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Abstract 13 

Wind predictions in complex terrain are important for a number of applications.  Dynamic 14 

downscaling of numerical weather prediction (NWP) model winds with a high resolution wind 15 

model is one way to obtain a wind forecast that accounts for local terrain effects, such as wind 16 

speed-up over ridges, flow channeling in valleys, flow separation around terrain obstacles, and 17 

flows induced by local surface heating and cooling.  In this paper we investigate the ability of a 18 

mass-consistent wind model for downscaling near-surface wind predictions from four NWP 19 

models in complex terrain.  Model predictions are compared with surface observations from a 20 

tall, isolated mountain.  Downscaling improved near-surface wind forecasts under high-wind 21 

(near-neutral atmospheric stability) conditions.  Results were mixed during upslope and 22 

downslope (non-neutral atmospheric stability) flow periods, although wind direction 23 

predictions generally improved with downscaling.  This work constitutes evaluation of a 24 

diagnostic wind model at unprecedented high spatial resolution in terrain with topographical 25 

ruggedness approaching that of typical landscapes in the western US susceptible to wildland 26 

fire. 27 

 28 

  29 
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1. Introduction 30 

Researchers from multiple disciplines rely on routine forecasts from numerical weather 31 

prediction (NWP) models to drive transport and dispersion models, conduct wind assessments 32 

for wind energy projects, and predict the spread of wildfires.  These applications require fine-33 

scale, near-surface wind predictions in regions where rugged terrain and vegetation have a 34 

significant effect on the local flow field.  Terrain effects such as wind speed-up over ridges, flow 35 

channeling in valleys, flow separation around terrain obstacles, and enhanced surface 36 

roughness alter the flow field over spatial scales finer than those used for routine, operational 37 

NWP forecasting.  38 

 39 

Numerous operational mesoscale NWP model forecast products are available in real-time, such 40 

as those provided by National Centers for Environmental Prediction (NCEP).  Access to these 41 

output products is facilitated by automated archiving and distribution systems such as the 42 

National Operational Model Archive and Distribution System (NOMADS).  These routine 43 

forecast products are highly valuable to researchers and forecasters, for example, as inputs to 44 

drive other models.  In many cases, however, the spatial resolution of the system of interest 45 

(e.g., wildland fire spread) is much finer than that of the NWP model output.   46 

 47 

The model grid horizontal resolution in operational NWP models is limited due, in part, to the 48 

high computational demands of NWP.  Routine gridded forecast products are typically provided 49 

at grid resolutions of 3 km or larger.  The High Resolution Rapid Refresh (HRRR) model produces 50 

3-km output grids and is currently the highest-resolution operational forecast in the U.S. 51 
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 52 

NWP models have been run successfully with grid resolutions of less than 1 km in complex 53 

terrain for specific cases when modifications were made to the meshing (Lundquist et al. 2010) 54 

or PBL schemes (Ching et al., 2014; Seaman et al., 2012) or when large-eddy simulation (LES) 55 

was used (Chow and Street, 2008).  While successful for specific test cases, these efforts 56 

employ specialized model configurations that have not been incorporated into routine 57 

forecasting frameworks, either because they are not sufficiently robust, have not been 58 

thoroughly tested, or are too computationally intense for routine forecasting.  For example, the 59 

configuration used in Seaman et al. (2012) is applicable for stable nocturnal conditions only.   60 

 61 

Additionally, these modifications require technical expertise in NWP and access to substantial 62 

computing resources, which many consumers of NWP output do not have.  Perhaps, the biggest 63 

limitation to running NWP models on grids with fine horizontal resolution is the computational 64 

demand.  Time-sensitive applications, such as operational wildland fire support, require fast 65 

solution times (e.g., less than 1 hr) on simple hardware (e.g., laptop computers with 1-2 66 

processors).  Thus, there remains a practical need for fast-running tools that can be used to 67 

downscale coarse NWP model winds in complex terrain.   68 

 69 

Dynamic downscaling with a steady-state (diagnostic) wind model is one option for obtaining 70 

near-surface high-resolution winds from routine NWP model output (e.g., Beaucage et al., 71 

2014).  The NWP model provides an initial wind field that accounts for mesoscale dynamics 72 

which is then downscaled by a higher resolution wind model to enforce conservation of mass 73 
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and, in some cases, momentum and energy on the flow field on a higher resolution grid that 74 

better resolves individual terrain features.  Dynamic downscaling can be done in a steady-state 75 

fashion for each time step of the NWP model output.  One advantage of using a steady-state 76 

downscaling approach is that the spatial resolution can be increased with no additional 77 

computational cost associated with an increase in temporal resolution. 78 

 79 

Diagnostic wind models have primarily been evaluated with observations collected over 80 

relatively simple, low elevation hills.  Askervein Hill (Taylor and Teunissen, 1987) and Bolund Hill 81 

(Berg et al., 2011) are the two mostly commonly used datasets for evaluating diagnostic wind 82 

models.  These are both geometrically simple, low-elevation hills compared to the complex 83 

terrain exhibited in many regions of the western U.S. susceptible to wildland fire.  Lack of 84 

evaluations under more complex terrain is due in part to the lack of high-resolution datasets 85 

available in complex terrain.  Recently, Butler et al. (2015) reported high-resolution wind 86 

observations from a tall, isolated mountain (Big Southern Butte) in the western U.S.  Big 87 

