and the southern 262 

part of the Korean Peninsula, respectively. The nested domain has 174 columns in the east-263 

west direction and 114 rows in the north-south direction. PSCF was calculated with 9 km 264 

meteorological data. 265 

In this study, TPSCF which incorporates probability from above different starting 266 

heights was calculated since backward trajectories starting at different heights traverse 267 

different distances and pathways, thus providing information that cannot be obtained from a 268 

single starting height (Cheng et al., 1993).  269 

Previous studies suggest that there are increasing uncertainties as backward trajectory 270 

distances increase (Stohl et al., 2002) and that PSCF modeling is prone to the trailing effect is 271 

which locations upwind of sources are also identified as potential sources (Han et al., 2004). 272 

An alternative to back trajectory calculations in the interpretation of atmospheric trace 273 

substance measurements (Stohl et al., 2002) although this technique does not provide much 274 

information on source locations. 275 

Generally, PSCF results show that the potential sources covered wide areas instead of 276 

indicating individual sources due to the trailing effect. The trailing effect appears since PSCF 277 

distributes a constant weight along the path of the trajectories. To minimize the effect of 278 

small nij (the number of trajectory segment endpoints that fall into the ij-th cell) values, 279 

resulting in high TPSCF values with high uncertainties, an arbitrary weight function W (nij) 280 

was applied to down-weight the PSCF values for the cell in which the total number of end 281 

points was less than three times the average value of the end points (Choi et al., 2011; Heo et 282 

al., 2009; Hopke et al., 1995; Polissar et al., 2001). The TPSCF value for a grid cell was 283 

defined with following Eq. (4). 284 
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 285 

100mij50mij10mij

100mij50mij10mij
ij )P(n)P(n)P(n

)P(m)P(m)P(m
)(TPSCF P

++

++
=  × W                (4) 286 
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where, 288 
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 290 

4. Clean Air Policy Support System (CAPSS) data 291 

In this study, the Korean National Emission Inventory estimated using Clean Air Policy 292 

Support System (CAPSS) data developed by the National Institute of Environmental 293 

Research (NIER) were used (http://airemiss.nier.go.kr/main.jsp (accessed December 09, 294 

2015)). The CAPSS is the national emission inventory system for the air pollutants (CO, 295 

NOx, SOx, TSP, PM10, PM2.5, VOCs and NH3) which utilizes various national, regional and 296 

local statistical data collected from about 150 organizations in Korea. In CAPSS, the Source 297 

Classification Category (SCC) excluding fugitive dust and biomass burning based on the 298 

European Environment Agency’s (EEA) CORe Inventory of AIR emissions was classified 299 

into the following four levels (EMEP/CORINAIR) (NIER, 2011).  300 

(1) The upper level (SCC1): 11 source categories , 301 

(2) The intermediate level (SCC2): 42 source categories and 302 

(3) The lower level (SCC3): 173 source categories 303 
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 304 

The sectoral contributions of emissions of South Korea, Gyeongsangbuk-do and Pohang 305 

for CO, NOx, SOx, TSP, PM10, PM2.5, VOC and NH3 are shown in Fig. S2 (See SI for 306 

details). 307 

More detailed information about SCCs in CAPSS is described in Table S1. 308 

 309 

5. Results and Discussions 310 

5.1. General characteristics of TGM 311 

The seasonal distributions of TGM were characterized by large variability during each 312 

sampling period (Fig. 2). The average concentration of TGM during the complete sampling 313 

period was 5.0 ± 4.7 ng m-3 (range: 1.0-79.6 ng m-3). This is significantly higher than the 314 

Northern Hemisphere background concentration (~1.5 ng m-3) (Sprovieri et al., 2010) and 315 

those measured in China, in Japan and other locations in Korea, however lower than those 316 

measured at Changchun, Gui Yang and Nanjing in China (Table 1). The median TGM 317 

concentration was 3.6 ng m-3 which was much lower than that of the average, suggesting that 318 

there were some extreme pollution episodes with very high TGM concentrations.  319 

