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Reply to Reviewer 1 1 

1. Figures 1 and 6-8 will be updated to show a zoomed in version of the butte.  Zooming in on the butte 2 
would be nice for the left panel of Figure 1, however, it’s not really possible for the other three panels, 3 
since the butte is represented by just one or two pixels; therefore, we chose to leave these figures as is.  4 
Additionally, these figures depict the domain extent used in our downscaling simulations and so there is 5 
value in leaving extents in the figures as is. 6 

2. R2 and R26 will be added to Figure 1.  Added in Figure 1, p. 34. 7 

3. The diagnostic model evaluated in this paper, WindNinja, is only designed to downscale the flow. 8 
WindNinja includes physics for modeling the mechanical and thermal effects of the terrain on the flow 9 
field. WindNinja is capable of interpolating other parameters (e.g., temperature and relative humidity) 10 
to a finer grid, but does not provide any additional physics (e.g., conservation of energy) or 11 
parameterizations to simulate terrain effects on these parameters. For these reasons, WindNinja does 12 
not output additional downscaled weather parameters. Additionally, wind varies more spatially than 13 
temperature and RH, so is more important to predict at a high resolution. Wind is known to often be the 14 
driving environmental variable for wildfire spread and behavior. We will clarify these points in the 15 
paper.  Some discussion on this was added in lines 101-104. 16 

4. Yes, it is correct that high winds are often the most important factor for wildfire spread. This point will 17 
be incorporated into the paper. Added in lines 93-94, 384-385, 473-475. 18 

5. HRRR-initialized 1.33 km WRF runs were not considered in this study, but could be considered in the 19 
future.  20 

6. The discussion will be adjusted accordingly to more clearly separate the externally-forced flow and 21 
locally-forced flow discussion.  After reviewing this section, we decided to leave the organization as is. 22 
We currently have sections formally separated into wind speed vs. wind direction and all data vs. 23 
diurnal/externally-forced flows.  The discussion is organized by paragraph (no mixed discussion of 24 
externally-forced/externally-weak flows in a paragraph), but we didn’t feel it was necessary to add 25 
another formal section heading to separate these. 26 

7. LES was not considered for a couple of reasons. Most importantly, LES is too computationally 27 
intensive to be used in an operational context in an emergency response situation such as wildland fire. 28 
Additionally, there appear to still be many issues regarding LES in complex terrain. For example, as we 29 
understand it, WRF-LES cannot be run in complex terrain with the typical meshing algorithm employed 30 
by WRF; instead some other method, such as IBM must be used. Because of these issues, LES was not 31 
considered. However, we are working with colleagues who have substantial experience with LES that are 32 
investigating LES simulations at Big Southern Butte. We plan to make comparisons between WindNinja, 33 
the next generation WindNinja with a RANS-based solver added, and these LES simulations in the future. 34 
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8. The discussion of the slope flow parameterization will be re-worked. We will also include some 35 
background information in the introduction to set the stage for this discussion. More discussion was 36 
added in the introduction in lines 93-98. 37 

9. Yes, the weakness in simulating lee-side recirculation occurs under high wind speeds as well. We will 38 
re-work this discussion to clarify the lee-side flow behavior and difficulty in simulating that behavior. 39 

  40 
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Reply to Reviewer 2 41 

1. FDM will be defined.  Added in line 117. 42 

2. Yes, this reference will be added. Added in line 131. 43 

3. The interpolation assumes neutral atmospheric stability. This information 44 

will be added in the methods.  Added in lines 202-203. 45 

4. We will include additional discussion of the terrain representation NAM and its 46 

inability to resolve the butte.  Added in lines 163-166. 47 

5. Yes, looking at the perturbations to the mean flow could be an interesting addition to our analysis. 48 
We will consider adding this in the revised manuscript. We decided not to add this at this time, but will 49 
consider this method in future evaluation work we have planned. 50 

6. We will consider adding a spatial plot of the bias at the windward and ridgetop locations. We decided 51 
not to add this, but will consider this type of plot in our future evaluation work. 52 

7. We will include discussion of the horizontal resolution and terrain representation in the summary.  53 
Added in lines 462-463. 54 
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Abstract 67 

Wind predictions in complex terrain are important for a number of applications.  Dynamic 68 

downscaling of numerical weather prediction (NWP) model winds with a high resolution wind 69 

model is one way to obtain a wind forecast that accounts for local terrain effects, such as wind 70 

speed-up over ridges, flow channeling in valleys, flow separation around terrain obstacles, and 71 

flows induced by local surface heating and cooling.  In this paper we investigate the ability of a 72 

mass-consistent wind model for downscaling near-surface wind predictions from four NWP 73 

models in complex terrain.  Model predictions are compared with surface observations from a 74 

tall, isolated mountain.  Downscaling improved near-surface wind forecasts under high-wind 75 

(near-neutral atmospheric stability) conditions.  Results were mixed during upslope and 76 

downslope (non-neutral atmospheric stability) flow periods, although wind direction 77 

predictions generally improved with downscaling.  This work constitutes evaluation of a 78 

diagnostic wind model at unprecedented high spatial resolution in terrain with topographical 79 

ruggedness approaching that of typical landscapes in the western US susceptible to wildland 80 

fire. 81 

 82 

  83 
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1. Introduction 84 

Researchers from multiple disciplines rely on routine forecasts from numerical weather 85 

prediction (NWP) models to drive transport and dispersion models, conduct wind assessments 86 

for wind energy projects, and predict the spread of wildfires.  These applications require fine-87 

scale, near-surface wind predictions in regions where rugged terrain and vegetation have a 88 

significant effect on the local flow field.  Terrain effects such as wind speed-up over ridges, flow 89 

channeling in valleys, flow separation around terrain obstacles, and enhanced surface 90 

roughness alter the flow field over spatial scales finer than those used for routine, operational 91 

