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acp-2015-920: Simulating secondary organic aerosol from missing diesel-related 
intermediate-volatility organic compound emissions during the Clean Air for London 
(ClearfLo) campaign 
 
Response to Reviewer 1 comments 
 
We thank this reviewer for their supportive and helpful comments. Below we respond to each 
comment individually.  
 
We note that this reviewer has used line numbers from the version of the manuscript 
submitted for the technical review, rather than the version of the manuscript openly 
published in the Discussion phase.  
 
The reviewer’s comments are in italics and blue font, our responses are in normal text. 
 
This is an interesting and generally well-written paper which draws attention to another 
potentially important source of SOA in the atmosphere. The paper makes nice use of high-
quality atmospheric data-sets, and uses not just OA measurements but also other gas and 
particle data to build confidence in the model. The main conclusions are important: that 
emissions of IVOC from diesel and their subsequent SOA formation might be much more 
important than previously assumed.  
There are some issues however that I think the authors need to deal with before acceptance 
for ACP. The main issues I see are:  
 

1. The paper begins (Fig.1, also Sect. 2.5) with an example of a so-called add1.5xPOA 
approach of illustrating the importance of the 1.5 x PM assumption for IVOC, 
contrasting with the new addDiesel approach used in this paper (Fig.2). We then see 
many results from the base and addDiesel cases, but have to wait until almost the very 
end before seeing some annual-average result from the add1.5xPOA case. 
The 1.5xPM approach used here though differs from that of previous authors, 
e.g.Robinson et al. (2007), Shrivastava et al. (2008) or even the Bergstrom et al. (2012) 
paper. In the add1.5xPOA used here, the authors still seem to assume the same inert 
POA emission as in the base-case, but add IVOC with a very high C* value. If correct, 
this is a significant deviation from the other studies, which added SVOC and IVOC 
across a range of volatilities. If the authors really did just use one IVOC component at 
C*=1.0e5, then this will lead to more POA close to sources and less downwind 
compared to e.g. Robinson.  
This begs the question, would a more ’traditional’ (Robinson-like) add1.5xPOA scheme 
give results that might anyway have been better compared to observations than the 
Base-case used here? This would not mean that diesel-IVOC isn’t important, but it 
might have qualified the relative importance. Of course, one is adding less IVOC and 
hence producing less SOA. On the other hand, an 1.5xPOA approach (with both SVOC 
and IVOC) would have generated a bigger gradient between London and the outlying 
sites, perhaps in better agreement with the observed gradients.  
Concluding, I think they could be better off either (i) re-running with the (dare-I-say) 
‘traditional’ 1.5xPOA for SVOC+IVOC, or (ii) just skipping this test altogether. 
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Response: We have now undertaken the reviewer’s suggestion (i) and run a model 
experiment identical to Shrivastava et al. 2008. We have amended text accordingly in both 
the Methods and in the Results (Sect. 3.6, Fig. 18). The relevant text in the Methods now 
reads: 
 
“Nevertheless, we have also performed a model run using the POA-based IVOC estimate, also 
including the semivolatile treatment of POA. The emitted semivolatile POA (SVOCs) and 
1.5xPOA IVOCs are assigned to 9 VBS bins: 0.03xPOA, 0.06xPOA, 0.09xPOA, 0.14xPOA, 
0.18xPOA, 0.30xPOA, 0.40xPOA, 0.50xPOA, 0.80xPOA to the bins 0.01–106, respectively; 
totalling 2.5xPOA (Shrivastava et al. 2008). Both SVOCs and IVOCs then go through 
atmospheric ageing with OH (k = 4.0 x 10-11 cm3 molecule-1 s-1; Shrivastava et al. (2008)).  /…/ 
SVOCs and IVOCs that have undergone at least one ageing shift and are in the particulate 
phase are included under SOA (in addition to ASOA and BSOA from VOCs as in the Base case).” 
 
And Sect. 3.6 now reads: 

“3.6 Comparison to the previous (IVOCs=1.5xPOA) approach  

Figure 18 shows the annual average HOA, SFOA, BSOA and Background OA (BGND OA), and 
ASOA concentrations at London North Kensington modelled with different assumptions for 
additional IVOC emissions. As was explained in Sect. 2.4, for the UK, the addDiesel experiment 
adds 90 Gg of diesel-related IVOCs proportionally to road transport emissions (SNAP7), 
whereas the IVOCs=1.5xPOA approach only adds 5 Gg to SNAP7 and another 26 Gg to other 
sectors (mainly to SNAP2: residential and non-industrial combustion). Therefore, our 
approach creates a considerably larger amount of SOA from IVOCs (and only from diesel-
related IVOCs) than the previous method. The 1.5volPOA experiment was undertaken using 
the semivolatile treatment of POA emissions. This means that the modelled ASOA from this 
experiment also includes aged semivolatile POA, possibly giving it potential to create more 
ASOA than the Base or addDiesel experiments (the organic material added to the model in 
the 1.5volPOA experiment is 1.0×POA (as SVOCs) + 1.5×POA (IVOCs) = 2.5×POA as introduced 
by Robinson et al. (2007) and Shrivastava et al. (2008)). It can be seen from Figs. 18a, b that 
treating POA as semivolatile leads to much lower concentrations than the nonvolatile 
treatment (which already underestimates measured concentrations of HOA and SFOA by -
54% and -71%, respectively; Fig.5). This is not surprising since with the semivolatile treatment 
of POA only 3% + 6% + 9% of the POA is assigned to the three lowest volatility bins with 

saturation concentrations of 0.01, 0.1 and 1 μg m−3 (as given in Sect. 2.4). In a study in Mexico 
City, Shrivastava et al. (2011) then revised this treatment – assuming much higher total semi- 
and intermediate volatility POA emissions:  7.5 × the inventory emissions of (particulate) POA. 
This was justified by the fact that their emission factors of POA were derived from 
measurements at urban background sites, but, following Robinson et al. (2007), 2/3 of POA 
would have evaporated by then. (Recently, Shrivastava et al. (2015) also used this factor of 
7.5 in global simulations.) Emission factors used in European inventories are, however, taken 
from tailpipe measurements with concentrations sufficiently high that most of the 
semivolatiles should still be reported in the particulate phase. Therefore the further 
underestimation of HOA and SFOA concentrations with the volatile treatment could be due 
to a number of issues: (i) a systematic underestimation of emissions, but for a different reason 
than in Shrivastava et al. (2011), (ii) the volatility of POA is overestimated by Robinson et al. 
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(2007), (iii) the evaporation of semivolatile POA emission is too rapid in the model 
(instantaneous in our set-up).  
 
Figure 18c shows that the lower HOA and SFOA concentrations lead to a very small negative 
change for the absorptive partitioning of BSOA. Finally, it can be seen from the annual average 
concentrations of ASOA in Fig. 18d that including aged SVOCs and IVOCs in the simulation 
doubles the modelled ASOA concentration compared to the Base case scenario (ASOA from 
officially reported anthropogenic VOCs), but that the ASOA in our 1.5volPOA experiment is 
still much lower than simulated with our addDiesel experiment.” 

 
 

(Figure numbering as in the revised manuscript.) 
 

2. Given that POA are assumed to be inert, this study likely overestimates OA close to 
sources. The statement that diesel IVOC can explain about 30% of the annual SOA 
around London would have to change if POA were allowed to evaporate and react in 
the atmosphere.  

 
Response: We derive the “30%” from the change in normalised mean bias (so in comparison 
to the measurements), not in comparison to total modelled SOA, and therefore we believe 
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this is an appropriate value for our statement highlighting the potential contribution of these 
additional emissions. 
 

3. The results presented here make a strong case that most SOA is ASOA. This 
conclusion contrasts strongly with studies based upon radiocarbon and other tracers. 
Heal et al. (2011) for example suggest a much stronger component from BSOA in 
Birmingham, and state that this was consistent with other European studies. Can the 
authors explain this apparent discrepancy? 

 
Response: It is certainly not our intention to make a case that most SOA in London was ASOA, 
and we do not believe that our text does imply this claim.  From Fig.17a in our manuscript 
(barplot of modelled annual average ASOA/BSOA/Background OA concentrations), it can be 
calculated that the ratio of modelled BSOA+Background OA to total SOA is 53%. Therefore 
even with the additional ASOA generated from the additional IVOC emissions, about half of 
the simulated SOA is still of biogenic origin, which is therefore not inconsistent with the 
experimental measurements using the radioisotope of carbon (14C) reported in Heal et al. 
(2011). It needs also to be noted that whilst 14C is an ideal tracer for distinguishing between 
fossil and contemporary carbon, it cannot directly distinguish whether the carbon is of 
primary or secondary origin. Therefore, for a direct comparison with a modelling study like 
ours, all primary components (such as the HOA and SFOA) would also have to be well 
represented in the model, but we showed a -71% bias for SFOA. This bias is caused by the fact 
that the national atmospheric emissions inventory assumes zero domestic wood and coal 
burning emissions in London, as it is a smoke control area (and therefore residential burning 
of these solid fuels is not allowed), but recent studies (e.g. Crilley et al. 2015) have concluded 
that there are indeed local sources of SFOA in London. Furthermore, in the current set-up, we 
model SFOA as one entity (so wood and coal together), but in the 14C analysis, OA from wood-
burning and coal would be apportioned into different categories (contemporary and fossil, 
respectively). 
To emphasise the above point, we have now added the following sentence to the end of 
Section 3.4: “We note that Fig. 17a shows that in the addDiesel simulation, the modelled 
BSOA+Background OA still makes up 53% of the SOA, as an annual average.” 
 

4. The mass yields for OH oxidation of the n-pentadecane IVOC products is ca. 0.8 for 
C* up to 10 ug/m3, after correcting for the assumed density, and the great majority of 
this is one bin, the 10 ug/m3 bin. The potential for much SOA formation is very clear, 
but I wonder if the authors are exaggerating the amounts. The mass yields are taken 
from Presto et al. (2010), but that paper suggested that the yields were the product of 
multi-generational aging, not of the first reaction step. I wonder if aging should have 
been ignored for these compounds? 

 
Response: Our view is that ageing should not be ignored for these compounds. Although 
Presto et al. (2010) report that these yields almost certainly include multigenerational 
processing during the experiment, they also conclude (in the last paragraph of their paper): 
“The slow rise in f44 in experimental systems - a few percent over several hours - further 
indicates that OA constantly evolves over long time scales, on the order of days, and that 
short chamber experiments likely do not reproduce the complete transformation from 
emissions to OOA.”  
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We do acknowledge, however, that the ageing rates and assumptions used in VBS modelling 
studies can vary quite widely between different studies, as is noted in the Discussion 
(paragraph beginning “We use an ageing rate of…”). 
 
Responses to smaller points: 
 

1. Abstract: I found the first sentence rather vague (what is high-resolution?), and not so 
interesting (yet another model study). The abstract would make more impact if it 
began with a comment on the extent of new emissions which forms the basis for this 
study. 

 
Response: We do not believe the opening sentence is vague as it provides a number of specific 
contextual facts to the work; namely, that it is an ACTM modelling study, that the atmospheric 
process of interest is SOA formation, that the geographical context is the UK, and that the 
period of study is the full year 2012. However, we accept that the phrasing “high resolution” 
is not specific and that we could introduce the concept of new estimates of emissions into 
the opening sentence (although we note the latter is encapsulated in the title of the paper). 
We have therefore amended the opening sentence to now read: “We present high-resolution 

(5 km  5 km) atmospheric chemistry transport model (ACTM) simulations of the impact of 
new estimates of traffic-related emissions on secondary organic aerosol (SOA) formation over 
the UK for 2012.” 
 

2. P2, L12. I don’t think the results ’prove’ that the model has good SOA prediction skill. 
Even if the comparison with measurements was impressive, there are too many 
unknowns regarding SOA formation and I don’t think any model can claim good skill. I 
think that this phrase can be omitted. 
 

Response: We agree that the text referring to good model skill is not appropriate for the 
abstract and have now omitted this sentence. 
 

3. P3, L64. You need to define the temperature at which these C* values apply. 
 
Response: The temperature of 298 K has now been added. 
 

4. P3, L76. Why mention AMS for organic PM? I don’t think many European PM 
inventories make use of AMS data. 

 
Response: It was not our intention to imply that national inventories use AMS data. However, 
on review we note that our original text referring to AMS measurements of the OC content 
of particles is not relevant to the point being made in this sentence that SVOC and IVOC 
species are hard to measure, so we have now deleted it. The modified text now reads: 
“Current emissions inventories, however, only report estimates for VOCs and for the particle 
fraction of the emissions of species with lower volatilities. The main reason for this is that 
compounds with intermediate volatility (SVOCs and IVOCs) are difficult to quantify and this is 
currently not routinely undertaken.” 
 

5. P4, L114. Define PMF. Also, which PMF method was used? 
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Response: The acronym PMF is defined already in the second of paragraph of the 
Introduction. We have amended a sentence in Sect. 2.6 to include the PMF methods: 
“A detailed description of the derivation and optimization of the factors retrieved from the 
AMS data at Detling can be found in Xu et al. (2016), at London North Kensington in Young et 
al. (2015a) and Young et al. (2015b) (all three of these analyses were performed with the 
PMF2 solver), and at Harwell in Di Marco et al. (2015) (using the ME-2 solver).” 
 

6. P5, L132. WRF can be set up in many different ways, with varying impacts on accuracy 
for air pollutant applications. Please give more details or a suitable reference. 

 
Response: We have added the following sentence: “The WRF configuration was as follows: 
Lin Purdue for microphysics; Grell-3 for cumulus parametrization; Goddart Shortwave for 
radiation physics; and Yonsey University (YSU) for planetary boundary layer (PBL) height (see 
NCAR (2008) for further information).” 
 

7. P5, L137, specify anthropogenic emissions here. 
 
Response: Done. 
 

8. P5, L138, specify aerodynamic diameter.  
 
Response: Done. 
 

9. P5, L142. Why use a paragraph on an NFR system which is not used in this work? 
Delete.  

 
Response: The text is now deleted. 
 

10. P6, L156. The term SFOA is confusing, and wasn’t used by Bergstrom et al as claimed 
here. If I understand right SFOA includes biomass burning (which is usually said to give 
BBOA), but also coal and charcoal.  

 
Response: We have now added the BBOA factor as well as the following sentence in the 
Introduction explaining the difference between SFOA and BBOA: “The SFOA factor is a more 
general version of BBOA as it includes (in addition to biomass) other sources such as coal and 
charcoal.” 
 

11. P6, L173. It could be noted that the Jathar et al. (2014) study also suggested different 
ratios of IVOC to PM than those of Shrivastava et al.  

 
Response: The emissions of “unspeciated non-methane organic gases” in Jathar et al. (2014) 
are still based on the same measurements as is Shrivastava et al.’s estimate (although they 
also included a couple of newer studies and averaged the estimates, so the numbers are 
slightly different). We believe that our paragraph about Jathar et al. in the Introduction is 
sufficient and that there is no requirement to add more about this to the Methods. 
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12. P7, L191. ’under modeled SOA’ - do you mean when comparing with observations?  
 
Response: Yes, this was what we meant. We have now added “when comparing with 
observations” to the end of this sentence. 
 

