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“Detecting long-term changes in point source fossil CO2 emissions with tree ring 1 

archives” 2 

E.D. Keller et al. 3 

Response to Referee Comments 4 

Thank you to both referees for your comments. Each comment is copied below in red, and our 5 

response appears immediately after in black. Changes made to the text appear in italicised 6 

blue.  7 

 8 

Comments from Anonymous Referee #1: 9 

1. The authors describe the site to be located in a flat terrain dominated by Mount Taranaki. 10 

They also point out that the wind direction and speed can be very different at sites only a few 11 

kilometers apart due to the mountain influence on atmospheric flow. Hawera is considered to 12 

be representative of Kapuni in the manuscript, but comparisons of wind speed and direction 13 

were made for a very short time interval ” 14 August-26 October 2012, with some significant 14 

data gaps” as specified by the authors (page 9, line 1). I doubt that two months of 15 

measurements (with significant gaps) are sufficient to consider the two locations similar from 16 

this prospect. Also, the wind speed at Hawera is approximately double compared to the wind 17 

speed at Kapuni (not “slightly higher speeds” as mentioned on page 9, line 10). I wonder how 18 

much does this affect the model results? It is not clear to me what data is used in Fig. 2 for 19 

the wind rose “Kapuni 2013”. 20 

Our response also addresses the following comment from Anonymous Referee #2:  21 

Comments: I have questions about the meteorology used for the modeling. You compare the 22 

limited data set at Kapuni, close to the sampling site, with the much more complete set at 23 

Hawera, 20 km southwest of the sampling site. You state that the correlations between wind 24 

speed and wind direction between the two sites are consistent enough to warrant using the 25 

complete Hawera data set, as shown in a direction comparison for limited dates during 26 

August-October 2012 (Fig. S2). But is the limited period in 2012 adequate for evaluating 27 

whether Hawera data are appropriate for modelling wind transport at the Kapuni site? 28 

Moreover, Figures 2 and S1 show that the wind speed at Hawera (6-7 m/s) averages on the 29 

order of twice that at Kapuni (2-3 m/s). Have you done any sensitivity calculations to see how 30 
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this difference in wind speed affects the modeling? The wind directions seem to be fairly 1 

consistent at the two sites. 2 

Thank you to both referees for raising this issue. We have re-examined all of the wind data 3 

that is available to us from Kapuni, and in particular the data from 2013-14 that is shown in 4 

Fig. 2 and Fig. S1. This data came from a temporary automated weather station (AWS) that 5 

was installed in Sep 2013 at the Shell Todd Oil Services (STOS) gas production station, 6 

adjacent to the north side of the Vector Gas Plant. It was hired from and maintained by a third 7 

party and removed in Dec 2014, and we unfortunately do not have any record of its 8 

calibration or maintenance. We compared several other independent datasets (the 10-minute 9 

wind speed and direction from the temporary weather station installed by the authors between 10 

14 Aug – 26 Oct 2012 that is already mentioned in the manuscript, daily mean wind speeds 11 

available through New Zealand’s Virtual Climate Station Network (VCSN; Tait et al., 2006), 12 

10-minute wind speed from an AWS installed by Vector on-site at the Kapuni Gas Plant 13 

covering Aug 2012, Oct 2012, Nov 2013, and Sep-Dec 2014, and two weeks of measurements 14 

from a sonic anemometer installed by the authors in a nearby paddock at Kapuni in Oct 15 

2014), in which the mean wind speeds at Kapuni are on average only 80-90% lower than 16 

those at Hawera and, where there is overlap, are in disagreement with the wind speeds in the 17 

STOS dataset. Consequently, we believe that the wind speeds from the STOS AWS are biased 18 

low, and the true relationship between the wind speeds at Hawera and Kapuni is close to that 19 

derived from our data measured between Aug and Oct 2012. (We are confident of the quality 20 

of this data because we installed the weather station and verified the instrument calibration 21 

ourselves.) The wind direction is for the most part consistent in all data sources.  22 

The low wind speeds measured at the STOS AWS could be due to either poor instrument 23 

calibration or the placement of the station itself. We emphasize that we did not use the STOS 24 

dataset in our modelling, but only for general comparison with the data from Hawera. 25 

Because we now doubt the accuracy of the wind speeds from the STOS dataset, we have 26 

replaced the data in Fig. 2b with our dataset from Aug-Oct 2012, and also added a wind rose 27 

from Hawera during the same time period for direct comparison. As more evidence of the 28 

similarity of Kapuni and Hawera, we have added a comparison of daily mean wind speeds 29 

from the VCSN, and have included a histogram from this dataset as Fig. S1. The text has been 30 

edited to remove all mention of the STOS dataset. We acknowledge that the correlation is still 31 

based on a very limited dataset, and that this is a potential source of error in our results. 32 
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However, we have no reason to think that these months were atypical of conditions at Kapuni; 1 

other months and seasons for which we have data follow the same general patterns. 2 

We did perform a sensitivity test of the effect of wind speed on the modelled results. There is 3 

an inverse proportional relationship between wind speed and modelled concentrations, so that 4 

halving the wind speed approximately doubles the modelled CO2ff concentrations. If the wind 5 

speeds at Kapuni are significantly lower than those at Hawera, our results would be an under-6 

prediction. The statement “slightly higher speeds” to which Referee #1 referred is based on 7 

model II linear regression performed on the overlapping dataset between 14 Aug – 26 Oct 8 

2012. This equation is y = 0.90x - 0.32, where x is wind speed at Hawera and y is wind speed 9 

at Kapuni (calculated using R package lmodel2 major axis regression). This equation is now 10 

mentioned in the text and the caption of Fig. S2. The additional data sources that we have 11 

examined show a similar relationship, and we maintain that wind speed and direction at 12 

Hawera is similar enough to Kapuni for this study, which does not depend on exact point-by-13 

point correlation. The revised text reads (p. 9 line 8 - p. 10 line 11): 14 

The area to the northwest of Hawera and Kapuni is dominated by Mount Taranaki, a 2518m 15 

volcanic cone that rises steeply from relatively flat surrounding terrain. Wind direction and 16 

speed can be very different at sites only a few kilometres apart because of the local impact of 17 

the mountain on atmospheric flow. Thus we compared Hawera and Kapuni meteorological 18 

datasets to ensure that Hawera is representative of Kapuni over long (~1 year) time periods 19 

and the wind speed and direction distributions as a whole are similar at both locations. A 20 

wind rose for the eight years (2004-2011) of data at Hawera is shown in Fig. 2, together with 21 

a wind rose for one year (2013) of data at Kapuni. Daily mean wind speeds were compared 22 

using the Virtual Climate Station Network (VCSN; Tait et al., 2006). This is a set of “virtual” 23 

weather stations that uses re-analysis interpolation techniques to provide historical daily 24 

weather variables on a 5 x 5 km grid across New Zealand. The mean wind speed at Hawera 25 

over the modelled time period, 5.0 m s
-1

, is only slightly higher than that at Kapuni, 4.6 m s
-1

. 26 

Histograms comparing the wind speed distributions at both sites are in Fig. S1. Wind speeds 27 

are on average higher at Hawera, but the distribution in direction is very similar, with a 28 

small overrepresentation of northerlies at Hawera. The wind speed and direction 29 

distributions at both locations are shown in more detail in Fig. S1.  30 

We demonstrate correlation between the two sites using the only Only one overlapping 31 

dataset with sub-daily time intervals that was available for direct comparison at the time of 32 
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the our study. We collected data at a temporary meteorological station situated in a paddock 1 

at Kapuni at 10-minute intervals during the period 14 August – 26 October 2012, with some 2 

significant data gaps (Turnbull et al., 2014). These were averaged to hourly intervals and 3 

compared with the corresponding set of measurements at the Hawera AWS. Only daylight 4 

hours were included for consistency with the model simulations. Wind roses for the Kapuni 5 

dataset and the corresponding time period at Hawera are shown in Figs. 2b and 2c. The 6 

distribution in direction is similar to the north, but there are more southerlies and fewer 7 

westerlies at Hawera. Using these datasets, correlation in wind speed is good, with R
2
 = 0.82, 8 

and correlation in wind direction is moderate (R
2
 = 0.61). Because wind direction is an 9 

angular measurement, correlation in wind direction was performed using the circular 10 

package v0.4-7 in R v3.0.2 (Lund and Agostinelli, 2013; R Core Team, 2013) rather than the 11 

standard linear correlation function. Scatter plots comparing wind speed and direction at 12 

Kapuni and Hawera directly at each time step are in Fig. S2. Wind speed is a good match, 13 

with Hawera on average having slightly higher speeds than Kapuni.  When wind speed at 14 

Hawera is linearly regressed against wind speed at Kapuni, the resulting equation is y = 15 

0.90x – 0.32. (Model II regression was performed with the lmodel2 v1.7-2 package in R 16 

v3.0.2 (Legendre, 2014)). With wind direction, most points are close to the 1:1 line or slightly 17 

below, indicating a small rotation in direction between the sites. Approximately 67% of data 18 

points (one sigma) are within 30° of each other, and 85% are within 45°. For the purpose of 19 

our simulation in which we focus on integrated averages rather than particular points in time, 20 

the Hawera dataset is sufficiently representative of typical conditions at Kapuni. We note, 21 

however, that the dataset from Kapuni spans a very limited time period, and this is a potential 22 

source of error in our results. 23 

References added: 24 

Tait, A., Henderson, R., Turner, R., and Zheng, X. G.: Thin plate smoothing spline 25 

interpolation of daily rainfall for New Zealand using a climatological rainfall surface, Int. J. 26 

Climatol., 26, 2097-2115, 2006. 27 

Revised Figure 2: 28 
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 1 

Figure 2. Wind roses at hourly intervals a) at Hawera during the eight growing season (Sep-2 

Apr) between 2004-2011, b) Hawera 14 Aug – 26 Oct 2012, and c) Kapuni 14 Aug – 26 Oct 3 

2012, all showing daylight hours only (8:00am – 6:00pm). Wind speed is in m s
-1

. Data at 4 

Kapuni was collected at 10-minute intervals and averaged to hourly intervals to match 5 