NWP forecasting.  92 

 93 

Numerous operational mesoscale NWP model forecast products are available in real-time, such 94 

as those provided by National Centers for Environmental Prediction (NCEP).  Access to these 95 

output products is facilitated by automated archiving and distribution systems such as the 96 

National Operational Model Archive and Distribution System (NOMADS).  These routine 97 

forecast products are highly valuable to researchers and forecasters, for example, as inputs to 98 

drive other models.  In many cases, however, the spatial resolution of the system of interest 99 

(e.g., wildland fire spread) is much finer than that of the NWP model output.   100 

 101 

The model grid horizontal resolution in operational NWP models is limited due, in part, to the 102 

high computational demands of NWP.  Routine gridded forecast products are typically provided 103 
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at grid resolutions of 3 km or larger.  The High Resolution Rapid Refresh (HRRR) model produces 104 

3-km output grids and is currently the highest-resolution operational forecast in the U.S. 105 

 106 

NWP models have been run successfully with grid resolutions of less than 1 km in complex 107 

terrain for specific cases when modifications were made to the meshing (Lundquist et al. 2010) 108 

or PBL schemes (Ching et al., 2014; Seaman et al., 2012) or when large-eddy simulation (LES) 109 

was used (Chow and Street, 2008).  While successful for specific test cases, these efforts 110 

employ specialized model configurations that have not been incorporated into routine 111 

forecasting frameworks, either because they are not sufficiently robust, have not been 112 

thoroughly tested, or are too computationally intense for routine forecasting.  For example, the 113 

configuration used in Seaman et al. (2012) is applicable for stable nocturnal conditions only.   114 

 115 

Additionally, these modifications require technical expertise in NWP and access to substantial 116 

computing resources, which many consumers of NWP output do not have.  Perhaps, the biggest 117 

limitation to running NWP models on grids with fine horizontal resolution is the computational 118 

demand.  Time-sensitive applications, such as operational wildland fire support, require fast 119 

solution times (e.g., less than 1 hr) on simple hardware (e.g., laptop computers with 1-2 120 

processors).  Thus, there remains a practical need for fast-running tools that can be used to 121 

downscale coarse NWP model winds in complex terrain.   122 

 123 
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Dynamic downscaling with a steady-state (diagnostic) wind model is one option for obtaining 124 

near-surface high-resolution winds from routine NWP model output (e.g., Beaucage et al., 125 

2014).  The NWP model provides an initial wind field that accounts for mesoscale dynamics 126 

which is then downscaled by a higher resolution wind model to enforce conservation of mass 127 

and, in some cases, momentum and energy on the flow field on a higher resolution grid that 128 

better resolves individual terrain features.  Dynamic downscaling can be done in a steady-state 129 

fashion for each time step of the NWP model output.  One advantage of using a steady-state 130 

downscaling approach is that the spatial resolution can be increased with no additional 131 

computational cost associated with an increase in temporal resolution. 132 

 133 

Diagnostic wind models have primarily been evaluated with observations collected over 134 

relatively simple, low elevation hills.  Askervein Hill (Taylor and Teunissen, 1987) and Bolund Hill 135 

(Berg et al., 2011) are the two mostly commonly used datasets for evaluating diagnostic wind 136 

models.  These are both geometrically simple, low-elevation hills compared to the complex 137 

terrain exhibited in many regions of the western U.S. susceptible to wildland fire.  Lack of 138 

evaluations under more complex terrain is due in part to the lack of high-resolution datasets 139 

available in complex terrain.  Recently, Butler et al. (2015) reported high-resolution wind 140 

observations from a tall, isolated mountain (Big Southern Butte) in the western U.S.  Big 141 

Southern Butte is substantially taller and more geometrically complex than both Askervein and 142 

Bolund hills.   143 

 144 
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In this work, we investigate the ability of a mass-conserving wind model, WindNinja (Forthofer 145 

et al., 2014a), for dynamically downscaling NWP model winds over Big Southern Butte.  146 

WindNinja is a diagnostic wind model developed for operational wildland fire support.  It is 147 

primarily designed to simulated mechanical effects of terrain on the flow, which are most 148 

important under high-wind conditions; however, WindNinja also contains parameterizations for 149 

local thermal effects, which are more important under periods of weak external forcing.  150 

WindNinja has primarily been evaluated under high-wind conditions, which are thought to be 151 

most important for wildland fire behavior, and so these the thermal parameterizations have not 152 

been thoroughly tested.  WindNinjaIt has previously been evaluated against the Askervein Hill 153 

data (Forthofer et al., 2014a) and found to capture important terrain-induced flow features, 154 

such as ridgetop speed-up, and it has been shown to improve wildfire spread predictions in 155 

complex terrain (Forthofer et al., 2014b). We focus on downscaling wind in this work because it 156 

is typically more spatially and temporally variable than temperature or relative humidity, and 157 

thus, more important to predict at high spatial resolution.  Wind is also often the driving 158 

environmental variable for wildfire behavior. 159 

 160 

The goals of this work were to (1) investigate the accuracy of NWP model near-surface wind 161 

predictions in complex terrain on spatial scales relevant for processes driven by local surface 162 

winds, such as wildland fire behavior and (2) assess the ability of a mass-consistent wind model 163 

to improve these predictions through dynamic downscaling.  Wind predictions are investigated 164 

from four NWP models operated on different horizontal grid resolutions.  This work constitutes 165 
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one of the first evaluations of a diagnostic wind model with data collected over terrain with a 166 

topographical ruggedness approaching that of western U.S. landscapes susceptible to wildland 167 

fire. 168 

 169 

2. Model descriptions and configurations 170 

WRF is a NWP model that solves the non-hydrostatic, fully compressible Navier-Stokes 171 

equations using finite difference method (FDM) FDM discretization techniques (Skamarock et 172 

al., 2008).  All of the NWP models investigated in this work use either the Advanced Research 173 