13. P7, L200. Shouldn’t you also mention aromatics and other compounds here.  
 
Response: In the Dunmore et al. (2015) paper, the authors describe a quantification technique 
which uses the grouping of similar species in a lumped analysis based on carbon number and 
functionality. Given the separation of VOCs in a two dimensional space (from the use of a 
comprehensive two dimensional gas chromatography system), the aliphatic and aromatic 
compounds could be quantified separately. In our analysis, we only include the additional 
aliphatic IVOC species observed as their dominant emission source is likely from the use of 
diesel engines. We have now added the word aliphatic to the following sentence in the 
section “Additional IVOCs from diesel”: “In this study, aliphatic IVOC emissions from diesel 
vehicles were introduced into the model proportionally to on-road transport VOC 
emissions,…”  
 

14. P7, L207. Which GC x GC system? Explain what is meant.  
 
Response: We have now replaced “GC x GC” with “measured by a comprehensive two 
dimensional gas chromatography (GCxGC) system (Dunmore et al., 2015).” 
 

15. P7, L209. Any reference for the number of studies providing that rate constant?  
 
Response: We have added a citation to the review article by Atkinson and Arey, 2003. 
 

16. p8, L247. Biogenic emissions of what? 
 
Response: We have added the word “VOCs” so text now reads “biogenic emissions of VOCs”. 
 

17. p9. Sect. 2.6 ‘Comparison with measurements’: This section can be simply renamed 
’Measurements, since that is what it deals with down to L288. 

 
Response: We would like to retain “comparison with measurements” in the section title since 
(i) the IVOC emissions were also based on measurements, but were not used to compare the 
model with, (ii) then we can keep the evaluation statistics in the same section, reducing the 
number of short sub-sections. 
 

18. P9, L259. Why have references to Fig. 3? Give the references after the mention of each 
site, or add ’site details given in’ or some such phrase.  

 
Response: We have moved this sentence to after the citation of the references. 
 

19. P9, L274. Are you sure that European inventories don’t include cooking OA? I think it 
may be underestimated, but am not sure it is ignored completely. 
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Response: We are sure that COA is not included in the UK National emissions inventory (Tim 
Murrells 2016, personal contact; NAEI 2013) Fountoukis et al. 2016 also claim that COA is not 
included in the European inventory they use. We have changed the sentence in the 
manuscript to read: “As our emissions inventory does not include cooking OA (NAEI, 2013), 
this factor could not be compared with the model.” 
 

20. P9, L276. This sentence was confusing. I can see that two instruments can disagree, 
but what does it mean if there is just one instrument? Can an AMS and its PMF 
disagree, or what?  

 
Response: We agree that this sentence was not entirely clear and have amended it to: “When 
AMS measurements and their PMF apportionments are compared, some disagreement is 
observed, as shown for the two instruments measuring at the same time at the same location 
at London North Kensington.” 
 

21. P9, L284 .... what period/site/analysis are these sentences and statistics referring to?  
 
Response: We have added “at the London North Kensington site during the winter IOP” to 
this sentence. 
 

22. P9, L289 on. This small section on statistical metrics has nothing to do with the 
discussion of AMS etc which it follows, and could be set in a small section of its own.  
 

Response: This section is called “comparison with measurements” so we believe having the 
statistics here is appropriate. See also our response to comment no. 17. 
 

23. P9, L291. I don’t think correlation coefficient needs a reference to Carslaw and Ropkins; 
’r’ has been used for many many years before that paper was written. Actually, NMGE 
might need more explanation. All these could usefully be defined in supplementary.  

 
Response: We have removed this citation and added the equation for NMGE. We would like 
to keep this section in the main paper as it is not taking up much space and we are trying to 
reduce the number of times the reader is referred to the supplement. 

 
24. P10, equation (1): explain what i and n are.  

 
Response: The necessary explanations have now been added. 
 

25. P10, L298. Re-phrase - it sounds as though the measurement mean is better at 
capturing the variation in measurements than the model.  

 
Response: Now re-phrased to read: “a zero or negative COE implies that the model cannot 
explain any of the variation in the observations”. 
 

26. P10, L303. This bit about WRF could be moved to Sect. 2.1.  
 

Response: This text has been moved as suggested. 
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27. P11, around L35. All these numbers for NMB, etc. could be tabulated for easier 

comparison.  
 
Response: These numbers are also given as labels in Fig. 7 in a consistent, comparable 
manner. We anticipate this will become clearer and easier for the reader when the paper is 
properly typeset and the figures located within the text, rather than at the end. 
 

28. P12, L364. This refers to Fig. 12a,b, but there are no a,b labels in Fig.12  
 
Response: There were small labels on Fig. 12 which we have now replaced with larger ones. 
 

29. P12, L389. Re-phrase (or omit). It is obvious from the plots that this background OA is 
an overestimate for some days at least. 
 

Response: We agree; the sentence referred to has now been omitted. 
 

30. P13, L405 on. The whole discussion here is in terms of SOA and IVOC. But, how did the 
model perform for NOx and CO for these ’difficult’ periods - maybe the problem is 
dispersion rather than IVOC? Or maybe the model’s enthalpy values are wrong, and 
don’t respond to cold temperatures as they should. I don’t see why problems are 
blamed on domestic sources either. Wouldn’t for example cold-starts for vehicles also 
produce more POA/IVOC, or commercial premises use more fuel in cold conditions? 
Are wood-burning emissions really an issue in London?  

 
Response: The model performance for NOx is already presented in the paper (Figure 6a) and 
the performance for NOx during this period is much better than that of SFOA. We believe that 
domestic emissions are the most likely culprit here as local emissions of wood-burning are 
indeed an issue in London. We have added the following sentences: “Furthermore, London is 
a smoke control area and therefore no residential emissions of SFOA are assumed by the 
national emissions inventory for this area. However, recent studies have suggested that there 
are indeed local sources of SFOA in London (Crilley et al. 2015, Young et al. 2015).” 
 

31. P15, L475. The title says comparison to previous (IVOC=1.5xPOA) approach, but as 
noted above, the method used here seems to be unique; not that of earlier papers.  

 
Response: We have provided detailed response to this comment where it was first made 
above (1st major comment). In brief, we have undertaken new model simulation for the 
1.5xPOA experiment and have amended the text accordingly. 
 

32. P15-P16. The authors make various policy recommendations, e.g. (P15, L500) 
‘refinements should be reported to CEIP’ and a very specific recommendation for PM1, 
PM1-2.5 and PM2.5-10 on P16, L533. Why not just suggest submission of size 
distributions? Why no mention of volatility - the VBS approach almost begs for people 
to submit emissions in different volatility classes. And since this paper is really 
exploring IVOC and not PM emissions per se, why didnt the authors focus on those? 
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Actually, I suggest that the authors don’t try to tell countries what to do, but rather 
discuss any scientific insights into emission reporting that this study on IVOC reveals.  
 

Response: We have now removed the two sentences that were directly referring to “what 
other countries should do”. The suggestion for the incorporation of more particle size 
distribution data in inventories was already in the Discussion (a few paragraphs further down 
from the point in question). We have also now added the suggested recommendation of 
categorising PM emissions in terms of volatility classes (to emphasise a comment we made 
on this already in the Introduction): 
“We showed that treating POA as semivolatile and letting it evaporate lead to a great 
underestimation of HOA and SFOA concentrations compared to measurements at the London 
North Kensington urban background site. As has been highlighted by a number studies before 
us (listed in the Introduction), we would also emphasize that a major source of uncertainty in 
OA modelling is the volatility of primary emissions, an issue that currently not addressed by 
official emissions inventories.” 
 

33. P16, L509. Can’t small changes in SOA (or any pollutant) also be a reflection of 
longrange transport? Not all pollution is formed at short time-scales close to source.  

 
Response: Yes, we agree and we now mention long-range transport in the sentence in 
question: “A relatively small daytime increase of SOA could be explained by the expansion of 
the boundary layer height (Xu et al. 2015), as well as by contributions from long-range 
transport.” 
 

34. P16, L520. Where did the value 4.0e(-12) come from for ASOA and BSOA oxidation?  
 
Response: The value came from Lane et al. 2008; we cited this in the Methods section, but 
have now added the citation to the Discussion as well. 
 

35. P16, L520 on. This section offers a few ’tuning’ suggestions, but there are always any 
number of these in the field of SOA formation. For example, recent studies have 
suggested that SOA formation should be much greater than previously assumed, 
perhaps by a factor of four or so (Zhang et al., 2014).  

 
Response: We agree; we have simply made some suggestions. 
 

36. P16, L527. I would say that this paper illustrates the potential for a significant 
contribution, rather than that they can quantify the relative impact. To do the latter, 
one would need to be sure that all relative impacts are reasonably well known, and 
that clearly isn’t the case.  

 
Response: Whilst we agree with the general sentiment of this comment, our response to this 
question is the same as Major Point no.2: We derive the “30%” from the change in NMB (so 
in comparison to the measurements), not in comparison to total modelled SOA, and therefore 
we believe this is an appropriate number/value for our statement highlighting the potential 
contribution this addition has. 
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37. P17, Sect.5. The first paragraph simply repeats sentences from Sect. Don’t do that. This 
section should also mention the results for other pollutants (NOx, O3, etc.), which are 
the main reason one can have some confidence in the basic modeling system. (Use of 
such data is one of the strengths of this paper I think.)  

 
Response: The text has been reworded so that it is not a direct copy and the results for other 
pollutants are mentioned. 
 

38. P17, L563. imported from where? 
 
Response: We have modified the sentence to include “mainland Europe”. It now reads: “…this 
was caused by an intense pollution plume with a strong gradient of SOA from mainland 
Europe passing over the rural location…” 

 
39. P17, last paragraph. The interpretation of what contributes to the 90-th percentile is 

not so easy I think. And I certainly don’t think one can state that 40% is due to missing 
diesel precursors. SOA is too complex for such simple statements.  

 
Response: We agree that SOA is a complex issue for making delimitative quantitative 
statements; however, the modelling work points us in a certain direction. We have amended 
the sentence to state that the influence of missing diesel precursors is even greater on high 
percentile SOA days than its contribution to annual average SOA (removing the statement of 
“40%”). We have also removed the statement from the abstract. The sentence in the 
Conclusions now reads: 
“Moreover, the 90-th percentile of modelled daily SOA concentrations for the whole year is 
3.8 μg m−3, and the influence of missing diesel precursors is even greater on high percentile 
SOA days that its contribution to annual average SOA. ” 
 

40. P20, L635. Expand/explain CEIP. Is this the name of a report, or just a web side?  
 
Response: Expanded, see also the response to question no. 41. 
 

41. P21, L665, EEA, Entec - these references are too short for readers to understand or find. 
Give proper references, with addresses as necessary.  

 
Response: Thank you for pointing this out. Something happened to these references during 
the formatting of the manuscript (we did have proper URLs for these references at some 
point). We will make sure they are properly included in the revised manuscript. 
 

42. P29, Fig. 1. The caption should state early that this is PM25 *and* SVOC/IVOC gases. 
(The issue of IVOC or SVOC+IVOC is discussed above, but it complicates this figure.)  

 
Response: We think that mentioning IVOCs in the second sentence is appropriate, and early 
enough.  
 

43. P31. Fig. 5. Explain ’Base’ as used in legend. P31. Fig. 6(a). NOx is a the sum of both 
NO and NO2. Were they really summed with own molecular weights, or is this as NO2? 
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(ppb would have been easier to interpret!). Also, in the captions, add the superscript 
ion-labels too.  

 
Response: Yes, the sum of NO and NO2 is represented as NO2. We have now added a note 
about this to the caption: “NOx  (as NO2)”), as well as added the superscription labels. 
We agree that ppb is easier to interpret for gases, but this plot also included particulates and 
we would like to use the same units for the different panels. Furthermore, European Air 
Quality Standards (http://ec.europa.eu/environment/air/quality/standards.htm) are also 
defined in mass units for gases. 

 
44. P33, Fig. 9. This Figure looks very fine on-screen, but when printing out it looks very 

different - much of the black seems to be over-written with green and/or blue. Please 
use a different figure format, and check the printout.  

 
Response: We thank the reviewer for this comment. We printed the manuscript out with a 
few different printers, and Fig. 9 looks fine with all of the printers we tried, but we did notice 
that some printers had problems printing our scatterplots. We have replaced the shading on 
Fig. 9 with lines and converted our scatterplots into a more printer friendly format/size. 
 

45. P34, Figs. 11-12. We don’t really need these since Fig. 10 has made the point about 
gradients well. Move to Supplementary.  

 
Response: We agree that Fig. 10 is enough to make the point about gradient, but we also use 
Figs. 11 and 12 for showing how spatially variable SOA can be even on daily averaged maps 
(which include contributions from both import and from very local sources). 
 

46. P35, Fig. 14. Why use log-log plots? Wouldn’t a simple liner plot better display the 
range of data?  

 
Response: We use log-log plots for 2 reasons: (i) it expands the lower range without losing 
information in the higher range (as on a linear scatter plot for a large dataset, the plotting 
symbols will overlap with each other much more in the lower range), (ii) log-log plots are have 
been used in other recent OA modelling studies (e.g. Fountoukis et al. 2014) making it easier 
to visually compare some of the results of model evaluation. 
 

47. P36, Fig. 16. Here the addDiesel statistics look worse than the base-results. Are these 
really consistent with data presented in Table 4?  

 
Response: These values are correct. The difference in NMGE, r and COE values is very small, 
so not really “worse”. Note the (positive) change in NMB. 
 

48. Figs and color schemes. The colors used for ASOA, addDiesel, etc seem to vary 
randomly from figure to figure (e.g. green is addDiesel in Fig.9 but observed SOA in Fig. 
17. Please harmonize. 

 
Response: Figure colours have been changed so that same colours are no longer used for 
different variables. 

http://ec.europa.eu/environment/air/quality/standards.htm
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acp-2015-920: Simulating secondary organic aerosol from missing diesel-related 
intermediate-volatility organic compound emissions during the Clean Air for London 
(ClearfLo) campaign 
 
Response to Reviewer 2 comments 
 
We thank this reviewer for their supportive and helpful comments. Below we respond to each 
comment individually.  
 
The reviewer’s comments are in italics and blue font, our responses in normal text. 
 
In this paper, Ots et al. present an interesting method to account for the emissions of 
intermediate volatile organic compounds (IVOCs). They suggest that VOC emissions can be 
added proportionally to VOC emissions as opposed to the POA emissions which is the standard 
method used by current Volatility Basis Set (VBS) models. This approach can potentially pave 
the way for an accurate representation of IVOCs in the emission inventories which is proved 
to be a necessity for SOA models during the last decade. Overall, the manuscript is well written 
and scientifically sound. I recommend this study for publication after taking the following 
comments into account.  
General comment: 

The authors include additional diesel related IVOC emissions based on the VOC 
emissions from the transport sector. This resulted in a significant improvement of their 
model results which brought the predicted SOA close to measurements during winter, 
spring, and summer while it resulted in an overprediction during autumn (Fig. 17 of the 
manuscript). However, the transport sector consist only one of the ten sectors that 
their emission inventory includes. This raise the question of how much their model 
performance will change (towards overprediction) if they will add the missing IVOC 
emissions from the rest nine sectors. Do they have indications that the only important 
source of IVOCs is the transport sector? While I strongly support the suggested 
approach of deriving the IVOC emissions based on intermediate length alkanes (or 
naphthalene seen in other studies; Pye and Seinfeld, 2010) I am quite sceptic about the 
impact shown here by only one sector. I suggest adding a discussion on this matter, 
probably in section 4. 