Southern Butte is substantially taller and more geometrically complex than both Askervein and 88 

Bolund hills.   89 

 90 

In this work, we investigate the ability of a mass-conserving wind model, WindNinja (Forthofer 91 

et al., 2014a), for dynamically downscaling NWP model winds over Big Southern Butte.  92 

WindNinja is a diagnostic wind model developed for operational wildland fire support. It is 93 

primarily designed to simulated mechanical effects of terrain on the flow, which are most 94 

important under high-wind conditions; however, WindNinja also contains parameterizations for 95 
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local thermal effects, which are more important under periods of weak external forcing.  96 

WindNinja has primarily been evaluated under high-wind conditions, which are thought to be 97 

most important for wildland fire behavior, and so these the thermal parameterizations have not 98 

been thoroughly tested.  WindNinja has previously been evaluated against the Askervein Hill 99 

data (Forthofer et al., 2014a) and found to capture important terrain-induced flow features, 100 

such as ridgetop speed-up, and it has been shown to improve wildfire spread predictions in 101 

complex terrain (Forthofer et al., 2014b).  We focus on downscaling wind in this work because it 102 

is typically more spatially and temporally variable than temperature or relative humidity, and 103 

thus, more important to predict at high spatial resolution.  Wind is also often the driving 104 

environmental variable for wildfire behavior. 105 

 106 

The goals of this work were to (1) investigate the accuracy of NWP model near-surface wind 107 

predictions in complex terrain on spatial scales relevant for processes driven by local surface 108 

winds, such as wildland fire behavior and (2) assess the ability of a mass-consistent wind model 109 

to improve these predictions through dynamic downscaling.  Wind predictions are investigated 110 

from four NWP models operated on different horizontal grid resolutions.  This work constitutes 111 

one of the first evaluations of a diagnostic wind model with data collected over terrain with a 112 

topographical ruggedness approaching that of western U.S. landscapes susceptible to wildland 113 

fire. 114 

 115 

2. Model descriptions and configurations 116 
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WRF is a NWP model that solves the non-hydrostatic, fully compressible Navier-Stokes 117 

equations using finite difference method (FDM) discretization techniques (Skamarock et al., 118 

2008).  All of the NWP models investigated in this work use either the Advanced Research WRF 119 

(ARW) or the non-hydrostatic multi-scale model (NMM) core of the WRF model (Table 1).   120 

2.1. Routine Weather Research and Forecasting (WRF-UW) 121 

Routine WRF-ARW forecasts with 4 km horizontal grid resolution were acquired from the 122 

University of Washington Atmospheric Sciences forecast system 123 

(www.atmos.washington.edu/mm5rt/info.html).  These forecasts are referred to as WRF-UW.  124 

The outer domain of WRF-UW has a horizontal grid resolution of 36 km and covers most of the 125 

western US and northeastern Pacific Ocean.  This outer domain is initialized with NCEP Global 126 

Forecast System (GFS) 1-degree runs.  The 36 km grid is nested down to 12 km, 4 km, and an 127 

experimental 1.33 km grid which covers a limited portion of the Pacific Northwest.  The 4 km 128 

grid investigated in this study covers the Pacific Northwest, including Washington, Oregon, 129 

Idaho, and portions of California, Nevada, Utah, Wyoming, and Montana.  Physical 130 

parameterizations employed by WRF-UW include the Noah Land Surface Model (Chen et al., 131 

1996), Thompson microphysics (Thompson et al., 2004), Kain-Fritsch convective scheme (Kain, 132 

2004), Rapid Radiative Transfer Model (RRTM) for longwave radiation (Mlawer et al., 1997), 133 

Duhdia (1989) for shortwave radiation, and the Yonsei University (YSU) boundary layer scheme 134 

(Hong et al., 2006).  WRF-UW is run at 00z and 12z and generates hourly forecasts out to 84 135 

hours.  The computational domain consists of 38 vertical layers.  The first grid layer is 136 

approximately 40 m AGL and the average model top height is approximately 16000 m AGL. 137 
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2.2. Weather Research and Forecasting Reanalysis (WRF-NARR)  138 

WRF-ARW reanalysis runs were performed using the NCEP North American Regional Reanalysis 139 

(NARR) data (Mesinger et al., 2006).  The reanalysis runs are referred to as WRF-NARR.  The 140 

same parameterizations and grid nesting structures used in WRF-UW were also used for the 141 

WRF-NARR simulations, except that the WRF-NARR inner domain had 33 vertical layers and a 142 

horizontal grid resolution of 1.33 km (Table 1).  Analysis nudging (e.g., Stauffer and Seaman, 143 

1994) was used above the boundary layer in the outer domain (36 km horizontal grid 144 

resolution).  Hourly WRF-NARR simulations were run for 15 day periods with 12 hours of model 145 

spin up prior to each simulation.  The first grid layer was approximately 38 m AGL and the 146 

average model top height was approximately 15000 m AGL.  WRF-NARR differs from the other 147 

models used in this study in that it is not a routinely run model.  These were custom simulations 148 

conducted by our group to provide a best-case scenario for the NWP models.  Routine forecasts 149 

are already available for limited domains (e.g., UW provides WRF simulations on a 1.33 km grid 150 

for a small domain in the Pacific Northwest of the US) and are likely to become more widely 151 

available at this grid resolution in the near future. 152 

2.3. North American Mesoscale Model (NAM) 153 

The North American Mesoscale (NAM) model is an operational forecast model run by NCEP for 154 