WRF (ARW) or the non-hydrostatic multi-scale model (NMM) core of the WRF model (Table 1).   174 

2.1. Routine Weather Research and Forecasting (WRF-UW) 175 

Routine WRF-ARW forecasts with 4 km horizontal grid resolution were acquired from the 176 

University of Washington Atmospheric Sciences forecast system 177 

(www.atmos.washington.edu/mm5rt/info.html).  These forecasts are referred to as WRF-UW.  178 

The outer domain of WRF-UW has a horizontal grid resolution of 36 km and covers most of the 179 

western US and northeastern Pacific Ocean.  This outer domain is initialized with NCEP Global 180 

Forecast System (GFS) 1-degree runs.  The 36 km grid is nested down to 12 km, 4 km, and an 181 

experimental 1.33 km grid which covers a limited portion of the Pacific Northwest.  The 4 km 182 

grid investigated in this study covers the Pacific Northwest, including Washington, Oregon, 183 

Idaho, and portions of California, Nevada, Utah, Wyoming, and Montana.  Physical 184 

parameterizations employed by WRF-UW include the Noah Land Surface Model (Chen et al., 185 
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1996), Thompson microphysics (Thompson et al., 2004), Kain-Fritsch convective scheme Kain 186 

(2004), Rapid Radiative Transfer Model (RRTM) for longwave radiation (Mlawer et al., 1997), 187 

Duhdia (1989) for shortwave radiation, and the Yonsei University (YSU) boundary layer scheme 188 

(Hong et al., 2006).  WRF-UW is run at 00z and 12z and generates hourly forecasts out to 84 189 

hours.  The computational domain consists of 38 vertical layers.  The first grid layer is 190 

approximately 40 m AGL and the average model top height is approximately 16000 m AGL. 191 

2.2. Weather Research and Forecasting Reanalysis (WRF-NARR)  192 

WRF-ARW reanalysis runs were performed using the NCEP North American Regional Reanalysis 193 

(NARR) data (Mesinger et al., 2006).  The reanalysis runs are referred to as WRF-NARR.  The 194 

same parameterizations and grid nesting structures used in WRF-UW were also used for the 195 

WRF-NARR simulations, except that the WRF-NARR inner domain had 33 vertical layers and a 196 

horizontal grid resolution of 1.33 km (Table 1).  Analysis nudging (e.g., Stauffer and Seaman, 197 

1994) was used above the boundary layer in the outer domain (36 km horizontal grid 198 

resolution).  Hourly WRF-NARR simulations were run for 15 day periods with 12 hours of model 199 

spin up prior to each simulation.  The first grid layer was approximately 38 m AGL and the 200 

average model top height was approximately 15000 m AGL.  WRF-NARR differs from the other 201 

models used in this study in that it is not a routinely run model.  These were custom simulations 202 

conducted by our group to provide a best-case scenario for the NWP models.  Routine forecasts 203 

are already available for limited domains (e.g., UW provides WRF simulations on a 1.33 km grid 204 
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for a small domain in the Pacific Northwest of the US) and are likely to become more widely 205 

available at this grid resolution in the near future. 206 

2.3. North American Mesoscale Model (NAM) 207 

The North American Mesoscale (NAM) model is an operational forecast model run by NCEP for 208 

North America (http://www.emc.ncep.noaa.gov/index.php?branch=NAM).  The NAM model 209 

uses the NMM core of the WRF model.  The NAM CONUS domain investigated in this study has 210 

a horizontal grid resolution of 12 km.  NAM employs the Noah Land Surface model (Chen et al., 211 

1996), Ferrier et al. (2003) for microphysics, Kain (2004) for convection, GFDL (Lacis and 212 

Hansen, 1974) for longwave and shortwave radiation, and the Mellor-Yamada-Janjic (MJF) 213 

boundary layer scheme (Janjic, 2002).  The NAM model is initialized with 12-hr runs of the NAM 214 

Data Assimilation System.  It is run four times daily at 00z, 06z, 12z, and 18z and generates 215 

hourly forecasts out to 84 hours.  The computational domain consists of 26 vertical layers.  The 216 

first grid layer is approximately 200 m AGL and the average model top height is approximately 217 

15000 m AGL.  NAM forecasts are publicly available in real time from NCEP.  Although the 12-218 

km horizontal resolution used in NAM is not sufficient to resolve the butte, this resolution is 219 

sufficient for resolving the surrounding Snake River Plain and therefore can be used to generate 220 

a domain-average flow for input to WindNinja. 221 

2.4. High Resolution Rapid Refresh (HRRR) 222 
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The High Resolution Rapid Refresh (HRRR) system is a nest inside of the NCEP-Rapid Refresh 223 

(RAP) model (13 km horizontal grid resolution; http://ruc.noaa.gov/hrrr/).  HRRR has a 224 

horizontal grid resolution of 3 km and is updated hourly.  HRRR uses the WRF model with the 225 

ARW core and employs the RUC-Smirnova Land Surface Model (Smirnova et al., 1997; Smirnova 226 

et al., 2000), Thompson et al. (2004) microphysics, RRTM longwave radiation (Mlawer et al., 227 