The TGM concentration follows a typical log-normal distribution (Fig. S3). The range of 2 320 

to 5 ng m-3 dominated the distribution, accounting for more than half of the total number of 321 

samples (60.8%). The maximum frequency of 28.1% occurred between 2 and 3 ng m-3. 322 

Extremely high TGM concentration events (>20 ng m-3) were also observed (1.7% of the 323 

time). 324 

 325 

 326 

 327 
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5.2. Seasonal variations 328 

The TGM concentration was statistically significantly higher in fall (6.7 ± 6.4 ng m-3) (p < 329 

0.01), followed by spring (4.8 ± 4.0 ng m-3), winter (4.5 ± 3.2 ng m-3) and summer (3.8 ± 3.9 330 

ng m-3) (Table 2). The highest concentrations (TGM > 10 ng m-3) were measured more 331 

frequently in fall (24.7%), and the lowest concentrations (TGM < 3 ng m-3) mainly occurred 332 

in summer (49.7%). The low TGM concentration in summer is likely because increased 333 

mixing height (Friedli et al., 2011), and gas phase oxidation (Choi et al., 2013; Huang et al., 334 

2010; Lynam and Keeler, 2006) at higher temperatures particularly at this sampling site 335 

which is close to the ocean (2 km) where oxidation involving halogens may be enhanced 336 

(Holmes et al., 2009; Lin et al., 2006). The high TGM concentrations in fall was due to 337 

different wind direction (see Fig. S1), sources, relationships with other pollutants and 338 

meteorological conditions. More detailed information can be found in Section 5.4.  339 

The average concentrations of NO2, O3, CO, PM10 and SO2 during the complete sampling 340 

period were 23.1 ± 10.8 ppbv, 24.6 ± 12.5 ppbv, 673.7 ± 487.3 ppbv, 55.5 ± 26.4 µg m-3 and 341 

6.7 ± 4.3 ppbv, respectively. NO2, O3, CO, PM10 and SO2 concentrations were highest in 342 

spring (Table 2). There was a statistically significant positive correlation between the TGM 343 

and PM10 (r = 0.10) (p < 0.01). However, the TGM concentration was not significantly 344 

correlated with NO2, CO or SO2 concentrations, suggesting that combustion associated with 345 

space heating was not a significant source of TGM (Choi et al., 2009).  346 

 347 

5.3. Relationship between TGM and CO 348 

CO has a significant anthropogenic source and is considered to be an indicator of 349 

anthropogenic emissions (Mao et al., 2008). Previous studies reported that TGM and CO 350 
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have a strong correlation because they have similar emission sources (combustion processes) 351 

and similar long atmospheric residence times (Weiss-Penzias et al., 2003).  352 

There was a weak positive correlation between TGM and CO in this study (r = 0.04) (p = 353 

0.27). However there was a statistically significant correlation between TGM and CO in 354 

winter (r = 0.25) (p < 0.05), suggesting that TGM and CO were affected by similar, possibly 355 

distant, anthropogenic emission sources in winter.  356 

On the other hand, there were no statistically significant correlations between TGM and 357 

CO in spring (r = 0.02) (p = 0.78), in summer (r = 0.13) (p = 0.08), or in fall (r = -0.03) (p = 358 

0.69), indicating that TGM and CO were affected by different anthropogenic emission 359 

sources in these seasons. 360 

Previous studies identified the long-range transport of mercury using the ΔTGM/ΔCO 361 

enhancement ratio (Choi et al., 2009; Jaffe et al., 2005; Kim et al., 2009; Weiss-Penzias et al., 362 

2003; Weiss‐Penzias et al., 2006). Kim et al. (2009) and Choi et al. (2009) investigated high 363 

concentration events which were defined as at least a 10 h period with hourly average TGM 364 

and CO concentrations higher than the average monthly TGM and CO concentrations. They 365 

reported that long-range transport events were characterized by high values of TGM/CO ratio 366 