North America (http://www.emc.ncep.noaa.gov/index.php?branch=NAM).  The NAM model 155 

uses the NMM core of the WRF model.  The NAM CONUS domain investigated in this study has 156 

a horizontal grid resolution of 12 km.  NAM employs the Noah Land Surface model (Chen et al., 157 

1996), Ferrier et al. (2003) for microphysics, Kain (2004) for convection, GFDL (Lacis and 158 
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Hansen, 1974) for longwave and shortwave radiation, and the Mellor-Yamada-Janjic (MJF) 159 

boundary layer scheme (Janjic, 2002).  The NAM model is initialized with 12-hr runs of the NAM 160 

Data Assimilation System.  It is run four times daily at 00z, 06z, 12z, and 18z and generates 161 

hourly forecasts out to 84 hours.  The computational domain consists of 26 vertical layers.  The 162 

first grid layer is approximately 200 m AGL and the average model top height is approximately 163 

15000 m AGL.  NAM forecasts are publicly available in real time from NCEP.  Although the 12-164 

km horizontal resolution used in NAM is not sufficient to resolve the butte, this resolution is 165 

sufficient for resolving the surrounding Snake River Plain and therefore can be used to generate 166 

a domain-average flow for input to WindNinja. 167 

2.4. High Resolution Rapid Refresh (HRRR) 168 

The High Resolution Rapid Refresh (HRRR) system is a nest inside of the NCEP-Rapid Refresh 169 

(RAP) model (13 km horizontal grid resolution; http://ruc.noaa.gov/hrrr/).  HRRR has a 170 

horizontal grid resolution of 3 km and is updated hourly.  HRRR uses the WRF model with the 171 

ARW core and employs the RUC-Smirnova Land Surface Model (Smirnova et al., 1997; Smirnova 172 

et al., 2000), Thompson et al. (2004) microphysics, RRTM longwave radiation (Mlawer et al., 173 

1997), Goddard shortwave radiation (Chou and Suarez, 1994), the MYJ boundary layer scheme 174 

(Janjic, 2002).  HRRR is initialized from 3-km grids with 3-km radar assimilation over a 1-hr 175 

period.  HRRR is currently the highest resolution operational forecast available in real time.  The 176 

computational domain consists of 51 vertical layers.  The first grid layer is approximately 8 m 177 

AGL and the average model top height is approximately 16000 m AGL. 178 

2.5. WindNinja 179 
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WindNinja is a mass-conserving diagnostic wind model developed and maintained by the USFS 180 

Missoula Fire Sciences Laboratory (Forthofer et al., 2014a).  The theoretical formulation is 181 

described in detail in Forthofer et al. (2014a).  Here we provide a brief overview of the 182 

modeling framework.  WindNinja uses a variational calculus technique to minimize the change 183 

in an initial wind field while conserving mass locally (within each cell) and globally over the 184 

computational domain.  The numerical solution is obtained using finite element method (FEM) 185 

techniques on a terrain-following mesh consisting of layers of hexahedral cells that grow 186 

vertically with height.   187 

 188 

WindNinja includes a diurnal slope flow parameterization (Forthofer et al., 2009).  The diurnal 189 

slope flow model used in WindNinja is the shooting flow model in Mahrt (1982).  It is a one-190 

dimensional model of buoyancy-driven flow along a slope.  A micrometeorological model 191 

similar to the one used in CALMET (Scire et al., 2000; Scire and Robe, 1997) is used to compute 192 

surface heat flux, Monin-Obukhov length, and boundary layer height.  The slope flow is then 193 

calculated as a function of sensible heat flux, distance to ridgetop or valley bottom, slope 194 

steepness, and surface and entrainment drag parameters.  The slope flow is computed for each 195 

grid cell and added to the initial wind in that grid cell.  Additional details can be found in 196 

Forthofer et al. (2009). 197 

 198 

WindNinja was used to dynamically downscale hourly 10-m wind predictions from the above 199 

NWP models.  The WindNinja computational domain was constructed from 30-m resolution 200 
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Shuttle Radar Topography Mission (SRTM) data (Farr et al., 2007).  The 10-m NWP winds were 201 

bilinearly interpolated to the WindNinja computational domain and used as the initial wind 202 

field.  Layers above and below the 10-m height were fit to a logarithmic profile (neutral 203 

atmospheric stability) based on the micrometeorological model.  The computational domain 204 

consisted of 20 vertical layers.  The first grid layer is 1.92 m AGL and the average model top 205 

height is 931 m AGL. 206 

2.6. Terrain representation 207 

The four NWP models used in this study employ an implementation of the WRF model.  They 208 

use different initial and boundary conditions, incorporate different parameterizations for sub-209 

grid processes, such as land surface fluxes, convection, and PBL evolution, but in terms of 210 

surface wind predictions under the conditions investigated in this study (inland, dry 211 

summertime conditions), the horizontal grid resolution is arguably the most important 212 

difference among the models.  The horizontal grid resolution affects the numerical solution 213 

since fewer terrain features are resolved by coarser grids.  Coarser grids essentially impart a 214 

smoothing effect which distorts the actual geometry of the underlying terrain (Fig. 1).  As 215 