1997), Goddard shortwave radiation (Chou and Suarez, 1994), the MYJ boundary layer scheme 228 

(Janjic, 2002).  HRRR is initialized from 3-km grids with 3-km radar assimilation over a 1-hr 229 

period.  HRRR is currently the highest resolution operational forecast available in real time.  The 230 

computational domain consists of 51 vertical layers.  The first grid layer is approximately 8 m 231 

AGL and the average model top height is approximately 16000 m AGL. 232 

2.5. WindNinja 233 

WindNinja is a mass-conserving diagnostic wind model developed and maintained by the USFS 234 

Missoula Fire Sciences Laboratory (Forthofer et al., 2014a).  The theoretical formulation is 235 

described in detail in Forthofer et al. (2014a).  Here we provide a brief overview of the 236 

modeling framework.  WindNinja uses a variational calculus technique to minimize the change 237 

in an initial wind field while conserving mass locally (within each cell) and globally over the 238 

computational domain.  The numerical solution is obtained using finite element method (FEM) 239 

techniques on a terrain-following mesh consisting of layers of hexahedral cells that grow 240 

vertically with height.   241 

 242 
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WindNinja includes a diurnal slope flow parameterization (Forthofer et al., 2009).  The diurnal 243 

slope flow model used in WindNinja is the shooting flow model in Mahrt (1982).  It is a one-244 

dimensional model of buoyancy-driven flow along a slope.  A micrometeorological model 245 

similar to the one used in CALMET (Scire et al., 2000; Scire and Robe, 1997) is used to compute 246 

surface heat flux, Monin-Obukhov length, and boundary layer height.  The slope flow is then 247 

calculated as a function of sensible heat flux, distance to ridgetop or valley bottom, slope 248 

steepness, and surface and entrainment drag parameters.  The slope flow is computed for each 249 

grid cell and added to the initial wind in that grid cell.  Additional details can be found in 250 

Forthofer et al. (2009). 251 

 252 

WindNinja was used to dynamically downscale hourly 10-m wind predictions from the above 253 

NWP models.  The WindNinja computational domain was constructed from 30-m resolution 254 

Shuttle Radar Topography Mission (SRTM) data (Farr et al., 2007).  The 10-m NWP winds were 255 

bilinearly interpolated to the WindNinja computational domain and used as the initial wind 256 

field.  Layers above and below the 10-m height were fit to a logarithmic profile (neutral 257 

atmospheric stability) based on the micrometeorological model.  The computational domain 258 

consisted of 20 vertical layers.  The first grid layer is 1.92 m AGL and the average model top 259 

height is 931 m AGL. 260 

2.6. Terrain representation 261 
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The four NWP models used in this study employ an implementation of the WRF model.  They 262 

use different initial and boundary conditions, incorporate different parameterizations for sub-263 

grid processes, such as land surface fluxes, convection, and PBL evolution, but in terms of 264 

surface wind predictions under the conditions investigated in this study (inland, dry 265 

summertime conditions), the horizontal grid resolution is arguably the most important 266 

difference among the models.  The horizontal grid resolution affects the numerical solution 267 

since fewer terrain features are resolved by coarser grids.  Coarser grids essentially impart a 268 

smoothing effect which distorts the actual geometry of the underlying terrain (Fig. 1).  As 269 

horizontal cell size and terrain complexity increase, the accuracy of the terrain representation 270 

and thus, the accuracy of the near-surface flow solution deteriorate.   271 

 272 
3. Evaluations with field observations 273 

3.1. Observations at Big Southern Butte 274 

Surface wind data (Butler et al., 2015) collected from an isolated mountain (Big Southern Butte, 275 

hereafter ‘BSB’; 43.395958, -113.02257) in southeast Idaho were used to evaluate surface wind 276 

predictions (Fig. 1).  BSB is a predominantly grass-covered volcanic cinder cone with a 277 

horizontal scale of 5 km and a vertical scale of 800 m and surrounded in all directions by the 278 

relatively flat Snake River Plain.  The portion of the Snake River Plain surrounding BSB slopes 279 

downward gently from the northeast to the southwest. 280 

 281 
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Three-meter wind speeds and directions were measured with cup-and-vane anemometers at 282 

53 locations on and around BSB.  The anemometers have a measurement range of 0 to 44 m s-1, 283 

a resolution of 0.19 m s-1 and 1.4°, and are accurate to within ±0.5 m s-1 and ±5°.  The 284 

anemometers measured wind speed and direction every second and logged 30-s averages.  We 285 

averaged these 30-s winds over a 10-min period at the top of each hour (five minutes before 286 

and 5 minutes after the hour).  The 10-min averaging period was chosen to correspond roughly 287 

with the time scale of wind predictions from the NWP forecasts.  The NWP output is valid at a 288 

particular instant in time, but there is always some inherent temporal averaging in the 289 

predictions.  The temporal averaging associated with a given prediction depends on the time-290 

step used in the NWP model and is typically on the order of minutes.  The 10-min averaged 291 

observed data are referred to in the text as ‘hourly’ observations (since they are averaged at 292 

the top of each hour) and are compared directly with the hourly model predictions. 293 