 
Response: We thank the reviewer for this suggestion. The following text has now been added 
to the discussion:  
“In our experiment of semivolatile POA (denoted 1.5volPOA), IVOCs were included from all 
source sectors. This experiment simulated substantially less ASOA than our addition of IVOCs 
associated with just the traffic source sector. This means that a combination of the POA-based 
and our addition of diesel-IVOCs proportionally to NMVOCs would not create a substantial 
overestimation of SOA concentrations compared to measurements. Nevertheless, further 
modelling studies (including different assumptions regarding ageing rates, fragmentation, 
and yields) as well as more measurements of IVOC emissions from different sources are 
clearly necessary.” 
 
Specific comments 



1. Page 2 line 20: Biomass burning OA (BBOA) is also a usual component that PMF can 
identify. Does SFOA correspond to BBOA? If so, you should use the latter since it is more 
commonly used by the AMS community. Furthermore, you should also report the 
oxygenated organic aerosol (OOA) which then can be split into LV-OOA and SV-OOA.  

 
Response: We have added OOA and BBOA to the list of PMF factors. We have also added a 
sentence explaining SFOA and BBOA: “The SFOA factor is a more general version of BBOA as 
it includes in addition to biomass other sources such as coal and charcoal.” 
 
2. Page 2 lines 22-27: Since the main focus of the manuscript is the simulation of SOA, it 

would be good to add a sentence regarding the performance of the global models in terms 
of SOA (e.g.,Spracklen et al., 2011;Jathar et al., 2011;Jo et al., 2013;Mahmud and 
Barsanti, 2013;Shrivastava et al., 2015;Tsimpidi et al., 2016)  

 
Response: We have added the sentence: 
“Global modelling studies of SOA specifically have demonstrated huge uncertainties (up to 
tenfold) in total simulated SOA budgets (Spracklen et al., 2011; Jathar et al., 2011).” 
 

3. Page 3 line 20: Please add recently developed models that follow the same 
assumption in order to indicate that the factor of 1.5 is widely used up to date (e.g.,Koo 
et al., 2014;Tsimpidi et al., 2014)  

 
Response: Thank you for these suggested additional references which have now been 
included. (Note that LatexDiff doesn’t seem to handle differences in a long list of citations 
very well, so the line shoots off the paper border, but we assure you that all of the original 
references as well as the additional ones are in the revised manuscript.) 

 
4. Page 4: The line numbers here and in a number of the following pages are not 
correct. They should either restart in each page or continue throughout the text.  

 
Response: We believe this bug has been fixed in the latest Copernicus LaTex package (for the 
submission we used 4.0 updated on 14-Dec-2015, but the latest is 4.2 updated on 22-Jan-
2016). 

 
5. Page 5 line 13: Do HOA and SFOA correspond to the fossil fuel combustion and 
domestic combustion of you emission inventory (EI)? Please clarify since it is not clear 
if you used these fractions to convert the OC from your EI to OA.  

 
Response: The splits applied to the national PM inventory included the total OM (HOA and 
SFOA) so we did not apply an additional conversion. We now realise how having this sentence 
right after the emission fractions is confusing, so we have moved this sentence into the next 
section (following the initial OM/OC ratios for the VBS species). 
 

6. Pages 5 line 28: Assuming that POA is treated as non-volatile will result in 
unrealistically high OA concentrations in the aerosol phase. This will favor the 
partitioning of your semivolatile compounds (e.g. oxidation products of IVOCs) into the 
aerosol phase resulting in an overestimation of SOA as well. On the contrary, if you do 



not assume that POA and SOA participate in the same solution during the phase 
partitioning, you should expect an underestimation of SOA. Please comment at this 
point on the implications of your assumption regarding the POA volatility.  

 
Response: In our simulations, POA and SOA do participate in the same solution during the 
phase partitioning, but the over- or underestimation of POA does not have a significant effect 

on the absorptive partitioning of SOA (Figure A; the POA units are in g m-3, note the nonlinear 
scale of the colours, Part. means particulate – i.e. the amount that is in condensed phase). 

 
Figure A. Annual average concentrations of SVOCs and IVOCs in the volatility bins modelled 
with the addDiesel experiment at the North Kensington measurements site with their gas-
particle partitions coloured yellow or orange-red, respectively (at an ambient temperature of 
10 °C). 
 

7. Page 6 line 2: Tsimpidi et al. (2010) used 4 volatility bins to distribute the oxidation 
products of VOCs. Can you please report the aerosol yields for the 5th volatility bin that 
you are using (C*=0.1) and add a reference for them as well?  

 
Response: There are no initial yields for this bin from the VOCs, but VBS species will move into 
that bin via ageing. We have now changed the first sentence of this paragraph, as well as 
added a note about the lowest bin, to read: “Five volatility bins (C* = 0.1, 1, 10, 100, 1000 μg 
m-3) are used for SOA production and ageing. The SOA yields for alkanes, alkenes, aromatics, 
isoprene and terpenes under high and low NOx conditions were taken from Tsimpidi et al. 
(2010). Note that Tsimpidi et al. (2010) reported yields for the four VBS bins between 1 and 
1000 μg m-3. In this work, the lowest VBS bin (0.1 μg m-3) is used for the ageing reactions, as 
well as for SOA from the additional diesel IVOCs (explained in the next section).” 
 

8. Page 6 line 6: According to Lane et al. (2008) the use of aging reactions improved 
their results compared to measurements from urban areas but resulted in a strong 
overprediction over rural areas. They attributed this discrepancy to a potential 
balancing of decomposition to smaller more volatile products (fragmentation) and 
production of more substituted less volatile products (functionalization) during the 



photochemical aging of biogenic SOA. This was also confirmed by laboratory studies 
(Ng et al., 2006). Therefore they suggested that no ageing of biogenic SOA should be 
considered. Furthermore, the use of an ageing rate constant of 4.0 x 10-12 cm3 
molecule-1 s-1 is kind of conservative compared to what is used lately by most models 
(i.e. 1.0 x 10-11 cm3 molecule-1 s-1; Fountoukis et al. 2014). According to the above, I 
suggest either changing your scenarios by using 1.0 x 10-11 cm3 molecule-1 s-1 as a 
rate constant and assume no ageing of biogenic compounds or to make a sensitivity 
test and investigate the effect of these assumptions on your results (especially 
regarding the rate constant).  

 
Response: We address these issues of uncertainty with ageing rates in the Discussion: 

“We use an ageing rate of 4.0 × 10−12 cm3 molecule−1 s−1 for both ASOA and BSOA (Lane et 
al., 2008). This is slower than has been used in some other studies (for example, Tsimpidi et 

al. (2010) uses 4.0 × 10−11 cm3 molecule−1 s−1 : 10 times faster, or Fountoukis et al. (2011) 

uses 1.0×10−11 cm3 molecule−1 s−1: 2.5 times faster). A combination of lower initial SOA 
yields, but slightly higher ageing rates could possibly flatten the diurnal cycle of our modelled 
SOA, matching the measurements better. Therefore, an improvement for the detailed, 
hourly, evolution could be achieved by a sensitivity study of these yields and ageing rates. 
This does not, however, change the main scope and results of this paper which illustrate the 

relative impact of the diesel-IVOCs on SOA formation.” 
 

9. Page 6 line 10: What is the saturation concentration of this “background OA” 
compound? Is this considered nonvolatile since it is very aged and highly oxygenated? 
Furthermore, please provide a reference for assigning a value of 0.4 µg m-3 to this 
compound. Does this value based on measurements?  

 
Response: Yes, the background OA is considered nonvolatile since it is very aged and highly 
oxygenated. We have now added this information to the sentence where it is first mentioned. 
We have also added a reference to Bergström et al. 2014, where this value is set based on 
measurements at background sites. The relevant text now reads: “A constant background OA 
of 0.4 μgm-3 is used to represent the contribution of OA sources not explicitly included in the 
model (e.g., oceanic sources or spores; Bergström et al. (2014)). This background OA is 
assumed to be highly oxygenated and is therefore included under modelled SOA when 
comparing with observations (with an OM/OC ratio of 2.0 it is also assumed to be 
nonvolatile).” 

 
10. Page 7 line 35 (on the top of the page): What is the SOA mass yield that you used 
for the 1000 µg m-3 volatility bin? Please provide a reference as well.  

 
Response: Presto et al. 2010 did not report yields from this reaction to the 1000 µg m-3 
volatility bin. We have now added a note about this: “For the oxidation products of C15H32, 
SOA mass yields were taken from Presto et al. (2010): 0.044, 0.071, 0.41, 0.30 for the 0.1, 1, 
10, 100 μg m-3 bins, respectively (Presto et al. (2010) did not report a yield for the 1000 μg m-

3 bin).” 
 



11. Page 7 lines 28-29: A more fair comparison between the two approaches would be 
to add IVOCs proportionally to POA from sector 7 only as you did on your addDiesel 
scenario. Can you investigate this additional scenario as well?  

 
Response: Adding IVOCs from all sectors maximises the potential effect of this approach of 
adding more emissions. It also makes the experiment with that approach directly comparable 
to what has been done in previous studies: Shrivastava 2008 for example. Furthermore, the 
effect of even including all sectors for SOA in the 1.5volPOA addition is much lower than for 
our addDiesel experiment, thus doing a finer addition would not change our conclusion that 
diesel IVOCs are a much bigger source than previously thought. 
 

12. Page 9 Section 3.1: Since POA are assumed to be nonvolatile you would expect to 
overpredict their concentrations. Are the emissions so severely underestimated? Please 
report that the presented underprediction will be even more significant if you add the 
semivolatile character of POA.  

 
Response: See our substantive response to Reviewer 1 Major Comment 1 on this point, and 
for the statement of modifications made to Methods and Results Sect.3.6. 
 

13. Page 9 line 20: Please replace the “secondary pollutants” with “secondary inorganic 
pollutants”  

 
Response: Done. 
 

14. Page 10 lines 7-8: Add a reference to Fig. 7 
 
Response: Added. 
 

15. Page 13 line 30 (on the top of the page): How you calculated the 40%?  
 
Response: The value was calculated as follows:  
relative difference = (addDiesel-Base)/addDiesel.  
We have added the following extra explanation into the manuscript: “… is 40% (calculated 
as the difference between SOA modelled with addDiesel and Base, relative to addDiesel: 
(addDiesel-Base)/addDiesel).” 
 

16. Page 15 lines 4-5 (or 33-34): Pye and Seinfeld (2010) have used a naphthalene-like 
surrogate specie to describe IVOCs instead of the traditional “POA” method. Please 
refer to this work as well (maybe in the introduction).  

 
Response: We have added a reference to Pye and Seinfeld (2010) where we mention global 
SOA budgets, but it is our understanding that they used CO emissions to derive a spatial 
distribution for naphthalene emission and then scaled their naphtalene up to include all IVOCs 
(using similar values as the Shrivastava et al.’s 2008 POA based approach). It is not completely 
different to the POA based approach (but different enough not to be mentioned in our list of 
1.5xPOA). We have changed the sentence “To our knowledge, this is the first study where 



IVOC emissions are added proportionally to VOC emissions” to “This is one of the very few 
studies where IVOC emissions are added proportionally to VOC emissions.” 
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Abstract.

We present high-resolution atmospheric chemistry
:
(5

:
km

:
×

::
5 km

:
)
::::::::::
atmospheric

::::::::
chemical

:
transport model (ACTM) sim-

ulations of
:::
the

::::::
impact

::
of

::::::
newly

::::::::
estimated

::::::::::::
traffic-related

::::::::
emissions

:::
on

:
secondary organic aerosol (SOA) formation over the

UK for 2012. Our simulations include additional diesel-related intermediate volatility organic compound (IVOC) emissions

derived directly from comprehensive field measurements at an urban background site in London during the 2012 Clean Air5

for London (ClearfLo) campaign. Our IVOC emissions are added proportionally to VOC emissions, as opposed to proportion-

ally to primary organic aerosol (POA) as has been done by previous ACTM studies seeking to simulate the effects of these

missing emissions. Modelled concentrations are evaluated against hourly and daily measurements of organic aerosol (OA)

components derived from aerosol mass spectrometer (AMS) measurements also made during the ClearfLo campaign at three

sites in the London area. Good hourly performance in comparison to the measurements was shown, giving confidence in the10

SOA prediction skill of the ACTM system used.

According to the model simulations, diesel-related IVOCs can explain on average ~30% of the annual SOA in and around

London. Furthermore, the 90-th percentile of modelled daily SOA concentrations for the whole year is 3.8 µgm−3(more than

1



40% of which is produced from the missing diesel precursors), constituting a notable addition to total particulate matter. More

measurements of these precursors (currently not included in official emissions inventories) is recommended.

During the period of concurrent measurements, SOA concentrations at the Detling rural background location east of London

were greater than at the central London location. The model shows that this was caused by an intense pollution plume with a

strong gradient of imported SOA passing over the rural location. This demonstrates the value of modelling for supporting the5

interpretation of measurements taken at different sites or for short durations.

1 Introduction

Ambient airborne particulate matter (PM) has diverse sources and physicochemical properties. It affects the transport, trans-

formation and deposition of chemical species, and has significant impacts on radiative forcing and on human health (Pöschl,

2005; USEPA, 2009). The elemental and organic carbon (EC and OC) components constitute a substantial proportion of total10

particle mass (USEPA, 2009; Putaud et al., 2010; AQEG, 2012). However, the characterisation and source apportionment of

the organic component remains a major challenge (Fuzzi et al., 2006; Hallquist et al., 2009; Jimenez et al., 2009). Under-

standing the sources of this organic aerosol (OA) is important in order to devise effective reduction strategies for ambient PM

concentrations (Heal et al., 2012).

Organic aerosol is typically a complex mixture of thousands of organic species, the majority of which are present at low15

concentrations (less than a few ngm−3). Current levels of scientific understanding, instrumentation and modelling capability

mean that explicit measurement and modelling of all individual OA species is not feasible at present. Measurement of OA

by on-line mass spectrometry, such as with the Aerodyne Aerosol Mass Spectrometer (AMS; Canagaratna et al. (2007)),

and consideration of individual organic marker ions coupled with multivariate statistical techniques such as positive matrix

factorization (PMF; Paatero and Tapper (1994); Paatero (1997)), have facilitated the subdivision of the OA component into20

empirical categories. These include hydrocarbon-like organic aerosol (HOA),
::::::::::
oxygenated

::::::
organic

:::::::
aerosol

::::::
(OOA,

:::::
which

::::
can

::
be

::::::
further

::::
split

:::
into

:
low-volatility and semi-volatile oxygenated organic aerosol(

:
: LV-OOA ,

:::
and

:
SV-OOA), solid-fuel organic

aerosol (SFOA)
::
or

:::::::
biomass

::::::
burning

:::::::
organic

::::::
aerosol

:::::::
(BBOA), cooking organic aerosol (COA) and a number of other categories

(Ulbrich et al., 2009; Ng et al., 2010; Lanz et al., 2010; Ng et al., 2011; Young et al., 2015a).
:::
The

::::::
SFOA

:::::
factor

::
is
::

a
:::::
more

::::::
general

::::::
version

::
of

::::::
BBOA

:::
as

:
it
:::::::
includes

::
in
:::::::
addition

:::
to

:::::::
biomass

::::
other

:::::::
sources

::::
such

::
as

::::
coal

:::
and

:::::::
charcoal

:::::::::::::::::
(Allan et al., 2010) .