horizontal cell size and terrain complexity increase, the accuracy of the terrain representation 216 

and thus, the accuracy of the near-surface flow solution deteriorate.   217 

 218 
3. Evaluations with field observations 219 

3.1. Observations at Big Southern Butte 220 
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Surface wind data (Butler et al., 2015) collected from an isolated mountain (Big Southern Butte, 221 

hereafter ‘BSB’; 43.395958, -113.02257) in southeast Idaho were used to evaluate surface wind 222 

predictions (Fig. 1).  BSB is a predominantly grass-covered volcanic cinder cone with a 223 

horizontal scale of 5 km and a vertical scale of 800 m and surrounded in all directions by the 224 

relatively flat Snake River Plain.  The portion of the Snake River Plain surrounding BSB slopes 225 

downward gently from the northeast to the southwest. 226 

 227 

Three-meter wind speeds and directions were measured with cup-and-vane anemometers at 228 

53 locations on and around BSB.  The anemometers have a measurement range of 0 to 44 m s-1, 229 

a resolution of 0.19 m s-1 and 1.4°, and are accurate to within ±0.5 m s-1 and ±5°.  The 230 

anemometers measured wind speed and direction every second and logged 30-s averages.  We 231 

averaged these 30-s winds over a 10-min period at the top of each hour (five minutes before 232 

and 5 minutes after the hour).  The 10-min averaging period was chosen to correspond roughly 233 

with the time scale of wind predictions from the NWP forecasts.  The NWP output is valid at a 234 

particular instant in time, but there is always some inherent temporal averaging in the 235 

predictions.  The temporal averaging associated with a given prediction depends on the time-236 

step used in the NWP model and is typically on the order of minutes.  The 10-min averaged 237 

observed data are referred to in the text as ‘hourly’ observations (since they are averaged at 238 

the top of each hour) and are compared directly with the hourly model predictions. 239 

 240 
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Butler et al. (2015) observed the following general flow features at BSB.  During periods of weak 241 

synoptic and mesoscale forcing (hereafter, referred to collectively as ‘external forcing’), the 242 

observed surface winds at BSB were decoupled from the large-scale atmospheric flows, except 243 

for at high-elevation ridgetop locations.  Diurnal slope flows dominated the local surface winds 244 

under periods of weak external forcing.  There were frequent periods of strong external forcing, 245 

during which the diurnal slope winds on BSB were completely overtaken by the larger-scale 246 

winds.  These periods of strong external forcing at BSB were typically characterized by large-247 

scale southwesterly flow aligned with the Snake River Plain, although occasionally there were 248 

also strong early morning winds from the northeast.  Under periods of strong external forcing 249 

wind speeds commonly varied by as much as 15 m s-1 across the domain due to mechanical 250 

effects of the terrain (e.g., speed-up over ridges and lower speeds on leeward slopes).  251 

Additional details regarding the BSB field campaign can be found in Butler et al. (2015).  252 

3.2. Evaluation methods 253 

Hourly observations were compared against corresponding hourly predictions from the most 254 

recent model run.  Modeled and observed winds were compared by interpolating the modeled 255 

surface wind variables to the observed surface sensor locations at each site.  The 10-m winds 256 

from the NWP forecasts were interpolated to sensor locations, using bilinear interpolation in 257 

the horizontal dimension and a log profile in the vertical dimension.  A 3-D interpolation 258 

scheme was used to interpolate WindNinja winds to the sensor locations.  This 3-D 259 

interpolation was possible because the WindNinja domain had layers above and below the 260 
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surface sensor height (3.0 m AGL).  A 3-D interpolation scheme was not possible for the NWP 261 

domains since there were not any layers below the three meter surface sensor height. 262 

 263 

Model performance was quantified in terms of the mean bias, root-mean-square error (RMSE), 264 

and standard deviation of the error (SDE): 265 
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where φ’ is the difference between simulated and observed variables and N is the number of 269 

observations.   270 

3.3. Case selection 271 

We selected a five-day period from July 15-19 2010 for model evaluations. This specific period 272 

was chosen because it included periods of both strong and weak external forcing, conditions 273 

were consistently dry and sunny, and was a period for which we were able to acquire forecasts 274 

from all NWP models selected for investigation in this study.   275 

 276 

(1) 

(2) 

(3) 
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The observed data from the five-day period were broken into periods of upslope, downslope, 277 

and externally-driven flow conditions to further investigate model performance under these 278 

particular types of flow regimes.  We used the partitioning schemes described in Butler et al. 279 

(2015).  Externally-driven events were partitioned out by screening for hours during which wind 280 

speeds at a designated sensor (R2, located 5 km southwest of the butte in flat terrain) exceeded 281 

a predetermined threshold wind speed of 6 m s-1.  This sensor was chosen because it was 282 

located in flat terrain far from the butte and therefore was representative of near-surface 283 

winds that were largely unaffected by the butte itself.  Hours of upslope and downslope flows 284 

(i.e., observations under weak external forcing) were then partitioned out of the remaining 285 

data.  Additional details regarding the partitioning scheme can be found in Butler et al. (2015).  286 