 294 

Butler et al. (2015) observed the following general flow features at BSB.  During periods of weak 295 

synoptic and mesoscale forcing (hereafter, referred to collectively as ‘external forcing’), the 296 

observed surface winds at BSB were decoupled from the large-scale atmospheric flows, except 297 

for at high-elevation ridgetop locations.  Diurnal slope flows dominated the local surface winds 298 

under periods of weak external forcing.  There were frequent periods of strong external forcing, 299 

during which the diurnal slope winds on BSB were completely overtaken by the larger-scale 300 

winds.  These periods of strong external forcing at BSB were typically characterized by large-301 
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scale southwesterly flow aligned with the Snake River Plain, although occasionally there were 302 

also strong early morning winds from the northeast.  Under periods of strong external forcing 303 

wind speeds commonly varied by as much as 15 m s-1 across the domain due to mechanical 304 

effects of the terrain (e.g., speed-up over ridges and lower speeds on leeward slopes).  305 

Additional details regarding the BSB field campaign can be found in Butler et al. (2015).  306 

3.2. Evaluation methods 307 

Hourly observations were compared against corresponding hourly predictions from the most 308 

recent model run.  Modeled and observed winds were compared by interpolating the modeled 309 

surface wind variables to the observed surface sensor locations at each site.  The 10-m winds 310 

from the NWP forecasts were interpolated to sensor locations, using bilinear interpolation in 311 

the horizontal dimension and a log profile in the vertical dimension.  A 3-D interpolation 312 

scheme was used to interpolate WindNinja winds to the sensor locations.  This 3-D 313 

interpolation was possible because the WindNinja domain had layers above and below the 314 

surface sensor height (3.0 m AGL).  A 3-D interpolation scheme was not possible for the NWP 315 

domains since there were not any layers below the three meter surface sensor height. 316 

 317 

Model performance was quantified in terms of the mean bias, root-mean-square error (RMSE), 318 

and standard deviation of the error (SDE): 319 

(1) (2) (3) 
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 322 

where φ’ is the difference between simulated and observed variables and N is the number of 323 

observations.   324 

3.3. Case selection 325 

We selected a five-day period from July 15-19 2010 for model evaluations. This specific period 326 

was chosen because it included periods of both strong and weak external forcing, conditions 327 

were consistently dry and sunny, and was a period for which we were able to acquire forecasts 328 

from all NWP models selected for investigation in this study.   329 

 330 

The observed data from the five-day period were broken into periods of upslope, downslope, 331 

and externally-driven flow conditions to further investigate model performance under these 332 

particular types of flow regimes.  We used the partitioning schemes described in Butler et al. 333 

(2015).  Externally-driven events were partitioned out by screening for hours during which wind 334 

speeds at a designated sensor (R2, located 5 km southwest of the butte in flat terrain) exceeded 335 
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a predetermined threshold wind speed of 6 m s-1.  This sensor was chosen because it was 336 

located in flat terrain far from the butte and therefore was representative of near-surface 337 

winds that were largely unaffected by the butte itself.  Hours of upslope and downslope flows 338 

(i.e., observations under weak external forcing) were then partitioned out of the remaining 339 

data.  Additional details regarding the partitioning scheme can be found in Butler et al. (2015).  340 

Statistical metrics were computed for these five-day periods. 341 

We also chose one specific hour representative of each flow regime within the 5-day period to 342 

qualitatively investigate model performance for single flow events under the three flow 343 

regimes.  This directly comparison of NWP model predictions, downscaled predictions, and 344 

observations for single events in order to get a visual sense for how the models performed 345 

spatially while avoiding any inadvertent complicating issues that may have arose from temporal 346 

averaging over the flow regimes.   347 

4. Results and discussion 348 

4.1. Overview of the five-day simulations 349 

Fig. 2 shows observed vs. forecasted wind speeds during the five-day period.  The following 350 

generalizations can be made.  The NWP models predicted wind speeds below 5 m s-1 351 

reasonably well on average, although HRRR tended to over predict at speeds below 3 m s-1 (Fig. 352 

2).  There is a lot of scatter about the regression lines, but the regressions follow the line of 353 

agreement fairly well up to observed speeds around 5 m s-1.  Downscaling did not improve wind 354 
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speed predictions much in this range.  NWP forecast accuracy declined for observed speeds 355 

between 5 and 10 m s-1, and accuracy sharply dropped off for observed speeds above 10 m s-1.  356 

This is indicated by the rapid departure of the NWP model regression lines from the line of 357 

agreement (Fig 2).  Downscaling improved wind speed predictions for all NWP forecasts for 358 

observed speeds greater than around 5 m s-1 and the biggest improvements were for observed 359 

speeds greater than 10 m s-1 (Fig. 2).  This is indicated by the relative proximity of the 360 

downscaled regression lines to the line of agreement (Fig. 2).   361 

 362 

Poor model accuracy at higher speeds is largely due to the models under predicting windward 363 

slope and ridgetop wind speeds.  Observed speeds at these locations were often three or four 364 

times higher than speeds in other locations in the study area (e.g., note the spatial variability in 365 

Fig 3).  Butler et al. (2015) showed that the highest observed speeds occurred on upper 366 

elevation windward slopes and ridgetops and the lowest observed speeds occurred on the 367 

leeward side of the butte and in sheltered side drainages on the butte itself.  Downscaling with 368 

WindNinja offers improved predictions at these locations as indicated by Fig. 2 (regression lines 369 

in closer proximity to the line of agreement) and Fig. 3 (spatial variability in predictions more 370 

closely matches that of the observations).  371 

 372 
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Additionally, the downscaled NAM wind speeds were as accurate as the downscaled HRRR and 373 

WRF-UW wind speeds (Fig. 2).  This indicates that the NAM forecast was able to capture the 374 

important large-scale flow features around BSB such that the additional resolution provided by 375 

HRRR and WRF-UW was not essential to resolve additional flow features in the large scale flow 376 

around BSB.   377 

 378 

The accuracy of the NAM forecast at BSB is likely due to the fact that Snake River Plain which 379 

surrounds BSB is relatively flat and extends more than 50 km in all directions from the butte.  380 