Hawera data. 6 

Revised Figure S1: 7 

a 

b c 
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 1 

Figure S1. Histograms of daily mean wind speeds (m s
-1

) at Hawera (a) and Kapuni (b) for 2 

the eight growing seasons 2004-2011 from the VCSN. Dashed red line shows the mean over 3 

the entire period (5.0 and 4.6 m s
-1

 for Hawera and Kapuni, respectively). 4 

 5 

2. It is not clear from the text how many trees were sampled from each species. How many 6 

replicates were used and how was the data analyzed? Please specify and expand this 7 

paragraph (page 6, lines 9-24) rather than pointing to papers only. The reader should have a 8 

clear idea about the tree ring observation methodology without reading Norris, 2015 and 9 

Turnbull et al, 2014. 10 

Additional details about the tree ring measurements have been added. The equation in 11 

Turnbull et al., 2014 used to derive CO2ff from the measurements has also been added. The 12 

revised text reads (p. 6 line 12 – p.7 line 10): 13 

In summary, wood was sampled from the trees using a Haglöff incremental borer. Four cores 14 

were extracted per tree at equidistant points at a height of approximately 1.2m from the base 15 

of the tree. One core from each tree was used to create a historic record of CO2 emissions 16 

a 

b 
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from commission of the Kapuni plant in 1971 to the outermost ring at the time of sampling in 1 

2012. Replicates were taken from a second core to validate ring counting and 
14

C results. 2 

Alpha cellulose was extracted from individual rings using a method modified from Hua et al. 3 

(2000), combusted with a Europa ANCA elemental analyser (EA), reduced to graphite and 4 

measured by accelerator mass spectrometry at GNS Science laboratories in Lower Hutt, New 5 

Zealand (Baisden et al., 2013; Zondervan et al., 2015; Turnbull et al., 2015). 6 

CO2ff was determined following Turnbull et al. (2014) from the isotopic difference between 7 

the measured tree ring and clean air background CO2 measured at Baring Head, Wellington 8 

(41.4167°S, 174.8667°E; Currie et al., 2011; extended with unpublished data dataset to 2015 9 

will be presented in an upcoming publication). Baring Head, located at the southern end of 10 

New Zealand’s North Island and approximately 300 km south of Kapuni, was chosen as the 11 

background for this study over more local sites because it provides a long-term record of 12 

background CO2 and 
14

C, dating back to the early 1970s. The following equation was used:  13 

( )
( )

β−
∆−∆

∆−∆
=

bgff

bgobsobs

ff

C
C                                                                                                    (1) 14 

where Cff is CO2ff, Cobs is the CO2 mole fraction in the observed sample, ∆obs and ∆bg are the 15 

∆
14

C of the observed sample and background sample, respectively.  ∆ff is the ∆
14

C of CO2ff, 16 

and is assigned to be -1000‰. ∆bg is from the summer season average from the long-term 17 

Wellington 
14

CO2 record at Baring Head.  Comparison of this record with tree rings collected 18 

3 km upwind of our source showed no difference from the Wellington record. β is a small 19 

correction to account for the fact that the ∆
14

C of CO2 from other sources may be slightly 20 

different from that of the atmosphere; in our case we set β to zero since the proximity to the 21 

coast and consistent winds suggest that CO2other is negligible in this location (Turnbull et 22 

al., 2014). Baring Head, located at the southern end of New Zealand’s North Island and 23 

approximately 220 km southeast of Kapuni, was chosen as the background for this study over 24 

more local sites because it provides a long-term record of background CO2 and 14C, dating 25 

back to the early 1970s. Background levels in tree rings measured at a site in Kapuni 2km 26 

upwind of the Vector plant are close to those measured at Baring Head in the same time 27 

period, justifying the use of the Baring Head dataset (Norris, 2015). Uncertainty in CO2ff is 28 

dominated by ∆
14

C measurement uncertainty in both background and the observed sample 29 

and is typically ~1ppm for this dataset. 30 

References added: 31 
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Baisden,W. T., Prior, C. A., Chambers, D., Canessa, S., Phillips, A., Bertrand, C., Zondervan, 1 

A., and Turnbull, J. C.: Radiocarbon sample preparation and data flow at Rafter: 2 

accommodating enhanced throughput and precision, Nucl. Instrum. Meth. B, 294, 194–198, 3 

2013. 4 

Hua, Q., Barbetti, M., Jacobsen, G.E., Zoppi, U. and Lawson, E.M.: Bomb radiocarbon in 5 

annual tree rings from Thailand and Australia, Nucl. Instrum. Meth. B, 172, 359-365, 2000. 6 

Zondervan, A., Hauser, T.M., Kaiser, J., Kitchen, R.L., Turnbull, J.C. and West, J.G.: 7 

XCAMS: The compact 14 C accelerator mass spectrometer extended for 10 Be and 26 Al at 8 

GNS Science, New Zealand, Nucl. Instrum. Meth. B, 361, 25-33, 2015. 9 

 10 

3. When describing the model, the authors state that this is appropriate for estimating 11 

emission rates from a source over short distances (page 7, line 4). They also show that the 12 

time interval recommended for the meteorological observations used for the model is 10-30 13 

min. How reliable are the model results for these simulations given that one hour time-step 14 

was used for wind speed/direction?  15 

This information comes from Flesch et al., 2004, which provides detailed analysis of the 16 

effect of averaging time on WindTrax model results. The model is built on a traditional 17 

Monin–Obukhov similarity theory (MOST) description of the atmosphere and relationships 18 

derived from 15-60 min wind statistics. WindTrax is limited by the fact that large-scale 19 

atmospheric dispersion fluctuations are not incorporated in the model structure. As the time 20 

interval increases, large-scale motions become more important, and Flesch et al., 2004 states 21 

that applying the model to “time averaging periods greatly different from 15-60 min carries a 22 

risk” and an increase in error. While the preferred choice of time step is given as 10-30 23 

minutes, 60-min time intervals are still in the range considered valid for application of MOST 24 

statistics. We believe that using a one-hour time step in this context does not make the model 25 

unreliable. We have edited the text to clarify this point and more accurately reflect the 26 

language in the original reference (p. 8 lines 7-12): 27 

It assumes wind and other meteorological observations are averaged over a suitable time 28 

interval representing a stable, mean atmospheric state (model relationships are built from 29 

wind statistics over 15-60 minute intervals; 10-30 minute intervals are recommended using 30 

model time steps greatly outside of this range is not recommended). Intervals longer than one 31 
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hour have been shown to can be problematic (Flesch et al., 2004) because at these time 1 

intervals, large-scale fluctuations not described by MOST statistics become important. 2 

 3 

Also, the chestnut tree is located at the limit of the simulation capability, 1 km. How does this 4 

influence the result? 5 

The referee correctly points out that the chestnut tree is located at the limit of WindTrax’s 6 

capability. We discuss this in sections 3.1 and 3.3, attributing the large errors and high 7 

detection thresholds at least in part to the tree’s distance from the point source.  The small 8 

concentrations combined with the large model error make this distance impractical for 9 

detecting changes in CO2 emissions. We have not made any changes to the text.  10 

 11 

4. The authors present this method to be useful for verifying emission changes at other 12 

locations where the point sources are much stronger, mentioning that there are 13 

approximately 800 power plants worldwide that emit more than 10 times the annual total 14 

CO2ff at Kapuni (page 18, line 17). They also explain that “WindTrax is not applicable to 15 

complex terrain or larger distance scales and caution is urged when applying our 16 

methodology to other sites”. I have a feeling that Kapuni site is very specific and I am not 17 

sure that there are so many other sites with flat terrain, trees within 300-600m of the point 18 

source located downwind, and consistent winds through time. What other model would then 19 

be most suitable for complex terrain and larger distances? Add suggestions for other 20 

model(s) that would be suitable in this case. 21 

We acknowledge that the Kapuni site is somewhat unique in this respect. As requested, we 22 

have added a paragraph at the end of section 3.4 discussing the advantages that the Kapuni 23 

site offers with regards to atmospheric transport modelling and have listed several other 24 

models that are applicable at larger distance scales and with more complex terrain and that 25 

would be more appropriate for regional-scale studies. The added text reads (p. 19 lines 23-26 

30): 27 

The Kapuni site has several advantages that simplify the modelling component of this method: 28 

the terrain is flat, and there are trees conveniently located close to the CO2ff sources. With 29 

larger distance scales and/or more complex terrain, WindTrax might not be an appropriate 30 

choice of model. Alternative atmospheric transport models that are applicable to larger 31 
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distances (hundreds of kilometres and/or regional scales) and more complicated geographic 1 

features include CALPUFF (Scire et al., 2000), WRF-CHEM (Grell et al., 2005), and 2 

AERMOD (Cimorelli et al., 2005). While these models would need to be tested in the context 3 

of our method, the same general principles would apply. 4 

References added: 5 

Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R. J., Wilson, R. B., Lee, R. 6 

F., Peters, W. D., and Brode, R. W.: AERMOD: A Dispersion Model for Industrial Source 7 

Applications. Part I: General Model Formulation and Boundary Layer Characterization, J. 8 

Appl. Meteor., 44, 682–693, doi: http://dx.doi.org/10.1175/JAM2227.1, 2005. 9 

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and 10 

Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 11 

6957-6975, 2000. 12 

Scire, J. S., Strimaitis, D. G., and Yamartino, R. J.: A user’s guide for the CALPUFF 13 

dispersion model, Earth Tech, Inc, Concord, Massachusetts, USA, 2000. 14 

 15 

Specific comments: 16 

Check the table captions. Information is missing (e.g. Table 2 – column 4 not explained). 17 

All table captions have been expanded and the requested information has been added to the 18 

Table 2 caption: 19 

Table 2. Eight-year Modelled mean CO2ff and standard deviation (SD) of eight hypothetical 20 

sensors for simulated over the eight years 2004-2011 with of constant emissions. 21 

Measurement uncertainty (MU) of 1.0ppm is added to the standard deviation in the fourth 22 

column. simulation and Columns 5-10 show the detection limits calculated at the two-sigma 23 

(95%) and one-sigma (68%) confidence level (CL) for samples representing an average of 24 

one, two, or four years. Measurement uncertainty (MU) of 1.0ppm is added in quadrature to 25 

the standard deviation of modelled CO2ff before limits are calculated. 26 

 27 

Check figure captions. The reader should understand what those figures represent without 28 

reading the text. 29 
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Figure captions have been expanded where possible. 1 