Statistical metrics were computed for these five-day periods. 287 

We also chose one specific hour representative of each flow regime within the 5-day period to 288 

qualitatively investigate model performance for single flow events under the three flow 289 

regimes.  This directly comparison of NWP model predictions, downscaled predictions, and 290 

observations for single events in order to get a visual sense for how the models performed 291 

spatially while avoiding any inadvertent complicating issues that may have arose from temporal 292 

averaging over the flow regimes.   293 

4. Results and discussion 294 

4.1. Overview of the five-day simulations 295 

Fig. 2 shows observed vs. forecasted wind speeds during the five-day period.  The following 296 

generalizations can be made.  The NWP models predicted wind speeds below 5 m s-1 297 
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reasonably well on average, although HRRR tended to over predict at speeds below 3 m s-1 (Fig. 298 

2).  There is a lot of scatter about the regression lines, but the regressions follow the line of 299 

agreement fairly well up to observed speeds around 5 m s-1.  Downscaling did not improve wind 300 

speed predictions much in this range.  NWP forecast accuracy declined for observed speeds 301 

between 5 and 10 m s-1, and accuracy sharply dropped off for observed speeds above 10 m s-1.  302 

This is indicated by the rapid departure of the NWP model regression lines from the line of 303 

agreement (Fig 2).  Downscaling improved wind speed predictions for all NWP forecasts for 304 

observed speeds greater than around 5 m s-1 and the biggest improvements were for observed 305 

speeds greater than 10 m s-1 (Fig. 2).  This is indicated by the relative proximity of the 306 

downscaled regression lines to the line of agreement (Fig. 2).   307 

 308 

Poor model accuracy at higher speeds is largely due to the models under predicting windward 309 

slope and ridgetop wind speeds.  Observed speeds at these locations were often three or four 310 

times higher than speeds in other locations in the study area (e.g., note the spatial variability in 311 

Fig 3).  Butler et al. (2015) showed that the highest observed speeds occurred on upper 312 

elevation windward slopes and ridgetops and the lowest observed speeds occurred on the 313 

leeward side of the butte and in sheltered side drainages on the butte itself.  Downscaling with 314 

WindNinja offers improved predictions at these locations as indicated by Fig. 2 (regression lines 315 

in closer proximity to the line of agreement) and Fig. 3 (spatial variability in predictions more 316 

closely matches that of the observations).  317 

 318 
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Additionally, the downscaled NAM wind speeds were as accurate as the downscaled HRRR and 319 

WRF-UW wind speeds (Fig. 2).  This indicates that the NAM forecast was able to capture the 320 

important large-scale flow features around BSB such that the additional resolution provided by 321 

HRRR and WRF-UW was not essential to resolve additional flow features in the large scale flow 322 

around BSB.   323 

 324 

The accuracy of the NAM forecast at BSB is likely due to the fact that Snake River Plain which 325 

surrounds BSB is relatively flat and extends more than 50 km in all directions from the butte.  326 

Even a 12 km grid resolution would be capable of resolving the Snake River Plain and diurnal 327 

flow patterns within this large, gentle-relief drainage.  Coarse-resolution models would not be 328 

expected to offer this same level of accuracy in areas of more extensive complex terrain, 329 

however.  In areas surrounded by highly complex terrain it may be necessary to acquire NWP 330 

model output on finer grids in order to resolve the regional flow features. 331 

 332 

The NWP forecasts predicted the overall temporal trend in wind speed (Fig. 3), but 333 

underestimated peak wind speeds due to under predictions on ridgetops and windward slopes 334 

as previously discussed, and also occasionally in the flat terrain on the Snake River Plain 335 

surrounding the butte (Fig. 4).   336 

 337 
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NWP models with coarser resolution grids predicted less spatial variability in wind speed (Fig. 338 

3).  This is because there were fewer grid cells covering the domain, and thus fewer prediction 339 

points around the butte.  The spatial variability in the downscaled wind speed predictions more 340 

closely matched that of the observed data, although the highest speeds were still under 341 

predicted (Fig. 3).  Although downscaling generally improved the spatial variability of the 342 

predictions, there were cases where NWP errors clearly propagated into the downscaled 343 

simulations.  For example, HRRR frequently over predicted morning wind speeds associated 344 

with down-drainage flow on the Snake River Plain; this error was amplified in the downscaled 345 

simulations, especially at the ridgetop locations (e.g., Fig. 3-4, 15-17 July).   346 

 347 

The mean bias, RMSE, and SDE for wind speed and wind direction were smaller in nearly all 348 

cases for the downscaled simulations than for the NWP forecasts during the five-day period 349 

(Table 2).  Mean biases in wind speed were all slightly negative and NAM and WRF-UW had the 350 

largest mean biases.  The RMSE and SDE in wind speed were largest for HRRR.  Although mean 351 

bias, RMSE, and SDE in wind direction for the downscaled forecasts were smaller or equal to 352 

those for the NWP forecasts, the differences were small, with a maximum reduction in mean 353 

bias in wind direction of just 4°.   354 

 355 

It is difficult to draw too many conclusions from the spatially and temporally averaged 5-day 356 

statistics, however, since this period included a range of meteorological conditions (e.g., high-357 
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wind events from different directions, upslope flow, downslope flow) each of which could have 358 

been predicted with a different level of skill by the models.  Qualitatively, however, the 5-day 359 

results demonstrate that the spatial variability in the downscaled winds better matches that of 360 

the observed winds at BSB (Fig. 3) and, although the reductions were small in some cases, 361 

nearly all statistical metrics also improved with downscaling.  The analysis is broken down by 362 

flow regime in the next section for more insight into model performance.  363 

4.2. Performance under Upslope, downslope, and externally-forced flows 364 

Local solar heating and cooling was a primary driver of the flow during the slope flow regime at 365 