(ΔTGM/ΔCO) (0.0052-0.0158 ng m-3 ppb-1) and high correlations (r2>0.5), whereas local 367 

events showed low ΔTGM/ΔCO (0.0005 ng m-3 ppb-1 in average) and weak correlations (r2 < 368 

0.5). 369 

The observed ΔTGM/ΔCO was 0.0001 ng m-3 ppb-1 in spring, 0.0005 ng m-3 ppb-1 in 370 

summer, -0.0007 ng m-3 ppb-1 in fall, 0.0011 ng m-3 ppb-1 in winter, which are significantly 371 

lower than that indicative of Asian long-range transport (0.0046-0.0056 ng m-3 ppb-1) (Friedli 372 
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et al., 2004; Jaffe et al., 2005; Weiss‐Penzias et al., 2006), suggesting that local sources are 373 

more important than that of long-range transport in this study. The ΔTGM/ΔCO in winter 374 

(0.0011 ng m-3 ppb-1) was similar to that of a site impacted by local sources in Korea (Kim et 375 

al., 2009) and in US industrially related events (0.0011 ng m-3 ppb-1) (Weiss-Penzias et al., 376 

2007).  377 

There are also uncertainties from the potential mixing between Hg associated with long-378 

range transported airflows and local air making it difficult to distinguish between distant and 379 

local source impacts. However, it is possible that the one-week sampling period in each 380 

season did not capture the long-range transport events, and more can be learned using a larger 381 

dataset than just using the one-week sampling period to confirm these results. 382 

 383 

5.4. Diurnal variations 384 

Diurnal variations of TGM (Fig. 3), co-pollutants concentrations, and meteorological 385 

data were observed (Fig. S4). TGM, O3, CO, SO2, and temperature in the daytime (06:00-386 

18:00) were higher than those in the nighttime (18:00-06:00) (p < 0.05) except PM10 (p = 387 

0.09) (Fig. S5). However, NO2 during the nighttime because of relatively lower 388 

photochemical reactivity with O3 was higher than that in daytime (p < 0.05) (Adame et al., 389 

2012). 390 

The daytime TGM concentration (5.3 ± 4.7 ng m-3) was higher than that in the nighttime 391 

(4.7 ± 4.7 ng m-3) (p < 0.01), which was similar to several previous studies (Cheng et al., 392 

2014; Gabriel et al., 2005; Nakagawa, 1995; Stamenkovic et al., 2007) but different than 393 

another studies (Lee et al., 1998). Previous studies reported that this different is due to local 394 

sources close to the sampling site (Cheng et al., 2014; Gabriel et al., 2005), a positive 395 

correlation between TGM concentration and ambient air temperature (Nakagawa, 1995) and 396 
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increased traffic (Stamenkovic et al., 2007). However, another study suggested that the higher 397 

TGM concentration during the night was due to the shallowing of the boundary layer, which 398 

concentrated the TGM near the surface (Lee et al., 1998). 399 

In a previous study the daytime TGM concentration was relatively lower than that in the 400 

nighttime because the sea breeze transported air containing low amounts of TGM from the 401 

ocean during the daytime whereas the land breeze transported air containing relatively high 402 

concentrations of TGM from an urban area during the nighttime (Kellerhals et al., 2003).    403 

Although it is possible that the land-sea breeze may affect diurnal variations in TGM 404 

concentrations since the sampling site was near the ocean and lower TGM were also observed 405 

during the daytime, the higher concentrations in the daytime than those in nighttime were due 406 

to local emission sources because the daytime temperature (14.7 ± 10.0 ºC) was statistically 407 

significantly higher than that in the nighttime (13.0 ± 9.8 ºC) (t-test, p < 0.05) and there was a 408 

weak but statistically significant negative correlation between TGM concentration and 409 

ambient air temperature (r = -0.08) (p < 0.05). In addition, there are several known Hg 410 

sources such as iron and steel manufacturing facilities including electric and sintering 411 

furnaces using coking between the sampling site and the ocean. 412 

As shown in Fig. 3 and Fig. S4, there was a weak but negative relationship between the 413 

