1	Photochemical age of air pollutants and oxidation products in transboundary air
2	observed on Fukue Island, Nagasaki, Japan
3	Satoshi Irei, ^{1†} Akinori Takami, ¹ Yasuhiro Sadanaga, ² Susumu Nozoe, ^{1‡} Seiichiro Yonemura, ³
4	Hiroshi Bandow, ² and Yoko Yokouchi ¹
5	
6	¹ National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506,
7	Japan
8	² Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture
9	University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka 599-8531, Japan
10	³ National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Irabaki 305-
11	8604, Japan.
12	[†] Present address: Department of Biology, Chemistry, and Marine Science, University of the
13	Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
14	[‡] Present address: National Museum of Emerging Science and Innovation, Aomi 2-3-6, Koto,
15	Tokyo 135-0064, Japan.
16	
17	Abstract
18	To better understand the secondary air pollution in transboundary air over westernmost Japan,
19	ground-based field measurements of the chemical composition of fine particulate matter (≤ 1

20μm), mixing ratios of trace gases species (CO, O₃, NO_x, NO_y, *i*-pentane, toluene, and ethyne), and meteorological elements were conducted with a suite of instrumentation. The CO mixing 2122ratio dependence on wind direction showed that there was no significant influence from primary emission sources near the monitoring site, indicating long- and/or mid-range transport 23of the measured chemical species. Despite the considerably different atmospheric lifetimes of 24NO_v and CO, these mixing ratios were correlated ($r^2 = 0.67$). The photochemical age of the 25pollutants, t[OH] (the reaction time \times the mean concentration of OH radical during the 26atmospheric transport), was calculated from both the NO_x/NO_y concentration ratio (NO_x/NO_y 27clock) and the toluene/ethyne concentration ratio (hydrocarbon clock). It was found that the 2829toluene/ethyne concentration ratio was significantly influenced by dilution with background 30 air containing 0.16 ppbv of ethyne, causing significant bias in the estimation of t[OH]. In contrast, the influence of the reaction of NO_x with O_3 , a potentially biasing reaction channel on 31 $[NO_x]/[NO_y]$, was small. The t[OH] values obtained with the NO_x/NO_y clock ranged from 2.9 32 $\times 10^5$ to 1.3×10^8 h molecule cm⁻³ and were compared with the fractional contribution of the 33m/z 44 signal to the total signal in the organic aerosol mass spectra (f_{44} , a quantitative oxidation 34indicator of carboxylic acids) and O_3 mixing ratio. The comparison of t[OH] with f_{44} showed 35evidence for a systematic increase of f_{44} as t[OH] increased, an indication of SOA formation. 36 To a first approximation, the f_{44} increase rate was $(1.05 \pm 0.03) \times 10^{-9} \times [OH] h^{-1}$, which is 37comparable to the background-corrected increase rate observed during the New England Air 38

39	Quality Study in summer 2002. The similarity may imply the production of similar SOA
40	component, possibly humic-like substances. Meanwhile, the comparison of $t[OH]$ with O ₃
41	mixing ratio showed that there was a strong proportional relationship between O ₃ mixing ratio
42	and <i>t</i> [OH]. A first approximation gave the increasing rate and background mixing ratio of ozone
43	as $(3.48 \pm 0.06) \times 10^{-7} \times [OH]$ ppbv h ⁻¹ and 30.7 ppbv, respectively. The information given here
44	can be used for prediction of secondary pollution magnitude in the outflow from the Chinese
45	continent.
46	
47	Key words:SOA; ozone; photooxidation of air pollutants; long-range transport; transboundary
48	air pollution; East Asia
49	
50	1. Introduction
51	During the last decade, the dramatic growth of the Chinese economy has increased emission of
52	air pollutants such as volatile organic compounds, particulate matter (PM), and nitrogen oxides
53	(NO_x) , which is the sum of nitrogen monoxide (NO) and nitrogen dioxide (NO_2) . In northeast
54	Asia, air masses generally move from west to east, and therefore pollutants emitted on

56 severe in rural areas of westernmost Japan, such as Fukue Island. Atmospheric oxidation of

55

57 primary pollutants produces secondary pollutants, such as ozone (O₃), secondary particulate

continental China are frequently carried to Japan. The influence of air pollution is becoming

58	organic matter (also known as secondary organic aerosol or SOA), which is formed by
59	oxidation of volatile organic precursors. A better understanding of these secondary pollutants
60	is important not only for purely scientific reasons but because such pollutants are a matter of
61	great public concern. SOA is one of the least understood subjects in atmospheric chemistry
62	(Ebben et al., 2014), despite the fact that it has been studied extensively owing to its potential
63	adverse effects on human health and its role in cloud condensation. Although state-of-the-art
64	techniques, such as aerosol mass spectrometry, have substantially improved our understanding
65	of SOA (Zhang et al., 2005; Jimenez et al., 2009), many questions about SOA still remain, such
66	as its constituents, production mechanisms, and fates.
67	To understand SOA, we must evaluate the progress of the chemical reactions of its
68	constituents. The progress of photochemical reactions in the atmosphere has frequently been
69	evaluated in terms of a "photochemical age," designated t [OH], which can be derived from
70	non-methane hydrocarbon (NMHC) ratios (Roberts et al., 1984; Rudolph and Johnen, 1990)
71	and from NO _x ratio to total odd nitrogen (NO _y) (Parrish et al., 1992). Recent field studies
72	combining aerosol mass spectrometry measurements and determination of $t[OH]$ have
73	provided new information about photochemically produced SOA (de Gouw et al., 2005;
74	Takegawa et al., 2006; Kleinman et al., 2007; Liggio et al., 2010). Our previous field studies

conducted on Fukue Island in Japan demonstrated a systematic trend for the fractions of carboxylate in the organic aerosol (f_{44}) with t[OH], evidence of SOA production (Irei et al.,

77	2014). However, the study period was short (only 10 days), and a longer observation period is
78	necessary to obtain more-convincing evidence of SOA production. Furthermore, inconsistent
79	results regarding the association between SOA production and <i>t</i> [OH] were observed at the same
80	location during a different time period (Irei et al., 2015). The study described in this paper is
81	an extension of our previous studies, and the objective was to deepen our understanding of the
82	association between oxidation products (SOA and O_3) and $t[OH]$ in transboundary air.

84 **2. Experimental**

Field measurements were conducted from December 2010 to May 2011 at the Fukue 85 atmospheric monitoring station (32.8°N, 128.7°E), a rural site on the northwestern peninsula 86 87 of Fukue Island, Nagasaki Prefecture, Japan (Figure 1). As mentioned earlier, data collected 88 during a 10 day observation period in December 2010 have already been reported, and the reported results are a part of data in this study. The monitoring station is ~1 km away from the 89 residential area of the peninsula and is ~60 m higher in altitude. The site is located in-between 90 small pastures. Possible sources of anthropogenic emissions of fine aerosol and trace gas 91species include agricultural waste burning, home incinerators, automobiles occasionally 9293 passing by the station, and tractors sometime mowing the pastures. For all the measurements the ambient air was measured or sampled $1 \sim 3m$ above the rooftop of the station ($3 \sim 5m$ height 94from the ground). An independent sampling line was assembled for each chemical species 95

96	measurement. The ambient air was sampled at 1 L min ⁻¹ through 5 m \times quarter-inch o.d. PTFE
97	tubing for the CO and O_3 measurements and at 0.5 L min ⁻¹ through the same type of tubing for
98	the NO_x and NO_y measurements, respectively. A molybdenum converter for the NO_y
99	measurements was set at the inlet of sampling line. For the particle and NMHC measurements
100	the ambient air was suctioned at 3 L min ⁻¹ and 5 L min ⁻¹ at the first stage through the sampling
101	lines of ~4 m × half-inch o.d. and ~10 m × five-fifth-inch o.d. stainless steel tubing (GL Science
102	Japan), respectively. The measurements were then made by sampling a part of the flowing air
103	For the particle measurements only, a PM _{2.5} cyclone separator (URG 2000-30ED, URG Corp.
104	Chapel Hill, NC, USA.) was attached to the inlet of the sampling line to cut off particles larger
105	than PM _{2.5} .

106The 10 min average chemical composition of fine aerosol (~PM_{1.0}) was measured with 107an Aerodyne quadrupole aerosol mass spectrometer (AMS, Aerodyne Research Inc., Billerica, MA, USA). Details of the instrumentation and the method for determination of chemical 108 species concentrations are described elsewhere (Jayne et al., 2000; Allan et al., 2004). The 109 AMS was calibrated approximately once a month with 350 nm dried ammonium nitrate 110particles for determination of ionization efficiencies. The temperature of the flash vaporizer 111 112was set to 873 K during the field measurements and calibration measurements. A collection efficiency of 0.74 was used for determination of chemical species concentrations; this value 113114 was determined from comparison between sulfate concentrations measured by means of AMS

115	and non-sea-salt sulfate concentrations determined by means of total suspended particulate
116	filter sample analysis during the field study in December 2010 (Irei et al., 2014). The detection
117	limits (DLs) of the mass spectrometer for chloride, nitrate, ammonium, sulfate, organics, m/z
118	43 (an indicator for detection of hydrocarbon and aldehyde), and m/z 44 (an indicator for
119	detection of carboxylic acid) were determined by $3 \times$ standard deviation (SD) of blank
120	concentrations obtained by measuring filtered ambient air (HEPA Capsule, Pall Corp.) for 2 ~
121	16 hours. The blank measurements were conducted every month during the study period. The
122	average DLs of these species were 0.02, 0.04, 0.2, 0.4, 0.5, 0.02, and 0.06 μ g m ⁻³ , respectively.
123	Mixing ratios for NO_x and NO_y were measured in situ to retrieve the <i>t</i> [OH], an indicator
124	of atmospheric oxidation. Measurement methods for NO_x and NO_y mixing ratios were
125	developed with an LED converter and a molybdenum converter, respectively, together with
126	commercially available NOx analyzers (Model 42 i-TL, Thermo Scientific). These instruments
127	are described in detail elsewhere (Sadanaga et al., 2010; Yuba et al., 2010). DLs for NO, NO ₂ ,
128	and NO_y were about 0.06 ppbv under 1 min averaging time. Mixing ratios of CO and O_3 were
129	measured in situ with a CO analyzer (Model 48, Thermo Scientific) and an O ₃ analyzer (Model
130	49i, Thermo Scientific), respectively. The DLs of these instruments were 3 and 5 ppbv under 1
131	min averaging time, respectively. The analog signal output for these trace gas species was
132	recorded every second using a data logger (NR-1000, KEYENCE), and hourly average mixing
133	ratios were used for data analysis. Selected NMHCs (ethyne, <i>i</i> -pentane, and toluene) were also