Even a 12 km grid resolution would be capable of resolving the Snake River Plain and diurnal 381 

flow patterns within this large, gentle-relief drainage.  Coarse-resolution models would not be 382 

expected to offer this same level of accuracy in areas of more extensive complex terrain, 383 

however.  In areas surrounded by highly complex terrain it may be necessary to acquire NWP 384 

model output on finer grids in order to resolve the regional flow features. 385 

 386 

The NWP forecasts predicted the overall temporal trend in wind speed (Fig. 3), but 387 

underestimated peak wind speeds due to under predictions on ridgetops and windward slopes 388 

as previously discussed, and also occasionally in the flat terrain on the Snake River Plain 389 

surrounding the butte (Fig. 4).   390 

 391 
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NWP models with coarser resolution grids predicted less spatial variability in wind speed (Fig. 392 

3).  This is because there were fewer grid cells covering the domain, and thus fewer prediction 393 

points around the butte.  The spatial variability in the downscaled wind speed predictions more 394 

closely matched that of the observed data, although the highest speeds were still under 395 

predicted (Fig. 3).  Although downscaling generally improved the spatial variability of the 396 

predictions, there were cases where NWP errors clearly propagated into the downscaled 397 

simulations.  For example, HRRR frequently over predicted morning wind speeds associated 398 

with down-drainage flow on the Snake River Plain; this error was amplified in the downscaled 399 

simulations, especially at the ridgetop locations (e.g., Fig. 3-4, 15-17 July).   400 

 401 

The mean bias, RMSE, and SDE for wind speed and wind direction were smaller in nearly all 402 

cases for the downscaled simulations than for the NWP forecasts during the five-day period 403 

(Table 2).  Mean biases in wind speed were all slightly negative and NAM and WRF-UW had the 404 

largest mean biases.  The RMSE and SDE in wind speed were largest for HRRR.  Although mean 405 

bias, RMSE, and SDE in wind direction for the downscaled forecasts were smaller or equal to 406 

those for the NWP forecasts, the differences were small, with a maximum reduction in mean 407 

bias in wind direction of just 4°.   408 

 409 
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It is difficult to draw too many conclusions from the spatially and temporally averaged 5-day 410 

statistics, however, since this period included a range of meteorological conditions (e.g., high-411 

wind events from different directions, upslope flow, downslope flow) each of which could have 412 

been predicted with a different level of skill by the models.  Qualitatively, however, the 5-day 413 

results demonstrate that the spatial variability in the downscaled winds better matches that of 414 

the observed winds at BSB (Fig. 3) and, although the reductions were small in some cases, 415 

nearly all statistical metrics also improved with downscaling.  The analysis is broken down by 416 

flow regime in the next section for more insight into model performance.  417 

4.2. Performance under Upslope, downslope, and externally-forced flows 418 

Local solar heating and cooling was a primary driver of the flow during the slope flow regime at 419 

BSB (Butler et al. 2015), with local thermal effects equal to or exceeding the local mechanical 420 

effects of the terrain on the flow.  Because there is weak external forcing (i.e., input wind 421 

speeds to WindNinja are low), the downscaling is largely driven by the diurnal slope flow 422 

parameterization in WindNinja during the slope flow regimes.   423 

 424 

During upslope flow, the diurnal slope flow parameterization increases speeds on the windward 425 

slopes and reduces speeds (or reverses flow and increases speeds, depending on the strength 426 

of the slope flow relative to the prevailing flow) on lee slopes due to the opposing effects of the 427 

prevailing wind and the thermal slope flow.  The parameterization has the opposite effect 428 
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during downslope flow; windward slope speeds are reduced (or possibly increased if downslope 429 

flow is strong enough to reverse the prevailing flow) and lee side speeds are enhanced. 430 

4.2.1 Wind speed 431 

The biggest improvements in wind speed predictions from downscaling occurred during 432 

externally-driven flow events (Fig. 5).  This is not surprising since the highest spatial variability in 433 

the observed wind speeds occurred during high-wind events due to mechanically-induced 434 

effects of the terrain, with higher speeds on ridges and windward slopes and lower speeds in 435 

sheltered side drainages and on the lee side of the butte (Fig. 6-8).  Since WindNinja is designed 436 

primarily to simulate the mechanical effects of the terrain on the flow, it is during these high-437 

wind events that the downscaling has the most opportunity to improve predictions across the 438 

domain.  This has important implications for wildfire applications since high-wind events are 439 

often associated with increased fire behavior. 440 

 441 

The NWP models tended to under predict wind speeds on the windward slopes, ridgetops, and 442 

surrounding flat terrain, and over predict on the lee side of the butte during high wind events 443 

(e.g., Fig. 6).  The largest NWP errors in wind speed during high wind events were on the 444 

ridgetops, where speed-up occurred and the NWP under predicted speeds.  These largest wind 445 

speed errors were reduced by downscaling (e.g., Fig. 6).  Downscaling reduced NWP wind speed 446 
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errors in most regions on the butte, although the general trend of under predicting wind speeds 447 

on the windward side and over predicting on the lee side did not change (e.g., Fig. 6). 448 

 449 

There were consistent improvements in predicted wind speeds from downscaling during the 450 

upslope regime, although the improvements were smaller than for the externally-driven regime 451 

(Fig. 5).  Wind speeds were lower during the slope flow regimes than during the externally-452 

forced regime (Fig. 6-8), and thus, smaller improvements were possible with downscaling.  453 