Figure 2: name the two panels a) and b) and refer to them in text accordingly. Expand the 2 

caption. 3 

Done. 4 

Figure 4: Same as for Fig. 2. 5 

Done. 6 

Page 5, line 18: 2008 should be 2007. 7 

Thank you for catching this error. 8 

 9 

Page 17, lines 26-28: “Indeed, looking at the results in Fig. 4, there is no significant decline 10 

at the chestnut tree in 2007; there is a small decline in CO2ff at the pine tree but it is too 11 

small to conclude that emissions have changed. “ As I estimate from the figure, the observed 12 

value is smaller in 2007 than in 2006 at the chestnut tree by 1.3 ppm, and by 0.3 ppm at the 13 

pine tree. Isn’t the former significant?  14 

The referee is correct that the 2007 observed value at the chestnut tree is lower than the 15 

previous year by 1.3 ppm. However, the meaning of the words “significant decline” in this 16 

context refers to the decline relative to the long-term mean (which is 2.1 ppm for the chestnut 17 

tree). With respect to the long-term mean, the decline in 2007 is only 0.4 ppm (or 19% of the 18 

mean), which is not enough to declare it statistically significant. We have added specific 19 

numbers to the text to clarify this point (p. 17 lines 20-25): 20 

For a one-year observation from the pine tree, this is 18%; for the chestnut, it is 92%. The 21 

largest change in emissions in any single year at the Vector plant is in 2007, with a decline of 22 

14% relative to the long-term mean, still below the detection limit. Indeed, looking at the 23 

results in Fig. 4, there is no significant the decline (0.4ppm, or 19% of the mean) at the 24 

chestnut tree in 2007 is not significant; there is also a small decline (0.7ppm, or 13% of the 25 

mean) in CO2ff at the pine tree but it is again too small to conclude that emissions have 26 

changed. 27 

 28 

I recommend using the same scale for the two graphs. 29 
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Done. 1 

 2 

 3 

Comments from Anonymous Referee #2: 4 

Comments: I have questions about the meteorology used for the modeling. You compare the 5 

limited data set at Kapuni, close to the sampling site, with the much more complete set at 6 

Hawera, 20 km southwest of the sampling site. You state that the correlations between wind 7 

speed and wind direction between the two sites are consistent enough to warrant using the 8 

complete Hawera data set, as shown in a direction comparison for limited dates during 9 

August-October 2012 (Fig. S2). But is the limited period in 2012 adequate for evaluating 10 

whether Hawera data are appropriate for modelling wind transport at the Kapuni site? 11 

Moreover, Figures 2 and S1 show that the wind speed at Hawera (6-7 m/s) averages on the 12 

order of twice that at Kapuni (2-3 m/s). Have you done any sensitivity calculations to see how 13 

this difference in wind speed affects the modeling? The wind directions seem to be fairly 14 

consistent at the two sites. 15 

See response to first comment from referee #1.  16 

 17 

p.1, line 25: change “lowers” to “is reduced” 18 

Done. 19 

p.2, line 9: rearrange “reduction targets are commonly agreed as” to “commonly agreed 20 

upon reduction targets are” 21 

Done. 22 

p. 3, lines 16-17: You mention here and again later “the [photosynthesis] process faithfully 23 

recording the 14C content in new plant material”, but you only reference the work showing 24 

this significantly after the mention on p. 11. It might help the reader to have this discussion 25 

earlier, since it is critical to the method. 26 

We believe the referee is referring to the references and full description on p. 6 (rather than p. 27 

11). The text in the introduction has been rearranged, but we have chosen to leave the detailed 28 

discussion and references for section 2.3 (p. 3 lines 15-23): 29 
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Plant material can be used as a proxy for atmospheric CO2ff because plants assimilate 1 

carbon from the atmosphere during photosynthesis, in the process faithfully recording the 
14

C 2 

content in new plant material. The radiocarbon content in tree rings has been well 3 

established as a tracer for fossil CO2 emissions (Suess, 1955; Tans et al., 1979; Djuricin et 4 

al., 2012; Rakowski et al., 2013) and as a method to detect leaks from CO2 geosequestration 5 

(Donders et al., 2013). Tree rings represent an integrated average of daytime CO2 6 

atmospheric mole fractions and 
14

C content over the tree’s annual growth period, and can be 7 

independently dated using dendrochronology methods. This allows for a retroactive analysis 8 

of CO2ff mole fractions over many years, including any trends in emissions that occurred 9 

during the life of the tree. The radiocarbon content in tree rings has been well established as 10 

a tracer for fossil CO2 emissions (Suess, 1955; Tans et al., 1979; Djuricin et al., 2012; 11 

Rakowski et al., 2013) and as a method to detect leaks from CO2 geosequestration (Donders 12 

et al., 2013). 13 

 14 

p. 5, line 18: “2008” should probably be “2007”. 15 

Thank you for noticing this error. 16 

Figures: In general, increase font sizes for labels. Label panels within figures “a”, “b”, “c” 17 

to make it easier to refer to them in the text. 18 

Done. 19 

Figure 1: Can you add a large-scale location map locating Taranaki in New Zealand, as well 20 

as Hawera and Mount Taranaki? Add a label for Kapuni stream. 21 

Done. 22 

Figure 2: Font sizes. Label the legend (m/s). 23 

Done. 24 

Figure 4: The bottom axis of the top panel is missing. Increase the font size of the axis tick 25 

labels in all panels. The dates don’t line up between the top two panels and the bottom panel. 26 

Increase all font sizes for the bottom panel. You use a subscript for CO2 in the bottom panel, 27 

but not in the top two. In the caption: “Dotted and dashed lines show modeled and observed 28 

six-year means, respectively.” 29 

Done. 30 
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Figure 5: What do the different colors for the circles indicate? The legend only shows the 1 

purple color. 2 

The colours indicated the model sensor and were redundant (because the x-axis indicates the 3 

sensor as well). We have changed the colour of all of the circles to a single colour to avoid 4 

confusion.5 
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 8 

Abstract 9 

We examine the utility of tree ring 14C archives for detecting long term changes in fossil CO2 10 

emissions from a point source. Trees assimilate carbon from the atmosphere during 11 

photosynthesis, in the process faithfully recording the average atmospheric 
14

C content in 12 

each new annual tree ring.  Using 14C as a proxy for fossil CO2, we examine interannual 13 

variability over six years of fossil CO2 observations between 2004-05 and 2011-12 from two 14 

trees growing near the Kapuni Natural Gas Plant in rural Taranaki, New Zealand. We quantify 15 

the amount of variability that can be attributed to transport and meteorology by simulating 16 

constant point source fossil CO2 emissions over the observation period with the atmospheric 17 

transport model WindTrax. We compare model simulation results to observations and 18 

calculate the amount of change in emissions that we can detect with new observations over 19 

annual or multi-year time periods given both measurement uncertainty of 1ppm and the 20 

modelled variation in transport. In particular, we ask, what is the minimum amount of change 21 

in emissions that we can detect using this method, given a reference period of six years? We 22 

find that changes of 42% or more could be detected in a new sample from one year at the 23 

same observation location, or 22% in the case of four years of new samples. This threshold 24 

lowers is reduced and the method becomes more practical the more the size of the signal 25 

increases. For point sources 10 times larger than the Kapuni plant (a more typical size for 26 

power plants worldwide), it would be possible to detect sustained emissions changes on the 27 

order of 10% given suitable meteorology and observations. 28 
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1 Introduction 1 

Carbon dioxide (CO2) emitted by anthropogenic activity is the largest single contributor to the 2 

radiative forcing causing climate change (IPCC, 2014). It thus plays a crucial role in any 3 

attempt to prevent or mitigate further warming. Large point sources (mainly from electricity 4 

generation and industry) contribute around a third of the total fossil-fuel derived CO2 (CO2ff) 5 

emissions (IPCC, 2014) and in many places are included in government regulatory schemes 6 

that aim to reduce emissions (e.g. European Union ETS, South Korea, Switzerland, and others 7 

at the city/state level; Serre et al., 2015).  Emissions are typically reported on an annual basis, 8 

and commonly agreed-upon reduction targets are commonly agreed as annual or multi-year 9 

caps, often requiring changes in emissions relative to a baseline year (e.g. the Kyoto Protocol 10 

and the new Intended Nationally Determined Contributions (INDC), UNFCCC, 2015).  11 

Emissions are currently known from “bottom up” techniques such as self-reported data from 12 

fuel usage statistics (Boden et al., 2015) and/or continuous stack monitoring (U.S. 13 

Environmental Protection Agency, 2005; eGRID, 2014) and are subject to significant 14 

uncertainties (Ackerman and Sundquist, 2008; Gurney et al., 2009, 2012). This uncertainty 15 

might include not only methodological biases and possible deliberate underreporting but also 16 

simple error in compiling statistics. The integrity of regulation schemes and their 17 

effectiveness at limiting future climate change will require independent methods of evaluating 18 

reported emissions and improvement in the accuracy of emissions inventories (Tans and 19 

Wallace, 1999; Nisbet and Weiss, 2010; National Research Council, 2010; Gurney, 2013).   20 

“Top-down” atmospheric observations can provide an independent method for evaluating 21 

emissions. This involves taking observations of atmospheric gas mole fractions in 22 

combination with atmospheric transport modelling to infer the magnitude of emissions from a 23 

source or region over a particular time period (e.g. McKain et al., 2012; Lindenmaier et al., 24 

2014; Brioude et al., 2013). It can be quite challenging to quantify absolute values of 25 

emissions and CO2 fluxes in general because of the large errors and biases typically 26 

encountered in transport models (e.g. Stephens et al., 2007; Lin and Gerbig, 2005; Gerbig et 27 

al., 2008; Prather et al., 2008; Geels et al., 2007; Liu et al., 2011; Kretschmer et al., 2012). 28 