134	measured hourly with a gas chromatograph equipped with a flame ionization detector (6890N,
135	Agilent Technologies) and coupled with an automated cryo preconcentration sampler
136	(Yokouchi, 2008). Ethyne, <i>i</i> -pentane, and toluene were chosen because those can be used as
137	markers for vehicular emissions (Tang et al., 2009; Wang et al., 2015). The choice of toluene
138	was also owing to one of the possible precursors of atmospheric SOA (Grosjean and Seinfeld,
139	1989; Seinfeld and Pandis, 1999). The volatile organic compounds in 600 mL of ambient air
140	were collected cryogenically from the main stream of the previously referred sampling line at
141	a flow rate of 40 mL min ⁻¹ (<i>i.e.</i> , a 15 min sampling period for a single measurement). Target
142	compounds were identified and quantified on the basis of comparison with retention times and
143	peak area counts for standards; specifically, a standard gas containing 1 ppb of each target
144	compound was analyzed once a day. The DLs for ethyne, <i>i</i> -pentane, and toluene were 2,5, 1.5,
145	and 1.5 pptv, respectively.
146	Additionally, ambient temperature, relative humidity (RH), precipitation, and wind
147	speed and direction were measured with a weather transmitter (WXT 520, VAISALA, Helsinki,
148	Finland).

3. Results and Discussion

3.1. Meteorological observations

152 Measured ambient temperature ranged from 274.6 to 301.2 K, the mean ± standard deviation

or SD = 286.6 ± 5.4 K (Figure S-1). Ambient temperature showed clear seasonal variation, and a polynomial best fit curve ± 5 K covered ~90% of the data points and reproduced the observed trend.

Precipitation events were observed occasionally (Figure S-1), but their frequency and strength did not seem to significantly affect our overall interpretation of the entire data set. Therefore, in the analyses described hereafter, we included the data collected during the precipitation events, unless otherwise noted. RH varied between 25% and 100% and seemed to be relatively constant from December to February and to vary more widely from March to May (Figure S-1).

A polar plot of hourly average wind speed shows that it ranged from 0.2 to 10 m s⁻¹ 162(Figure S-2). The mean \pm SD of wind speeds during the observation period was $3 \pm 1 \text{ m s}^{-1}$, 163and the 90th, 25th, and 10th percentile cut-off values were 4, 2, and 1 m s⁻¹, respectively. This 164information suggests that medium-strength winds (i.e., wind speeds of $2-4 \text{ m s}^{-1}$) blew most of 165the time during the study period. Because wind directions measured at wind speeds of $<1 \text{ m s}^{-1}$ 166¹ are often treated as invalid, the fact that the 10th percentile cut-off for our data was 1 m s⁻¹ 167indicates that 90% of our wind direction data were valid. The most prevalent wind directions 168were between northwesterly and northeasterly (35%) and between northeasterly and 169southeasterly (26%). The prevalence of wind from the residential area of the peninsula (from 170the direction between southeasterly and southwesterly) was about 17%. 171

3.2. Chemical species concentrations

The results of statistical analysis of the concentrations of chemical species in fine PM are 174summarized in Table 1, along with the results for gas-phase species. Because sea-salt PM tends 175to be coarse, the very low concentrations of chloride measured by means of AMS indicate that 176177most of the chloride originating from sea salt was eliminated at the AMS inlet, which selects for fine PM. The mean concentrations (\pm SDs) of the chemical species in fine PM were similar 178179to those observed in 2003 at the same location (Takami et al., 2005) and at Cape Hedo, Okinawa (Takami et al., 2007). Sulfate was the predominant chemical species in fine PM throughout the 180 observation period, accounting for 46% on average, and was followed by organics (29%), 181 182ammonium (16%), and nitrate (8.0%). The concentrations of nitrate, the detection of which is often an indication of the proximity of its emission source, were high in this study even though 183the monitoring station was located in a rural area. In many cases, the amount of nitrate in fine 184 PM decreases or shifts to larger PM during long-range transport (Takiguchi et al., 2008, and 185references therein). Because there are no large emission sources of primary nitrate around the 186 187 monitoring station, the high nitrate concentrations probably indicate mid-range transport of pollutants from locations off the island. Temporal variation of the concentrations of organics 188 189in fine PM measured by means of AMS showed no seasonal trend, but some high-concentration episodes were observed (Figure S-3). It was also found that the concentrations of organic 190

aerosols in the study period from 6 to 16 December, which was previously reported (Irei et al., 2014), were relatively low. In the time-series plot, the f_{44} , the fraction of m/z 44 in the organic mass spectrum or the fraction of carboxylate in organic aerosol, seemed to rise from ~0.12 to ~0.15 around the end of March. This increase may have been due to greater production of oxygenated organic compounds in spring than in winter because of the increasing sunlight irradiance in the spring, which was indicated by the times-series plot of ambient temperature (Figure S-1).

Most of the O₃ mixing ratios were <55 ppbv, and the mean of 45 ppbv was consistent 198 with the annual mean of ~50 ppby observed at the same location in 2011 (Kanaya et al., 2016); 199this annual mean of ~50 ppbv was the lowest annual mean O₃ mixing ratio observed over the 200201course of 6 years (2009 - 2014) at this location by Kanaya et al. A times-series plot of hourly 202average O₃ mixing ratios showed that although there were some episodes of high mixing ratios, the mixing ratios seemed to vary between ~25 and ~50 ppbv from December to February and 203then were prone to gradually increase from the beginning of March to May (Figure S-4a). 204Similar seasonal trends have been observed at the same location (Kanaya et al., 2016) and at 205206other remote sites in East Asia (Pochanart et al., 2002; Suthawaree et al., 2008; Kanaya et al., 2016, references therein). This trend was similar to the f_{44} trend described above and therefore 207can also be explained in terms of an increase in sunlight irradiance of polluted air masses 208transported from the Asian continent. Meanwhile, according to the observations at the other 209

remote sites referred above, the O_3 mixing ratios tend to drop starting in May and continuing into the summer because the origin of air masses changes from the continent directly to the Pacific Ocean; the oceanic air masses generally contain much lower quantities of O_3 and its precursors. The drop in the O_3 mixing ratios observed between May 9 and May 12 was compatible with the influence of the oceanic air masses demonstrated by the back trajectories of air masses (Figure S-5) modeled by HYSPLIT (Draxler and Rolph, 2013). The NO_x mixing ratios ranged from lower than the DL (LDL) to 12.70 ppbv (mean ±

 $SD = 1.39 \pm 1.16$ ppbv), and the NO_y mixing ratios ranged from 0.13 to 25.41 ppbv (mean \pm 217 $SD = 4.86 \pm 3.49$ ppbv). The upper quartile cut-offs for these mixing ratios were 1.70 and 6.03 218ppbv, respectively. NO was found to be the very minor component of NO_x. The median and 219220lower and upper quartile cut-off values of NO were LDL, LDL, and 0.06 ppbv, respectively. 221Compared to the mixing ratios observed in other field studies (Pandey Deolal et al., 2012, and references therein), most of these mixing ratios fell between those observed at European rural 222and background sites. No time-dependent trend was observed for the NO_x or NO_y mixing ratio 223(Figure S-4b,c). Episodes of high mixing ratios were observed irregularly. 224

The CO mixing ratios ranged from 57 to 1136 ppbv, and the median, upper, and lower quartile cut-off values were 204, 272, and 160 ppbv, respectively; no seasonal trend was observed (Figure S-4d). Except for some episodes of high mixing ratios, the observed mixing ratios below the upper quartile cut-off seem to be comparable in magnitude to those observed from 2002 to 2005 at various rural and remote locations in the region of the East China Sea (Suthawaree et al., 2008; Tanimoto et al., 2008), indicating that the mixing ratios we observed reflected the background mixing ratios in this region. A polar plot of the wind-sector dependence of the CO mixing ratio showed almost no sharp increases attributable to local anthropogenic emissions (Figure S-6). The episodes of high mixing ratios that occurred at irregular intervals were attributed to mid-range transport of anthropogenic emissions.

To determine whether these episodes were due to combustion-related pollution 235transported from the Asian continent, we chose seven time periods with high CO mixing ratios 236that lasted for more than 24 h, and we checked the back trajectories of the air masses modeled 237by HYSPLIT. These episodes are listed in Table S-1, together with confirmation of 238239concentration rises of other chemical species during the high-CO episodes. Back trajectories 240for each episode showed that the air masses were transported from the region of east-coast of China or of west coast of Korea during these episodes. The trajectories also showed that the 241episodes ended with the arrival of air masses from the Pacific Ocean or Mongolia with greater 242wind speed (Figures S-7 to S-13). Thus, these results roughly support the proposition that at 243244least these seven high-concentration episodes were derived from the Asian continent.

Most of the observed mixing ratios for *i*-pentane, toluene, and ethyne (Table 1) were slightly higher than the ratios observed at Cape Hedo, Okinawa, in 2000 (Kato et al., 2004). This result is consistent with the fact that pollutants transported from the Asian continent to Fukue are often fresher than those transported to Cape Hedo (Takami et al., 2007). Times-series plots of the mixing ratios for these NMHCs showed no seasonal trends (Figure S-4e–g). The observed sharp rises in mixing ratios of *i*-pentane, toluene, and ethyne—which lasted no more than a few hours, indicating the influence of anthropogenic emissions near the site—accounted for only a small portion of the observed data.