:
25

Even allowing for the uncertainties in defining and measuring OA components, there is a general tendency for atmospheric

chemistry
::::::::
chemical transport model (ACTM) simulations to underestimate observed amounts of OA and SOA. For example,

the AeroCom (Aerosol Comparisons between Observations and Models) project, which includes ~30 global ACTMs and global

circulation models (GCMs), has concluded that the amount of OA present in the atmosphere remains largely underestimated

(Tsigaridis et al., 2014). Similarly, in an evaluation of 7 global models, Pan et al. (2015) reported a systematic underestimation30

of OA over South Asia.
::::::
Global

::::::::
modelling

:::::::
studies

::
of

::::
SOA

::::::::::
specifically

::::
have

:::::::::::
demonstrated

:::::
huge

:::::::::::
uncertainties

:::
(up

::
to

:::::::
tenfold)

::
in

::::
total

::::::::
simulated

::::
SOA

:::::::
budgets

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pye and Seinfeld, 2010; Spracklen et al., 2011; Jathar et al., 2011) .
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Several regional ACTM studies have also reported an underestimation of total OA (Simpson et al., 2007; Murphy and Pandis,

2009; Hodzic et al., 2010; Aksoyoglu et al., 2011; Jathar et al., 2011; Bergström et al., 2012; Koo et al., 2014) and SOA (Hodzic

et al., 2010; Shrivastava et al., 2011; Zhang et al., 2013; Fountoukis et al., 2014), with normalised mean biases (NMB) often in

the range of −30% to −50%. In some cases, this underestimation has been shown to be due to problems with the underlying

emission inventories, particularly for domestic wood-burning in wintertime (Simpson et al., 2007; Denier van der Gon et al.,5

2015). There may also be sources of biogenic secondary organic aerosol (BSOA) arising from previously neglected VOC

emissions such as those induced by biotic stress (Berg et al., 2013; Bergström et al., 2014).

Currently, ACTMs cannot explicitly simulate all the kinetic and thermodynamic processes associated with the evolving

gas-phase chemistry of semi-volatile organic compounds and their partitioning to the particle phase (Donahue et al., 2014). A

widely used heuristic parametrisation for simulating OA is the volatility basis set (Donahue et al., 2011, 2012). The volatility10

(in this case the saturation concentration
:
at

::::
298

::
K, C*) of gas-phase organic compounds are sorted into bins: low volatility

organic compounds (LVOCs, C* ≤ 0.1 µgm−3; with no lower C*, this category also incorporates extremely-low-volatility

organic compounds, ELVOC), semi-volatile organic compounds (SVOCs, C* = 1–103 µgm−3), intermediate volatility organic

compounds (IVOCs, C* = 104–106 µgm−3) and volatile organic compounds (VOCs, C* ≥ 107). Thus, organic compounds

are distributed across a continuum from particles to gases. Under typical ambient conditions, all LVOCs, some of the SVOCs,15

and essentially none of the IVOCs or VOCs are in the condensed phase (Donahue et al., 2006).

Current emissions inventories, however, only report estimates for VOCs (C* ≥ 107 µgm−3) and for the particle fraction

of the emissions of species with lower volatilities. The main reason for this is that compounds with intermediate volatility

(SVOCs and IVOCs) are difficult to quantify and this is currently not routinely undertakenalongside the techniques that have

been developed to measure the more volatile gases (e. g., gas chromatography) or organic-containing particles (e.g., aerosol20

mass spectrometry). .
:

Robinson et al. (2007) and Shrivastava et al. (2008) estimated the mass of emitted IVOCs to be 1.5 times that of POA emis-

sions. In their study, this addition of IVOCs = 1.5×POA was applied to all sources of POA – from diesel to biomass burning.

They based this estimation on chassis dynamometer tailpipe measurements by Schauer et al. (1999). Since then, several regional

and global ACTM applications have adopted this factor of 1.5 (e.g., Murphy and Pandis (2009); Tsimpidi et al. (2010); Hodzic et al. (2010); Jathar et al. (2011); Fountoukis et al. (2011); Genberg et al. (2011); Zhang et al. (2013); Bergström et al. (2012)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Murphy and Pandis (2009); Tsimpidi et al. (2010); Hodzic et al. (2010); Jathar et al. (2011); Fountoukis et al. (2011); Genberg et al. (2011); Bergström et al. (2012); Zhang et al. (2013); Koo et al. (2014); Tsimpidi et al. (2016) ).25

A number of studies, including many of those cited above reporting model underestimation of OA, have highlighted the need

for improved measurement and speciation of SVOCs and IVOCs and for these species to be reported in inventories.

Jathar et al. (2014) performed emissions and smog chamber experiments on SOA production from gasoline and diesel vehi-

cles. Diesel contains hydrocarbons with a higher carbon number (C8–C20) than gasoline (mainly C4–C10). The typical method

used for hydrocarbon analysis is gas chromatography (GC); however as the carbon number increases, the number of potential30

structural isomers increases exponentially, meaning GC is unable to distinguish individual species in the intermediate volatility

range (Goldstein and Galbally, 2007). The total carbon of this unresolved complex mixture was estimated and Jathar et al.

concluded that these unspeciated organic gases dominate SOA production compared with SOA from the speciated precursors

commonly included in emissions inventories (single-ring aromatics, isoprene, terpenes and large alkenes). Jathar et al. (2014)

also performed box-model simulations of the SOA budget for the US, with the addition of unspeciated emissions based on35
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measurements by Schauer et al. (1999), and concluded that gasoline contributes much more to SOA than does diesel. This

result is similar to that of Bahreini et al. (2012) who, based on measurements in the Los Angeles Basin, California (CA), con-

cluded that the contribution of diesel emissions to SOA was zero within measurement uncertainty. Conversely, Gentner et al.

(2012) reported that diesel was responsible for 65-90% of vehicular-derived SOA based on measurements of gas-phase organic

carbon in the Caldecoff Tunnel, CA, and in Bakersfield, CA, and on estimations of SOA yields. The huge dissimilarity in these5

conclusions, even in the same state in the US, emphasizes the need for continued research into gasoline- and diesel-related

SOA formation. Furthermore, the US and Europe have very different diesel vehicle profiles: in the US, a negligible proportion

of passenger cars are diesel (3%), whilst on average across Europe 33% of passenger cars are diesel and this proportion is in-

creasing (Cames and Helmers, 2013). Globally, the demand for diesel fuel is increasing and by 2020 it is expected to overtake

gasoline as the principal transport fuel used worldwide (Exxon Mobil, 2014).10

In this study, we present new high-resolution simulations of SOA formation in a 3-D ACTM model which includes additional

diesel-related IVOC emissions derived directly from comprehensive field measurements of IVOCS and VOCs at an urban

background site in central London (Dunmore et al., 2015) during the Clean Air for London (ClearfLo) campaign in 2012

(Bohnenstengel et al., 2014). Modelled concentrations are compared with OA components derived by PMF analysis of AMS

measurements during the same campaign, including comparisons with the long-term measurements (full year) as well as the15

two month-long Intensive Observation Periods (IOPs) in winter and summer.

2 Methods

2.1 Model description

The EMEP4UK model is a regional application of the EMEP MSC-W (European Monitoring and Evaluation Programme

Meteorological Sythesizing Centre-West) model. The EMEP MSC-W model is a 3-D Eulerian model that has been used for20

both scientific studies and policy making in Europe. A detailed description of the EMEP MSC-W model, including references

to evaluation and application studies is available in Simpson et al. (2012), Schulz et al. (2013), and at www.emep.int. The

EMEP4UK model is described in Vieno et al. (2010, 2014), and the model used here is based on version v4.5.

The EMEP4UK model uses one-way nesting from a 50 km × 50 km greater European domain to a nested 5 km × 5 km

area covering the British Isles and parts of the near continent. The model has 21 vertical levels, extending from the ground to25

100 hPa. The lowest vertical layer is ~40 m thick, meaning that modelled surface concentrations represent the average for a 5

km × 5 km × 40 m grid cell. The model time-step varies from 20 s (chemistry) to 5 min and 20 min for advection in the inner

and outer domains, respectively.

The model was driven by output from the Weather Research and Forecasting (WRF) model (www.wrf-model.org, version

3.1.1) including data assimilation of 6-hourly model meteorological reanalysis from the US National Center for Environmen-30

tal Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Global Forecast System (GFS) at 1◦ resolution

(NCEP, 2000).
:::
The

:::::
WRF

:::::::::::
configuration

::::
was

::
as

:::::::
follows:

::::
Lin

::::::
Purdue

::
for

::::::::::::
microphysics;

:::::::
Grell-3

:::
for

:::::::
cumulus

::::::::::::::
parametrization;

:::::::
Goddart

:::::::::
Shortwave

::
for

::::::::
radiation

::::::::
physics;

:::
and

:::::::
Yonsey

:::::::::
University

::
(
:::
YSU

:
)
:::
for

:::::::::
planetary

::::::::
boundary

:::::
layer

::::::
(PBL)

::::::
height

::::
(see

4

www.wrf-model.org


::::::::::::::
NCAR (2008) for

::::::
further

:::::::::::
information).

::::
This

:::::::::::
configuration

::
is

:::::::
identical

::
to
::::
that

::::::::
presented

::
in

:::::::::::::::::::::
Vieno et al. (2010) where

:
it
::
is

::::::
shown

::
to

::::::
perform

:::::
very

:::
well

:::
in

:::::::::
comparison

::::
with

:::::::::::::
measurements.

:::
No

::::::
further

::::::::
evaluation

::
is
::::::::
presented

:::::
here.

2.2 Emissions

Gridded
::::::::::::
anthropogenic

:
emissions of NOx (NO + NO2), SO2, NH3, CO, NMVOCs (Non-Methane VOCs), PM2.5 (PM

with
:::::::::::
aerodynamic diameter < 2.5 µm) and PM10 (PM with

::::::::::
aerodynamic

:
diameter < 10 µm) were obtained from NAEI5

(National Atmospheric Emissions Inventory, NAEI (2013) for the UK and from CEIP (EMEP Centre on Emission Invento-

ries and Projections; CEIP (2015)) for the rest of the model domain. All emissions are apportioned across a standard set of

emission source sectors, following the sector structure defined in the Selected Nomenclature for Air Pollutant (SNAP; EEA

(2013); Table 1), consistently applied across the whole domain. In recent years, the Nomenclature for Reporting (NFR) has

replaced SNAP categories for official emission reporting of parties under the Convention on Long-range Transboundary Air10

Pollution (CLRTAP). This was agreed in an attempt to harmonise reporting requirements between air pollutant and greenhouse

gas emission reporting obligations (for instance, the protocols under CLRTAP and the Intergovernmental Panel on Climate

Change). The resulting sectoral structure, however, is more aggregated than SNAP and does not allow for equally detailed

analyses of individual source types with specific emission characteristics (e.g., fuel types, technologies, temporal emission

patterns). Hence, emission datasets for ACTMs are typically still compiled to reflect SNAP sectors.15

Primary PM emissions reported as PM2.5 and PM10 in the NAEI and CEIP were speciated into EC, OA from fossil fuel

combustion, OA from domestic combustion and remaining primary PM by source sectors (using splits developed by Kuenen

et al. (2014); as in Fig. 1). Organic matter to organic carbon ratios (OM/OC) of 1.25 and 1.70 are used for HOA and SFOA,

respectively (as in Bergström et al. (2012) , based on Aiken et al. (2008) ). Default speciation of NMVOC emissions into 14

surrogate groups was used (Simpson et al., 2012). International shipping emissions from Entec UK Limited (now Amec Foster20

Wheeler) were used (Entec, 2010). The annual sectoral total emissions are temporally distributed to hourly resolution using

hour-of-day, day-of-week and monthly emission factors for each source sector as incorporated in the EMEP ACTM (Simpson

et al., 2012). Daily emissions of all the aforementioned trace gases and particles from natural fires were taken from the Fire

INventory from NCAR version 1.0 (FINNv1, Wiedinmyer et al. (2011)). Monthly NOx emissions from in-flight aircraft, soil

and lightning, as well as biogenic emissions of dimethyl sulphate (DMS), are included as described in Simpson et al. (2012).25

Biogenic emissions of isoprene and monoterpenes are calculated by the model for every grid cell and time-step. Estimated

emissions of wind-blown dust and sea salt are also included but these have no impact on the model simulations of OA (Simpson

et al., 2012).

2.3 SOA production in the model

The EMEP MSC-W model uses the 1-D volatility basis set (VBS; Donahue et al. (2006)) approach for SOA formation,30

ageing and phase partitioning. The implementation of the VBS framework within the model, including various options for

the treatment of volatility distributions and ageing reactions is described by Bergström et al. (2012).
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In the model set-up used here, POA is treated as non-volatile and inert, as is currently assumed by emissions inventories.

Having POA be non-volatile allows us to better identify and isolate the SOA formed from our additional diesel IVOCs. Fur-

thermore, it has been demonstrated by Shrivastava et al. (2011) that a 2-species VBS simulates an evolution of oxygen:carbon

ratios (O:C) similar to the 9-species VBS approach. Shrivastava et al.’s two bins were of volatility 0.01 and 105 which, be-

cause material with the lower volatility is always completely in the particle phase under ambient conditions, is similar to our5

non-volatile treatment of POA.

Five volatility bins (C* = 0.1, 1, 10, 100, 1000 µgm−3) are used for SOA from anthropogenic and biogenic VOCs
:::::::::
production

:::
and

::::::
ageing. The SOA yields for alkanes, alkenes, aromatics, isoprene and terpenes under high and low NOx conditions were

taken from Tsimpidi et al. (2010). SOA from
::::
Note

::::
that

:::::::::::::::::::::::::
Tsimpidi et al. (2010) reported

:::::
yields

:::
for

:::
the

::::
four

::::
VBS

::::
bins

:::::::
between

::
1

:::
and

::::
1000

:
µgm−3

:
.
::
In

:::
this

:::::
work,

:::
the

::::::
lowest

::::
VBS

:::
bin

::::
(0.1 µgm−3

:
)
::
is

::::
used

:::
for

:::
the

::::::
ageing

::::::::
reactions,

::
as

::::
well

::
as

:::
for

::::
SOA

:::::
from

:::
the10

::::::::
additional

:::::
diesel

::::::
IVOCs

:::::::::
(explained

::
in

:::
the

::::
next

::::::::
section).

::::
SOA

::::
from

:
alkanes, alkenes and terpenes is assumed to have an initial

::::::
organic

::::::
matter

::
to

::::::
organic

::::::
carbon

::::
ratio

:
(OM/OC)

:
ratio of 1.7; SOA from isoprene 2.0; and SOA from aromatics 2.1 (Bergström

et al., 2012; Chhabra et al., 2010).
:::
For

:::::::::::
comparison,

:::::
HOA

:::
and

::::::
SFOA

::::
were

::::::::
assumed

::
to

::::
have

:::::::
OM/OC

:::::
ratios

:::
of

::::
1.25

:::
and

:::::
1.70,

::::::::::
respectively

:::
(as

::
in

::::::::::::::::::::
Bergström et al. (2012) ,

:::::
based

:::
on

:::::::::::::::::
Aiken et al. (2008) ).

:
Both anthropogenic SOA (ASOA; from alkanes,

alkenes and aromatics) and BSOA (from isoprene and terpenes) undergo atmospheric ageing by the hydroxyl (OH) radical in15

the model (with rate coefficient of 4.0×10−12 cm3 molecule−1 s−1; Lane et al. (2008)), resulting in a shift into the next lower

volatility bin and a mass increase of 7.5%.