However, relative changes in emissions are usually easier to determine, since any consistent 29 

biases in the model will cancel out. By establishing a baseline measurement over a reference 30 

period, we can compare future observations to this reference and calculate relative changes 31 
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that occur. In this manner, we can potentially verify relative emission reduction targets 1 

without requiring precise knowledge of the absolute levels of emissions.   2 

One of the biggest challenges of atmospheric observations of CO2ff is distinguishing the 3 

fossil component from the considerable background level of CO2 that occurs naturally in the 4 

atmosphere, currently about 400 parts per million (ppm; Mauna Loa observation record, 5 

http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html, last access: 13 May 2015). In addition, 6 

there are large diurnally and seasonally varying CO2 fluxes from the biosphere, which may 7 

result in changes in CO2 mole fraction of tens of ppm within a single day at near-surface sites 8 

(e.g. Miles et al., 2012). This problem can be avoided by using the 14C isotopic content as a 9 

tracer for CO2ff. CO2ff contains no 14C: the half-life of 14C is 5,730 years (Karlen et al., 10 

1968), and all of the 14C has decayed away from fossil fuels. Other sources of CO2 have 11 

roughly the same 14C content as the atmosphere. By measuring the 14C content of CO2 or a 12 

proxy for CO2, we can calculate the portion of observed CO2 that comes from recently added 13 

fossil fuel emissions (Levin et al., 2003; Meijer et al., 1996; Turnbull et al., 2006). 14 

Plant material can be used as a proxy for atmospheric CO2ff because plants assimilate carbon 15 

from the atmosphere during photosynthesis, in the process faithfully recording the 
14

C content 16 

in new plant material. The radiocarbon content in tree rings has been well established as a 17 

tracer for fossil CO2 emissions (Suess, 1955; Tans et al., 1979; Djuricin et al., 2012; 18 

Rakowski et al., 2013) and as a method to detect leaks from CO2 geosequestration (Donders 19 

et al., 2013). Tree rings represent an integrated average of daytime CO2 atmospheric mole 20 

fractions and 14C content over the tree’s annual growth period, and can be independently 21 

dated using dendrochronology methods. This allows for a retroactive analysis of CO2ff mole 22 

fractions over many years, including any trends in emissions that occurred during the life of 23 

the tree. The radiocarbon content in tree rings has been well established as a tracer for fossil 24 

CO2 emissions (Suess, 1955; Tans et al., 1979; Djuricin et al., 2012; Rakowski et al., 2013) 25 

and as a method to detect leaks from CO2 geosequestration (Donders et al., 2013). 26 

In this study, we evaluate whether we can detect changes in CO2ff emission rates from a point 27 

source on an annual time scale using the CO2ff mole fraction derived from the 14C content of 28 

tree ring archives. Variations in the observed CO2ff mole fraction at a given location are 29 

dependent on not only the emission rate but also on atmospheric transport, which in turn is 30 

subject to naturally varying meteorological conditions (e.g. wind speed and direction, 31 

temperature, pressure, etc.). Detecting a change in the emission rate requires disentangling 32 
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this change from the natural variability in transport and meteorology as well as from 1 

measurement uncertainty in the observations. The question we ask in this paper is: can we use 2 

tree ring archives to detect changes in CO2ff emissions from a point source, and if so, what is 3 

the minimum change in annual emissions that we can detect given the typical measurement 4 

uncertainty of 1ppm and natural variability in transport? A similar analysis was carried out by 5 

Levin and Rodenbeck (2007) at the regional scale, using a 20-year time series of 14C 6 

observations over Germany. McKain et al. (2012) also assessed the ability of an observation-7 

model framework to detect changes in regional urban CO2 emissions on a monthly time scale. 8 

We re-examine this question on the scale of an individual point source with mean annual 9 

observations.  10 

We calculate interannual variability in observations from tree ring archives of annual 11 

(growing season) CO2ff between 2004-05 and 2011-121, taken from two different trees 12 

growing south of the Kapuni Natural Gas Treatment Plant in rural New Zealand (Norris, 13 

2015). We then use an atmospheric transport model, WindTrax, with local meteorological 14 

data to quantify the interannual variability that can be expected due to measurement 15 

uncertainty, transport and meteorology at different distances and orientations from the source, 16 

including the locations of the trees. Finally, we look at what this implies for detection limits in 17 

the context of emissions monitoring or verification and practical considerations in the 18 

presence of multiple sources of uncertainty. 19 

 20 

2 Methods 21 

2.1 Site 22 

The site of our study is the Kapuni Natural Gas Treatment Plant in rural Taranaki, New 23 

Zealand (39.477° S, 174.1725° E, 170 m.a.s.l.) (Fig. 1). This site was chosen because it is 24 

located in flat terrain and is relatively isolated from other sources of CO2ff, considerably 25 

simplifying measurement and analysis. The gas treatment plant, owned and operated by 26 

Vector, processes natural gas extracted from natural gas wells in the Taranaki Basin. The gas 27 

contains around 40% CO2, which is removed during processing and vented to the atmosphere 28 

at a rate of ~0.1 TgC yr-1 (NZMED, 2010). In addition, there is an ammonia urea 29 

                                                 

1
 Henceforth in this paper, the growing season spanning 1 September to 30 April will be referred to by the year 

in which the season began, i.e. 2004-05 will be designated 2004. 
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manufacturing plant 500m to the west of the gas plant (Fig. 1a), operated by Ballance Agri-1 

Nutrients, which also releases CO2ff to the atmosphere during the manufacturing process. 2 

This site emits roughly a third of the amount of the Vector gas plant (~0.03 TgC yr-1) 3 

(Taranaki Regional Council, 2013). Although the signal from the Vector plant is much 4 

stronger, especially to the east (downwind from the dominant westerly winds), emissions 5 

from the Ballance plant are potentially large enough to detect at some locations and are 6 

included in our simulations unless otherwise specified. 7 

The surrounding terrain is flat and mostly free of obstructions, with elevation varying no more 8 

than 10m within 2km of the plant.  The largest nearby topographic feature is a dip of ~5m into 9 

the Kapuni stream immediately east of the Vector emission source. The landscape is 10 

dominated by highly productive pasture grazed by dairy cows, with large and diurnally 11 

varying CO2 fluxes. The prevailing wind direction is from the west, with a smaller proportion 12 

from the southeast and north (Figs. 2 and 3). 13 

2.2 CO2 emissions 14 

Emissions data were supplied by Vector as monthly totals (Peter Stephenson, personal 15 

communication), which we have converted to average daily rates for the purpose of 16 

modelling. Mean annual daily emissions for each year between 2004 and 2011 from 1 17 

September to 30 April are shown in Fig. 4; data are listed in Table S1. The long-term mean is 18 

5341 gC s-1, with a standard deviation in annual means of 388 (7.3%). There are annual 19 

fluctuations but no long-term trend over the modelled period 2004-2011. The largest change 20 

during a single year occurred in 20082007, when the emissions dropped by 14% relative to 21 

the mean. On a longer time scale, there are more significant changes, including the start of 22 

operations at the Vector Plant in 1971. However, we focus on the 2004-2011 period during 23 

which high resolution local meteorological data is available. There are no significant seasonal 24 

or diurnal variations in the emissions of which we are aware.  25 

The Ballance Agri-Nutrients Plant emissions are reported on an annual basis (Taranaki 26 

Regional Council, 2013). Average daily rates in each growing season are depicted in Fig. 4. 27 

The mean daily rate of emissions over the period 2004-2011 is 1512 gC s-1 with a standard 28 

deviation in annual means of 88 (18%), which is more variable than the emissions from the 29 

Vector plant, but smaller in absolute terms. Emissions vary somewhat from day to day 30 

according to production levels, but more detailed daily or monthly information is unavailable; 31 
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for simplicity we assume a constant emissions rate in each year. We note that emissions are 1 

much lower in 2011, which is due to downtime after both a fire and scheduled maintenance 2 

(Taranaki Regional Council, 2013). 3 

2.3 Tree ring observations 4 

Tree rings faithfully record the 14C content of assimilated CO2, so when the rings are 5 

independently dated by dendrochronology, we can determine an average 14C content and 6 

recently added CO2ff in the local atmosphere for the period during which the tree ring was 7 

laid down.  We use core samples from two individual trees located south of the plant, a one 8 

pine tree (Pinus radiata) and a one chestnut tree (Castanea sativa) (Fig. 1a; Norris, 2015). 9 

The pine tree is located in a stand of trees within 5m of the Kapuni stream, with the crown 10 

reaching 10m above the associated terrain dip.  The chestnut is isolated in a flat paddock. 11 

Each tree ring is assumed to represent the Southern Hemisphere summer growth period from 12 

1 September to 30 April, as this is when the majority of plant photosynthesis occurs and new 13 

plant material is produced. The sample preparation, measurement and determination of CO2ff 14 

are described in detail by Norris (2015).  In summary, wood was sampled from the trees using 15 

a Haglöff incremental borer. Four cores were extracted per tree at equidistant points at a 16 

height of approximately 1.2m from the base of the tree. One core from each tree was used to 17 

create a historic record of CO2 emissions from commission of the Kapuni plant in 1971 to the 18 

outermost ring at the time of sampling in 2012. Replicates were taken from a second core to 19 

validate ring counting and 14C results. alpha Alpha cellulose was extracted from individual 20 

rings using a method modified from Hua et al. (2000), combusted with a Europa ANCA 21 

elemental analyser (EA), reduced to graphite and measured by accelerator mass spectrometry 22 

at GNS Science laboratories in Lower Hutt, New Zealand (Baisden et al., 2013; Zondervan et 23 

al., 2015; Turnbull et al., 2015).   24 

CO2ff was determined following Turnbull et al. (2014) from the isotopic difference between 25 

the measured tree ring and clean air background CO2 measured at Baring Head, Wellington 26 

(41.4167°S, 174.8667°E; Currie et al., 2011; extended dataset to 2015 will be presented in an 27 

upcoming publicationwith unpublished data). Baring Head, located at the southern end of 28 

New Zealand’s North Island and approximately 300 km south of Kapuni, was chosen as the 29 

background for this study over more local sites because it provides a long-term record of 30 

background CO2 and 14C, dating back to the early 1970s. The following equation was used:  31 
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where Cff is CO2ff, Cobs is the CO2 mole fraction in the observed sample, ∆obs and ∆bg are the 2 

∆
14C of the observed sample and background sample, respectively.  ∆ff is the ∆14C of CO2ff, 3 

and is assigned to be -1000‰. ∆bg is from the summer season average from the long-term 4 