253

3.3. Correlations between the concentrations of various chemical species

Investigation of the correlations between the concentrations of various chemical species 255showed that CO concentration was correlated with the concentrations of NO_y ($r^2 = 0.674$), 256ethyne ($r^2 = 0.724$), and organic aerosols ($r^2 = 0.562$) (Table 2). Ethyne is a combustion marker 257and often originate from vehicular emission, which is one of the major sources of NO_x as well. 258The atmospheric lifetimes of CO and ethyne are usually determined by the reactions with OH 259radicals (the most powerful oxidant in the air). Under an average OH concentration of 5×10^5 260molecules cm⁻³, which is the calculated diurnally averaged OH concentration during the 261262PEACE-A aircraft campaign over Japan in January 2002 (Takegawa et al., 2004), their lifetimes are approximately 100 and 35 days, respectively. Meanwhile, they found experimentally that 263the lifetime of NO_v during the campaign was $1.3 \sim 2.6$ days, which was mainly due to the wet 264and/or dry depositions of HNO₃. That is, ~60% of NO_y sinks within 2.6 days. Because the 265processes are physical we expect that the order of NO_v lifetime in our study is similar. The 266

267slope of the linear regression drawn for the NO_y mixing ratio as a function of CO mixing ratio was approximately 0.03, which is in the similar order to the value of ~ 0.038 observed by 268Takegawa et al. in the 2~3 day aged plume originated from Japan. The slope also coincided 269with the calculated NOy/CO ratio of 0.03 in an air mass transported a long distance from its 270origin to Korea using a recent emission inventory (Kim et al., 2012). In contrast, Kurokawa et 271272al. (2013) reported that emission ratios of NO_x to CO from coal combustion used in industry in China, which is suspected to be one of the major sources of these pollutants observed in our 273study, were 0.06 ~ 0.07. With consideration of the NO_y lifetime by the depositions and the 274transport time of roughly $1 \sim 3$ day implied by the back trajectories previously referred, the 275discrepancy between the NO_v/CO observed at Fukue and the NO_x/CO at emission seems to be 276277reasonably explained by the depositional sink during the transport. The higher coefficient of 278determination between CO and ethyne than that between CO and NO_y also supports the association of their correlation with their lifetimes. Nevertheless of such significant 279depositional loss of NO_y, the positive correlation with the r^2 of 0.674 between CO and NO_y 280implies that the wet deposition, which is highly variable and influential, did not significantly 281contribute to the NO_v sink, in turn, the major sinking process of NO_v was the dry deposition 282depending on the gravitational residence time. 283

Particulate ammonium was correlated with particulate acidic components, such as sulfate, nitrate, organics, and m/z 44 of organics. The highest correlation with m/z 44 (r² =

286	0.755) suggests that the organics were primarily composed of carboxylic acids. The observed
287	correlations imply that sufficient amount of ammonium was available in the gas-phase to
288	neutralize all these acidic components. Although it is not shown, slopes of linear regressions
289	between ammonium (x-axis) and sulfate, nitrate, or organics (y-axis) was 1.7, 0.74, and 1.0,
290	respectively. With respect to molar ratio to ammonium, sulfate and nitrate accounted for 32%
291	and 20%, respectively. Given that all three acidic species are neutralized with ammonium,
292	organics, molar mass of which is unknown, accounts for 16%. This number in turn gives the
293	average molecular weight of organics as 113 g mol ⁻¹ for monocarboxylate.
294	The overall correlation between m/z 43 and m/z 44 in the organic mass spectra obtained
295	by AMS was 0.640, but a plot of m/z 43 versus m/z 44 showed two distinct trends: a trend with
296	an m/z 44 to m/z 43 ratio of ~1 and another with a ratio of ~2.5 (Figure S-14). This result
297	suggests that two types of organic species gave fragment ions that contributed to the m/z 44 to
298	m/z 43 ratio. These species will be discussed in detail in Sect. 3.4.
299	

300 **3.4. Oxidation state of organic aerosols**

As we did in previous reports for the field studies in December 2010 (Irei et al., 2014) and in March 2012 (Irei et al., 2015), here we briefly discuss the results of evaluation of the oxidation state of the organic aerosols observed during the half-year period of this study. First, we applied positive matrix factorization (PMF) analysis to the organic aerosol mass spectra to deconvolute the types of organic aerosols (Zhang et al., 2005; Ulbrich et al., 2009), and then we determined the oxidation state of each type of organic aerosol by plotting the fractions of m/z 43 (f_{43}) and m/z 44 (f_{44}) in the organic mass spectra, according to the method described by Ng et al. (2010). Furthermore, we determined the mass to carbon ratios (OM/OC ratios) of the types of organic aerosol using the method described by Zhang et al. (2005) to characterize the species of the organic aerosols.

With respect to the mass spectral pattern, PMF analysis gave the most feasible solution 311312with two types of organic aerosols: hydrocarbon-like organic aerosol (HOA) and low-volatility oxygenated organic aerosol (LV-OOA) (Figure 2). The mass spectral patterns of these two types 313 of aerosols agreed well with those of HOA and LV-OOA found in the December study (r^2 of 3143150.98 and 0.98, respectively). The patterns also agreed reasonably with the reference mass spectra for HOA and LV-OOA in the AMS spectral database (r^2 of 0.94 and 0.53, respectively) 316317made available by Ulbrich et al. (http://cires.colorado.edu/jimenez-group/AMSsd/). The timeseries variations of the HOA and LV-OOA mass concentrations showed similar patterns (Figure 318 3), an implication that the primary OA and the precursor(s) of LV-OOA are from the same 319 source in large scale. On average, HOA and LV-OOA accounted for 38% and 59% of the 320 organic aerosols throughout the study period, respectively. These values are in the same 321magnitude to the fractions previously reported during the study in December 2010 (32% and 32267% for HOA and LV-OOA, respectively). In a plot of f_{43} versus f_{44} , the data point of f_{43} and 323

324	f_{44} for LV-OOA in this study was located at the top of the triangle, indicating a high oxidation
325	state (Figure 4). The OM/OC ratio of HOA and LV-OOA were 2.8 and 5.0 $\mu g \ \mu g C^{-1},$
326	respectively. The OM/OC ratio of HOA was twice as high as the ratio of HOA found in the
327	December study. This may be an implication of oxidation of HOA at some extent. The OM/OC
328	ratio of LV-OOA was 1.4 and 1.2 times as high as the ratios of LV-OOA found in our field
329	studies in December 2010 and March 2012, respectively. To the best of our knowledge,
330	substances showing such a high OM/OC ratio are only humic-like substances.

332 **3.5. Chemical clocks**

We used a NO_x/NO_y concentration ratio and a NMHC concentration ratio to explore the extent 333 334of photochemical reaction (*i.e.*, the reaction with OH radical). In this type of chemical clock analysis, the concentration of a reactive chemical and that of a less reactive chemical are used 335in the numerator and the denominator, respectively, of the ratio. As a reaction proceeds, the 336 numerator decreases while the denominator remains constant; therefore, a change in the ratio 337 indicates the extent of reaction. In application of chemical clocks to the atmospheric transport 338of pollutants, users should be aware of that the extent of reaction may not always be well 339 defined because emission sources are spatially distributed over the trajectory of an air parcel 340 in many cases. This type of analysis is ideally suited to situations in which inputs into an air 341342parcel from additional emission sources during transport are negligible. Our field study for 343 transboundary air pollution transported over the East China Sea can be the ideal case.

344

345 **3.5.1.** NO_x/NO_y clock

To see if such an assumption is valid, the NO_x/NO_y and hydrocarbon clocks were evaluated. Given that the conversion of NO_2 (the major component of NO_x) to HNO_3 (one of the components of NO_y)

$$349 \qquad \text{NO}_2 + \text{OH} \xrightarrow{M} \text{HNO}_3 \tag{R1}$$

is the major sink for NO_x and that the concentration of OH radicals, [OH], can be assumed to be constant, the photochemical age, t[OH], of NO_x can be determined according to the following pseudo-first order rate law:

353
$$t[OH] = -\frac{1}{k_{NO_2}} ln \frac{[NO_x]}{[NO_y]}$$
 (1)

where [NO_x], [NO_y], and k_{NO2} are the concentrations of NO_x and NO_y (molecules cm⁻³) at 354reaction time t and the temperature-dependent effective second-order rate constant for the 355reaction of NO_x with OH radicals, respectively. k_{NO2} includes the concentration of a third body, 356[M], which depends on pressure and temperature. To calculate k_{NO2} at ambient temperature and 357a pressure of 1 atm, we therefore calculated the third-order rate constant and [M] according to 358the method described by Finlayson-Pitts and Pitts (2000) with the polynomial best fit for 359measured ambient temperature mentioned in Sect. 3.1. The calculated k_{NO2} values at 1 atm 360ranged from 9.3×10^{-12} to 1.1×10^{-11} cm³ molecule⁻¹ s⁻¹, and both the mean and the median 361