TGM concentrations and O3 concentrations (r = -0.18) (p < 0.01), suggesting that oxidation 414 

of GEM in the oxidizing atmosphere during periods of strong atmospheric mixing was 415 

partially responsible for the diurnal variations of TGM concentrations. In addition, oxidation 416 

of GEM by bromine species in the coastal area (Obrist et al., 2011) or by chloride radicals in 417 

marine boundary layer (Laurier et al., 2003) might play a significant role. If oxidation of 418 

GEM occurred, GOM concentrations would increase. However there are uncertainties on the 419 
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net effects on TGM (the sum of the GEM and the GOM) since we did not measure GOM 420 

concentrations. 421 

TGM concentration was negatively correlated with ambient air temperature (r = -0.08) 422 

(p < 0.05) because high ambient air temperature in the daytime will increase the height of the 423 

boundary layer and dilute the TGM, and the relatively lower boundary layer at nighttime 424 

could concentrate the TGM in the atmosphere (Li et al., 2011). Although there was a 425 

statistically significant negative correlation between the TGM concentration and ambient air 426 

temperature, there was a rapid increase in TGM concentration between 06:00-09:00 when 427 

ambient temperatures also increased possibly due to local emissions related to industrial 428 

activities, increased traffic, and activation of local surface emission sources. Similar patterns 429 

were found in previous studies (Li et al., 2011; Stamenkovic et al., 2007). Nonparametric 430 

correlations revealed that there is a weak positive correlation between TGM and ambient air 431 

temperature (rs = 0.11, p=0.27) between 06:00-09:00. The TGM concentration was negatively 432 

correlated with O3 (rs = -0.33, p<0.01) but positively correlated with NO2 (rs = 0.21, p<0.05), 433 

suggesting that the increased traffic is the main source of TGM during these time periods.  434 

Compared to other seasons, significantly different diurnal variations of TGM were 435 

observed in fall. The daytime TGM concentrations in fall were similar to those in other 436 

seasons, however, the nighttime TGM concentrations in fall were much higher than other 437 

seasons. As described earlier in Section 5.2, the high TGM concentrations in fall was 438 

possibly due to the relationship between other pollutants and meteorological conditions as 439 

well as different wind direction and sources. The nighttime TGM concentrations in fall were 440 

simultaneously positively correlated with PM10 (r=0.26) (p<0.05) and CO (r=0.21) (p<0.05) 441 

concentrations and wind speed (r=0.35) (p<0.01), suggesting that the combustion process is 442 

an important source during this period. 443 
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TGM generally showed a consistent increase in the early morning (06:00-09:00) and a 444 

decrease in the afternoon (14:00-17:00), similar to previous studies (Dommergue et al., 2002; 445 

Friedli et al., 2011; Li et al., 2011; Liu et al., 2011; Mao et al., 2008; Shon et al., 2005; Song 446 

et al., 2009; Stamenkovic et al., 2007). Significantly different diurnal patterns have been 447 

observed at many suburban sites with the daily maximum occurring in the afternoon (12:00-448 

15:00), possibly due to local emission sources and transport (Fu et al., 2010; Fu et al., 2008; 449 

Kuo et al., 2006; Wan et al., 2009). Other studies in Europe reported that TGM 450 

concentrations were relatively higher early in the morning or at night possibly due to mercury 451 

emissions from surface sources that accumulated in the nocturnal inversion layer (Lee et al., 452 