Wellington 14CO2 record at Baring Head.  Comparison of this record with tree rings collected 5 

3 km upwind of our source showed no difference from the Wellington record. β is a small 6 

correction to account for the fact that the ∆14C of CO2 from other sources may be slightly 7 

different from that of the atmosphere; in our case we set β to zero since the proximity to the 8 

coast and consistent winds suggest that CO2other is negligible in this location (Turnbull et al., 9 

2014). Baring Head, located at the southern end of New Zealand’s North Island and 10 

approximately 220 km southeast of Kapuni, was chosen as the background for this study over 11 

more local sites because it provides a long-term record of background CO2 and 
14

C, dating 12 

back to the early 1970s. Background levels in tree rings measured at a site in Kapuni 2km 13 

upwind of the Vector plant are close to those measured at Baring Head in the same time 14 

period, justifying the use of the Baring Head dataset (Norris, 2015). Uncertainty in CO2ff is 15 

dominated by ∆14C measurement uncertainty in both background and the observed sample 16 

and is typically ~1ppm for this dataset.  17 

The process of CO2 adsorption in plants is extremely complex. For simplicity, we assume a 18 

constant assimilation rate over all daylight hours. In reality, CO2 adsorption varies with plant 19 

species and photosynthesis rates, being weighted towards sunny periods and midday 20 

(Bozhinova et al., 2013). There are also many different climatic and nutrient limitations that 21 

can only be properly accounted for with a full process-based biogeochemical model of plant 22 

growth, which is beyond the scope of this study. We do, however, take into consideration the 23 

fact that plant material will tend to underestimate mean CO2ff when CO2ff is variable, as in 24 

the case of a plume from a point source (see Sect. 2.7). 25 

2.4 WindTrax model 26 

WindTrax (WindTrax 2.0; Thunder Beach Scientific, Nanaimo, Canada, 27 

www.thunderbeachscientific.com) is a Lagrangian particle dispersion model used to estimate 28 

unknown trace gas concentrations or emission rates from a source over short distances 29 

(~1km). WindTrax has been applied to agricultural emissions from area sources, such as 30 
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methane, ammonia, and other gasses from grazing dairy cows, cattle feedlots and farm waste 1 

(e.g. Flesch et al., 2005; Laubach and Kelliher, 2005; Bonifacio et al., 2013; Rhoades et al., 2 

2010; Wilson et al., 2012; McBain and Desjardins, 2005). It has also been assessed in the 3 

context of CO2 sequestration leakage detection (Leuning et al., 2008; Loh et al., 2009). 4 

Modelling integrated averages of CO2ff in plant material is a relatively new application. 5 

WindTrax was chosen for this study because it is easy to use and the distance scale is 6 

appropriate for our site. We previously used WindTrax to estimate CO2ff in grass samples at 7 

the Kapuni site (Turnbull et al., 2014), demonstrating that the model is capable of providing 8 

reasonable estimates of observed CO2ff. Here, we take the same approach to model CO2ff 9 

measured in tree rings. We note that WindTrax is not applicable to complex terrain or larger 10 

distance scales and caution is urged when applying our methodology to other sites.  11 

WindTrax simulates the transport of trace gases by releasing a set number of particles at each 12 

time step and following each particle’s trajectory downwind. Based on Monin–Obukhov 13 

similarity theory (MOST), the physics underlying the model is described in detail in Flesch et 14 

al. (2004) and Wilson and Sawford (1996). The model equations are valid in the atmospheric 15 

surface layer. It assumes wind and other meteorological observations are averaged over a 16 

suitable time interval representing a stable, mean atmospheric state (model relationships are 17 

built from wind statistics over 15-60 minute intervals; 10-30 minute intervals are 18 

recommendedusing model time steps greatly outside of this range is not recommended). 19 

Intervals longer than one hour have been shown tocan be problematic (Flesch et al., 2004) 20 

because at these time intervals, large-scale fluctuations not built in to the modeldescribed by 21 

MOST statistics become important. In this study, we use one- hour time steps to match the 22 

resolution of our meteorological dataset (see Sect. 2.5). 23 

The model can be run in forward (fLS) or inverse/backward (bLS) mode, depending on 24 

whether the emissions or the trace gas mole fractions are unknown. In all simulations 25 

described here we start with known emission rates and use the fLS mode to estimate the 26 

CO2ff mole fraction at locations surrounding the plant. Model “concentration sensors” 27 

represent simulated measurements of mole fractions at designated locations and supply the 28 

main model output. 29 

The model is stochastic, meaning that it introduces random turbulence into particle 30 

trajectories, and no two runs are identical, even with the same parameters and meteorological 31 

input. There is, therefore, inherent error in the model predictions due to the randomness 32 
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introduced in the transport process. Only the average behaviour of a group of particles can be 1 

determined, and releasing more particles at each time step will tend to reduce the degree of 2 

uncertainty. Statistical error (or the standard deviation within each set of trajectories) is 3 

calculated and output by the model at each time step. However, any biases in the modelled 4 

transport or the meteorological input data used to drive the model are not accounted for. 5 

2.5 Meteorology 6 

Modelling with WindTrax requires at a minimum wind speed, wind direction, air temperature, 7 

and atmospheric pressure at each time step. We use hourly meteorological data from the 8 

Hawera Automatic Weather Station (AWS) (39.6117°S, 174.2917°E, 98 m.a.s.l), downloaded 9 

from the New Zealand National Climate Database (CliFlo, 2014). Hawera, approximately 10 

20km distance to the southwest of Kapuni, is the nearest location with a nearly complete long-11 

term dataset of hourly wind direction and speed. Eight years of data (2004-2011) were 12 

available at the time of our study. We use only data from the growing season (1 September – 13 

30 April) and daylight hours (08:00 – 18:00 local daylight savings time) in the model 14 

simulations to correspond to the time period during which trees assimilate CO2. A wind rose 15 

for all eight growing seasons is shown in Fig. 2a. 16 

The area to the northwest of Hawera and Kapuni is dominated by Mount Taranaki, a 2518m 17 

volcanic cone that rises steeply from relatively flat surrounding terrain. Wind direction and 18 

speed can be very different at sites only a few kilometres apart because of the local impact of 19 

the mountain on atmospheric flow. Thus we compared Hawera and Kapuni meteorological 20 

datasets to ensure that Hawera is representative of Kapuni over long (~1 year) time periods 21 

and the wind speed and direction distributions as a whole are similar at both locations.. A 22 

wind rose for the eight years (2004-2011) of data at Hawera is shown in Fig. 2, together with 23 

a wind rose for one year (2013) of data at Kapuni. Daily mean wind speeds were compared 24 

using the Virtual Climate Station Network (VCSN; Tait et al., 2006). This is a set of “virtual” 25 

weather stations that uses re-analysis interpolation techniques to provide historical daily 26 

weather variables on a 5 x 5 km grid across New Zealand. The mean wind speed at Hawera 27 

over the modelled time period, 5.0 m s-1, is only slightly higher than that at Kapuni, 4.6 m s-1. 28 

Histograms comparing the wind speed distributions at both sites are in Fig. S1. Wind speeds 29 

are on average higher at Hawera, but the distribution in direction is very similar, with a small 30 

overrepresentation of northerlies at Hawera. The wind speed and direction distributions at 31 

both locations are shown in more detail in Fig. S1.  32 
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We demonstrate correlation between the two sites using the onlyOnly one overlapping dataset 1 

with sub-daily time intervals that was available for direct comparison at the time of the our 2 

study. We collected data at a temporary meteorological station situated in a paddock at 3 

Kapuni at 10-minute intervals during the period 14 August – 26 October 2012, with some 4 

significant data gaps (Turnbull et al., 2014). These were averaged to hourly intervals and 5 

compared with the corresponding set of measurements at the Hawera AWS. Only daylight 6 

hours were included for consistency with the model simulations. Wind roses for the Kapuni 7 

dataset and the corresponding time period at Hawera are shown in Figs. 2b and 2c. The 8 

distribution in direction is similar to the north, but there are more southerlies and fewer 9 

westerlies at Hawera. Using these datasets, correlation in wind speed is good, with R2 = 0.82, 10 

and correlation in wind direction is moderate (R2 = 0.61). Because wind direction is an 11 

angular measurement, correlation in wind direction was performed using the circular package 12 

v0.4-7 in R v3.0.2 (Lund and Agostinelli, 2013; R Core Team, 2013) rather than the standard 13 

linear correlation function. Scatter plots comparing wind speed and direction at Kapuni and 14 

Hawera directly at each time step are in Fig. S2. Wind speed is a good match, with Hawera on 15 

average having slightly higher speeds than Kapuni.  When wind speed at Hawera is linearly 16 

regressed against wind speed at Kapuni, the resulting equation is y = 0.90x – 0.32. (Model II 17 

regression was performed with the lmodel2 v1.7-2 package in R v3.0.2 (Legendre, 2014)). 18 

With wind direction, most points are close to the 1:1 line or slightly below, indicating a small 19 

rotation in direction between the sites. Approximately 67% of data points (one sigma) are 20 

within 30° of each other, and 85% are within 45°. For the purpose of our simulation in which 21 

we focus on integrated averages rather than particular points in time, the Hawera dataset is 22 

sufficiently representative of typical conditions at Kapuni. We note, however, that the dataset 23 

from Kapuni spans a very limited time period, and this is a potential source of error in our 24 

results. 25 

We expect variability in CO2ff mole fraction to be strongly related to variability in wind 26 

speed and direction, and consequently sampling location. Annual mean wind speed does not 27 

vary by much; the mean hourly wind speed over all eight years is 6.3 m s-1, and the standard 28 

deviation in annual mean is 0.11 m s-1, which is only 2% of the mean. Mean wind direction is 29 

273° (from the west), but there is also a significant amount of wind from the southeast and 30 

north-northeast (Figs. 2 and 3). This general pattern did not change from year to year over the 31 

eight years of the simulation, but relative proportions in each direction did sometimes vary 32 

considerably (Fig. 3). In particular, northerlies (the direction most relevant to our 33 
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observations) range from 21-28% of the total, a 30% change in the northerly fraction. While 1 

always the largest category, the percentage of westerlies varies between 38-52%. It is notable 2 

that there are very few periods with calm winds; the region is in general very windy. 3 