362	were 1.0×10^{-11} cm ³ molecule ⁻¹ s ⁻¹ . In turn, the determined <i>t</i> [OH] using the <i>k</i> _{NO2} values and the
363	[NO _x]/[NO _y] ratios ranged from 2.9 \times 10 ⁵ to 1.3 \times 10 ⁸ (mean \pm SD = (3.4 \pm 1.6) \times 10 ⁷ h
364	molecules cm ⁻³). We found that the use of a fixed $k_{\rm NO2}$ value (i.e., the mean value of 1.0×10^{-10}
365	¹¹ cm ³ molecule ⁻¹ s ⁻¹) resulted in biases between -10% and $+7\%$ in the estimation of <i>t</i> [OH]. We
366	also found that a temperature variation of \pm 5 K resulted in only a \pm 5% variation in <i>t</i> [OH].
367	However, this analysis for the biases does not take into account temperature and pressure
368	variations during the transport of the air parcels.
369	The reaction of NO ₂ with O ₃ , which may result in significant overestimation in the
370	NO_x/NO_y clock, was also evaluated. The reaction of NO_2 with O_3 forms NO_3 radicals:
371	$NO_2 + O_3 \longrightarrow NO_3 + O_2$ (R2)
372	This reaction channel is important at night, but negligible during the day when NO ₃ radicals
070	
373	are quickly photolyzed back to NO_x . NO_3 radicals react with NO_2 to form stable N_2O_5 , which
373	are quickly photolyzed back to NO_x . NO_3 radicals react with NO_2 to form stable N_2O_5 , which is in thermal equilibrium with NO_2 and NO_3 and therefore acts as a reservoir of NO_x :
374 375	are quickly photolyzed back to NO _x . NO ₃ radicals react with NO ₂ to form stable N ₂ O ₅ , which is in thermal equilibrium with NO ₂ and NO ₃ and therefore acts as a reservoir of NO _x : $NO_2 + NO_3 \leftrightarrow N_2O_5$ (R3)
374 375 376	are quickly photolyzed back to NO _x . NO ₃ radicals react with NO ₂ to form stable N ₂ O ₅ , which is in thermal equilibrium with NO ₂ and NO ₃ and therefore acts as a reservoir of NO _x : $NO_2 + NO_3 \leftrightarrow N_2O_5$ (R3) N ₂ O ₅ reacts slowly with water vapor to form HNO ₃ , and this process terminates the chain
374 375 376 377	are quickly photolyzed back to NO _x . NO ₃ radicals react with NO ₂ to form stable N ₂ O ₅ , which is in thermal equilibrium with NO ₂ and NO ₃ and therefore acts as a reservoir of NO _x : $NO_2 + NO_3 \leftrightarrow N_2O_5$ (R3) N ₂ O ₅ reacts slowly with water vapor to form HNO ₃ , and this process terminates the chain reaction:
374 375 376 377 378	are quickly photolyzed back to NO _x . NO ₃ radicals react with NO ₂ to form stable N ₂ O ₅ , which is in thermal equilibrium with NO ₂ and NO ₃ and therefore acts as a reservoir of NO _x : $NO_2 + NO_3 \leftrightarrow N_2O_5$ (R3) N_2O_5 reacts slowly with water vapor to form HNO ₃ , and this process terminates the chain reaction: $N_2O_5 + 2H_2O \longrightarrow 2HNO_3$ (R4)

380 50% (Finlayson-Pitts and Pitts, 2000, and references therein), which can be the case in our

study (Figure S-1). Although the contribution of the reaction of NO_2 with O_3 may result in a significant overestimation of *t*[OH], one should remind that the R4 channel is negligible as there is enough ammonia to neutralize sulfate (Brown et al., 2006), which is our case.

We evaluated the significance of this reaction channel by comparing the lifetime of NO_x 384with respect to reaction with OH radicals (R1 channel), τ_{OH} , and with respect to reaction with 385 O_3 (R2 channel), τ_{O3} , at constant OH radical and O_3 concentrations. For this evaluation, we 386 used 1.0×10^{-11} and 3.2×10^{-17} cm³ molecule⁻¹ s⁻¹ at 298 K and 1 atm as the second-order rate 387 constants for the two reactions, respectively, and 5×10^5 and 1.3×10^{12} molecules cm⁻³ (0.021 388pptv and 52 ppbv) as the OH and O₃ concentrations, respectively. The OH concentration was 389 chosen because 5×10^5 molecules cm⁻³ was the reasonable value in our previous study (Irei et 390 al., 2014), and the O₃ concentration was chosen because the concentration was the upper 391quartile cut-off value of the observed O_3 in this study. The values of τ_{OH} and τ_{O3} were calculated 392to be 54 and 6.8 h, respectively. That is, the R2 was approximately 4 times as fast as the R1 393 under these conditions. If the reaction of NO₂ with O₃ at night was the predominant mode of 394conversion of NO_x to NO_y, a positive correlation between the O₃ mixing ratio and the extent of 395NO_x turnover—that is, between the O₃ mixing ratio and $\ln([NO_x]/[NO_y])$ —should be observed 396 in our night time data. However, a plot of the hourly O₃ mixing ratios versus hourly 397 $\ln([NO_x]/[NO_y])$ showed no positive correlation, but a clear inverse correlation ($r^2 = 0.489$), 398indicating that the turnover of NO_x to NO_y increased as the O₃ mixing ratio increased (Figure 399

5). Similar observations have been reported elsewhere (Olszyna et al., 1994; Roussel et al., 1996). Given that during the day, O_3 forms only photochemically, this inverse correlation suggests that NO_x conversion was due to daytime photochemistry. A conclusion with this possibility was drawn from an analysis of O_3 production efficiency (Yokouchi et al., 2011).

- 404 The photochemical reaction of aldehydes is also a sink for NO₂, resulting in the 405 formation of thermally stable peroxyacyl nitrates:
- 406 $RCHO+OH\longrightarrow RCO+H_2O$ (R5)
- 407 $\operatorname{RCO} + \operatorname{O}_2 \longrightarrow \operatorname{RC}(\operatorname{O})\operatorname{OO}$ (R6)
- 408 $RC(O)OO + NO_2 \longrightarrow RC(O)OONO_2$ (R7)
- Unfortunately, we cannot evaluate the significance of this channel with our current dataset, 409 410because no data for aldehyde and peroxyacyl radical concentrations are available. Because this loss channel also occurs in sunlight, the possibility that peroxyacyl nitrate formation 411 significantly affects *t*[OH] cannot be excluded. The absolute value of *t*[OH] derived from the 412 $[NO_x]/[NO_v]$ ratio remains uncertain, but as demonstrated by the high correlation between this 413ratio and the O₃ mixing ratio, the use of the NO_x/NO_y clock nevertheless provides valuable 414information about the relative extent of photooxidation. When we plotted the time-series 415variation of t[OH] estimated from the $[NO_x]/[NO_y]$ ratio (Figure 6), we observed variation 416 similar to that observed for the hourly average O₃ mixing ratio (Figure S-4a), implying a strong 417association between the t[OH] and the sunlight irradiance. 418

420 **3.5.2. Hydrocarbon clock**

421 When NMHC A and B react with OH radicals at different rate

422
$$A + OH \longrightarrow Product + H_2O$$
 (R8)

423 $B + OH \longrightarrow Product + H_2O$ (R9)

424 *t*[OH] can also be estimated from the ratio of the two NMHCs (Robert et al., 1984; Rudolph
425 and Johnen, 1990; Parrish et al., 1992):

426
$$t[OH] = \frac{1}{(k_{\rm A} - k_{\rm B})} \ln \left(\frac{[A_0]}{[B_0]} \cdot \frac{[B]}{[A]} \right)$$
(2)

where $[A_0]$ and $[B_0]$ are the initial concentrations (molecules cm⁻³) of NMHCs A and B, which 427have short and long lifetimes (relative to each other); [A] and [B] are the concentrations 428(molecules cm⁻³) at time t; and k_A , and k_B are the temperature-dependent rate constants for 429reactions of A and B with OH radicals (molecules⁻¹ cm³ s⁻¹). If NMHCs A and B are emitted 430431from the same source at the same time, the change in the concentration ratio theoretically indicates the extent of chemical reaction. However, dilution with an aged air mass containing 432depleted NMHCs can also change the NMHC ratio, thus biasing the t[OH] estimation (McKeen 433434and Liu, 1993). This bias can be visualized by plotting two different NMHC ratios with the same denominator, and we used the [i-pentane]/[ethyne] and [toluene]/[ethyne] ratios for this 435evaluation. The calculations require the rate constants for the reactions of the NMHCs with OH 436radicals under the mean temperature observed, 283.7 K, the mixing ratios of the NMHCs in the 437

438	background air, and their initial mixing ratios at emission. Using the Arrhenius equation with
439	the recommended parameters for <i>i</i> -pentane, toluene, and ethyne (NIST Chemistry WebBook,
440	http://webbook.nist.gov/chemistry/), respectively, the rate constants for the reaction of these
441	compounds with OH radicals at 283 K (i.e., the mean temperature during the study period)
442	were calculated to be 3.44×10^{-12} , 5.88×10^{-12} , and 7.38×10^{-13} cm ³ molecule ⁻¹ s ⁻¹ , respectively.
443	Note that the variation of the slope for the reaction loss owing to the variation of the
444	temperature-dependent rate constants between the maximum and minimum temperature (298.3
445	and 271.5 K) was found to be less than \pm 2%. Thus, the variation of the reactive loss due to the
446	temperature change was not influential to our analysis. For the background mixing ratios, we
447	used mixing ratios observed at Cape Hedo, Okinawa (Kato et al., 2004), which were 0.05, 0.09,
448	and 0.39 ppbv, respectively. For the initial mixing ratios at emission, we used the reported
449	scores for loadings extracted by means of PMF analysis for the NMHC sources in Beijing
450	(Wang et al., 2015). The PMF loadings used in the calculations were vehicular emissions 1 and
451	2, solvent use, and natural gas and gasoline leakage. In addition to these initial mixing ratios,
452	mixing ratios reported a rural site in northeast China (Lin'an, in the Yangtze River Delta, Tang
453	et al., 2009) were also tested.