A constant background OA of 0.4
:
µgm−3 is used to represent the contribution of OA sources not explicitly included in the

model (e.g., oceanic sources or spores
:
;
:::::::::::::::::::
Bergström et al. (2014) ). This background OA is assumed to be highly oxygenated

:::
and

:
is
::::::::
therefore

::::::::
included

:::::
under

::::::::
modelled

::::
SOA

:::::
when

:::::::::
comparing

::::
with

:::::::::::
observations (with an OM/OC ratio of 2.0 ) and is therefore20

included under modelled SOA
:
it
::
is
::::
also

:::::::
assumed

::
to
:::
be

::::::::::
nonvolatile).

2.4 Additional IVOCs from diesel

Current emissions inventories report highly-volatile anthropogenic VOCs of C* ≥ 107 µgm−3 (Passant, 2002). However,

diesel vehicles also produce substantial emissions of species with intermediate volatility in the range 105 ≤ C∗ ≤ 106 µgm−3

(IVOCs), as has been shown by Dunmore et al. (2015) from measurements made at an urban background site in central London25

during the ClearfLo project.

In this study,
:::::::
aliphatic IVOC emissions from diesel vehicles were introduced into the model proportionally to on-road trans-

port VOC emissions, using n-pentadecane (C15H32) as surrogate for the following reasons. First, the amount of alkenes in diesel

fuel is low (< 5 %; Gentner et al. (2012)), so an alkane is the most appropriate surrogate. Second, all n-alkanes up to n-dodecane

were individually speciated and quantified during two month-long Intensive Observation Periods (IOPs) during the ClearfLo30

project and there were strong correlations between all n-alkanes that have a predominately diesel source (Dunmore et al.,

2015). Third, the rate constant for the linear alkane is a reasonable representation of the rate constant for all the (un-measured)

branched and cyclic isomers, as demonstrated by Dunmore et al. (2015) for the C12 n-alkane, dodecane. The bulk of diesel

emissions, however, are likely to have higher carbon numbers than were measured by the
:
a

::::::::::::
comprehensive

:::
two

:::::::::::
dimensional

:::
gas
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:::::::::::::
chromatography

:
(GC×GCsystem

:
)
::::::
system

:::::::::::::::::::
(Dunmore et al., 2015) . The rate coefficient for the reaction between n-pentadecane

and OH has been measured in a number of studies (k = 2.07×10−11 cm3 molecule−1 s−1
:
;
::::::::::::::::::::::
Atkinson and Arey (2003) ) unlike

for the majority of branched isomers in this range. Furthermore, measurements of diesel fuel composition have shown that the

average carbon number on a percentage weight basis was 14.94 (Gentner et al., 2012), so n-pentadecane was considered to be

an appropriate surrogate for diesel emissions in general.5

In the NAEI, emissions from gasoline vehicles dominate the NMVOCs emissions from road traffic, but measurements during

the ClearfLo winter Intensive Observation Period showed that NMVOCs assigned to diesel vehicles dominated traffic-related

NMVOC concentrations. The amount of pentadecane emitted in the model was therefore set to match the measured diesel-

(I)VOCs (IVOCs + VOCs) to gasoline-VOCs ratio (Table 2, Fig. 2). This pentadecane addition was then applied to every

country in the model domain using the same factor as for the UK. This first approximation is justified because the fleet share10

of diesel vehicles in the UK is similar to the European average (~30%; EEA (2010)), but it can introduce errors for specific

countries.

For the oxidation products of C15H32, SOA mass yields were taken from Presto et al. (2010): 0.044, 0.071, 0.41, 0.30 for

the 0.1, 1, 10, 100 µgm−3 bins, respectively
:::::::::::::::::::
(Presto et al. (2010) did

:::
not

:::::
report

::
a

::::
yield

:::
for

:::
the

::::
1000

:
µgm−3

::::
bin). These yields

are reported for SOA with unit density (1 g cm−3). In this work, SOA density was assumed to be 1.5 g cm−3 (Tsimpidi et al.,15

2010; Bergström et al., 2012) and the yields were increased accordingly.

For the UK, our approach adds 90 Gg of diesel-IVOCs emission for the year 2012 (Fig. 2). The 1.5xPOA approach (Shrivas-

tava et al. (2008) based on measurements by Schauer et al. (1999)) would only add 31 Gg (Fig. 1). Part of this discrepancy could

be attributable to the different methods and circumstances used to derive the additions (this work: five weeks of ambient mea-

surements in a megacity; previous estimate: tailpipe laboratory measurements using different instruments). Another possible20

reason for the difference is an underestimate in POA emissions in the inventory; more POA would increase the amount of pro-

portionally added IVOCs. However, Dunmore et al. (2015) show that lower carbon number (and higher volatility) NMVOCs

measured during the ClearfLo campaign were consistent with emissions estimates. This lends confidence to adding IVOCs

proportionally to reported NMVOC emissions, rather than proportionally to POA emissions. Nevertheless, we have also per-

formed a model run using the POA-based IVOC estimate,
::::

also
:::::::::
including

:::
the

::::::::::
semivolatile

:::::::::
treatment

::
of

:::::
POA. The emitted25

::::::::::
semivolatile

::::
POA

::::::::
(SVOCs)

::::
and

:
1.5xPOA IVOCs are assigned to the VBS bin of 105, where they start ageing by reaction

:
9
:::::
VBS

::::
bins:

::::::::::
0.03×POA,

::::::::::
0.06×POA,

::::::::::
0.09×POA,

:::::::::::
0.14×POA,

::::::::::
0.18×POA,

::::::::::
0.30×POA,

::::::::::
0.40×POA,

::::::::::
0.50×POA,

::::::::::
0.80×POA

::
to

:::
the

::::
bins

::::::::
0.01–106,

:::::::::::
respectively;

::::::::
totalling

::::::::
2.5×POA

::::::::::::::::::::::
(Shrivastava et al., 2008) .

::::
Both

:::::::
SVOCs

::::
and

::::::
IVOCs

::::
then

:::
go

:::::::
through

::::::::::
atmospheric

::::::
ageing with OH (k = 4.0× 10−11 cm3 molecule−1 s−1, ;

:
Shrivastava et al. (2008)). In this case, the additional

IVOCs were calculated from POA from all sources, not just traffic-related. Note that in the UK, most of the additional IVOCs30

of the POA-based approach would come from SNAP2 (Residential and non-industrial combustion emissions; (Fig. 1)): 18 Gg,

whereas only 5 Gg would be added to SNAP7 (Road transport; and 8 Gg to remaining sectors).
::::::
SVOCs

::::
and

::::::
IVOCs

:::
that

:::::
have

::::::::
undergone

::
at
:::::
least

:::
one

::::::
ageing

::::
shift

:::
and

:::
are

:::
in

:::
the

:::::::::
particulate

:::::
phase

:::
are

:::::::
included

:::::
under

:::::
SOA

::
(in

:::::::
addition

:::
to

:::::
ASOA

::::
and

::::::
BSOA

::::
from

:::::
VOCs

:::
as

::
in

:::
the

:::::
Base

:::::
case). Due to the very different absolute amounts and source categories (the latter of which also

leads to differences in the spatial pattern and temporal variation of the additional emissions), detailed comparison of the two35
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different additions is not justified, and only annual total ASOA
:::
OA

:::::::::
component

:
budgets of the different addition methodologies

are presented.

2.5 Summary of model experiments

Three runs of the EMEP4UK modelling system were performed for 2012:

– Base: all anthropogenic emissions as in officially reported inventories; emissions of biogenic VOCs calculated by the5

model for each advection time step.

– addDiesel: Base + additional diesel IVOCs added proportionally to NMVOC emissions from traffic (2.3xSNAP7). The

additional IVOCs were treated using n-pentadecane as surrogate species. The semi-volatile VBS-species formed after

oxidation of n-pentadecane were treated in the same way as the ASOA-species from VOC-oxidation (the same ageing

rate and mass increase due to oxygen addition; see Sect. 2.3).10

– 1.5volPOA: semivolatile treatment of POA + additional IVOCs added proportionally to all POA emissions (1.5xPOA; as

in Shrivastava et al. (2008) based on measurements by Schauer et al. (1999) ). Inclusion of anthropogenic and biogenic

VOCs as in Base.

2.6 Comparison with measurements

Modelled OA2.5 (OA with diameter < 2.5 µm) is compared with non-refractory submicron (NR-PM1) OA measured by Aero-15

dyne AMS instruments at an urban background site in central London and at two rural sites
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Xu et al. (2016); Young et al. (2015a, b); Bohnenstengel et al. (2014) ,

:::
site

::::::::
locations

:::
are shown in Fig. 3(?Young et al., 2015a, b; Bohnenstengel et al., 2014)

:
). The error introduced to the compari-

son by the different size fractions is believed to be small, as measurements at an urban background site in Birmingham, England

have shown that 90% of organic carbon in PM2.5 is in the submicron fraction (Harrison and Yin, 2008).

Different types of AMS were deployed in this campaign. At the London North Kensington site a compact time-of-flight20

AMS (cToF-AMS) was deployed for a full calendar year (January 2012 – January 2013), and a high-resolution time-of-flight

AMS (HR-ToF-AMS) was also deployed for the IOPs at the same site. A HR-ToF-AMS was deployed in Detling during the

winter IOP, and in Harwell during the summer IOP. PMF analysis was applied to each of the datasets to apportion measured

OA into different components (Ulbrich et al., 2009). A detailed description of the derivation and optimization of the factors

retrieved from the AMS data at Detling can be found in ?
::::::::::::::
Xu et al. (2016) , at London North Kensington in Young et al. (2015a)25

and Young et al. (2015b)
:::
(all

::::
three

:::
of

::::
these

::::::::
analyses

::::
were

:::::::::
performed

::::
with

:::
the

:::::
PMF2

::::::
solver), and at Harwell in Di Marco et al.

(2015)
:::::
(using

:::
the

::::::
ME-2

::::::
solver). The OM/OC ratios for each of the PMF datasets presented in this study were calculated

with the Improved-Ambient method from Canagaratna et al. (2015). A summary of the instruments, measurement periods and

resolved PMF factors is given in Table 3. As European emissions inventories do not currently
::
our

:::::::::
emissions

::::::::
inventory

::::
does

:::
not

include cooking OA (COA)
::::::::::::
(NAEI, 2013) , this factor could not be compared with the model.30

When AMS measurements and their PMF apportionments are compared, some disagreement is observed, even
::
as

::::::
shown

for the two instruments measuring at the same time at the same location at London North Kensington. This is in part due to
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the differences in the types of AMS used, where more chemical information is retrieved from the HR-ToF-AMS, which can

subsequently lead to differences in the derived PMF factors from the individual datasets. It should also be kept in mind that PMF

was run on each of the full datasets, covering a full year for the cToF-AMS and only four weeks for each of the HR-ToF-AMS

IOPs, thus it is not necessarily expected that the same PMF factors would be derived from the different datasets. Nevertheless,

strong correlations between daily averaged primary OA components from the two instruments
::::::::
deployed

::
at

:::
the

::::::
London

::::::
North5

:::::::::
Kensington

::::
site

:::::
during

:::
the

::::::
winter

::::
IOP are observed (0.95, 0.92, and 0.88 for HOA, SFOA, and COA, respectively), with less

strong correlations for SOA (0.77). Scatterplots of
:::::
these PMF derived OA component concentrations resolved for the cToF-

AMS data and HR-ToF-AMS (winter IOP) are shown in Fig. 4. This inherent uncertainty in the measurements constrains the

expected correlation with the model.

The following numerical metrics were used for model evaluation: FAC2 (Factor of 2) - the proportion of modelled concen-10

trations that are within a factor of 2 of the measured concentrations; NMB - normalised mean bias; NMGE - normalised mean

gross error; r - correlation coefficient (Carslaw and Ropkins, 2012) ; and COE - coefficient of determination (Legates and McCabe, 2013) ,

which is defined as:

COENMGE
:::::::

= 1.0−
∑n

i=1 |Mi−Oi|∑n
i=1 |Oi−O|

1
n

∑n
i=1 |Mi−Oi|

O
:::::::::::::::

, (1)

where Mi is the
:
i
::
th modelled value, Oi is the corresponding measured valueand ,

:
O is the mean measured value.

:
,
:::
and

::
n

::
in15

::
the

::::
total

:::::::
number

::
of

:::::::::::
observations;

::
r
:
-
:::::::::
correlation

:::::::::
coefficient;

::::
and

::::
COE

:
-
:::::::::
coefficient

::
of

:::::::::::::
determination,

:::::
which

::
is

::::::
defined

:::
as:

COE = 1.0−
∑n

i=1 |Mi−Oi|∑n
i=1 |Oi−O|

.

::::::::::::::::::::::::::

(2)

A COE of 1 indicates perfect agreement between model and measurements. Although the COE does not have a lower bound, a

negative COE value indicates
::::
zero

::
or

:::::::
negative

:::::
COE

::::::
implies

:
that the model is less effective at capturing

::::::
cannot

::::::
explain

::::
any

::
of

the variation in measurements than the measurement mean
::
the

:::::::::::
observations

::::::::::::::::::::::::
(Legates and McCabe, 2013) .20

NCAR command language (NCL) was used to produce the maps (NCAR, 2015) , and R, openair and ggplot2 for the analysis

and all other plots (R Core Team, 2014; Carslaw and Ropkins, 2012; Wickham, 2009) . Seasons are defined as follows: winter

- Dec-Jan-Feb (DJF); spring - Mar-Apr-May (MAM); summer - Jun-Jul-Aug (JJA), and autumn - Sep-Oct-Nov (SON).

The configuration of the underlying meteorological model (WRF) used for this study is identical to that described in

Vieno et al. (2010) where it is shown to perform very well in comparison with measurements. No further evaluation is presented25

here.

3 Results

The comparisons between the model results and measurements are presented in the following order. First, comparisons are

presented for primary OA, NOx, O3, and for secondary inorganic aerosol (SIA) to give an overview of the overall performance

of the modelling system. Second, the hourly concentrations of SOA during the two IOPs are evaluated, demonstrating the30
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agreement between the model and measurements at high temporal resolution. Third the year-long daily SOA concentrations

are compared and the relative impact of diesel-VOCs on SOA production in London is shown. Fourth, modelled and measured

OM/OC ratios are shown, and finally, annual total ASOA from our method and the previous 1.5xPOA approach are compared.

3.1 POA, NOx, O3, SIA: annual dataset

Figure 5 shows the year-long comparison between the daily-averaged model results and the cToF-AMS measurements at the5

London North Kensington site. The model underestimates primary OA (HOA and SFOA) concentrations (NMB of −54%
and −71%, respectively), but shows good daily correlations (r-values of 0.53 and 0.72, respectively). The underestimation

of HOA may be caused by a combination of lack of model resolution (e.g., the minor road close to the measurement site

can not be resolved with the 5 km grid), and underestimation of PM emissions. Modelled NOx concentrations are relatively

less underestimated in comparison to measurements (NMB of −32%, Fig. 6a), suggesting that HOA emissions may be more10

underestimated than the emissions of NOx. Concentrations of secondary
:::::::
inorganic

:
pollutants are simulated well by the model

in the gas-phase (Fig. 6b, with a NMB of −1% for ozone), and for inorganic PM constituents (Fig. 6c–d), with NMBs of 6%

for SO2−
4 , −12% for NH+

4 , and −23% for NO−
3 .