2.6 Model parameters 4 

Several model parameters are held constant throughout all simulations. The modelled surface 5 

is short grass (surface roughness zo = 2.3cm), since the majority of the surrounding area is 6 

grazed dairy pasture. The heights of the two emissions stacks are set to their known values: 7 

35m above ground level for Vector and 36m for Ballance. The model’s atmospheric stability 8 

parameter is also held constant using the general class of ‘moderately unstable’. While this is 9 

not true for all modelled time periods, in the absence of measurements from a 3D sonic 10 

anemometer or other reliable indicators of atmospheric stability, a general stability class is a 11 

first approximation. We tested the model at a different constant stability class (‘slightly 12 

unstable’) and found no significant difference in the amount of variability (results not shown). 13 

We note, however, that atmospheric stability is a potential source of error; others have found 14 

that stability is an important parameter that can bias results, and model estimates are generally 15 

improved with input from a sonic anemometer or vertical profiles of wind speed and 16 

temperature (Flesch et al., 2004; Gao et al., 2009; Koehn et al., 2013). 17 

Model concentration sensors at the locations of the pine and chestnut trees are placed at 18 

heights of 15.0m and 5.0m, respectively, reflecting the approximate height of the canopy. A 19 

single height at each tree was chosen to reduce model complexity and runtime; however, we 20 

recognize that in reality CO2 is assimilated over a range of heights at each tree, corresponding 21 

to the vertical spread of the canopy. Some previous studies have indicated that concentrations 22 

modelled with WindTrax are sensitive to sampling height and/or the ratio of sampling height 23 

to distance from the source (e.g. McBain and Desjardins, 2005; Laubach and Kelliher, 2005; 24 

Laubach, 2010). To test for dependence on height, we simulated CO2ff along a 20m vertical 25 

profile at the location of the pine and chestnut trees (results not shown). Results vary 26 

somewhat according to height, and averaging over a 5m height range slightly reduces the 27 

mean and interannual standard deviation, but not enough to change our results significantly.  28 
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2.7 Simulations 1 

We ran a “constant emissions, variable meteorology” simulation at an hourly time step with 2 

all eight years of available meteorological data from Hawera (excluding night time and winter 3 

months), concentration sensors placed at the locations of the trees, and both the Vector and 4 

Ballance plants as CO2ff point sources (Fig. 1). Because emissions are held constant, this 5 

simulation enables us to isolate contributions to variability from meteorology and transport. 6 

For each tree, four concentration sensors were placed on the vertices of a square, with sides of 7 

length 30m, centred on the location of the trees and averaged to reduce model transport error. 8 

The emission rate at each source was the reported mean rate over the entire modelled period.  9 

In addition to the model sensors at the locations of the trees, we placed sensors at hypothetical 10 

locations in four directions and two horizontal distances from the emissions source to 11 

examine more general model sensitivity and variability due to meteorological conditions at 12 

our site without being tied to the locations of specific observations. Eight additional sensors 13 

were placed 1.5m above the ground in the four cardinal directions relative to the Vector plant, 14 

one each at 300m and 600m horizontal distance from the source. Only one point source, the 15 

Vector plant, was included in the results at these sensors to simplify analysis. Emissions are 16 

constant at the Vector mean rate over the eight years.   17 

We also ran a “constant meteorology, variable emissions” simulation in which we repeat the 18 

meteorology from one year (2004) and allow emissions rates to vary according to the reported 19 

values. This allows us to examine model annual variability due to emissions, independent of 20 

transport. 21 

We subsequently generated a “variable emissions, variable meteorology” simulation by 22 

scaling modelled mole fractions at the tree rings from the constant emissions, variable 23 

meteorology simulation according to reported emissions levels in each year (Fig. 4). This is 24 

valid because the relationship between source strength and concentration flux passing through 25 

a location downwind is linear (Leuning et al., 2008). In addition, under unstable atmospheric 26 

conditions the emissions leave the model domain within one hour and do not return, so data in 27 

a given year is not affected by the emissions from previous years. This simulation is used to 28 

compare the model to observations. 29 

Because plant material will underestimate mean CO2ff when CO2ff is variable, rather than 30 

comparing the tree ring measurements to the raw model output of CO2 mole fractions, we 31 

calculate a modelled “CO2fftree”. This is the CO2ff that the model would predict from the plant 32 
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material given measured background levels and the equations governing ∆14C. We use the 1 

following equations: 2 
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where ∆ = ∆14C, Cff i is the modelled CO2ff at the ith time step, N is the total number of model 9 

time time steps, Cbg and ∆bg are measured (Norris, 2015), and ∆ff = -1000. The basic 10 

derivation of this equation can be found in Turnbull et al. (2006). This accounts for the fact 11 

that plant material will assimilate roughly the same amount of CO2 at each time step 12 

regardless of the variability in atmospheric CO2 mole fraction induced by the emission plume, 13 

and thus the ∆14C of the plant material represents a simple mean of the ∆14C in the assimilated 14 

CO2 at each time step.  In contrast, sampling of whole air across the same time period would 15 

collect more CO2 during times of high CO2 mole fraction, weighting the resultant ∆14C 16 

towards these periods.  This results in a CO2fftree that is lower than would be obtained by 17 

determining the simple mean CO2ff from the modelled mole fractions. Model results from the 18 

variable emissions simulation reported in Fig. 4 and Sect. 3 were derived using these 19 

equations. 20 

 21 

3 Results and Discussion 22 

3.1 Observation and model comparison 23 

We first compare modelled CO2fftree to the observed tree ring CO2ff to evaluate the model’s 24 

ability to estimate annual integrated averages in this context and to identify possible biases 25 

and error in the model. Our observations from tree rings consist of six annual measurements 26 

of CO2ff from both the pine tree and the chestnut tree between 2004 and 2011 (2008 and 2010 27 
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are missing) (Fig. 4). The means over this period are 5.4ppm (pine) and 2.1ppm (chestnut) 1 

(Table 1). Mean modelled CO2fftree over the same six years (excluding the two years without 2 

observations, 2008 and 2010) is 6.1ppm and 2.2ppm for the pine and chestnut tree, 3 

respectively. The modelled mean is almost an exact match for the chestnut tree (difference of 4 

0.1ppm) and within error for the pine tree (difference of 0.7ppm). Figure 4 shows a direct 5 

comparison between measured and modelled CO2ff for each year. At the pine tree, model 6 

performance is very good: four of the six (66%) annual observed values are within one sigma 7 

of the modelled values, and the remaining two are within two sigma. The agreement for 8 

individual years at the chestnut tree is poorer, but with large errors in the observations and the 9 

distance from the source close to the limit of model capabilities, this is expected.  10 

The model is able to simulate both the long-term mean and the annual variation in CO2fftree 11 

with a reasonable degree of accuracy, and there are no significant biases apparent. Thus we 12 

can be confident that the model is representative of relative interannual variability in 13 

transport, which is the focus for the remainder of this paper. 14 

3.2 Drivers of interannual variability in CO2ff 15 

Detecting changes in emissions requires disentangling the changes in CO2ff due to emissions 16 

from other sources of interannual variability. We now examine the variability in our 17 

observations and turn to our model simulations to determine the relative contributions from 18 

emissions, transport, and measurement uncertainty. 19 

The observed standard deviations of the six annual CO2ff values from the tree rings are 20 

0.8ppm (14% of the six-year mean) and 1.1ppm (51%) for the pine and chestnut tree, 21 

respectively (Table 1). This includes not only variability in emissions but other sources of 22 

uncertainty such as meteorology and transport, variable 14C assimilation rates in the trees, 23 

precision of measurements, and background corrections. Measurement uncertainty in 24 

particular is important at these relatively small concentrations. Given that the standard 25 

deviations are very close to the typical measurement uncertainty of ~1ppm, the scatter in 26 

annual means can be attributed in large part to this factor alone. For example, at the pine tree, 27 

we would expect at least four out of six measurements to be within 1ppm (one sigma) of the 28 

long-term mean, all other factors being constant. This is indeed true of four of the six 29 

observations. Measurement uncertainty is proportionally much higher in the case of the 30 

chestnut tree, which is ~1km from the Vector plant and where the average signal is only 31 
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~2ppm. At this distance measurement uncertainty would seemingly dominate other sources of 1 

variability. In contrast, the pine tree is much closer to the source (~400m), and the signal is 2 

two to three times larger. Variations in emissions will make up a larger proportion of the total 3 

variation and are more likely to be detectable at current measurement precision.  4 

The standard deviations of modelled CO2fftree in the variable emissions, variable meteorology 5 

simulation are 0.5ppm (7.8%) and 0.3ppm (15%) at the pine and chestnut tree, respectively 6 

(Table 1). Adding measurement uncertainty of 1ppm in quadrature, we would predict the 7 

standard deviations of the annual means in observed CO2ff to be 1.1ppm (18%) and 1.0ppm 8 

(47%) for the pine and chestnut, respectively, if variability in emissions, atmospheric 9 

transport and measurement uncertainty explain all of the interannual variability. In 10 

comparison, the observed standard deviations of the annual means are 14% of the long-term 11 

mean at the pine tree and 51% at the chestnut tree. Thus emissions, transport, and 12 

measurement uncertainty are able to explain the interannual variability in the observations 13 

within error.  14 

We can estimate the relative proportion of interannual variability that is due to atmospheric 15 

transport using the constant emissions model simulation, in which the only source of 16 

variability is meteorology. The modelled mean CO2ff over the six years with observations is 17 

7.4ppm and 2.7ppm for the pine and chestnut, respectively, and modelled standard deviations 18 

are both 0.5ppm (6.6% and 19% of the respective means) (Table 1). Over the full eight years 19 

of the model simulation, the means and standard deviations are 7.7 / 0.9 ppm (12%) and 2.7 / 20 