The plot shows that, with respect to the initial NMHC ratio, depletion trends resulting from use of the solvent-use profile and of the observations in Lin'an deviated substantially from the observed overall trend (Figure 7). The majority of observed plots lies between the 457trends for the dilution with the background air and the reaction loss calculated if the profiles for the vehicular-emissions and natural-gas and gasoline leakage were used. That is, the 458vehicular emissions and the natural gas and gasoline leakage may have been the predominant 459emitters of these NMHCs, but source apportionment is difficult because of the uncertainty in 460the emission profiles. On the basis of this comparison, we could identify only two possible 461462significant sources of these NMHCs during the measurement period. The layout of observed data points in-between the dilution and reactive loss lines also suggests that depletion in their 463mixing ratios was a combination of these processes. Comparison of calculated *t*[OH] by the 464toluene/ethyne clock with those by the NO_x/NO_y clock exhibited a poor correlation (Figure S-46515), demonstrating the limitation of the toluene/ethyne clock for estimation of t[OH] under the 466 467condition at Fukue. A quantitative understanding will require a more sophisticated analysis based on mass balance with reliable source profiles. 468

With respect to the background mixing ratios observed at Cape Hedo, the plot also shows that many of our observed data points were lower than the background NMHC ratios represented by a brown circle in Figure 7. This result implies that the background NMHC ratios from the observations at Cape Hedo are still too high to be used as background values of these NMHC ratios for the study region. It is reasonable to assume that the background mixing ratios for both toluene and *i*-pentane in the aged air masses were LDL (<3 pptv). This assumption allows us to approximate the background mixing ratio of ethyne based on the smallest 476[toluene]/[ethyne] and [i-pentane]/[ethyne] ratios observed. According to the plot, the use of -3.5 for the $\ln[toluene]/[ethyne]$ and -4 for $\ln[i-pentane]/[ethyne]$, approximately the smallest 477ratios observed, seems more reasonable. If we use the highest DL value (3 pptv) as the 478background mixing ratio for toluene and *i*-pentane, the background ethyne mixing ratio is then 479calculated to be ~0.16 ppbv, which is about 25% of the background value observed at Cape 480Hedo by Kato et al. (2004). On the basis of the plot in Figure 7, we recommend the use of 481 0.003, 0.003, and 0.16 ppbv as the background mixing ratios for *i*-pentane, toluene, and ethyne, 482respectively, in the region of the East China Sea. 483

484

485 **3.6. Dependence of** *f*₄₄ and **O**₃ on *t*[**OH**]

A scatter plot of f_{44} as a function of t[OH] estimated by the NO_x/NO_y clock showed a 486proportional increase of f_{44} with increasing t[OH] (estimated by means of the NO_x/NO_y clock) 487up to a t[OH] value of 7×10^7 h molecules cm⁻³, and then f₄₄ started to level off slightly (Figure 488 8). That is, f_{44} works as an oxidation indicator below the t[OH] of 7×10^7 h molecules cm⁻³. 489The f_{44} oxidation indicator is known to be case dependent, even at this location and below this 490upper limit (Irei et al., 2015). Considering the existence of HOA during the study period, a 491 series of findings here and in the previous reports supports our hypothesis that f_{44} varies with 492*t*[OH] as LV-OOA, which has a constant and high value of f_{44} , mixes with the background-level 493HOA, which has a significantly lower constant value of f_{44} than LV-OOA (Irei et al., 2014). To 494

495 a first approximation of the increasing trend, f_{44} is given by

496
$$f_{44} = (1.05 \pm 0.03) \times 10^{-9} t$$
[OH] + 0.103 ± 0.001 (3)

with an r^2 value of 0.369. The first approximation satisfactorily describes the increasing trend 497 below a t[OH] value of 7×10^7 h molecules cm⁻³. The intercept of the first approximation 498indicates the f_{44} value for organic aerosol at a photochemical age of zero, that is, f_{44} at emission. 499The slope, which was (1.05 \pm 0.03)× 10⁻⁹ h⁻¹ molecule⁻¹ cm³, indicates the rate of increase 500of f₄₄ as [OH] is given. Kleinman et al. (2007) observed that during the New England Air 501Quality Study, the background-corrected f_{44} value increased from 0.08 to 0.13 as -502 $\ln([NO_x]/[NO_y])$ increased from 0.1 to 1.3, which corresponds to an increase of t[OH] from 3.2 503 $\times 10^6$ to 42×10^6 h molecule cm⁻³. These values give an increase rate of $1.3 \times 10^{-9} \times [OH]$ h⁻¹, 504which is almost identical to the rate we calculated in this study. The overall proportionality of 505 f_{44} with t[OH] suggests that, like the NO_x/NO_y clock, f_{44} worked as an oxidation indicator 506during this study period. This, however, is inconsistent with our another report, in which no 507proportional increase of f_{44} was observed during the study in different year at the same location 508(Irei et al., 2015). Interestingly, our hypothesis of binary mixture of organic aerosol is still 509consistent with these contradicting cases. 510

511 It has been proposed that the increasing trend of f_{44} can be explained by a binary mixture

512 of variable amount of LV-OOA depending on extent of reaction processing *x* for the LV-OOA

513 precursor and constant amount of HOA (Irei et al., 2014, Supporting Information):

514
$$f_{44} = \frac{\overset{HOA}{} f_{44} \cdot a \cdot (\frac{OM}{OC})_{HOA} + \overset{LVOOA}{} f_{44} \cdot \left[0.3x \cdot b \cdot (\frac{OM}{OC})_{LVOOA} \right]}{a \cdot (\frac{OM}{OC})_{HOA} + \left[0.3x \cdot b \cdot (\frac{OM}{OC})_{LVOOA} \right]}$$
(4)

515	In this equation ${}^{HOA}f_{44}$ and ${}^{LV-OOA}f_{44}$ are the fractions of m/z 44 signal for the HOA and LV-
516	OOA factors from the PMF analysis previously discussed, respectively; $(OM/OC)_{HOA}$ and
517	(OM/OC) _{LV-OOA} are the organic mass concentration ratios to the organic carbon concentrations
518	(μ g μ gC ⁻¹) for the HOA and LV-OOA from the PMF analysis, respectively; and <i>a</i> and <i>b</i> values
519	are arbitrary constants ($\mu gC m^{-3}$) that convert the (OM/OC) _{HOA} and (OM/OC) _{LV-OOA} ratios to
520	the organic mass concentrations of the HOA and the LV-OOA, respectively. The factor "0.3",
521	which is multiplied by the variable x , is a factor for the SOA carbon yield based on the
522	laboratory experiments of SOA formation by toluene photooxidation (Irei et al., 2006; Irei et
523	al., 2011). The equation (4) has one variable, x , and 6 parameters, four of which are determined
524	by PMF analysis. The greater extent of reaction processing proceeds, the greater LV-OOA
525	contributes to the binary mixture of HOA and LV-OOA, each of which has significantly
526	different f_{44} value. Consequently, the f_{44} of the binary mixture containing a significantly low f_{44}
527	continues to increase until it is saturated with LV-OOA. This hypothesis consistently explains
528	our observations that the f_{44} oxidation indicator sometimes worked, and sometimes did not.
529	There is also a possible limitation that the indicator also depends on distinctive values of f_{44} .
530	As two members, HOA and LV-OOA, had the similar f_{44} values, the indicator would not work.
531	The f_{44} curve of organic aerosols was calculated using three different combinations of

532	parameters listed in Table 3. It was found that the model calculation underestimated the f_{44}
533	(Figure 8) when 0.05 and 1 μ gC m ⁻³ were used for the <i>a</i> and <i>b</i> values, respectively, together
534	with the rest of the parameters obtained from the PMF analysis (<i>i.e.</i> , applying the parameters
535	in the combination I in Table 3). Although these a and b values were used in the previous report
536	and demonstrated reasonable agreement with the observations (<i>i.e.</i> , applying the parameters in
537	the combination III), the agreement was owing to different f_{44} values and OM/OC ratios
538	extracted from the PMF analysis (see the Section 3.4). To have reasonable agreement with the
539	observations using the f_{44} and OM/OC extracted by the PMF analysis, the use of 0.0175 and 1
540	μ gC m ⁻³ for the <i>a</i> and <i>b</i> values (applying the parameters in the combination II) was found to
541	give the best fitting to the observations.
542	As discussed previously, there was a strong relationship between the NO_x turn over and O_3
542 543	As discussed previously, there was a strong relationship between the NO _x turn over and O_3 mixing ratio (Sect. 3.5.1). This relationship can be converted to the one between <i>t</i> [OH] and O_3
542 543 544	As discussed previously, there was a strong relationship between the NO _x turn over and O ₃ mixing ratio (Sect. 3.5.1). This relationship can be converted to the one between <i>t</i> [OH] and O ₃ mixing ratios (Figure 9). An obtained linear relationship was $[O_3] = (3.48 \pm 0.06) \times 10^{-7} \times$
542 543 544 545	As discussed previously, there was a strong relationship between the NO _x turn over and O ₃ mixing ratio (Sect. 3.5.1). This relationship can be converted to the one between <i>t</i> [OH] and O ₃ mixing ratios (Figure 9). An obtained linear relationship was $[O_3] = (3.48 \pm 0.06) \times 10^{-7} \times t$ [OH] + 30.7 ± 0.3. This provides the increasing rate of ozone $(3.48 \pm 0.06) \times 10^{-7} \times$ [OH] ppbv
542 543 544 545 546	As discussed previously, there was a strong relationship between the NO _x turn over and O ₃ mixing ratio (Sect. 3.5.1). This relationship can be converted to the one between <i>t</i> [OH] and O ₃ mixing ratios (Figure 9). An obtained linear relationship was $[O_3] = (3.48 \pm 0.06) \times 10^{-7} \times t[OH] + 30.7 \pm 0.3$. This provides the increasing rate of ozone $(3.48 \pm 0.06) \times 10^{-7} \times [OH]$ ppbv h ⁻¹ and the background ozone mixing ratio of 30.7 ppbv in this region. If [OH] of 5×10^5
542 543 544 545 546 547	As discussed previously, there was a strong relationship between the NO _x turn over and O ₃ mixing ratio (Sect. 3.5.1). This relationship can be converted to the one between <i>t</i> [OH] and O ₃ mixing ratios (Figure 9). An obtained linear relationship was $[O_3] = (3.48 \pm 0.06) \times 10^{-7} \times t$ t [OH] + 30.7 ± 0.3. This provides the increasing rate of ozone $(3.48 \pm 0.06) \times 10^{-7} \times [OH]$ ppbv h ⁻¹ and the background ozone mixing ratio of 30.7 ppbv in this region. If [OH] of 5×10^{5} molecules cm ⁻³ (Takegawa et al., 2007; Irei et al., 2014) is given as the mean concentration of
 542 543 544 545 546 547 548 	As discussed previously, there was a strong relationship between the NO _x turn over and O ₃ mixing ratio (Sect. 3.5.1). This relationship can be converted to the one between <i>t</i> [OH] and O ₃ mixing ratios (Figure 9). An obtained linear relationship was $[O_3] = (3.48 \pm 0.06) \times 10^{-7} \times$ <i>t</i> [OH] + 30.7 ± 0.3. This provides the increasing rate of ozone $(3.48 \pm 0.06) \times 10^{-7} \times [OH]$ ppbv h ⁻¹ and the background ozone mixing ratio of 30.7 ppbv in this region. If [OH] of 5×10 ⁵ molecules cm ⁻³ (Takegawa et al., 2007; Irei et al., 2014) is given as the mean concentration of OH radical during the long-range transport in this region, the equation gives the average ozone
 542 543 544 545 546 547 548 549 	As discussed previously, there was a strong relationship between the NO _x turn over and O ₃ mixing ratio (Sect. 3.5.1). This relationship can be converted to the one between <i>t</i> [OH] and O ₃ mixing ratios (Figure 9). An obtained linear relationship was $[O_3] = (3.48 \pm 0.06) \times 10^{-7} \times$ <i>t</i> [OH] + 30.7 ± 0.3. This provides the increasing rate of ozone $(3.48 \pm 0.06) \times 10^{-7} \times [OH]$ ppbv h ⁻¹ and the background ozone mixing ratio of 30.7 ppbv in this region. If [OH] of 5×10^{5} molecules cm ⁻³ (Takegawa et al., 2007; Irei et al., 2014) is given as the mean concentration of OH radical during the long-range transport in this region, the equation gives the average ozone production rate of 0.174 ppbv h ⁻¹ . A combination with measurements for OH radical

550 concentration will secure a more accurate production rate of ozone in this region.