BSB (Butler et al. 2015), with local thermal effects equal to or exceeding the local mechanical 366 

effects of the terrain on the flow.  Because there is weak external forcing (i.e., input wind 367 

speeds to WindNinja are low), the downscaling is largely driven by the diurnal slope flow 368 

parameterization in WindNinja during the slope flow regimes.   369 

 370 

During upslope flow, the diurnal slope flow parameterization increases speeds on the windward 371 

slopes and reduces speeds (or reverses flow and increases speeds, depending on the strength 372 

of the slope flow relative to the prevailing flow) on lee slopes due to the opposing effects of the 373 

prevailing wind and the thermal slope flow.  The parameterization has the opposite effect 374 

during downslope flow; windward slope speeds are reduced (or possibly increased if downslope 375 

flow is strong enough to reverse the prevailing flow) and lee side speeds are enhanced. 376 

4.2.1 Wind speed 377 
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The biggest improvements in wind speed predictions from downscaling occurred during 378 

externally-driven flow events (Fig. 5).  This is not surprising since the highest spatial variability in 379 

the observed wind speeds occurred during high-wind events due to mechanically-induced 380 

effects of the terrain, with higher speeds on ridges and windward slopes and lower speeds in 381 

sheltered side drainages and on the lee side of the butte (Fig. 6-8).  Since WindNinja is designed 382 

primarily to simulate the mechanical effects of the terrain on the flow, it is during these high-383 

wind events that the downscaling has the most opportunity to improve predictions across the 384 

domain.  This has important implications for wildfire applications since high-wind events are 385 

often associated with increased fire behavior. 386 

 387 

The NWP models tended to under predict wind speeds on the windward slopes, ridgetops, and 388 

surrounding flat terrain, and over predict on the lee side of the butte during high wind events 389 

(e.g., Fig. 6).  The largest NWP errors in wind speed during high wind events were on the 390 

ridgetops, where speed-up occurred and the NWP under predicted speeds.  These largest wind 391 

speed errors were reduced by downscaling (e.g., Fig. 6).  Downscaling reduced NWP wind speed 392 

errors in most regions on the butte, although the general trend of under predicting wind speeds 393 

on the windward side and over predicting on the lee side did not change (e.g., Fig. 6). 394 

 395 

There were consistent improvements in predicted wind speeds from downscaling during the 396 

upslope regime, although the improvements were smaller than for the externally-driven regime 397 

(Fig. 5).  Wind speeds were lower during the slope flow regimes than during the externally-398 
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forced regime (Fig. 6-8), and thus, smaller improvements were possible with downscaling.  399 

There was some speed-up predicted on the windward side of the butte during the 400 

representative upslope case which appeared to match the observed wind field (Fig. 8).   401 

 402 

Results were mixed for the downslope regime, as wind speeds improved with downscaling for 403 

WRF-UW and NAM, but not for WRF-NARR or HRRR (Fig. 5).  The poor wind speed predictions 404 

from HRRR during the downslope regime is partly due to the fact that HRRR tended to over 405 

predict early morning winds associated with down drainage flows on the Snake River Plain.  406 

These errors were amplified by the downscaling, especially at ridgetop locations (Fig. 4).  In 407 

reality, the high-elevation ridgetop locations tended to be decoupled from lower-level surface 408 

winds during the slope flow regimes due to flow stratification.  WindNinja assumes neutral 409 

atmospheric stability, however, so this stratification is not handled.  A parameterization for 410 

non-neutral atmospheric conditions is currently being tested in Windninja.  411 

 412 

The diurnal slope flow parameterization in WindNinja resulted in lower speeds on the 413 

windward side and higher speeds on the lee side of the butte for the representative downslope 414 

case (Fig. 7).  These downscaled speeds better matched those of the observed wind field, 415 

although speeds were still under predicted for ridgetops and a few other locations around the 416 

butte (Fig. 7).  The high observed speeds at the ridgetop locations are not likely due to thermal 417 

slope flow effects, but could be from the influence of gradient-level winds above the nocturnal 418 

boundary layer.  These ridgetop locations are high enough in elevation (800 m above the 419 
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surrounding plain) that they likely protruded out of the nocturnal boundary layer and were 420 

exposed to the decoupled gradient-level winds.  Butler et al. (2015) noted that ridgetop winds 421 

did not exhibit a diurnal pattern and tended to be decoupled from winds at other locations on 422 

and around the butte.  Lack of diurnal winds at the summit of the butte is also confirmed by 423 

National Oceanic and Atmospheric Administration Field Research Division (NOAA-FRD) mesonet 424 

station data collected at the top of BSB (described in Butler et al., 2015; 425 

http://www.noaa.inel.gov/projects/INLMet/INLMet.htm). 426 

 427 

Under predictions on the lower slopes and on the plain surrounding the butte could be due to 428 

overly weak slope flows being generated by the slope flow parameterization in WindNinja (Fig. 429 