3.2 Hourly comparison of secondary OA: summer IOP

Evaluation statistics between hourly measured and modelled SOA concentrations in July and August 2012 (summer IOP)15

show excellent agreement (Fig. 7). The values of r for the Base run were 0.67 and 0.55 at North Kensington and Harwell

respectively. The addDiesel experiment yields a modest improvement in the value of r at North Kensington (to 0.76) and a

marked improvement in Harwell (to 0.74). The addDiesel run substantially improves the NMB for SOA at the Harwell and

London North Kensington sites from −32% to −5%, and from −35% to 0.1%, respectively (Fig. 7). This means that ~30%

of SOA at both sites during this period can be explained by the diesel IVOCs added into the model using pentadecane as a20

surrogate. There is also marked improvement of model-measurement COE values at the two sites (Harwell, 0.26 to 0.42, and

NK 0.31 to 0.45). The improvement in NMGE is noticeable (Harwell, 54% to 43%, and NK 59% to 47%), but smaller than the

improvements in the other metrics. It can be seen from the scatter-plots in Fig. 8 that most modelled hourly SOA concentrations

fall within a factor of two of the measured concentrations (FAC2 for the addDiesel experiment is 78% at Harwell and 62% at

NK).25

Measured and modelled mean hour of day variations of SOA concentrations are presented in Fig. 9, where it can be seen

that measured SOA concentrations do not have a very strong diurnal cycle. Interestingly, both sites exhibit dips in measured

SOA concentrations in the morning and early evening. Both measured and modelled SOA concentrations in London North

Kensington reach a maximum in the afternoon, but SOA of the addDiesel experiment starts this increase earlier than the

measurements, meaning that our ASOA production from pentadecane might be too rapid.30

During the summer IOP, there were two sustained episodes of increased SOA concentrations: 23-Jul to 28-Jul and 9-Aug to

13-Aug .
::::
(Fig.

::
7).

:
Only London North Kensington had measurements during the first episode and the elevated concentrations

were well captured by the addDiesel simulation (including the highest peak of greater than 16 µgm−3: 27-Jul 13:00, Fig. 10b).
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Daily averaged SOA maps (Fig. 11) suggest that this first episode arose from a combination of SOA transported from Europe

and SOA produced locally in London. A region of elevated concentration around London exists within a general gradient

of SOA from continental Europe to Southern England. Even daily averaged concentrations are spatially variable during this

episode meaning that inaccuracies in some of the modelled peaks can be attributed to uncertainties in the underlying meteoro-

logical model. Most of the modelled SOA during this episode was of anthropogenic origin with the addDiesel run yielding a5

significant portion of ASOA from pentadecane.

For the second sustained episode of high SOA concentrations, from 9-Aug to 13-Aug, several features remain substantially

underestimated even in the addDiesel run. For Harwell, the model does capture two of the highest peaks (10-Aug 22:00 mea-

sured: 6.8 µgm−3, addDiesel: 8.5 µgm−3 and 12-Aug 12:00 measured: 7.9 µgm−3, addDiesel: 7.0 µgm−3), but for London

North Kensington, the model simulates a minimum during the highest measured concentration (10-Aug 05:00 measured: 11.910

µgm−3, addDiesel: 2.0 µgm−3). The high concentrations during the first two days of this episode were very localised with

horizontal widths of just tens of kilometres (Fig. 12a,b). There was a build-up of pollution caused by high pressure and low

boundary-layer height (BLH), which led to production of ASOA in London. The high variability in the modelled concentra-

tions (for example, the simulated minimum during the measured maximum at North Kensington) is caused by the shifting of

this narrow ASOA plume in space (Fig. 10b). On 12-Aug, this episode was also subject to SOA contribution from Europe15

(Fig. 12d).

During the period of overlapping measurements at Harwell and North Kensington (3-Aug–18-Aug), both the measurements

and the model agree with a modest rural to urban increase. Average measured SOA concentrations were 2.4 µgm−3 and 2.6

µgm−3 for Harwell and North Kensington, respectively, whilst average modelled concentrations were 2.3 µgm−3 and 2.5

µgm−3 (for the addDiesel experiment).20

3.3 Hourly comparison of secondary OA: winter IOP

Both the Detling and London North Kensington sites exhibit good modelled-measured hourly correlation (r = 0.63 and 0.64,

addDiesel run; Fig. 13). The addDiesel run decreases the NMB for SOA at these sites from −59% to −30% for Detling,

and from −24% to 8% for London North Kensington. This means that ~30% of SOA at these sites during this period can

be explained by diesel IVOCs. In Detling, there is also a pronounced improvement in the COE, from 0.10 to 0.31. In North25

Kensington, the COE was already high but is increased from 0.27 to 0.30. It can be seen in Fig. 13 as well as Fig. 14 that lower

concentrations of SOA (19-Jan–27-Jan) are overestimated by the model. This overestimation is caused by the very simplified

method of including missing sources of OA using a constant concentration of 0.4 µgm−3 (which is assumed to be highly

oxygenated and is therefore included under modelled SOA). As a constant, this background OA does not currently go through

atmospheric emission-removal processes in the model. However, the period in question exhibited snowfall, removing much30

of the aerosol (as can be seen from the very low concentrations measured in both Detling and London North Kensington).

Nevertheless, this does not mean that the background OA concentration is an overestimate - this simplified inclusion is set for

the whole European domain and regardless of season. Explicit inclusion of additional missing biogenic sources of OA to the

model is already part of ongoing development of the model and will be presented in future studies.
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During the ClearfLo Winter IOP, measured SOA concentrations were higher in Detling than in North Kensington (Fig. 13).

This is correctly captured by the simulations and is caused by a steep positive gradient of concentrations from southern Eng-

land across to the near European continent (Fig. 15). The measured Detling/North Kensington SOA ratio (ratio of average

concentrations for this period) was 1.8 while the modelled ratio was 1.1, so the model correctly simulates the direction of the

spatial gradient, but underestimates its magnitude. For North Kensington, the model also captures that SOA concentrations are5

lower on Feb-5 than on Feb-4. In Detling, however, measured concentrations were higher on Feb 5, which the model does not

reproduce. During the night of 4-5 February, the wind was very strong (> 10 ms−1) and there was a small shift between the

measured wind direction and the wind direction input to EMEP4UK from WRF. As a consequence, the simulated pollution

plume was shifted too much to the east (Fig. 15b) causing the model-measurement discrepancy on this particular occasion.

Even though the additional diesel IVOCs noticeably increased the modelled SOA concentrations during the winter IOP, there10

is still a marked underestimation of elevated measured SOA concentrations during 15-Jan–19-Jan and 30-Jan–4-Feb. During

these periods, the observed temperature was colder than the average temperature of the winter IOP (Crilley et al., 2015) and

peaks in measured SOA also coincide with elevated concentrations of SFOA (Figs. 5b and 13b). As our modelled SFOA is

underestimated by a factor of 4 (NMB of −72%), it is likely that (i) SOA precursor VOC emissions from domestic heating are

also underestimated, and (ii) adding missing IVOCs from this emission sector would contribute to the modelled SOA during15

these periods. It has been recently shown by Denier van der Gon et al. (2015) that the emission factors used by different

European countries for wood combustion PM emissions, even for the same appliance type, can differ by a factor of 5. They

constructed a revised inventory, in which each country’s emission was updated using an unified emission factor. This resulted in

increases of PM (and estimated accompanying IVOC) emission estimates for most countries.
::::::::::
Furthermore,

:::::::
London

::
is

:
a
::::::
smoke

::::::
control

::::
area

:::
and

::::::::
therefore

:::
no

::::::::
residential

:::::::::
emissions

::
of

::::::
SFOA

:::
are

:::::::
assumed

:::
by

:::
the

:::::::
national

::::::::
emissions

:::::::::
inventory.

::::::
Recent

::::::
studies20

::::
have,

::::::::
however,

::::::::
suggested

::::
that

::::
there

:::
are

::::::
indeed

::::
local

:::::::
sources

::
of

::::::
SFOA

::
in

::::::
London

:::::::::::::::::::::::::::::::::::
(Crilley et al., 2015; Young et al., 2015a) .

3.4 Daily and seasonal secondary OA: annual dataset

Time-series of daily averaged modelled and measured SOA concentrations for the whole year are shown in Fig. 16. Table 4

gives daily modelled vs measured SOA evaluation statistics during different seasons at the North Kensington site. Values for

autumn are presented with and without the two extreme points (size of the data set n = 91 and n = 89).25

For the daily model-measurements comparison, spring has the highest correlation (r = 0.85, both Base and addDiesel;

Table 4). This can also be seen from the time series (Fig. 16: March–May) where both model simulations follow most of

the measured peaks. The Base run r-value for spring was already high, but nevertheless, the addDiesel run shows a marked

improvement for all other model evaluation statistics. FAC2 is increased by 10%, COE is increased to 0.39, NMB is reduced

by 35% and NMGE is reduced by 7%. The NMGE of 38% remaining in the addDiesel model run is probably governed by30

uncertainties in meteorology, as well as by uncertainties in the temporal and spatial variability of emissions. During summer, the

model captures the majority of the periods of increased SOA mass well (e.g., Jun-28, Jul-22 - Jul-29, Aug-15, Aug-20, Fig. 16:

June–August), but there is some model underestimation when SOA concentrations were lower (< 2 µgm−3). As for spring,
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the addDiesel experiment improves all model evaluation statistics. More detailed hourly analysis of the SOA concentrations

during the summer IOP (end of July to August) was presented in Sect. 3.2.

The model performance is less good in autumn than during the other seasons. There are some days where the Base case

scenario overestimates measured SOA (23–25-Oct, 21-Nov, 24-Nov) with the addDiesel run increasing this further. During

these days, particle nitrate (NO−
3 ) and ammonium (NH+

4 ) are also substantially overestimated by the model (Fig. 6). This5

suggests that the overestimations are likely caused by errors occurring during this period in the meteorological forecasts, e.g.,

missed rain events, rather than by uncertainties in the formation of secondary organic aerosol specifically.

The model evaluation statistics for autumn are strongly influenced by the two modelled values on 23-Oct and 24-Oct (Ta-

ble 4). Removing these two values reduces the seasonal average SOA concentration modelled with the addDiesel run by 33%

(2.0 and 1.5 µgm−3 with and without these two points, respectively). Their combined influence on the annual average modelled10

concentration is 8%, which is substantially more than any other points of the annual dataset.

For the winter months, modelled concentrations in January are much lower than measurements, whereas in February the

timing of several peaks is well reproduced and even overestimated by the addDiesel experiment. Detailed hourly analysis of

the SOA concentrations during the winter IOP has been presented in Sect. 3.3. In December, measured SOA concentrations

were much lower than in January and even though the model captures the highest peak, there is some overestimation in the15

lowest range (< 0.5 µgm−3).

Figure 17 shows annually and seasonally averaged measured and modelled SOA. The difference between the Base and

addDiesel experiments illustrate the impact of missing IVOC emissions from diesel-traffic on SOA formation. As was discussed

before, and can be seen from Table 4, IVOC precursors from diesel vehicles reduce the NMB by ~30%, which as an annual

average is 0.6 µgm−3 of additional SOA. Moreover, the 90-th percentile of daily averaged SOA concentrations of the addDiesel20

experiment is 3.8 µgm−3 (which is similar to the measured 90th percentile of 3.2 µgm−3), whereas the 90-th percentile of the

Base case simulation is 2.2 µgm−3. This means that (i) on 36 days of the year, SOA is a notable component of PM (the annual

average PM2.5 concentration limit value of the European Union Directive 2008/50/EC is 25 µgm−3), and (ii) during those

days, the relative contribution to SOA from diesel IVOCs could be greater than 40% .
::::::::
(calculated

:::
as

:::
the

::::::::
difference

::::::::
between

::::
SOA

::::::::
modelled

::::
with

::::::::
addDiesel

::::
and

:::::
Base,

::::::
relative

::
to

:::::::::
addDiesel:

::::::::::::::::::::::::
(addDiesel-Base)/addDiesel).

:::
We

::::
note

::::
that

:::
Fig.

::::
17a

:::::
shows

::::
that25

::
in

:::
the

:::::::::
addDiesel

:::::::::
simulation,

:::
the

::::::::
modelled

:::::::::::::::::
BSOA+Background

:::
OA

::::
still

:::::
makes

:::
up

::::
53%

::
of

:::
the

:::::
SOA,

::
as

:::
an

::::::
annual

:::::::
average.

3.5 OM/OC ratios

Measured OM/OC ratios for SOA were generally higher than those modelled (1.99–2.34 vs 1.88–1.97, Table 5). Nevertheless,

the measured OM/OC ratio at London North Kensington during the summer IOP was the lowest of the measured range: 1.99,

which is a close match to modelled SOA OM/OC ratio for that period: 1.97. Model performance for spring and summer30

was shown to be very good, but it is possible that the missing SOA precursors in the colder months (from domestic heating)

could yield SOA with higher initial OM/OC ratios, thereby increasing the annual average value. Furthermore, wintertime

simulations of SOA in Paris by ?
::::::::::::::::::::
Fountoukis et al. (2016) also showed large underestimations and they speculated that this
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could be pointing towards an SOA formation process during low photochemical activity periods that is currently not simulated

in atmospheric chemistry
:::::::
chemical transport models.

3.6 Comparison to the previous (IVOCs=1.5xPOA) approach

Figure 18 shows the annual average
:::::
HOA,

::::::
SFOA,

::::::
BSOA

::::
and

::::::::::
Background

::::
OA

:::::::
(BGND

:::::
OA),

:::
and

:
ASOA concentrations at

London North Kensington modelled with different assumptions for additional IVOC emissions. As was explained in Sect. 2.4,5

for the UK, the addDiesel experiment adds 90 Gg of diesel-related IVOCs proportionally to road transport emissions (SNAP7),

whereas the IVOCs=1.5xPOA approach only adds 5 Gg to SNAP7 and another 26 Gg to other sectors (mainly to SNAP2: resi-

dential and non-industrial combustion). Therefore, our approach creates a considerably larger amount of SOA from IVOCs (and

only from diesel-related IVOCs) than the previous method.
:::
The

:::::::::
1.5volPOA

::::::::::
experiment

:::
was

::::::::::
undertaken

:::::
using

:::
the

::::::::::
semivolatile

::::::::
treatment

::
of

:::::
POA

:::::::::
emissions.

::::
This

::::::
means

::::
that

:::
the

:::::::::
modelled

::::::
ASOA

:::::
from

:::
this

::::::::::
experiment

::::
also

::::::::
includes

::::
aged

:::::::::::
semivolatile10

::::
POA,

::::::::
possibly

:::::
giving

::
it
::::::::
potential

::
to

:::::
create

:::::
more

::::::
ASOA

::::
than

:::
the

:::::
Base

::
or

:::::::::
addDiesel

::::::::::
experiments

::::
(the

::::::
organic

:::::::
material

::::::
added

::
to

:::
the

::::::
model

::
in

:::
the

::::::::::
1.5volPOA

::::::::::
experiment

::
is

::::::::
1.0×POA

::::
(as

:::::::
SVOCs)

::
+
:::::::::
1.5×POA

:::::::
(IVOCs)

::
=
:::::::::

2.5×POA
:::
as

:::::::::
introduced

:::
by

:::::::::::::::::::::
Robinson et al. (2007) and

::::::::::::::::::::::
Shrivastava et al. (2008) ).

::
It

:::
can

::
be

::::
seen

:::::
from

::::
Figs.