551 4. Summary

To improve our understanding of the ozone and SOA formation from the oxidation of 552atmospheric pollutants, we conducted field studies from December 2010 to May 2011 on Fukue 553Island, Nagasaki Prefecture, Japan. Wind-sector analysis of CO mixing ratios revealed that the 554ratio showed almost no wind-sector dependence, suggesting that the influence of emissions 555from residential areas near the measurement site was negligible. This fact in turn indicates that 556the influence of mid- and/or long-range transport of air pollutants to the site had a significant 557influence. Photochemical age, t[OH], was estimated from $[NO_x]/[NO_y]$ and a NMHC 558concentration ratio, and the validity of the ratios was evaluated. The evaluation suggested that 559the hydrocarbon clock was significantly influenced by mixing with background air containing 5600.16 ppbv of ethyne, a NMHC with a relatively long lifetime, resulting in significant bias in 561the estimation of t[OH]. In contrast, loss of NO_x due to reaction with O₃ at night was not 562influential to the NO_x/NO_y clock, which thus seemed to function appropriately, at least with 563respect to relative aging. The *t*[OH] value obtained with the NO_x/NO_y clock was then compared 564with f_{44} obtained by AMS measurements, and f_{44} was observed to increase with increasing 565t[OH], indicating the f_{44} can also be used as an oxidation indicator. This indicator likely works 566under the condition where two different types of organic aerosols, such as primary and 567secondary organic aerosols represented by hydrocarbon-like organic aerosols and low-volatile 568oxygenated organic aerosol, respectively, are mixed. Using linear regression analysis, we 569

570estimated that the f_{44} increase rate for organic aerosols transported over the East China Sea averaged $(1.05 \pm 0.03) \times 10^{-9} \times [OH] h^{-1}$. This rate was almost identical to the background-571572corrected rate observed during the New England Air Quality Study in the summer of 2002. The consistency may implying the similar production processe(s) of SOA, possibly humic-like 573substances. In addition, a clear proportional relationship was observed between O₃ and *t*[OH]. 574According to the linear regression analysis, the increasing rate and background mixing ratio of 575O₃ in this region were found to be $(3.48 \pm 0.06) \times 10^{-7} \times [OH]$ ppbv h⁻¹ and 30.7 ppbv, 576respectively. 577

578 Author Contribution

Satoshi Irei contributed to the AMS, O_3 , and meteorological measurements and is the person in charge of the data analysis and writing the manuscript. Akinori Takami is the person in charge of the AMS, O_3 , and meteorological measurements. Yasuhiro Sadanaga is the person in charge of the NO_x and NO_y measurements. Seiichiro Yonemura is the person in charge of the CO measurements. Yoko Yokouchi is the person in charge of the NMHC measurements. Susumu Nozoe contributed to the NMHC measurements. Hiroshi Bandow contributed to the NO_x and NO_y measurements.

586 **Acknowledgements** We acknowledge the NOAA Air Resources Laboratory (ARL) for the 587 provision of the HYSPLIT transport and dispersion model and/or READY website 588 (http://www.ready.noaa.gov).This project was financially supported by the Special Research

589	Program from the National Institute for Environmental Studies, Japan (SR-95-2011). The
590	project was partially supported by the International Research Hub Project for Climate Change
591	and Coral Reef/Island Dynamics of University of the Ryukyus and the ESPEC Foundation for
592	Global Environment Research and Technologies (Charitable Trust).
593	References
594	Allan, J.D., Delia, A.E., Coe, H., Bower, K.N., Alfarra, M.R., Jimenez, J.L., Middlebrook,
595	A.M., Drewnick, F., Onasch, T.B., Canagaratna, M.R., Jayne, J.T., and Worsnop, D.R.: A
596	generalized method for the extraction of chemically resolved mass spectra from
597	Aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909–922, 2004.
598	Brown, S.S., Ryerson, T.B., Wollny, A.G., Brock, C.A., Peltier, R., Sullivan, A.P., Weber,
599	R.J., Dube, W.P., Trainer, M., Meagher, J.F., Fehsenfeld, F.C., Ravishankara, A.R.:
600	Variability in nocturnal nitrogen oxide processing and its role in regional air quality,
601	Science, 311, 67, 67-70, doi: 10.1126/science.1120120, 2006.
602	de Gouw, J.A., Middlebrook, A.M., Warneke, C., Goldan, P.D., Kuster, W.C., Roberts, J.M.,
603	Fehsenfeld, F.C., Worsnop, D.R., Canagaratna, M.R., Pszenny, A.A.P., Keene, W.C.,
604	Marchewka, M., Bertman, S.B., and Bates, T.S.: Budget of organic carbon in a polluted
605	atmosphere: Results from the New England Air Quality Study in 2002, J. Geophys. Res.:
606	Atmos., 110, doi:10.1029/2004JD005623, 2005.
607	Draxler, R.R. and Rolph, G.D.: HYSPLIT (Hybrid Single-Particle Lagrangian Integrated

608 Irajectory) model access via NOAA ARL READ I. NOAA Air Resources Labora	508)8	Trajectory) Model Acces	S V1A NOAA ARL	L READY. NOAA	Air Resources	Laboratory
---	-----	----	-------------------------	----------------	---------------	---------------	------------

- 609 College Park, MD. <u>http://www.arl.noaa.gov/HYSPLIT.php</u>., 2013.
- 610 Ebben, C.J., Strick, B.F., Upshur, M.A., Chase, H.M., Achtyl, J.L., Thomson, R.J., Geiger,
- 611 F.M.: Towards the identification of molecular constituents associated with the surfaces of
- 612 isoprene-derived secondary organic aerosol (SOA) particles. Atmos. Chem. Phys., 14,
- 613 2303–2314, 2014.
- 614 Finlayson-Pitts, B.J. and Pitts, Jr. J.N.: Chemistry of the upper and lower atmosphere,
- 615 Academic Press, San Diego, California, U.S.A., 2000.
- 616 Grosjean, D. and Seinfeld, J.H.: Parameterization of the formation potential of secondary
- 617 organic aerosols. *Atmos. Environ.*, 23, 1733–1747, 1989.
- Irei, S., Huang, L., Collin, F., Zhang, W., Hastie, D., Rudolph, J.: Flow reactor studies of the
- stable carbon isotope composition of secondary particulate organic matter generated by
- 620 OH-radical induced reaction of toluene. *Atmos. Environ.*, 40, 5858–5867, 2006
- Irei, S., Rudolph, J., Huang, L., Auld, J., Hastie, D.: Stable carbon isotope ratio of secondary
- 622 particulate organic matter formed by photooxidation of toluene in indoor smog chamber.
- 623 *Atmos. Environ.*, 45, 856–862, 2011.
- Irei, S., Takami, A., Hayashi, M., Sadanaga, Y., Hara, K., Kaneyasu, N., Sato, K., Arakaki, T.,
- 625 Hatakeyama, S., Bandow, H., Hikida, T., and Shimono, A.: Transboundary secondary
- 626 organic aerosol in western Japan indicated by the δ^{13} C of water-soluble organic carbon

627	and the m/z 44 signal in organic aerosol mass spectra, Environ. Sci. Technol., 48, 11,
628	6273–6281, 2014.
629	Irei, S., Takami, A., Sadanaga, Y., Miyoshi, T., Arakaki, T., Sato, K., Kaneyasu, N., Bandow,
630	H., and Hatakeyama, S.: Transboundary secondary organic aerosol in western Japan: An
631	observed limitation of the f_{44} oxidation indicator, Atmos. Environ., 120, 71–75, 2015.
632	Jayne, J.T., Leard, D.C., Zhang, X., Davidovits, P., Smith, K.A., Kolb, C.E., and Worsnop,
633	D.R.: Development of an aerosol mass spectrometer for size and composition analysis of
634	submicron particles, Aerosol Sci. Technol., 33, 49–70, 2000.
635	Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H.,

- 636 DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.D., Ulbrich, I.M.,
- 637 Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J. D., Wilson, K.R., Lanz, V.A.,
- Hueglin, C., Sun, Y.L., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P.,
- Ehn, M., Kulmala1, M., Tomlinson, J.M., Collins, D.R., Cubison, M.J., Dunlea, E.J.,
- 640 Huffman, J.A., Onasch, T.B., Alfarra, M.R., Williams, P.I., Bower, K., Kondo, Y.,
- 641 Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D.,
- 642 Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J.Y.,
- 643 Zhang, Y.M., Dzepina, K., Kimmel, J.R., Sueper, D., Jayne, J.T., Herndon, S.C.,
- 644 Trimborn, A.M., Williams, L.R., Wood, E.C., Kolb, C.E., Baltensperger, U., and
- 645 Worsnop, D.R.: Evolution of organic aerosols in the atmosphere, Science, 326, 1525–

646 1529, 2009.