7-8).  Overly weak slope flows could be caused by a number of things: improper 430 

parameterization of surface or entrainment drag parameters, poor estimation of the depth of 431 

the slope flow, or deficiencies in the micrometeorological model used.  The slope flow 432 

parameterization is being evaluated in a companion paper. 433 

4.2.2  Wind direction 434 

The biggest improvement in wind direction predictions from downscaling occurred during the 435 

downslope regime (Fig. 5).  Wind direction improved with downscaling for all NWP models 436 

during periods of downslope flow.  This indicates that the diurnal slope flow model helped to 437 

orient winds downslope.  This is confirmed by inspection of the vector plots for the 438 

representative downslope case which show the downscaled winds oriented downslope on the 439 

southwest and northeast faces of the butte (Fig. 7).  Downscaling reduced speeds on the 440 
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northwest (windward) side of the butte, but did not predict strong enough downslope flow in 441 

this region to reverse the flow from the prevailing northwest direction (Fig. 7).  This again 442 

suggests that perhaps the diurnal slope flow algorithm is predicting overly weak slope flows. 443 

 444 

Wind direction predictions during the upslope regime also improved with downscaling for all 445 

NWP models except HRRR (Fig. 5).  Downscaled winds for the representative upslope case were 446 

oriented upslope on the southwest (lee side) of the butte and matched the observed winds in 447 

this region well (Fig. 8).  This is an improvement over the NWP wind directions on the lee side of 448 

the butte. 449 

 450 

There was no improvement in wind direction predictions with downscaling during the 451 

externally-driven regime (Fig. 5).  Looking at the vector plots during the representative 452 

externally-driven event (Fig. 6), it is clear why this would be.  The representative event was a 453 

high-wind event from the southwest.  Wind directions are well predicted on the windward side 454 

of the butte, but not on the leeward side, where the observed field indicates some recirculation 455 

in the flow field (Fig. 6).  The prevailing southwesterly flow is captured by the NWP model, but 456 

the lee side recirculation is not.  WindNinja does not predict the lee side recirculation, and thus, 457 

the downscaling does not improve directions on the lee side of the butte (Fig. 7).  This is an 458 

expected result, as WindNinja has been shown to have difficulties simulating flows on the lee 459 

side of terrain features due to the fact that it does not account for conservation of momentum 460 

in the flow solution (Forthofer et al., 2014a).  461 
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5. Summary 462 

The horizontal grid resolutions of NWP models investigated in this study were too coarse to 463 

resolve the BSB terrain.  Results showed that the NWP models captured the important large-464 

scale flow features around BSB under most conditions, but were not capable of predicting the 465 

high spatial variability (scale of 100s of meters) in the observed winds on and around the butte 466 

induced by mechanical effects of the terrain and local surface heating and cooling.  Thus, 467 

surface winds from the NWP models investigated in this study would not be sufficient for 468 

forecasting wind speeds on and around the butte at the spatial scales relevant for processes 469 

driven by local surface winds, such as wildland fire spread. 470 

 471 

Wind predictions generally improved for all NWP models by downscaling with WindNinja.  The 472 

biggest improvements occurred under high-wind events (near-neutral atmospheric stability) 473 

when observed wind speeds were greater than 10 m s-1.  This finding has important 474 

implications for fire applications since increased wildfire behavior is often associated with high 475 

winds.  Downscaled NAM wind speeds were as accurate as downscaled WRF-UW and HRRR 476 

wind speeds, indicating that a NWP model with 12 km grid resolution was sufficient for 477 

capturing the large-scale flow features around BSB.  478 

 479 

WindNinja did not predict the observed lee-side flow recirculation at BSB that occurred during 480 

externally-forced high wind events.  Previous work has shown that WindNinja has difficulties 481 



25 
 

simulating lee-side flows (Forthofer et al., 2014a).  This is partly due to lack of a momentum 482 

equation in the WindNinja flow solution as discussed in Forthofer et al. (2014a).  Work is 483 

currently underway to incorporate an optional momentum solver in WindNinja which is 484 

anticipated to improve flow predictions on the lee-side of terrain obstacles. 485 

 486 

Results indicated that WindNinja predicted overly weak slope flows compared to observations.  487 

Weak slope flow could be caused by several different issues within the diurnal slope flow 488 

parameterization in WindNinja: improper parameterization of surface or entrainment drag 489 

parameters, poor estimation of the depth of the slope flow, or deficiencies in the 490 

micrometeorological model.  These issues will be explored in future work. 491 

 492 

This work constitutes evaluation of a diagnostic wind model at unprecedented high spatial 493 

resolution and terrain complexity.  While extensive evaluations have been performed with data 494 

collected in less rugged terrain (e.g., Askervein Hill and Bolund Hill, relatively low elevation hills 495 

with simple geometry), to our knowledge, this study is the first to evaluate a diagnostic wind 496 

model with data collected in terrain with topographical ruggedness approaching that of typical 497 

landscapes in the western US susceptible to wildland fire.  This work demonstrates that NWP 498 

model wind forecasts can be improved in complex terrain, especially under high-wind events, 499 

through dynamic downscaling via a mass-conserving wind model.  These improvements should 500 

propagate on to more realistic predictions from other model applications which are sensitive to 501 
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surface wind fields, such as wildland fire behavior, local-scale transport and dispersion, and 502 

wind energy applications. 503 
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Tables 597 

Table 1. Model specifications.   598 
Model Horizontal 

grid 
resolution 

Number 
vertical 
layers 

First layer 
heighta 
(m AGL) 

Top 
heighta  
(m AGL) 