::::
18a,

::
b
:::
that

:::::::
treating

:::::
POA

::
as

::::::::::
semivolatile

:::::
leads

::
to

:::::
much

:::::
lower

::::::::::::
concentrations

::::
than

:::
the

:::::::::
nonvolatile

::::::::
treatment

::::::
(which

:::::::
already

::::::::::::
underestimates

:::::::::
measured

::::::::::::
concentrations

::
of

:::::
HOA

:::
and

:::::
SFOA

:::
by

:::::
-54%

:::
and

:::::
-71%,

:::::::::::
respectively;

::::::
Fig.5).

::::
This

::
is

:::
not

::::::::
surprising

:::::
given

::::
that

:::
the

::::::::::
semivolatile

::::::::
treatment

::
of

::::
POA

:::::::
assigns15

::::
only

:::
3%

::
+

:::
6%

:
+
::::

9%
::
of

:::
the

::::
POA

:::
to

:::
the

::::
three

::::::
lowest

::::::::
volatility

::::
bins

::::
with

::::::::
saturation

:::::::::::::
concentrations

::
of

::::
0.01,

:::
0.1

::::
and

:
1
:

µgm−3
:
,

::::::::::
respectively

:::
(as

:::::
given

::
in

:::::
Sect.

::::
2.4).

::
In

::
a
:::::
study

::
in

:::::::
Mexico

:::::
City,

::::::::::::::::::::::::::
Shrivastava et al. (2011) revised

:::
this

:::::::::
treatment

::
by

:::::::::
assuming

::::
much

::::::
higher

::::
total

:::::
semi-

::::
and

::::::::::
intermediate

::::::::
volatility

:::::
POA

:::::::::
emissions:

::::
7.5×

:::
the

::::::::
inventory

:::::::::
emissions

::
of

:::::::::::
(particulate)

:::::
POA.

::::
This

:::
was

:::::::
justified

:::
by

:::
the

:::
fact

::::
that

::::
their

::::::::
emission

::::::
factors

::
of

:::::
POA

::::
were

:::::::
derived

::::
from

::::::::::::
measurements

::
at
:::::
urban

::::::::::
background

:::::
sites,

::::
but,

::::::::
following

:::::::::::::::::::
Robinson et al. (2007) ,

:::
2/3

:::
of

::::
POA

::::::
would

::::
have

::::::::::
evaporated

::
by

:::::
then.

:::::::::
(Recently,

:::::::::::::::::::::::
Shrivastava et al. (2015) also

:::::
used20

:::
this

:::::
factor

:::
of

:::
7.5

::
in
::::::

global
:::::::::::
simulations.)

:::::::::
Emission

::::::
factors

::::
used

:::
in

::::::::
European

::::::::::
inventories

:::
are,

::::::::
however,

:::::
taken

:::::
from

:::::::
tailpipe

:::::::::::
measurements

:::::
with

::::::::::::
concentrations

::::::::::
sufficiently

::::
high

::::
that

::::
most

::
of

::::
the

:::::::::::
semivolatiles

::::::
should

:::
still

:::
be

:::::::
reported

::
in
::::

the
:::::::::
particulate

:::::
phase.

:::::::::
Therefore

:::
the

::::::
further

:::::::::::::
underestimation

::
of

:::::
HOA

::::
and

:::::
SFOA

::::::::::::
concentrations

:::::
with

:::
the

::::::
volatile

::::::::
treatment

:::::
could

:::
be

:::
due

::
to

::
a

::::::
number

::
of

::::::
issues:

:::
(i)

:
a
::::::::::

systematic
:::::::::::::
underestimation

::
of

:::::::::
emissions,

::::
but

:::
for

:
a
::::::::
different

:::::
reason

:::::
than

::
in

:::::::::::::::::::::
Shrivastava et al. (2011) ,

::
(ii)

:::
the

::::::::
volatility

::
of

:::::
POA

::
is

:::::::::::
overestimated

:::
by

:::::::::::::::::::
Robinson et al. (2007) ,

::::
(iii)

:::
the

:::::::::
evaporation

:::
of

::::::::::
semivolatile

::::
POA

::::::::
emission

::
is

:::
too25

::::
rapid

::
in

:::
the

::::::
model

::::::::::::
(instantaneous

::
in

:::
our

::::::
set-up).

:

:::::
Figure

::::
18c

:::::
shows

::::
that

:::
the

:::::
lower

:::::
HOA

::::
and

::::::
SFOA

::::::::::::
concentrations

::::
lead

::
to

::
a
::::
very

:::::
small

:::::::
negative

:::::::
change

:::
for

:::
the

:::::::::
absorptive

:::::::::
partitioning

:::
of

::::::
BSOA.

:::::::
Finally,

::
it

:::
can

:::
be

::::
seen

:::::
from

:::
the

::::::
annual

:::::::
average

::::::::::::
concentrations

:::
of

::::::
ASOA

::
in

::::
Fig.

::::
18d

:::
that

:::::::::
including

::::
aged

::::::
SVOCs

::::
and

::::::
IVOCs

:::
in

:::
the

:::::::::
simulation

:::::::
doubles

:::
the

::::::::
modelled

::::::
ASOA

::::::::::::
concentration

::::::::
compared

:::
to

:::
the

::::
Base

::::
case

::::::::
scenario

::::::
(ASOA

:::::
from

:::::::
officially

::::::::
reported

::::::::::::
anthropogenic

::::::
VOCs),

::::
but

:::
that

:::
the

::::::
ASOA

::
in
::::

our
:::::::::
1.5volPOA

::::::::::
experiment

::
is

::::
still

:::::
much

:::::
lower30

:::
than

:::::::::
simulated

::::
with

:::
our

::::::::
addDiesel

::::::::::
experiment.

:
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4 Discussion

We show that
:
~30% of SOA in London could be produced from

::::::::
completely

::::
new

::::::::
estimates

:::
of diesel-related IVOC emissions

that are not currently included in the emissions inventories. To our knowledge, this is the first study
::::
This

::
is

::::
one

::
of

:
a
:::::

very

:::
few

::::::
studies

:
where IVOC emissions are added proportionally to NMVOC emissions (as opposed to addition proportionally to

POA emissions). Moreover, previous studies have added IVOCs proportionally to POA from all sources, whereas this study5

focuses specifically on the impact of diesel-IVOCs from on-road traffic emissions (IVOCs = 2.3xSNAP7 VOCs). There is

reason to believe that higher volatility VOCs are better represented in current emissions inventories than the emissions of PM.

Also, the official inventories do not provide the individual contribution of POA to total PM. Therefore, the addition of IVOCs

proportionally to NMVOCs may be better constrained than the POA-based approach used in studies so far. The additional

emissions are also tied directly to the relevant emission source category.10

There are several possible uncertainties in our estimate of additional IVOCs, and subsequent SOA production and ageing.

As a first approximation, we added IVOCs to each European country based on our measurements in London. This was justified

as the diesel usage in the UK is similar to the European average. Furthermore, different European countries might be using

different emissions factors for their estimates of NMVOCs from gasoline and diesel or have a different average fleet age than

the UK. Therefore the refinement of this addition should be evaluated in each country’s emissions inventory and reported to15

CEIP. It should be noted that two of the most populous countries in Europe - France and Germany - both have a higher diesel

penetration than the UK and therefore for western central Europe our addition is rather conservative. We believe it would be

beneficial to further refine the estimate of diesel-IVOCs treating each country separately.

It was seen from the hourly profiles at the London North Kensington site during the summer IOP (Fig. 9b) that both the

model and the measurements exhibit a small diurnal cycle (peaking in the afternoon). Even though somewhat counter-intuitive20

(as most of the SOA chemistry is photochemically driven through reaction with the OH radical), an absence of a strong diurnal

cycle of SOA has been seen in many European studies (Zhang et al., 2013; Fountoukis et al., 2014; Young et al., 2015a).

A relatively small daytime increase of SOA could be explained by the expansion of the boundary layer height (Xu et al.,

2015),
::
as

::::
well

:::
as

::
by

:::::::::::
contributions

:::::
from

:::::::::
long-range

::::::::
transport. PMF measurements of SOA in Mexico City, on the other hand,

revealed a very strong diurnal cycle, peaking around the mid-day (Shrivastava et al., 2011). The fact that during the summer25

IOP our addDiesel experiment exhibits a slightly stronger diurnal cycle than the measurements (with day-time values slightly

overestimated and night-time underestimated) indicates that the SOA yields could be too high. We assumed an SOA density

of 1.5 g cm−3 and increased the yields linearly, as has been done in all other ACTM studies. Actually, increasing the assumed

density of SOA from the unit value (1 g cm−3) changes the total COA:::::::::::::::
(condensed-phase

::::
OA) on the Odum mass yield plots

(Odum et al., 1996) used to derive the yields from the chamber experiment. Therefore, increasing the yields linearly is not30

exactly correct (Donahue 2015, personal contact) and further studies and refinement into the calculation of SOA yields and

density would be beneficial.

We use an ageing rate of 4.0× 10−12 cm3 molecule−1 s−1 for both ASOA and BSOA
:::::::::::::::
(Lane et al., 2008) . This is slower

than has been used in some other studies (for example, Tsimpidi et al. (2010) uses 4.0× 10−11 cm3 molecule−1 s−1: 10

15



times faster, or Fountoukis et al. (2011) uses 1.0× 10−11 cm3 molecule−1 s−1: 2.5 times faster). A combination of lower

initial SOA yields, but slightly higher ageing rates could possibly flatten the diurnal cycle of our modelled SOA, matching the

measurements better. Therefore, an improvement for the detailed, hourly, evolution could be achieved by a sensitivity study

of these yields and ageing rates. This does not, however, change the main scope and results of this paper which illustrate the

relative impact of the diesel-IVOCs on SOA formation.5

In the current set-up of the EMEP model, only two PM size fractions are simulated: PM2.5 and PM2.5−10, because only

two fractions are included in the emissions inventories for PM used in this study. Even though on an annual basis, 90% of

OC2.5 is in the sub-micron (OC1) range (Sect. 2.6), the comparison between a modelled OC2.5 and a measured OC1 could be

introducing larger errors during specific days or hours. Therefore, as AMS measurements become more prevalent, emissions

inventories should be reported for all three size classes, PM1, PM1−2.5, PM2.5−10. This would allow the model to partition10

SOA into the corresponding fractions, making the direct comparison of modelled SOA1 to measured SOA1 possible.

In the
:::
We

::::::
showed

:::
that

:::::::
treating

::::
POA

::
as

::::::::::
semivolatile

::::
and

:::::
letting

::
it

::::::::
evaporate

:::
lead

::
to

::
a

::::
great

:::::::::::::
underestimation

::
of

:::::
HOA

:::
and

::::::
SFOA

::::::::::::
concentrations

::::::::
compared

::
to

::::::::::::
measurements

::
at
:::

the
:::::::

London
::::::
North

:::::::::
Kensington

::::::
urban

::::::::::
background

::::
site.

::
As

::::
has

::::
been

::::::::::
highlighted

::
by

::
a

::::::
number

:::::::
studies

::::::
before

::
us

::::::
(listed

::
in

:::
the

::::::::::::
Introduction),

:::
we

::::::
would

::::
also

:::::::::
emphasize

:::
that

::
a
:::::
major

::::::
source

:::
of

:::::::::
uncertainty

:::
in

:::
OA

:::::::::
modelling

::
is

:::
the

::::::::
volatility

::
of

:::::::
primary

:::::::::
emissions,

::
an

:::::
issue

::::
that

::::::::
currently

:::
not

::::::::
addressed

:::
by

::::::
official

:::::::::
emissions

::::::::::
inventories.15

::
In

:::
our

:::::::::
experiment

:::
of

::::::::::
semivolatile

::::
POA

::::::::
(denoted

:::::::::::
1.5volPOA),

::::::
IVOCs

::::
were

::::::::
included

::::
from

:::
all

:::::
source

:::::::
sectors.

::::
This

::::::::::
experiment

::::::::
simulated

::::::::::
substantially

::::
less

::::::
ASOA

::::
than

:::
our

:::::::
addition

:::
of

::::::
IVOCs

:::::::::
associated

::::
with

:::
just

:::
the

::::::
traffic

::::::
source

:::::
sector.

::::
This

::::::
means

::::
that

:
a
::::::::::
combination

:::
of

:::
the

:::::::::
POA-based

::::
and

:::
our

:::::::
addition

::
of

::::::::::::
diesel-IVOCs

::::::::::::
proportionally

::
to

::::::::
NMVOCs

::::::
would

:::
not

:::::
create

::
a

:::::::::
substantial

::::::::::::
overestimation

::
of

::::
SOA

::::::::::::
concentrations

:::::::::
compared

::
to

::::::::::::
measurements.

:::::::::::
Nevertheless,

::::::
further

:::::::::
modelling

::::::
studies

::::::::
(including

::::::::
different

::::::::::
assumptions

::::::::
regarding

::::::
ageing

::::
rates,

::::::::::::
fragmentation,

::::
and

:::::
yields)

:::
as

:::
well

::
as

:::::
more

::::::::::::
measurements

::
of

:::::
IVOC

::::::::
emissions

:::::
from

:::::::
different20

::::::
sources

:::
are

::::::
clearly

:::::::::
necessary.

::
In

:::
the evaluation of modelled and measured SOA, it was shown that some of the uncertainties in the modelled concentrations

are caused by errors in modelled wind vectors. Nevertheless, the underlying meteorological model works well (as demonstrated

by comparisons of different pollutants for the whole calendar year), and overall the errors caused by meteorology are believed

to be relatively smaller than those introduced by emissions (amount, volatility, composition), or SOA yields and ageing rates.25

5 Conclusions

This study presents annual time series of new high-resolution simulations of SOA formation with the
:::
over

:::
the

::::
UK

::::::
(using

::
the

:
EMEP4UK ACTM (which is a nested application of the EMEP MSC-W model over the British Isles). Our simulations

include additional
::::::
Eulerian

:::::::::::
atmospheric

:::::::
chemical

::::::::
transport

:::::
model

::::::::
(ACTM))

::::
that

::::::
include diesel-related IVOC emissions derived

directly from comprehensive field measurements of IVOCS and VOCs at an urban background site in central London. To30

our knowledge, this is the first study where IVOC emissions are added proportionally to VOC emissions (as opposed to

proportionally to POA emissions). Moreover, previous studies
::::::::::
intermediate

:::::::
volatility

:::::::
organic

:::::::::
compound

:::::::
(IVOC)

:::::::::
emissions

:::
not

::::::::
currently

:::::::
included

:::
in

:::
the

::::::::
emissions

:::::::::
inventory.

::::
The

:::::::::
derivation

::
of

::::
the

:::::::::
magnitude

::
of

:::::
these

:::::::::
additional

:::::::::
emissions

::
of

:::::
SOA
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:::::::::
precursors,

::
as

::::
well

::
as

:::::::::
evaluation

::
of

:::
the

::::::
model

::::::::
simulated

:::::
SOA,

:::::
were

::::
both

:::::
based

:::
on

::::::::::::
measurements

::::
made

::::::
during

:::
the

:::::
Clean

::::
Air

::
for

:::::::
London

::::::::::
(ClearfLo)

::::::::
campaign

::
in

::::::
2012.