1998; Schmolke et al., 1999). 453 

Based on the above results, the diurnal variations in TGM concentration are due to a 454 

combination of: 1) reactions with an oxidizing atmosphere, 2) changes in ambient 455 

temperature and 3) local emissions related to industrial activities. To supplement these 456 

conclusions CPF and CBPF were used to identify source directions and TPSCF was used to 457 

identify potential source locations. 458 

 459 

5.5. CPF, CBPF and TPSCF results of TGM 460 

Conventional CPF, CBPF and TPSCF plots for TGM concentrations higher than the 461 

average concentration show high source probabilities to the west in the direction of large steel 462 

manufacturing facilities and waste incinerators (Fig. 4). The CPF only shows high 463 

probabilities from the west and provides no further information, however, the CBPF shows 464 

groups of sources with the high probabilities from the west and the northeast. CBPF shows 465 

that the high probabilities from the west occurred under high wind speed (> 3 m s-1) 466 
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indicative of emissions from stacks as well as low wind speed (≤3 m s-1) indicative of non-467 

buoyant ground level sources (Uria-Tellaetxe and Carslaw, 2014).  468 

As described in Section 5.3, correlations between TGM and CO revealed that TGM and 469 

CO were affected by similar anthropogenic emission sources in winter but affected by 470 

different sources in spring, summer and fall, which is supported by Fig. S6 which shows 471 

significantly different seasonal patterns of CPF and CBPF for TGM concentrations. 472 

However, compared to Fig. 4, the CPF and CBPF patterns in fall were similar to those during 473 

the whole sampling periods. Especially, the nighttime TGM concentration in fall was 474 

simultaneously positively correlated with PM10 (r=0.26) (p<0.05) and CO (r=0.21) (p<0.05) 475 

concentrations and wind speed (r=0.35) (p<0.01), indicating that the combustion process 476 

from the west is an important source during this period.  477 

Since TGM showed a significant correlation with CO (r=0.25) (p<0.05) and showed a 478 

weak positive correlation with PM10 (r=0.08) (p=0.33) in winter with high wind speed, 479 

combustion sources from the west are likely partially responsible for this result. 480 

TPSCF identified the likely sources of TGM as the iron and manufacturing facilities and 481 

the hazardous waste incinerators which are located to the west from the sampling site. A 482 

previous study reported that the waste incinerators (9%) and iron and steel manufacturing 483 

(7%) were relatively high Hg emissions sources in Korea (Kim et al., 2010). Waste 484 

incinerators emissions were due to the high Hg content in the waste (Lee et al., 2004). 485 

Emissions from iron and steel manufacturing are due to the numerous electric and sintering 486 

furnaces using coking which emits relatively high mercury concentrations (Lee et al., 2004) 487 

in Gyeongsangbuk-do including Pohang. There are several coke plants around the sampling 488 

site (http://www.poscoenc.com/upload/W/BUSINESS/PDF/ENG_PLANT_2_1_3_5.pdf 489 

(accessed December 09, 2015)). They are essential parts of the iron and steel manufacturing, 490 
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and the major source of atmospheric mercury related to the iron and steel manufacturing is 491 

from coke production (Pacyna et al., 2006). 492 

The coastal areas east of the sampling site where there are large ports were also identified 493 

as the likely source areas of TGM. A previous study reported that the emissions of gaseous 494 

and particulate pollutants were high during vehicular operations in port areas and from 495 

marine vessel and launches (Gupta et al., 2002). Another possibility is that significant amount 496 

of GEM are emitted from the ocean surface because of photo-chemically and 497 

microbiologically mediated photo-reduction of dissolved GOM (Amyot et al., 1994; Zhang 498 

and Lindberg, 2001). The northeast direction including the East Sea was also identified as 499 

potential source areas likely because this is an area with lots of domestic passenger ships 500 

routes. The south from the sampling site was also identified as a likely source area of TGM 501 

where Ulsan Metropolitan City, South Korea’s seventh largest metropolis with a population 502 

of over 1.1 million is located. It includes a large petrochemical complex known as a TGM 503 

source (Jen et al., 2013). 504 

505 
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Conclusions 506 

During the sampling periods, the average TGM concentration was higher than the Northern 507 