647	Kanaya, Y., Tanimoto, H., Yokouchi, Y., Taketani, F., Komazaki, Y., Irie, H., Takashima, H.,
648	Pan, X., Nozoe, S., and Inomata, S.: Diagnosis of photochemical ozone production rates
649	and limiting factors in continental outflow air masses reaching Fukue Island, Japan:
650	Ozone-control implications. Aerosol Air Qual. Res., 16, 430-441, 2016.
651	Kato, S., Kajii, Y., Itokazu, R., Hirokawa, J., Koda, S., Kinjo, Y.: Transport of atmospheric
652	carbon monoxide, ozone, and hydrocarbons from Chinese coast to Okinawa Island in the
653	western Pacific during winter. Atmos. Environ., 38, 2975–2981, 2004.
654	Kim, CH., Park, SY., Kim, YJ., Chang, LS., Song, SK., Moon, YS., and Song, CK.:
655	A numerical study on indicators of long-range transport potential for anthropogenic
656	particulate matters over northeast Asia, Atmos. Environ., 58, 35–44, 2012.
657	Kleinman, L.I., Daum, P.H., Lee, YN., Senum, G.I., Springston, S.R., Wang, J., Berkowitz,
658	C., Hubbe, J., Zaveri, R.A., Brechtel, F.J., Jayne, J., Onasch, T.B., and Worsnop, D.:
659	Aircraft observations of aerosol composition and ageing in New England and Mid-
660	Atlantic States during the summer 2002 New England Air Quality Study field campaign,
661	J. Geophys. Res.: Atmos., 112, doi:10.1029/2006JD007786, 2007.
662	Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T.,
663	Kawashima, K., Akimoto, H.: Emissions of air pollutants and greenhouse gases over
664	Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version

2, Atmos. Chem. Phys., 13, 11019-11058, 2013.

- 666 Liggio, J., Li, S-M, Vlasenko, A., Sjostedt, S., Chang, R., Shantz, N., Abbatt, J., Slowik, J.G.,
- 667 Bottenheim, J.W., Brickell, P.C., Strond, C., and Leaitch, R.W.: Primary and secondary
- 668 organic aerosols in urban air masses intercepted at a rural site, J. Geophys. Res.: Atmos.,
- 669 115, doi:10.1029/2010JD014426, 2010.
- 670 McKeen, S.A. and Liu, S.C.: Hydrocarbon ratios and photochemical history of air masses,
- 671 Geophys. Res. Lett., 20, 2363–2366, 1993.
- Ng, N. L., Canagaratna, M.R., Zhang, Q., Jimenez, J.L., Tian, J., Ulbrich, I.M., Kroll, J.H.,
- Docherty, K.S., Chhabra, P.S., Bahreini, R., Murphy, S.M., Seinfeld, J.H., Hildebrandt,
- L., Donahue, N.M., DeCarlo, P.F., Lanz, V.A., Prevot, A.S.H., Dinar, E., Rudich, Y. and
- 675 Worsnop, D.R.: Organic aerosol components observed in Northern Hemispheric datasets
- 676 from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, 2010.
- 677 Olszyna, K.J., Bailey, E.M., Simonaitis, R., and Meagher, J.F.: O₃ and NO_y relationships at a
- 678 rural site, J. Geophys. Res.: Atmos., 99(D7), 14,557–14,563, 1994.
- Pandey Deoral, S., Brunner, D., Steinbacher, M., Weers, U., Staehelin, J.: Long-term in situ
- 680 measurements of NOx and NOy at Jungfraujoch 1998–2009: time series analysis and
- evaluation, Atmos. Chem. Phys., 12, 2551–2566, 2012.
- 682 Parrish, D.D., Hahn, C.J., Williams, E.J., Norton, R.B., Fehsenfeld, F.C.: Indications of
- 683 photochemical histories of pacific air masses from measurements of atmospheric trace

- 684 species at Point Arena, California, J. Geophys. Res.: Atmos., 97, D14, 15883–15901,
 685 1992.
- 686 Pochanart, P., Akimoto, H., Kinjo, Y., and Tanimoto, H.: Surface ozone at four remote island
- 687 sites and the preliminary assessment of the exceedances of its critical level in Japan,
- 688 *Atmos. Environ.*, 36, 4235–4250, 2002.
- Roberts, J.M., Fehsenfeld, F.C., Liu, S.C., Bollinger, M.J., Hahn, Carole, Albritton, D.L.,
- 690 Sievers, R.E.: Measurements of aromatic hydrocarbon ratios and NOx concentrations in
- 691 the rural troposphere: Observations of air mass photochemical aging and NOx removal,
- 692 Atmos. Environ., 18, 2414–2432, 1984.
- Roussel, P.B., Lin, X., Camacho, F., Laszlo, S., Taylor, R., Melo, O., Shepson, P.B., Hastie,
- D., and Melo, O.T.: Observations of ozone and precursor levels at two sites around
- 695 Toronto, Ontario, during SONTOS 92, Atmos. Environ., 30(12), 2145–2155, 1996.
- 696 Rudolph, J. and Johnen, F.J.: Measurements of light atmospheric hydrocarbons over the
- 697 Atlantic in regions of low biological activity, J. Geophys. Res.: Atmos., 95, D12, 20583–
- *698* 20591, 1990.
- 699 Sadanaga, Y., Fukumori, Y., Kobashi, T., Nagata, M., Takenaka, N., and Bandow, H.:
- 700 Development of a selective light-emitting diode photolytic NO₂ converter for
- continuously measuring NO₂ in the atmosphere, Anal. Chem., 82, 9234–9239, 2010.
- 702 Seinfeld, J.H. and Pandis, S.N.: Atmospheric Chemistry and Physics, A Wiley Interscience

703 Publication, New York, U.S.A., 1997.

704	Suthawaree, J., Kato, S., Takami, A., Kadena, H., Toguchi, M., Yogi, K., Hatakeyama, S., and
705	Kajii, Y.: Observation of ozone and carbon monoxide at Cape Hedo, Japan: Seasonal
706	variation and influence of long-range transport, Atmos. Environ. 42, 2971–2981, 2008.
707	Takami, A., Miyoshi, T., Shimono, A., and Hatakeyama, S.: Chemical composition of fine
708	aerosol measured by AMS at Fukue Island, Japan during APEX period, Atmos. Environ.,
709	39, 4,913–4,924, 2005.
710	Takami, A., Miyoshi, T., Shimono, A., Kaneyasu, N., Kato, S., Kajii, Y., and Hatakeyama,
711	S.: Transport of anthropogenic aerosols from Asia and subsequent chemical
712	transformation, J. Geophys. Res.: Atmos., 112, D22S31, doi:10.1029/2006JD008120,
713	2007.
714	Takegawa, N., Kondo, Y., Koike, M., Chen, G., Machida, T., Watai, T., Blake, D.R., Streets,
715	D.G., Woo, JH., Carmichael, G.R., Kita, K., Miyazaki, Y., Shirai, T., Liley, J.B., and
716	Ogawa, T.: Removal of NOx and NOy in Asian outflow plumes: Aircraft measurements
717	over the western Pacific in January 2002. J. Geophys. Res.: Atmos., 109, D23S04, 2004.
718	Takegawa, N., Miyakawa, T., Kondo, Y., Blake, D.R., Kanaya, Y., Koike, M., Fukuda, M.,
719	Komazaki, Y., Miyazaki, Y., Shimono, A., and Takeuchi, T.: Evolution of submicron
720	organic aerosol in polluted air exported from Tokyo, Geophys. Res. Lett., 33,
721	doi:10.1029/2006GL025815, 2006.
722	Takiguchi, Y., Takami, A., Sadanaga, Y., Lun, X., Shimizu, A., Matsui, I., Sugimoto, N.,

723	Wang, W., Bandow, H., and Hatakeyama, S.: Transport and transformation of total
724	reactive nitrogen over the East China Sea, J. Geophys. Res.: Atmos., 113,
725	doi:10.1029/2007JD009462, 2008.
726	Tang, J.H., Chan, L.Y., Chang, C.C., Liu, S., and Li, Y.S.: Characteristics and sources of non-
727	methane hydrocarbons in background atmospheres of eastern, southwestern, and
728	southern China, J. Geophys. Res.: Atmos., 114, doi:10.1029/2008JD010333, 2009.
729	Tanimoto, H., Sawa, Y., Yonemura, S., Yumimoto, K., Matsueda, H., Uno, I., Hayasaka, T.,
730	Mukai, H., Tohjima, Y., Tsuboi, K., and Zhang, L.: Diagnosing recent CO emissions and
731	ozone evolution in East Asia using coordinated surface observations, adjoint inverse
732	modeling, and MOPITT satellite data, Atmos. Chem. Phys., 8, 3867–3880, 2008.
733	Ulbrich, I.M., Canagaratna, M.R., Zhang, Q., Worsnop, D.R., and Jimenez, J.L.:
734	Interpretation of organic components from Positive Matrix Factorization of aerosol mass
735	spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, 2009.
736	Yokouchi Y.: Development of real-time monitoring system for non-methane hydrocarbons in
737	the atmosphere, Final Report for Environmental Technology Development Fund,
738	Ministry of the Environment (in Japanese), 2008.
739	Yokouchi Y., Takami, A., and Ohara, T.: Observational and modeling study of the high-ozone
740	episode in northern Kyusyu focused on the impact of ozone precursors, Report of Special
741	Research from the National Institute for Environmental Studies, Japan (in Japanese),

 742
 2011.