:::
The

::::::
IVOC

:::::::::
emissions

::::
were

::::::
added

::
in

:::::::::
proportion

::
to

:::
the

:::::
VOC

:::::::::
emissions

:::::
from

:::
the

::::::::::::::::
specifically-relevant

:::::::
on-road

:::::
traffic

::::::
source,

::
in
:::::::
contrast

::
to

::::::::
previous

::::::
studies

:::
that

:
have added IVOCs proportionally to POA from

all sources, whereas this study focusses specifically on the impact of diesel-IVOCs from on road traffic emissions (IVOCs =

2.3xSNAP7 VOCs)
:::::::
primary

::::::
organic

:::::::
aerosol

::::::
(POA)

::::::::
emissions

:::::
from

::
all

:::::
POA

:::::::
sources.

::::::::
Modelled

::::::::::::
concentrations

:::
of

::::
SOA

:::::
were5

::::::::
compared

::::
with

:::::::
positive

::::::
matrix

::::::::::
factorisation

::::::
(PMF)

::::::::
analyses

::
of

::::::
aerosol

:::::
mass

:::::::::::
spectrometer

::::::
(AMS)

::::::::::::
measurements

::
at

::
a

::::::
central

::::::
London

:::::
urban

::::::::::
background

:::::::
location

::::::
(North

:::::::::::
Kensington)

:::
and

::
at

:::
the

:::::::
Detling

:::
and

:::::::
Harwell

::::
rural

::::::::::
background

::::::::
locations

:::::::
outside

::
of

:::::::
London.

:::
The

::::::
model

::::::::::
performance

:::
in

::::::::::
comparison

::
to

::::::::
relatively

:::::
more

::::::::::
well-known

::::::::::
components

::
of

:::
air

::::::::
pollution,

:::::
such

::
as

:
NOx,

:
O3 :::

and

::::::::
secondary

::::::::
inorganic

::::::
aerosol

::::
was

:::::
shown

::
to

:::
be

::::
very

:::::
good,

::::::::
providing

:::::::::
confidence

::
in

:::
the

::::::::
prediction

::::
skill

::
of

:::
the

::::::
ACTM

::::::
system

::::
used.10

This addition of IVOCs proportionally to NMVOCs may be better constrained than the POA-based approach usedin studies so

far.

Modelled concentrations were compared with OA components derived from PMF analysis of AMS measurements, and four

groupsof SOA evaluation was presented
::::::::
Modelled

::::::::::::
concentrations

::
of

::::
SOA

:::::
were

::::::::
evaluated

::
in

:::
four

::::::
groups: (i) hourly comparison

during a summer IOP (Intensive Observation Period), (ii) hourly comparison during a winter IOP, (iii) daily comparison for15

a full calendar year (including seasonal statistics), and (iv) comparison of OM/OC ratios of different
::
all

::::::::::
apportioned

:
OA

components. Overall, very good performance in comparison to the measurements was shown, giving us confidence in the

SOA prediction skill of the ACTM system used. To our knowledge, this is the first study where modelled OA components are

compared with a year-long dataset of PMF apportioned
::::::::::::::
PMF-apportioned AMS measurements.

During the period of concurrent measurements
:
at

:::
all

:::::::
locations, SOA concentrations at the Detling rural background location20

were greater than at the central London location. The model showed that this was caused by an intense pollution plume

with a strong gradient of imported SOA
::::
SOA

:::::
from

::::::::
mainland

::::::
Europe

:
passing over the rural location and demonstrates how

short periods of measurements can give a different picture compared with longer-term measurements, as well as the value of

atmospheric chemistry-transport modelling for supporting the interpretation of measurements taken at different sites or for

short durations.25

It was concluded that diesel IVOCs alone can
::::
The

:::::
model

::::::::::
simulations

::::
show

::::
that

::::
these

::::::::
estimates

::
of

::::::::::::
diesel-related

:::::
IVOC

:::::
could

explain on average ~30% of the annual SOA in and around London. Moreover, the
:::
The 90-th percentile of modelled daily SOA

concentrations
::
at

:::
the

:::::
urban

::::::::::
background

:::
site

:
for the whole year is

:::
was 3.8 µgm−3, more than 40% of which is produced from

the missing diesel precursors . Therefore,
::
and

::::
the

::::::::
influence

::
of

:::::::
missing

:::::::::::
diesel-related

::::::
IVOC

:::::::::
precursors

:::
was

:::::
even

::::::
greater

:::
on

::::
high

::::::::
percentile

::::
SOA

:::::
days

:::
than

:::
its

::::::::::
contribution

::
to

::::::
annual

:::::::
average

:::::
SOA.

:::
The

::::::::::
magnitudes

::
of

:::::
these

:::::::::::
contributions

::
to

::::
SOA

:::::::
provide30

:::::
strong

:::::::::
additional

::::::
support

:::
for

:::
the

::::
need

:::
to

::::::::
undertake

:
further refinement of these precursors (currently not included

::
the

:::::::
amount

:::
and

::::::::
speciation

:::
of

::::
these

::::::::
precursor

:::::::::
emissions

:::
for

:::::::
inclusion

:
in official emissions inventories) is recommended.

Acknowledgements. The authors acknowledge the UK Department for Environment, Food and Rural Affairs (Defra) and the Devolved

Administrations, through the projects: development of the EMEP4UK model (AQ0727), as well as access to the AURN data, which were

17



obtained from uk-air.defra.gov.uk and are subject to Crown 2014 copyright, Defra, licenced under the Open Government Licence (OGL),

and for partial support for the aerosol measurements. Partial support for the EMEP4UK modelling from the European Commission FP7

ECLAIRE project is gratefully acknowledged. This work was supported in part by the UK Natural Environment Research Council (NERC)

ClearfLo project [grant ref. NE/H008136/1] and co-ordinated by the National Centre for Atmospheric Science (NCAS). R. Ots was supported

by a PhD studentship (University of Edinburgh and NERC-CEH contract 587/NEC03805). D. E. Young was supported by a NERC PhD5

studentship [ref. NE/I528142/1]. R. E. Dunmore was supported by a NERC PhD studentship [ref. NE/J500197/1]. NLN, LX, LRW and SCH

were supported by the US Department of Energy (grant no.DE-SC000602). The authors would like to thank David Simpson for helpful

advice about the EMEP model.

:::::
NCAR

::::::::
command

::::::
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::::::
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:::
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:
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:::::::
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maps

::::::::::::
(NCAR, 2015) ,
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ggplot2
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::::
other
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plots
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Table 1. SNAP source sectors as specified in the emissions input to the model (CEIP, 2015).

SNAP1 Combustion in energy and transformation industries

SNAP2 Residential and non-industrial combustion

SNAP3 Combustion in manufacturing industry

SNAP4 Production processes

SNAP5 Extraction and distribution of fossil fuels

SNAP6 Solvent and other product use

SNAP7 Road transport

SNAP8 Other mobile sources and machinery

SNAP9 Waste treatment and disposal

SNAP10 Agriculture
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Table 2. Comparison of diesel and gasoline NMVOCs in the UK National Atmospheric Emissions Inventory (NAEI) with the urban back-

ground ambient concentrations measured during the ClearfLo winter Intensive Observation Period in London.

NAEI 2012 Measurements a

(emission) (concentration)

Diesel-(I)VOCs 8 Gg yr−1 107 µgm−3

Gasoline-VOCs 31 Gg yr−1 33 µgm−3

Diesel/Gasoline 0.26 3.2

a Dunmore et al. (2015).

Table 3. AMS measurements and resolved PMF factors during the ClearfLo campaign and the allocation of the PMF factors to SOA

for comparison with model simulations. Site locations are shown in Fig. 3. Site names are abbreviated as follows: NK - London North

Kensington, DET - Detling, HAR - Harwell.

PMF factors

Period Site Dates (year 2012) Instrument Primary Secondary

winter IOP NK 13-Jan–8-Feb HR-ToF-AMS HOA, SFOA1, SFOA2, COA OOA

DET 20-Jan–14-Feb HR-ToF-AMS HOA, SFOA OOA

summer IOP NK 21-Jul–19-Aug HR-ToF-AMS HOA, COA, Unknown SV-OOA, LV-OOA

HAR 3-Aug–20-Aug HR-ToF-AMS HOA SV-OOA, LV-OOA, N-OOA

annual NK 11-Jan–24-Jan (2013)* cToF-AMS HOA, SFOA**, COA OOA1, OO2**

* As the cToF-AMS was retuned before the summer IOP and retuned to the previous tuning at the end of the IOP, the subsequent data could not be used in the PMF analysis

(see Young et al. (2015a) for details). However, for the purpose of the comparison in this study, data from the HR-ToF-AMS, deployed at the same site during the summer

IOP, was used to fill in this period.

** PMF analysis revealed the SFOA and OOA2 factors were convolved due to their similar, strong diurnal cycles. Daily averages have been used to estimate their

concentrations (Young et al., 2015a).
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Table 4. Model-measurements comparison statistics for daily SOA at London North Kensington. Autumn is presented with and without the

two outliers (23-Oct and 24-Oct. n = 91 and 89, respectively).

Base addDiesel Base addDiesel

spring (MAM) summer (JJA)

n (days) 91 86

FAC2 64% 74% 60% 79%

NMB -35% 0.1% -34% -5%

NMGE 45% 38% 48% 39%

r 0.85 0.85 0.71 0.82

COE 0.29 0.39 0.26 0.41

autumn (SON) winter (JFD)

n (days) 89 81

FAC2 82% 74% 70% 69%

NMB -2% 58% -28% 6%

NMGE 52% 96% 47% 61%

r 0.38 0.28 0.40 0.40

COE -0.13 -1.07 0.21 -0.02

autumn (SON)

n (days) 91

FAC2 80% 73%

NMB 13% 102%

NMGE 63% 137%

r 0.58 0.54

COE -0.30 -1.84
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Table 5. Measured and modelled (addDiesel experiment) OM/OC ratios. Site name abbreviations are given in Table 3.

Pollutant Site Period Meas. Mod.

OM/OC OM/OC

HOA

NK winter IOP 1.25

1.25

NK summer IOP 1.19

NK annual 1.32

HAR summer IOP 1.31

DET winter IOP 1.45

SFOA

NK winter IOP 1.62

1.70NK annual 1.78

DET winter IOP 1.64

SOA

NK winter IOP 2.03 1.88

NK summer IOP 1.99 1.97

NK annual 2.25 1.94

HAR summer IOP 2.39 1.99

DET winter IOP 2.34 1.86
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Figure 1. Annual UK PM2.5 emissions by SNAP sector (Table 1) as specified in the NAEI (for year 2012), with each sector split into POA

(HOA or SFOA), EC, and remaining PM following Kuenen et al. (2014). The green
:::
red bars are additional IVOCs (not included in official

emission totals) that can be estimated as 1.5x the POA mass in that sector. They are included in this plot to give an indication of the relative

mass of IVOC additions that has been used in other studies.
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Figure 2. Annual UK NMVOC emissions by SNAP sector (Table 1) as specified in the NAEI (for the year 2012), with the SNAP7 emissions

sub-divided into gasoline and diesel vehicles, and with the additional diesel-associated IVOC emissions input to the model in this study

shown in dark green
::
red.

Figure 3. Locations of measurement sites used in this study. London North Kensington is an Urban Background site, Harwell and Detling

are Rural Background sites. Underlying map from © OpenStreetMap contributors.
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Figure 4. Scatterplots of PMF-derived OA component concentrations ((a) HOA, (b) SFOA, (c) COA, (d) SOA) based on different AMS

instruments at the London North Kensington site during the winter IOP. The dashed lines are the 2:1, 1:1, and 1:2 lines.
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Figure 5. Time-series of measured and modelled daily-average concentrations of (a) HOA, and (b) SFOA at the London North Kensington

Urban Background site, 2012, measured with the cToF-AMS (Table 3).
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Figure 6. Time-series of measured and modelled daily-average concentrations of (a) NOx ::
(as

:
NO2), (b) O3, (c) SO2−

4 , (d) NH+
4 , and (d)

NO−
3 at the London North Kensington Urban Background site, 2012. Measurement data of NOx and O3 are from the UK Automated Urban

and Rural Network (AURN); SO2−
4 , NH+

4 and NO−
3 were measured with the cToF-AMS (Table 3).
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Figure 7. Time-series of measured and modelled hourly-average concentrations at (a) the Harwell Rural Background site, and (b) the London

North Kensington Urban Background site during the summer IOP. Note the different scales on the y-axes.
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Figure 8. Scatterplots of measured and modelled hourly SOA concentrations during the summer 2012 IOP: (a) Base simulation at the Harwell

Rural Background site; (b) Base simulation at the North Kensington Urban Background site; (c) addDiesel simulation at the Harwell Rural

Background site; (d) addDiesel simulation at the North Kensington Urban Background site. The straight lines are the 2:1, 1:1, and 1:2 lines.
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Figure 9. Average hourly profiles of modelled
::::::::
(addDiesel

:::::::::
experiment)

:
and measured SOA during the summer IOP. The shading is

::::
Also

:::::
shown

::
are

:
the 95% confidence interval

::::::
standard

::::::::
deviations

::
for

::::
each

::::
mean

:::::
value.
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Figure 10. Modelled (addDiesel experiment) hourly concentrations of SOA at the time of the maximum measured hourly SOA value at the

London North Kensington site during the first and second SOA episodes of the summer IOP. The white circles mark the measurement site

locations, left: Harwell, right: London North Kensington.
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Figure 11. Modelled (addDiesel experiment) daily average concentrations of SOA during the first SOA episode of the summer 2012 IOP.

The white circle indicates the location of London North Kensington.
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Figure 12. Modelled (addDiesel experiment) daily average concentrations of SOA during the second SOA episode of the summer 2012 IOP.

The white circles mark the measurement site locations, left: Harwell, right: London North Kensington.
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Figure 13. Time-series of measured and modelled hourly-average concentrations at (a) the Detling Rural Background site, and (b) the London

North Kensington Urban Background site during the winter 2012 IOP. Note the different scales on the y-axes.
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Figure 14. Scatterplots of measured and modelled hourly SOA concentrations during the winter 2012 IOP: (a) Base simulation at the Detling

Rural Background site; (b) Base simulation at the North Kensington Urban Background site; (c) addDiesel simulation at the Detling Rural

Background site; (d) addDiesel simulation at the North Kensington Urban Background site. The straight lines are the 2:1, 1:1, and 1:2 lines.
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Figure 15. Modelled (addDiesel experiment) daily average concentrations of SOA during the second SOA episode of the winter 2012 IOP.

The white circles mark the measurement site locations, left: London North Kensington, right: Detling.
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Figure 16. Time-series of measured and modelled daily average SOA concentrations at the London North Kensington Urban Background

site. The two outliers (23 and 24 October, included in the plot as labels) are excluded from the model evaluation statistics presented in the

plot.
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Figure 17. Annually and seasonally averaged measured and modelled concentrations of SOA at the London North Kensington site.
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Figure 18. Simulated annual and seasonal average concentrations of ASOA
::
OA

:::::::::
components

::::::
(BGND

:::
OA

:::::
stands

:
for

:::::::::
Background

::::
OA)

::
for

:
the

London North Kensington site of three different model experiments: Base - all emissions as in officially reported emissions inventories
:
,
::::
POA

:
is
::::::
treated

::
as

:::::::::
non-volatile; add1.5xPOA

::::::::
1.5volPOA - Base

::::::::
semivolatile

::::::::
treatment

::
of

::::
POA + IVOC emissions added proportionally to POA

from all source sectors
::
as

:::::::
1.5xPOA; addDiesel - Base + IVOC emissions from diesel traffic added proportionally to VOC emissions from the

on-road traffic source sector (SNAP7); both the latter additions as described in the main text.
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