Hemisphere background concentration, however, considerably lower than those near urban 508 

areas in China and higher than those in Japan and other locations in Korea. The median 509 

concentration of TGM was much lower than that of the average, suggesting that there were 510 

some extreme pollution episodes with very high TGM concentrations. The TGM 511 

concentration was highest in fall, followed by spring, winter and summer. The high TGM 512 

concentration in fall is due to transport from different wind directions than during the other 513 

periods. The low TGM concentration in summer is likely due to increased mixing height and 514 

gas phase oxidation at higher temperatures particularly at this sampling site which is close to 515 

the ocean (2 km) where oxidation involving halogens may be enhanced. 516 

TGM consistently showed a diurnal variation with a maximum in the early morning 517 

(06:00-09:00) and minimum in the afternoon (14:00-17:00). Although there was a statistically 518 

significant negative correlation between the TGM concentration and ambient air temperature, 519 

the daytime TGM concentration was higher than those in the nighttime, suggesting that local 520 

emission sources are important. There was a negative relationship between the TGM 521 

concentrations and O3 concentrations, indicating that the oxidation was partially responsible 522 

for the diurnal variations of TGM concentrations. The observed ΔTGM/ΔCO was 523 

significantly lower than that indicative of Asian long-range transport, suggesting that local 524 

sources are more important than that of long-range transport. CPF only shows high 525 

probabilities to the west from the sampling site where there are large steel manufacturing 526 

facilities and waste incinerators. However, CBPF and TPSCF indicated that the dominant 527 

sources of TGM were the hazardous waste incinerators and the coastal areas in the northeast 528 
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as well as the iron and manufacturing facilities in the west. The domestic passenger ships 529 

routes in the East Sea were also identified as possible source areas. 530 
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Table 1. Comparison with previous studies for TGM concentrations. 561 
Country Location Sampling period TGM conc. 

(ng m-3) Classifications Reference 

China Mt. Hengduan, Qinghai–Tibet Plateau Jul. 2010 ~ Oct. 2010 2.5 Remote Fu et al. (2015) 

China Nanjing, Jiangsu Jan. 2011 ~ Oct. 2011 7.9 Urban Hall et al. (2014) 

China Mt. Dinghu, Guangdong Oct. 2009 ~ Apr. 2010 5.1 Rural Chen et al. (2013) 

China Guangzhou, Guangdong Nov. 2010 ~ Nov. 2011 4.6 Urban Chen et al. (2013) 

China Gui Yang, Guizhou Jan. 2010 ~ Feb. 2010 8.4 Urban Feng et al. (2004) 

China Changchun, Jilin Jul. 1999 ~ Jul. 2000 13.5-25.4 Urban Fang et al. (2004) 

Japan Fukuoka Jun. 2012 ~ May 2013 2.33 Urban Marumoto et al. (2015) 

Japan Tokai-mura Oct. 2005 ~ Aug. 2006 3.8 Suburban Osawa et al. (2007) 

Japan Tokyo Apr. 2000 ~ Mar. 2001 2.7 Urban Sakata and Marumoto (2002) 

Korea Seoul 1987 ~ 2013 3.7 Urban Kim et al. (2016) 

Korea Gangwon-do, Chuncheon 2006 ~ 2009 2.1 Rural Han et al. (2014) 

Korea Seoul Feb. 2005 ~ Feb. 2006 3.2 Urban Kim et al. (2009) 

Korea Seoul Feb. 2005 ~ Dec. 2006 3.4 Urban Choi et al. (2009) 

Korea Seoul 19 Sep. 1997 ~ 29 Sep. 1997 
27 May. 1998 ~ 18 Jun. 1998 3.6 Urban Kim and Kim (2001) 

Korea Gyeongsangbuk-do, Pohang 

17 Aug. 2012 ~ 23 Aug. 2012 
9 Oct. 2012 ~ 17 Oct. 2012 
22 Jan. 2013 ~ 29 Jan. 2013 
26 Mar. 2013 ~ 3 Apr. 2013 

5.0 Urban This study 

562 
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Table 2. Summary of atmospheric concentrations of TGM and co-pollutants, and meteorological data. Note that TGM was measured every 5-563 
min, and other pollutants and meteorological data were measured every 1-hour. 564 

