Table S1. Annual average emission rates of CO_2 ff at Vector and Ballance plants.

Year	Vector	Ballance	Total	
(Sept-Apr)	$(gC s^{-1})$	$(gC s^{-1})$	$(gC s^{-1})$	
2004	5328	1576	6904	
2005	5711	1601	7312	
2006	5714	1728	7441	
2007	4611	1627	6238	
2008	4968	1355	6323	
2009	5654	1642	7296	
2010	5436	1683	7119	
2011	5300	884	6184	
Mean	5340	1512	6852	
Standard	388 (7.3%)	88 (18%)	525 (7.7%)	
Deviation				

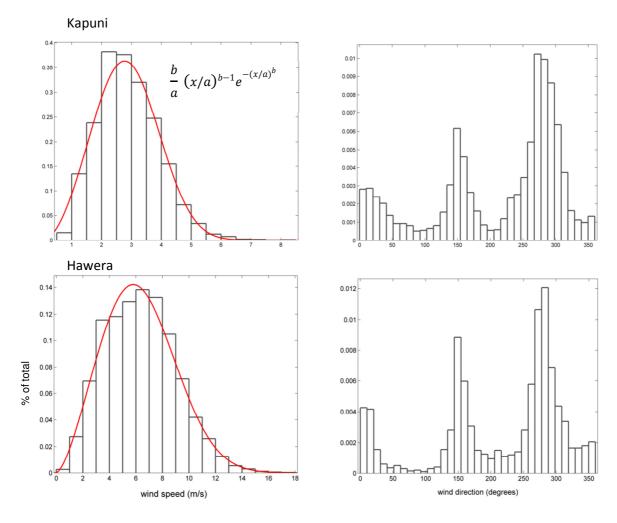


Figure S1. Wind speed (left) and direction (right) histograms and fitted Weibull probability distribution function (PDF) for (top) Kapuni 2013 (a = 3.19 b = 2.95; mean = 2.85 median = 2.7) and (bottom) all 8 years 2004-2011 at Hawera (Mean = 6.31 median = 6.2 std = 2.7 (43%)). Top left panel shows the equation of the Weibull PDF.

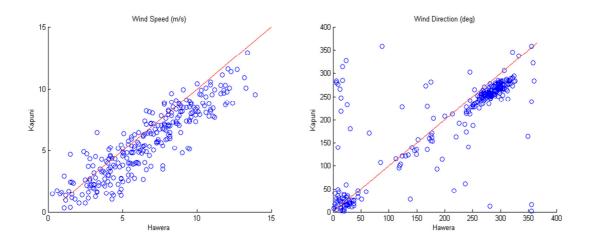


Figure S2. Wind speed (left) and wind direction (right) compared at each corresponding hourly time step at Kapuni and Hawera. Data from both sites spans 14 August - 26 October 2012.

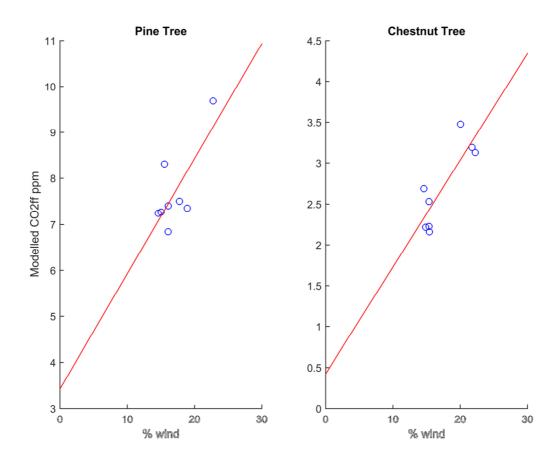


Figure S3. Correlation between % of northerlies in each year and modelled CO_2 ff (constant emissions) at the locations of the pine and chestnut trees. $R^2 = 0.56$ (pine) and 0.72 (chestnut). Red line is a linear regression fit of the data.