Numerical 
core 

Run 
frequency 

NAM 12 km 26 200 15000 NMM 00z, 06z, 
12z, 18z 

WRF-UW 4 km 38 40 16000 ARW 00z, 12z 
HRRR 3 km 51 8 16000 ARW hourly 
WRF-NARR 1.33 km 33 38 15000 ARW NA 
WindNinja 138 m 20 1.92 931 NA NA 

aApproximate average height AGL. 599 

 600 
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Table 2. Model mean bias, root-mean-square error (RMSE), and standard deviation of errors (SDE) for surface wind speeds and 601 
directions during the 5-day evaluation period at Big Southern Butte.  Downscaled values are in parentheses. Smaller values are in 602 
bold. The 5-day period includes the Downslope, Upslope, and Externally-driven time periods.  603 
Time period Statistic NAM WRF-UW HRRR WRF-NARR 
  Wind Speed (m s-1) 
5-day Bias -0.84 (-0.67) -1.17 (-0.95) -0.40 (-0.14) -0.31 (-0.08) 
 RMSE 2.31 (2.04) 2.39 (2.07) 2.52 (2.47) 2.33(2.21) 
 SDE 2.15 (1.92) 2.08 (1.83) 2.49 (2.47) 2.31 (2.21) 
Downslope Bias -1.07 (-0.76) -1.15 (-0.74) -0.09 (0.48) -0.48 (0.12) 
 RMSE 2.08 (1.92) 2.03 (1.83) 2.36 (2.66) 2.19 (2.28) 
 SDE 1.79 (1.77) 1.67 (1.68) 2.36 (2.62) 2.14 (2.28) 
Upslope Bias -0.81 (-0.74) -1.11 (-0.98) -0.81 (-0.75) 0.06 (0.05) 
 RMSE 1.73 (1.62) 2.02 (1.86) 1.93 (1.81) 1.86 (1.86) 
 SDE 1.52 (1.44) 1.69 (1.58) 1.76 (1.64) 1.86 (1.86) 
Externally-driven Bias -0.57 (-0.62) -1.28 (-1.32) -0.94 (-1.03) -0.22 (-0.33) 
 RMSE 3.06 (2.48) 3.21 (2.58) 3.17 (2.59) 2.92 (2.39) 
 SDE 3.00 (2.40) 2.94 (2.22) 3.02 (2.38) 2.92 (2.37) 
  Wind Direction (°) 
5-day Bias 59 (56) 57 (53) 64 (60) 57 (54) 
 RMSE 76 (72) 74 (71) 80 (76) 73 (71) 
 SDE 47 (46) 47 (46) 47 (46) 46 (46) 
Downslope Bias 67 (60) 61 (56) 76 (67) 66 (61) 
 RMSE 83 (77) 78 (72) 88 (81) 81 (75) 
 SDE 49 (47) 48 (46) 46 (46) 47 (45) 
Upslope Bias 55 (52) 58 (54) 56 (56) 52 (49) 
 RMSE 70 (67) 74 (71) 72 (72) 68 (65) 
 SDE 44 (42) 46 (45) 45 (46) 44 (42) 
Externally-driven Bias 48 (49) 45 (46) 51 (50) 44 (46) 
 RMSE 64 (65) 63 (65) 68 (67) 62 (65) 
 SDE 43 (44) 44 (47) 45 (44) 43 (46) 

604 
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Figures 605 

 606 
Figure 1. Terrain representation (m ASL) in WindNinja, WRF-NARR, HRRR, and WRF-UW for the 607 

Big Southern Butte.  Crosses indicate surface sensor locations.  Maps are projected in the 608 

Universal Transverse Mercator (UTM) zone 12 coordinate system. Axis labels are eastings and 609 

northings in m.  Profiles in gray are the average elevations for rows and columns in the panel.  610 

NAM (12 km) terrain is represented by just four cells and is not shown here. 611 

 612 

Figure 2. Observed vs. predicted wind speeds for the 5-day evaluation period at Big Southern 613 

Butte.  Dashed black line is the line of agreement.  Colored lines are linear regressions 614 

(quadratic fit); dashed lines are NWP models and solid lines are NWP forecasts downscaled with 615 

WindNinja.  Shading indicates 95% confidence intervals. 616 

Figure 3. Observed (black) and predicted (colored) winds speeds at all sensors for 15 July 2010–617 

19 July 2010 at Big Southern Butte.  Top panels are WindNinja predictions. Bottom panels are 618 

NWP predictions. 619 

Figure 4. Observed (black line) and predicted (colored lines) wind speeds for sensor R2 located 620 

5 km southwest of Big Southern Butte on the Snake River Plain and sensor R26 located on a 621 

ridgetop.  Dashed colored lines are NWP models and solid colored lines are WindNinja. 622 

Figure 5. Root-mean-square error in wind speed (left) and wind direction (right) at Big Southern 623 

Butte for the five-day evaluation period (N = 4149), and downslope (N = 1593), upslope (N = 624 

717), and externally -driven (N = 966) periods within the five-day period.  Sample size, N = 625 

number of hours x number of sensor locations. 626 
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Figure 6. Predicted and observed winds for an externally-forced flow event at Big Southern 627 

Butte. 628 

Figure 7. Predicted and observed winds for a downslope flow event at Big Southern Butte. 629 

Figure 8. Predicted and observed winds for an upslope flow event at Big Southern Butte. 630 