  TGM 
(ng m-3) 

NO2 

(ppb) 
O3 

(ppb) 
CO 

(ppb) 
PM10 

(𝛍𝛍g m-3) 
SO2 

(ppb) 
Temperature 

(℃) 
Wind speed 

(m s-1) 
Humidity 

(%) 

Solar 
radiation 
(MJ m-2) 

Spring 

N 2139 189 215 215 215 215 216 216 216 216 

Average 4.8 ± 4.0 25.3 ± 9.0 29.4 ± 14.2 766.5 ± 505.2 70.1 ± 26.0 7.6 ± 3.8 10.5 ± 4.2 2.2 ± 1.2 56.2 ± 16.8 0.82 ± 1.09 

Range 1.9 – 45.3 8 – 55  2 – 58  300 – 3100  28 - 204 5 - 35  1.1 – 21.6  0.4 – 6.2 19.0 – 94.0 0 – 3.44 

Summer 

N 1863 187 188 187 188 188 186 180 186 141 

Average 3.8 ± 3.9 18.3 ± 9.2 18.9 ± 10.1 697.3 ± 689.7 35.1 ± 15.8 6.5 ± 6.2 26.6 ± 4.2 2.2 ± 1.1 82.5 ± 13.9 0.40 ± 0.69 

Range 1.2 – 75.9   4 – 44  5 – 48  200 – 3300  12 – 87  2 - 27 19.7 – 34.1 0.1 – 6.4 43 - 98 0 – 2.92 

Fall 

N 2226 212 212 212 212 211 216 216 216 216 

Average 6.7 ± 6.4 25.0 ± 7.8 23.7 ± 13.1 662.7 ± 350.2 58.1 ± 17.8 5.3 ± 3.5 17.4 ± 3.2 2.1 ± 0.8 54.5 ± 14.7 0.62 ± 0.90 

Range 1.0 – 79.6 9 – 53  6 – 69  300 – 2900  20 - 145 3 - 39 11.7 – 25.2 0.5 – 4.5 12 - 79 0 – 2.90 

Winter 

N 1917 188 187 188 188 186 192 192 192 192 

Average 4.5 ± 3.2 23.5 ± 14.7 26.1 ± 8.7 556.4 ± 298.9 56.3 ± 30.5 7.4 ± 2.5 1.1 ± 4.3 2.8 ± 1.1 46.3 ± 24.5 0.43 ± 0.71 

Range 1.3 – 66.4  5 – 74  1 – 41  200 – 2400  18 – 161  5 – 24  -0.65 – 10.1 0.5 – 6.0 11 - 90 0 – 2.34 

Total 

N 8145 776 802 802 803 800 810 804 810 765 

Average 5.0 ± 4.7 23.1 ± 10.8 24.6 ± 12.5 673.7 ± 487.3 55.5 ± 26.4 6.7 ± 4.3 13.8 ± 9.9 2.3 ± 1.1 59.4 ± 22.1 0.59 ± 0.90 

Range 1.0 – 79.6  4 – 74  1 – 69  200 – 3300  12 – 204  2 – 39  -6.5 – 34.1 0.1 – 6.4 11 - 98 0 – 3.44 

565 
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566 

Fig. 1. The location of sampling site in this study ((a) South Korea, (b) Gyeongsangbuk-do and (c) Pohang). AWS, NAQMN and PSC 
represent Automatic Weather Station, National Air Quality Monitoring Network and Pohang Steel Complex, respectively. 
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 567 

Fig. 2. Time-series of TGM concentrations in this study.  568 
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 569 
Fig. 3. The diurnal variations of TGM concentrations during the sampling periods. 570 
The error bars represent standard error. 571 
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 572 
 573 

Fig. 4. CPF, CBPF and TPSCF plots for TGM higher than average concentration. The radial 574 
axes of CPF and CBPF are the probability and the wind speed (m s-1), respectively.  575 
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