0.5 ppm (19%), respectively.  21 

Examining more general patterns of meteorological and transport variability at the Kapuni site 22 

apart from the locations of the trees reveals that the variation is highly dependent on the 23 

direction of the observation location relative to the source. The results at the eight 24 

hypothetical sensors averaged in each individual year and means for the entire eight years of 25 

simulation are compared in Fig. 5, and the long-term means and standard deviations are given 26 

in Table 2. The variation to the south of the plant (10-11% of the mean) is the lowest of any 27 

direction and consistent with the variation found at the pine tree in the constant emissions 28 

simulation over the full eight years (12%). Absolute CO2ff mole fractions are highest in the 29 

east (westerlies being dominant), but standard deviations are slightly higher at 14% of the 30 

mean. Concentrations in the west are low (~2ppm) and highly variable, the result of the low 31 
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percentage of easterlies in any given year (Fig. 3). Variation is relatively insensitive to the 1 

distance from the source. 2 

It is apparent that wind direction drives a large part of the variation in transport. Annual 3 

modelled CO2ff at the trees in the constant emissions simulation is correlated with the annual 4 

percentage of wind in the direction +/- 30° of the direct line between the source and the tree, 5 

corresponding to the plume trajectories that are most likely to pass through the tree locations 6 

(Fig. S3; R2 = 0.56 and 0.72 for the pine and chestnut tree, respectively). The same correlation 7 

between wind direction and modelled CO2ff at all eight hypothetical sensors combined gives 8 

an R2 of 0.58. Over half of the transport variability is thus explained solely by variation in the 9 

percentage of wind in each direction. However, other meteorological variables and model 10 

parameters (e.g. wind speed, temperature, pressure, etc.) still play a non-negligible role, as the 11 

annual variation in wind direction is not equivalent to the interannual variability in modelled 12 

CO2ff. 13 

In the same manner, we can determine the contribution of changes in emission rates to the 14 

overall interannual variability with the constant meteorology simulation in which emissions 15 

vary but transport is the same in each year. This results in interannual variability in CO2ff 16 

similar to the variability in the emissions themselves, with the magnitude roughly scaled to 17 

the distance from the emission source: the standard deviations are 0.5ppm (7.4%) and 0.2ppm 18 

(7.6%) for the pine and chestnut tree, respectively. In comparison, the standard deviation of 19 

the average daily emissions rate over the six years with observations is 7.9% of the mean for 20 

the Vector plant and 21% for the Ballance plant, with a standard deviation of 8.1% for the 21 

combined total (over the full eight years between 2004 and 2011, the standard deviations are 22 

7.3% and 18% of the 8-year mean for Vector and Ballance emissions, respectively, and the 23 

variation in the combined emissions is 7.7%). This is on the same order of magnitude of the 24 

variability due to transport at the pine tree but only about half the amount at the chestnut tree. 25 

Looking at all of the factors together (Table 1), variations in emissions and transport 26 

contribute about equally to total variation at the pine tree. At the chestnut tree, transport 27 

makes up a larger proportion of the total, which likely reflects the greater variability in 28 

meteorology in that particular direction. The variability in emissions somewhat counter-29 

balances the variability in transport, particularly at the chestnut tree, where the standard 30 

deviation with both variable emissions and meteorology (0.3ppm / 15%) is lower than that 31 

with constant emissions (0.5ppm / 19%). This is most likely coincidental to the particular 32 
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years of observations, as there is no correlation between variations in emissions and variations 1 

in transport (not shown).  Meteorological variation happens to be lowest in the south, where 2 

the trees are located, even though the largest signal occurs to the east (Table 2 and Fig. 5). In 3 

this respect, the trees are fortuitously located for our study. This underscores the benefit of 4 

analysing transport variability at a particular location before collecting observations, as the 5 

quality of results can be greatly influenced by meteorological patterns. 6 

3.3 Detection limits 7 

Given the amount of interannual variation in meteorology and transport that we can infer from 8 

the model and typical measurement uncertainty of 1ppm, what is the minimum change in 9 

emissions that it is possible to detect in a tree ring sample taken at Kapuni, representing an 10 

integrated average of CO2ff over a year or more? We use a student t-test to quantify the 11 

minimum amount of change in observations required (relative to the long-term average or 12 

reference period) that would allow us to conclude that there has been a change in emissions. 13 

The t-test calculates the minimum difference between the long-term mean and a new annual 14 

tree ring sample (or samples) that would be statistically significant above scatter or noise from 15 

other factors. We make the assumption that our observations and simulated mole fractions are 16 

normally distributed. The results of the 2-sided test (representing change in either direction) at 17 

a 95% confidence level are given in Table 3 for “future” samples representing one, two and 18 

four years of integrated average CO2ff. All percentages are relative to the long-term mean 19 

over six years, our reference period for this study. We assume that the standard deviation in 20 

future samples due to interannual variability in meteorology is the same as the standard 21 

deviation over the reference period.  22 

Using the modelled means and standard deviations from the constant emissions simulation of 23 

tree ring CO2ff and measurement uncertainty of 1.0ppm, the detection limits represent the 24 

minimum observed change that would indicate a driver of variability other than transport or 25 

measurement uncertainty, in this case CO2ff emissions. With a new observation representing 26 

one year (i.e. one tree ring), the difference between the long-term mean and the new sample 27 

would need to be more than 42% at the pine tree and 115% at the chestnut tree to have high 28 

confidence that the sample shows a change in emissions, rather than just natural variability or 29 

uncertainty. If we have four new annual observations at the new emission rate, the difference 30 

reduces by half to 22% and 62%, respectively. These detection thresholds are well above the 31 

reported annual changes in emission rates between 2004 and 2011 (Fig. 4). At the distance 32 
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and location of the chestnut tree (~1km), it seems likely that the signal is too small and 1 

variable to be practical for detecting emission changes for a point source with emissions of 2 

this magnitude. 3 

If we relax the condition to one sigma (or a 68% confidence level), would we be able to detect 4 

the largest change in emissions reported at the Vector Plant between 2004 and 2011? The 5 

student t-test at 68% confidence level gives corresponding detection limits listed in Table 3. 6 

For a one-year observation from the pine tree, this is 18%; for the chestnut, it is 92%. The 7 

largest change in emissions in any single year at the Vector plant is in 2007, with a decline of 8 

14% relative to the long-term mean, still below the detection limit. Indeed, looking at the 9 

results in Fig. 4, there is no significantthe decline (0.4ppm, or 19% of the mean) at the 10 

chestnut tree in 2007 is not significant; there is also a small decline (0.7ppm, or 13% of the 11 

mean) in CO2ff at the pine tree but it is again too small to conclude that emissions have 12 

changed. If we were able to achieve a reduction in measurement uncertainty to 0.5ppm, 13 

however, the threshold for detection at the pine tree becomes an 11% change in emissions, 14 

and we would expect to be able to observe a 14% decline in emissions. In this case, the small 15 

decline in CO2ff at the pine tree in 2007 would be significant. 16 

Would we be able to detect this change at a different location (in direction and/or distance) 17 

around the Kapuni plant? Our hypothetical concentration sensors 300m and 600m from the 18 

source (Table 2) indicate that with a single one-year CO2ff observation, only a change in 19 

emissions of at least 36% would be detectable at 95% confidence, a much larger change than 20 

occurs in our observational dataset. The location of the pine tree (at 400m southeast of the 21 

plant) appears to provide as good a detection capability as any of our hypothetical sensors. 22 

However, if we have four years of observations (and the change in emissions was sustained 23 

over that time period) located either to the east or the south of the plant at a distance of 300m, 24 

we would be able to detect a change of 10% or more at the one-sigma confidence level. 25 

Changes of 20% or more would be detectable at these same locations with one year of 26 

observations, or alternately, four years of observations if we require high confidence. 27 

This analysis uses the actual meteorology only to determine the interannual variability in 28 

CO2ff that we might expect due to meteorological variations.  If we also know the 29 

meteorology in the year or years of the new observations, we can quantify the change in 30 

emissions by modelling transport at constant emissions. For example, attributing 15% of the 31 

one-year variation at the pine tree to the combined factors of transport and measurement 32 
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uncertainty (Table 1) and assuming that the rest of the variation is due to emissions, this 1 

translates to a change in emissions of 27% over the one year. In this manner it is possible to 2 

get a more precise estimate of the long-term changes in emissions. 3 

Additionally, if we have multiple measurements over the same period at different locations 4 

around the point source, measurement uncertainty reduces proportionally by n1 , where n is 5 

the number of independent measurements. The resulting reduction in detection thresholds is 6 

more complex and depends on the long-term mean and variation at each of the observation 7 

locations. One could, for example, use a paired t-test to determine if the change detected in all 8 

of the measurements taken together is significant. This is beyond the scope of the current 9 

study, but the detection thresholds given in Tables 2 and 3, based on a single observation 10 

location, would overestimate the minimum change in emissions that it is possible to observe 11 

with multiple measurements designed to cover the area surrounding the point source.  12 

3.4 Applicability to other point sources 13 

The results presented here are specific to the meteorology and point sources at the Kapuni 14 

site, but the methodology can be extended to any point source with suitable trees growing 15 

nearby. Ideally, observations would be made as close to the source as possible in the direction 16 

where the signal is strongest and/or most consistent. If measurement uncertainty of 1ppm is to 17 

be relatively unimportant compared to the combined transport and emissions variability of 8% 18 

at the pine tree (i.e. adding measurement uncertainty does not change the total variation in 19 

measured CO2ff by more than 1-2%), we require a signal around 20-30ppm, implying a 20 

required emission rate five times that of the Kapuni Vector plant. Alternatively, if we were 21 

able to reduce measurement uncertainty to 0.5ppm (for example, by increased measurement 22 

precision or taking measurements from multiple locations at the site), we would be able to 23 

detect changes with signals at around half the magnitude, and the method could be more 24 

feasible for emission sources the size of the Kapuni Vector Plant. Additionally, if we have 25 

multiple measurements from the same period at various locations surrounding the source, 26 

detection thresholds lower further and we can achieve the same sensitivity with a smaller 27 

point source.  28 

Our case study involves point sources that are fairly small on an international scale; for 29 

comparison, the world’s largest power plant, in Taiwan, emits about 300,000 gC s-1 or 9.5 30 

TgC yr-1 (Ummel, 2012), which is 95 times as much as the Vector plant at Kapuni.  There are 31 



 20

approximately 800 power plants worldwide that emit more than 10 times the annual total 1 