There was some speed-up predicted on the windward side of the butte during the 454 

representative upslope case which appeared to match the observed wind field (Fig. 8).   455 

 456 

Results were mixed for the downslope regime, as wind speeds improved with downscaling for 457 

WRF-UW and NAM, but not for WRF-NARR or HRRR (Fig. 5).  The poor wind speed predictions 458 

from HRRR during the downslope regime is partly due to the fact that HRRR tended to over 459 

predict early morning winds associated with down drainage flows on the Snake River Plain.  460 

These errors were amplified by the downscaling, especially at ridgetop locations (Fig. 4).  In 461 

reality, the high-elevation ridgetop locations tended to be decoupled from lower-level surface 462 

winds during the slope flow regimes due to flow stratification.  WindNinja assumes neutral 463 

atmospheric stability, however, so this stratification is not handled.  A parameterization for 464 

non-neutral atmospheric conditions is currently being tested in Windninja.  465 
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 466 

The diurnal slope flow parameterization in WindNinja resulted in lower speeds on the 467 

windward side and higher speeds on the lee side of the butte for the representative downslope 468 

case (Fig. 7).  These downscaled speeds better matched those of the observed wind field, 469 

although speeds were still under predicted for ridgetops and a few other locations around the 470 

butte (Fig. 7).  The high observed speeds at the ridgetop locations are not likely due to thermal 471 

slope flow effects, but could be from the influence of gradient-level winds above the nocturnal 472 

boundary layer.  These ridgetop locations are high enough in elevation (800 m above the 473 

surrounding plain) that they likely protruded out of the nocturnal boundary layer and were 474 

exposed to the decoupled gradient-level winds.  Butler et al. (2015) noted that ridgetop winds 475 

did not exhibit a diurnal pattern and tended to be decoupled from winds at other locations on 476 

and around the butte.  Lack of diurnal winds at the summit of the butte is also confirmed by 477 

National Oceanic and Atmospheric Administration Field Research Division (NOAA-FRD) mesonet 478 

station data collected at the top of BSB (described in Butler et al., 2015; 479 

http://www.noaa.inel.gov/projects/INLMet/INLMet.htm). 480 

 481 

Under predictions on the lower slopes and on the plain surrounding the butte could be due to 482 

overly weak slope flows being generated by the slope flow parameterization in WindNinja (Fig. 483 

7-8).  Overly weak slope flows could be caused by a number of things: improper 484 

parameterization of surface or entrainment drag parameters, poor estimation of the depth of 485 
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the slope flow, or deficiencies in the micrometeorological model used.  The slope flow 486 

parameterization is being evaluated in a companion paper. 487 

4.2.2  Wind direction 488 

The biggest improvement in wind direction predictions from downscaling occurred during the 489 

downslope regime (Fig. 5).  Wind direction improved with downscaling for all NWP models 490 

during periods of downslope flow.  This indicates that the diurnal slope flow model helped to 491 

orient winds downslope.  This is confirmed by inspection of the vector plots for the 492 

representative downslope case which show the downscaled winds oriented downslope on the 493 

southwest and northeast faces of the butte (Fig. 7).  Downscaling reduced speeds on the 494 

northwest (windward) side of the butte, but did not predict strong enough downslope flow in 495 

this region to reverse the flow from the prevailing northwest direction (Fig. 7).  This again 496 

suggests that perhaps the diurnal slope flow algorithm is predicting overly weak slope flows. 497 

 498 

Wind direction predictions during the upslope regime also improved with downscaling for all 499 

NWP models except HRRR (Fig. 5).  Downscaled winds for the representative upslope case were 500 

oriented upslope on the southwest (lee side) of the butte and matched the observed winds in 501 

this region well (Fig. 8).  This is an improvement over the NWP wind directions on the lee side of 502 

the butte. 503 

 504 
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There was no improvement in wind direction predictions with downscaling during the 505 

externally-driven regime (Fig. 5).  Looking at the vector plots during the representative 506 

externally-driven event (Fig. 6), it is clear why this would be.  The representative event was a 507 

high-wind event from the southwest.  Wind directions are well predicted on the windward side 508 

of the butte, but not on the leeward side, where the observed field indicates some recirculation 509 

in the flow field (Fig. 6).  The prevailing southwesterly flow is captured by the NWP model, but 510 

the lee side recirculation is not.  WindNinja does not predict the lee side recirculation, and thus, 511 

the downscaling does not improve directions on the lee side of the butte (Fig. 7).  This is an 512 

expected result, as WindNinja has been shown to have difficulties simulating flows on the lee 513 

side of terrain features due to the fact that it does not account for conservation of momentum 514 

in the flow solution (Forthofer et al., 2014a).  515 

5. Summary 516 

The horizontal grid resolutions of NWP models investigated in this study were too coarse to 517 

resolve the BSB terrain.  Results showed that the NWP models captured the important large-518 

scale flow features around BSB under most conditions, but were not capable of predicting the 519 

high spatial variability (scale of 100s of meters) in the observed winds on and around the butte 520 

induced by mechanical effects of the terrain and local surface heating and cooling.  Thus, 521 

surface winds from the NWP models investigated in this study would not be sufficient for 522 

forecasting wind speeds on and around the butte at the spatial scales relevant for processes 523 

driven by local surface winds, such as wildland fire spread, for example. 524 
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 525 