743	Yuba, A., Sadanaga, Y., Takami, A., Hatakeyama, S., Takenaka, N., and Bandow, H.:
744	Measurement system for particulate nitrate based on the scrubber difference NO-O ₃
745	chemiluminescence method in remote areas, Anal. Chem., 82, 8916–8921, 2010.
746	Wang, M., Shao, M., Chen, W., Lu, S., Liu, Y., Yuan, B., Zhang, Q., Zhang, Q., Chang, CC.,
747	Wang, B., Zeng, L., Hu, M., Yang, Y., and Li, Y.: Trends of non-methane hydrocarbons
748	(NMHC) emissions in Beijing during 2002-2013. Atmos. Chem. Phys., 15, 1489–1502,
749	2015.
750	Zhang, Q. Worsnop, D.R., Canagaratna, M.R., and Jimenez, J.L.: Hydrocarbon-like and
751	oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic
752	aerosols. Atmos. Chem. Phys., 5, 3289–3311, 2005.
753	
754	
755	
756	
757	
758	
759	
760	

761	
762	
763	Figure captions
764	
765	Figure 1. Location of the Fukue Island monitoring station.
766	
767 768 769	Figure 2. Extracted mass spectra from two-factorial PMF analysis: top, mass spectra identified as hydrocarbon-like organic aerosol (HOA); bottom, mass spectra identified as low-volatile oxygenated organic aerosol (LV-OOA).
770	
771 772	Figure 3. Temporal variation of mass concentration of HOA (orange) and LV-OOA (green) obtained by PMF analysis.
773	
774 775	Figure 4. Plot of f_{44} versus f_{43} for different types of organic aerosols extracted from PMF analysis. Dashed lines are the limits of oxidation states reported by Ng et al. (2010).
776	
777 778 779	Figure 5. Scatter plot of natural logarithm of $[NO_x]/[NO_y]$ ratio versus O ₃ mixing ratio. The data points with the ozone mixing ratios less than 25 ppbv were excluded from the linear regression.
780	
781 782	Figure 6. Time-series variation of photochemical age, t [OH], estimated from [NO _x]/[NO _y] ratios.
783	
784 785 786 787 788	Figure 7. Scatter plot of natural logarithm of [toluene]/[ethyne] ratio as function of natural logarithm of [<i>i</i> -pentane]/[ethyne] ratio (gray dots). Linear regressions shown are calculated depletion trends resulting from mixing with background air (dotted lines) and from reaction with OH radicals (solid lines); these trends were determined by using the initial NMHC ratios from the literature, for vehicular emissions 1 (black open circle), vehicular emissions 2 (red

open circle), solvent use (green open circle), and natural gas and gasoline leakage (blue open circle) observed in Beijing (Wang et al., 2015), as well as field measurement data obtained at Lin'an, a rural background site in the Yangtze River Delta, China (yellow open circle) from Tang et al. (2009). The brown open circle that all the dotted lines meet at corresponds to the background values observed at Cape Hedo (Kato et al., 2004). See the text for the calculation and references for these data.

795

Figure 8. Scatter plot of hourly averaged f_{44} (black dot) as function of photochemical age, t[OH], estimated by means of the NO_x/NO_y clock (the bottom *x*-axis) and a linear regression (grey line). As comparison, f_{44} binary mixing models (dotted curves) of HOA and LV-OOA using different combinations of model parameters (combination I (green); combination II (blue); and combination III (red)) are also shown. See the text for the detail of the combinations of model parameters.

802

Figure 9. Scatter plot of ozone mixing ratio versus photochemical age (*t*[OH]). The data points with the ozone mixing ratios less than 25 ppbv were excluded from the linear regression.

- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815

817

818	Table 1. Concentrations and mixing ratios of chemical species observed during the study
819	period.

	Number of data	Mean	SD	Min ^a	Max	Lower quartile	Median	Upper quartile		
Fine PM			(μg m ⁻³)							
Chloride		0.08	0.12	LDL	2.65	0.03	0.04	0.09		
Ammonium		1.5	1.6	LDL	14.7	0.6	1.1	1.8		
Nitrate		0.69	1.43	LDL	22.00	0.12	0.25	0.63		
Sulfate		4.2	3.3	LDL	23.8	2.0	3.4	5.5		
Organics	22726	2.7	1.9	LDL	24.5	1.4	2.2	3.4		
Total ^b		9.2	7.4	0.02	66.7	4.7	7.5	11.2		
m/z 43 in organics		0.18	0.14	LDL	4.17	0.08	0.14	0.22		
m/z 44 in organics		0.40	0.30	0.06	2.45	0.20	0.33	0.50		
m/z 57 in organics		0.03	0.04	0.01	1.87	0.02	0.03	0.04		
Gas-phase species					(ppbv)				
СО	4163	230	102	57	1136	160	204	272		
NO	4176	0.06	0.16	LDL	4.45	LDL	LDL	0.06		
NO _x	4176	1.39	1.16	LDL	12.70	0.70	1.10	1.70		
NOy	4163	4.86	3.49	0.13	25.41	2.49	3.95	6.03		

820 *a*LDL: lower than detection limit.

4165

3856

3856

3856

821 ^bSum of chloride, ammonium, nitrate, sulfate, and organics.

45

0.106

0.110

0.496

11

0.079

0.142

0.326

10

LDL

LDL

0.014

97

2.055

2.625

4.442

38

0.066

0.044

0.304

45

0.098

0.071

0.407

52

0.132

0.123

0.597

822

O3

i-Pentane

Toluene

Ethyne

824	concer	ntrations	5.											
	PM_NH_4	PM_NO ₃	PM_{SO_4}	PM_org	<i>m</i> / <i>z</i> 43	<i>m</i> / <i>z</i> 44	<i>m</i> / <i>z</i> 57	O ₃	NOx	NOy	СО	<i>i</i> -Pentane	Toluene	Ethyne
PM_NH₄	1	0.693	0.639	0.696	0.443	0.755	0.323	0.251	0.007	0.480	0.405	0.004	0.026	0.097
PM_NO_3	0.693	1	0.263	0.529	0.389	0.521	0.320	0.145	0.035	0.544	0.314	0.025	0.051	0.107
PM_SO_4	0.639	0.263	1	0.430	0.380	0.463	0.191	0.128	0.001	0.179	0.371	0.013	0.006	0.125
PM_org	0.696	0.529	0.430	1	0.747	0.949	0.606	0.303	0.053	0.559	0.562	0.060	0.081	0.198
<i>m</i> / <i>z</i> 43	0.443	0.389	0.380	0.747	1	0.640	0.588	0.146	0.153	0.459	0.543	0.100	0.094	0.301
<i>m</i> / <i>z</i> 44	0.755	0.521	0.463	0.949	0.640	1	0.471	0.384	0.016	0.510	0.526	0.007	0.039	0.142
m/z 57	0.323	0.320	0.191	0.606	0.588	0.471	1	0.098	0.160	0.417	0.394	0.106	0.137	0.236
O ₃	0.251	0.145	0.128	0.303	0.146	0.384	0.098	1	0.007	0.292	0.288	0.013	0.006	0.053
NO _x	0.007	0.035	0.001	0.053	0.153	0.016	0.160	0.007	1	0.309	0.136	0.195	0.225	0.221
NOy	0.480	0.544	0.179	0.559	0.459	0.510	0.417	0.292	0.309	1	0.674	0.117	0.155	0.422
CO	0.405	0.314	0.371	0.562	0.543	0.526	0.394	0.288	0.136	0.674	1	0.193	0.126	0.724
<i>i</i> -Pentane	0.004	0.025	0.013	0.060	0.100	0.007	0.106	0.013	0.195	0.117	0.193	1	0.410	0.435
Toluene	0.026	0.051	0.006	0.081	0.094	0.039	0.137	0.006	0.225	0.155	0.126	0.410	1	0.302
Ethyne	0.097	0.107	0.125	0.198	0.301	0.142	0.236	0.053	0.221	0.422	0.724	0.435	0.302	1

Table 2. Coefficients of determination for correlations between chemical species

Table 3. Three different combinations of model parameters.

Parameters	Combination I ^a	Combination II ^a	Combination III ^b
a (μgC m ⁻³)	0.05	0.0175	0.05
b (μgC m ⁻³)	1	1	1
HOA _{f44}	0	0	0.08
LV-OOAf44	0.237	0.2371	0.22
(OM/OC) _{НОА} (µg µgC ⁻¹)	2.9	2.9	1.2
(OM/OC) _{LV-OOA} (μg μgC ⁻¹)	5.0	5.0	3.7

^aThe f_{44} and OM/OC values for HOA and LV-OOA are based on the results from the PMF analysis.

⁸³¹ ^bParameters used in the previous report (Irei et al., 2014, supportive information).

836 Figure 1. Location of the Fukue Island monitoring station.

838

Figure 2. Extracted mass spectra from two-factorial PMF analysis: top, mass spectra identified
as hydrocarbon-like organic aerosol (HOA); bottom, mass spectra identified as low-volatile
oxygenated organic aerosol (LV-OOA).

Figure 3. Temporal variation of mass concentration of HOA (orange) and LV-OOA (green)obtained by PMF analysis.

Figure 4. Plot of f_{44} versus f_{43} for different types of organic aerosols extracted from PMF analysis. Dashed lines are the limits of oxidation states reported by Ng et al. (2010).

850

Figure 5. Scatter plot of natural logarithm of $[NO_x]/[NO_y]$ ratio versus O₃ mixing ratio. The data points with the ozone mixing ratios less than 25 ppbv were excluded from the linear regression.

855

Figure 6. Time-series variation of photochemical age, t[OH], estimated from $[NO_x]/[NO_y]$ ratios.

859

Figure 7. Scatter plot of natural logarithm of [toluene]/[ethyne] ratio as function of natural 860 logarithm of [*i*-pentane]/[ethyne] ratio (gray dots). Linear regressions shown are calculated 861 862 depletion trends resulting from mixing with background air (dotted lines) and from reaction 863 with OH radicals (solid lines); these trends were determined by using the initial NMHC ratios from the literature, for vehicular emissions 1 (black open circle), vehicular emissions 2 (red 864 open circle), solvent use (green open circle), and natural gas and gasoline leakage (blue open 865 circle) observed in Beijing (Wang et al., 2015), as well as field measurement data obtained at 866 Lin'an, a rural background site in the Yangtze River Delta, China (yellow open circle) from 867 Tang et al. (2009). The brown open circle that all the dotted lines meet at corresponds to the 868 869 background values observed at Cape Hedo (Kato et al., 2004). See the text for the calculation 870 and references for these data.

Figure 8. Scatter plot of hourly averaged f_{44} (black dot) as function of photochemical age, t[OH], estimated by means of the NO_x/NO_y clock (the bottom *x*-axis) and a linear regression (grey line). As comparison, f_{44} binary mixing models (dotted curves) of HOA and LV-OOA using different combinations of model parameters (combination I (green); combination II (blue); and combination III (red)) are also shown. See the text for the detail of the combinations of model parameters.