CO2ff at Kapuni (CARMAv3.0, 2009; Wheeler and Ummel, 2008; Ummel, 2012). The 2 

typical emission rates seen at these larger power plants would produce signals in which 3 

measurement uncertainty is only a small proportion of the total. With annual signals 4 

theoretically 10 times that observed at the Kapuni pine tree and the same amount of 5 

meteorological variation, all other things being equal, the detection threshold for a one-year 6 

measurement at the location of the pine tree would be 19%, or 10% with four years of 7 

measurements. This is a plausible reduction target, and the method would be useful for 8 

verifying emissions changes in such cases. 9 

The Kapuni site has several advantages that simplify the modelling component of this 10 

method: the terrain is flat, and there are trees conveniently located close to the CO2ff sources. 11 

With larger distance scales and/or more complex terrain, WindTrax might not be an 12 

appropriate choice of model. Alternative atmospheric transport models that are applicable to 13 

larger distances (hundreds of kilometres and/or regional scales) and more complicated 14 

geographic features include CALPUFF (Scire et al., 2000), WRF-CHEM (Grell et al., 2005), 15 

and AERMOD (Cimorelli et al., 2005). While these models would need to be tested in the 16 

context of our method, the same general principles would apply. 17 

 18 

4 Conclusions 19 

We have examined sources of interannual variability in CO2ff in samples from tree ring 20 

archives representing integrated averages over one year. We used the atmospheric transport 21 

model WindTrax to separate variability in meteorology and transport from other sources of 22 

variation in our observations. At the location of the pine tree, modelled variation in transport 23 

is 7% of the six-year reference mean. This is about the same magnitude as the variation in 24 

emissions that were recorded over the same time period. At the chestnut tree, variation due to 25 

atmospheric transport is larger, at 19% of the mean, and is about twice the magnitude of the 26 

variation in emissions. Taking into account typical measurement uncertainty of 1ppm for 27 

radiocarbon samples, in order to conclude with high confidence that there has been a change 28 

in emissions and not just natural variation in meteorology, we would require an observed 29 

change of 42% from the mean in a new one-year sample from the pine tree. If we take a two-30 

year or four-year sample average, this reduces to 30% and 22%, respectively. This is well 31 

above the largest single-year change in emissions at the Vector Plant, which is 14%. 32 
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However, if we are able to reduce measurement uncertainty by half, to 0.5ppm, or if the point 1 

source doubles in strength, detection thresholds are closer to the actual level of variation in 2 

emissions. If we only require confidence at the one-sigma level, we would in this case be able 3 

to detect a 14% change in a single year. 4 

Detection limits are highly dependent on the location of the observations and specific 5 

meteorology of the site. Wind patterns should be carefully considered before deciding where 6 

to take samples in any study, preferably in an area where the signal will be strongest and 7 

where wind patterns will be most consistent through time. A model analysis such as we have 8 

performed can give an idea of the baseline variability in transport and the size of the signal 9 

needed to observe changes in emissions. This makes it theoretically possible to separate the 10 

uncertainty in transport from other sources of uncertainty.  11 

In general, this method will be most effective when observations are made in the dominant 12 

wind direction and/or in a direction with consistent winds, close enough to the point source so 13 

that natural variability in meteorological conditions and measurement uncertainty does not 14 

overwhelm the signal from the emissions. The larger the point source (the higher the emission 15 

rate) and the signal from CO2ff, the more able integrated averages from plant material will be 16 

to detect changes in emissions. For larger power plants or other point sources of a more 17 

typical size worldwide, detecting changes with this method could be feasible; with signals 10 18 

times or more the size of Kapuni, measurement uncertainty is relatively insignificant, and 19 

sustained changes in emissions on the order of 10% can be detected from a single sampling 20 

location given suitable meteorological conditions and observations. 21 
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Table 1. Observed and modelled CO2ff means and standard deviations at the locations of the 1 

pine and chestnut tree between 2004 and 2011. All means and standard deviations (SD) 2 

include six years (2008 and 2010 are omitted because there are no observations available for 3 

these years). Measurement uncertainty (MU) of 1.0ppm is explicitly added to the modelled 4 

results in the far right column. Observations implicitly include this uncertainty. 5 

Observation or 

simulation (2004-2011) 

Mean 

(ppm)  

SD (% of mean) SD + 1.0ppm MU 

(% of mean) 

Pine    

Observed  5.4   0.8 (14%) 

Modelled CO2fftree : 

variable meteorology, 
variable emissions 

6.1 0.5 (7.8%) 1.1 (18%) 

Modelled CO2ff :  
variable meteorology, 
constant emissions  

7.4 0.5 (6.6%) 1.1 (15%) 

Modelled CO2ff :  
constant meteorology, 

variable emissions 

7.3 0.5 (7.4%) 1.1 (15%) 

Chestnut    

Observed  2.1   1.1 (51%) 

Modelled CO2fftree : 
variable meteorology, 
variable emissions 

2.2 0.3 (15%) 1.0 (47%) 

Modelled CO2ff :  
variable meteorology, 
constant emissions  

2.7 0.5 (19%) 1.1 (41%) 

Modelled CO2ff :  

constant meteorology, 
variable emissions 

2.3 0.2 (7.6%) 1.0 (43%) 

6 
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Table 2. Eight-year Mmodelled mean CO2ff and standard deviation (SD) of eight hypothetical 1 

sensors for simulated over the eight years 2004-2011 withof constant emissions. Measurement 2 

uncertainty (MU) of 1.0ppm is added to the standard deviation in the fourth column. 3 

simulation and Columns 5-10 show the detection limits calculated at the two-sigma (95%) 4 

and one-sigma (68%) confidence level (CL) for samples representing an average of one, two, 5 

or four years. Measurement uncertainty (MU) of 1.0ppm is added in quadrature to the 6 

standard deviation of modelled CO2ff before limits are calculated. 7 

Model 

Sensor 

Mean 

(ppm) 

SD (% of 

mean)  

SD + 1ppm 

MU (% of 

mean)  

% change detectable 

(95% CL) 

% change detectable 

(68% CL) 

1 yr 2 yr 4 yr 1 yr 2 yr 4 yr 

North 
300m 

12.2 2.4 (20%) 2.6 (21%) 53% 38% 29% 24% 18% 13% 

North 
600m 

4.6 0.8 (18%) 1.3 (29%) 72% 52% 39% 33% 24% 18% 

East 
300m 

22.8 3.2 (14%) 3.3 (15%) 37% 27% 20% 17% 12% 9.4% 

East 
600m 

9.0 1.3 (14%) 1.6 (18%) 45% 33% 24% 20% 15% 12% 

South 

300m 
11.7 1.3 (11%) 1.7 (14%) 36% 26% 20% 16% 12% 9.2% 

South 

600m 
4.7 0.5 (10%) 1.1 (24%) 60% 43% 33% 27% 20% 15% 

West 

300m 
1.6 0.8 (50%) 1.3 (81%) 204% 148% 111% 92% 68% 52% 

West 

600m 
0.34 0.16 (50%) 1.0 (300%) 744% 540% 405% 337% 250% 190% 

8 
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Table 3. Detection limits for samples at the pine and chestnut trees, calculated with modelled 1 

CO2ff at constant emissions and six years of observations in reference period (2004-2011). 2 

Limits are given at the two-sigma (95%) and one-sigma (68%) confidence level (CL) for 3 

samples representing an average of one, two, or four years. Measurement uncertainty (MU) of 4 

1.0ppm or 0.5ppm is added in quadrature to the standard deviation of modelled CO2ff before 5 

limits are calculated. 6 

Modelled CO2ff: 

variable 

meteorology  

constant emissions 

% change detectable     

(95% CL) 

% change detectable          

(68% CL) 

1 yr 2 yr 4yr 1 yr 2 yr 4yr 

Pine       

Modelled CO2ff + 
1.0 MU 

42% 30% 22% 18% 13% 10% 

Modelled CO2ff + 
0.5 MU 

27% 19% 14% 11% 8.5% 6.5% 

Chestnut       

Modelled CO2ff + 

1.0 MU 
115% 83% 62% 92% 68% 52% 

Modelled CO2ff + 

0.5 MU 
89% 64% 48% 38% 28% 22% 

7 
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Figure 1. a) Aerial view of Kapuni area, with the sampled pine and chestnut trees, Kapuni 4 

Stream, and Vector Gas Treatment Plant and Ballance Agri-Nutrient Urea Plant labelled. b) 5 
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The Taranaki region, with Mount Taranaki, Kapuni, and Hawera labelled. Inset: New 1 

Zealand, with the Taranaki region outlined in yellow 2 

3 
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Figure 2. Wind roses at hourly intervals a) at Hawera during the eight growing season (Sep-4 

Apr) at Hawerabetween 2004-2011, b) Hawera 14 Aug – 26 Oct 2012, (left) and c)  Kapuni 5 

14 Aug – 26 Oct 2012Kapuni 2013 (right), all showing daylight hours only (8:00am – 6 

6:00pm). Wind speed is in m s-1. Data at Kapuni was collected at 10-minute intervals and 7 

averaged to hourly intervals to match Hawera data. 8 

9 

Formatted: Superscript
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 1 

 2 

Figure 3. Percentage of wind measured at Hawera in each of four directions (left y- axis) and 3 

mean wind speed (right y-axis) in eachby growing year season (Sep-Apr) between 2004 and 4 

2011 (daylight hours only, 8:00am – 6:00pm). Directions are defined by +/- 30 degrees due 5 

north, west, south, and east (i.e. west is defined as wind from 240° to 300°). Note that this 6 

does not comprise the complete 360° circle so percentages do not add to 100. 7 

8 
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Figure 4. Pine tree (topa) and chestnut tree (middleb) modelled CO2fftree vs. tree ring observed 1 

CO2ff in each year between 2004 and 2011. Dotted and dDashed lines show modelled  and 2 

observed  six-year means, respectively (2008 and 2010 are excluded due to lack of 3 

observations).. Bottom panel (c) shows the average emissions rate in g C/s for Vector and 4 

Ballance in each year for comparison. 5 

6 
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Figure 5. Constant emissions, variable meteorology simulation results for hypothetical 4 

sensors: CO2ff mole fraction averaged over all eight years of simulation (squares) and 5 

individual annual averages (circles). Sensors are labelled on the x-axis by direction (N, E, S or 6 

W) and distance (300m or 600m) from the source. 7 