Wind predictions generally improved for all NWP models by downscaling with WindNinja.  The 526 

biggest improvements occurred under high-wind events (near-neutral atmospheric stability) 527 

when observed wind speeds were greater than 10 m s-1.  This finding has important 528 

implications for fire applications since increased wildfire behavior is often associated with high 529 

winds.  Downscaled NAM wind speeds were as accurate as downscaled WRF-UW and HRRR 530 

wind speeds, indicating that a NWP model with 12 km grid resolution was sufficient for 531 

capturing the large-scale flow features around BSB.  532 

 533 

WindNinja did not predict the observed lee-side flow recirculation at BSB that occurred during 534 

externally-forced high wind events.  Previous work has shown that WindNinja has difficulties 535 

simulating lee-side flows (Forthofer et al., 2014a).  This is partly due to lack of a momentum 536 

equation in the WindNinja flow solution as discussed in Forthofer et al. (2014a).  Work is 537 

currently underway to incorporate an optional momentum solver in WindNinja which is 538 

anticipated to improve flow predictions on the lee-side of terrain obstacles. 539 

 540 

Results indicated that WindNinja predicted overly weak slope flows compared to observations.  541 

Weak slope flow could be caused by several different issues within the diurnal slope flow 542 

parameterization in WindNinja: improper parameterization of surface or entrainment drag 543 
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parameters, poor estimation of the depth of the slope flow, or deficiencies in the 544 

micrometeorological model.  These issues will be explored in future work. 545 

 546 

This work constitutes evaluation of a diagnostic wind model at unprecedented high spatial 547 

resolution and terrain complexity.  While extensive evaluations have been performed with data 548 

collected in less rugged terrain (e.g., Askervein Hill and Bolund Hill, relatively low elevation hills 549 

with simple geometry), to our knowledge, this study is the first to evaluate a diagnostic wind 550 

model with data collected in terrain with topographical ruggedness approaching that of typical 551 

landscapes in the western US susceptible to wildland fire.  This work demonstrates that NWP 552 

model wind forecasts can be improved in complex terrain, at least in some cases, through 553 

dynamic downscaling via a mass-conserving wind model.  These improvements should 554 

propagate on to more realistic predictions from other model applications which are sensitive to 555 

surface wind fields, such as wildland fire behavior, local-scale transport and dispersion, and 556 

wind energy applications. 557 
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Tables 651 

Table 1. Model specifications.   652 
Model Horizontal 

grid 
resolution 

Number 
vertical 
layers 

First layer 
heighta 
(m AGL) 

Top 
heighta  
(m AGL) 

Numerical 
core 

Run 
frequency 

NAM 12 km 26 200 15000 NMM 00z, 06z, 
12z, 18z 

WRF-UW 4 km 38 40 16000 ARW 00z, 12z 
HRRR 3 km 51 8 16000 ARW hourly 
WRF-NARR 1.33 km 33 38 15000 ARW NA 
WindNinja 138 m 20 1.92 931 NA NA 

aApproximate average height AGL. 653 

 654 
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Table 2. Model mean bias, root-mean-square error (RMSE), and standard deviation of errors (SDE) for surface wind speeds and 655 
directions during the 5-day evaluation period at Big Southern Butte.  Downscaled values are in parentheses. Smaller values are in 656 
bold. The 5-day period includes the Downslope, Upslope, and Externally-driven time periods.  657 
Time period Statistic NAM WRF-UW HRRR WRF-NARR 
  Wind Speed (m s-1) 
5-day Bias -0.84 (-0.67) -1.17 (-0.95) -0.40 (-0.14) -0.31 (-0.08) 
 RMSE 2.31 (2.04) 2.39 (2.07) 2.52 (2.47) 2.33(2.21) 
 SDE 2.15 (1.92) 2.08 (1.83) 2.49 (2.47) 2.31 (2.21) 
Downslope Bias -1.07 (-0.76) -1.15 (-0.74) -0.09 (0.48) -0.48 (0.12) 
 RMSE 2.08 (1.92) 2.03 (1.83) 2.36 (2.66) 2.19 (2.28) 
 SDE 1.79 (1.77) 1.67 (1.68) 2.36 (2.62) 2.14 (2.28) 
Upslope Bias -0.81 (-0.74) -1.11 (-0.98) -0.81 (-0.75) 0.06 (0.05) 
 RMSE 1.73 (1.62) 2.02 (1.86) 1.93 (1.81) 1.86 (1.86) 
 SDE 1.52 (1.44) 1.69 (1.58) 1.76 (1.64) 1.86 (1.86) 
Externally-driven Bias -0.57 (-0.62) -1.28 (-1.32) -0.94 (-1.03) -0.22 (-0.33) 
 RMSE 3.06 (2.48) 3.21 (2.58) 3.17 (2.59) 2.92 (2.39) 
 SDE 3.00 (2.40) 2.94 (2.22) 3.02 (2.38) 2.92 (2.37) 
  Wind Direction (°) 
5-day Bias 59 (56) 57 (53) 64 (60) 57 (54) 
 RMSE 76 (72) 74 (71) 80 (76) 73 (71) 
 SDE 47 (46) 47 (46) 47 (46) 46 (46) 
Downslope Bias 67 (60) 61 (56) 76 (67) 66 (61) 
 RMSE 83 (77) 78 (72) 88 (81) 81 (75) 
 SDE 49 (47) 48 (46) 46 (46) 47 (45) 
Upslope Bias 55 (52) 58 (54) 56 (56) 52 (49) 
 RMSE 70 (67) 74 (71) 72 (72) 68 (65) 
 SDE 44 (42) 46 (45) 45 (46) 44 (42) 
Externally-driven Bias 48 (49) 45 (46) 51 (50) 44 (46) 
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 RMSE 64 (65) 63 (65) 68 (67) 62 (65) 
 SDE 43 (44) 44 (47) 45 (44) 43 (46) 

658 
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 663 
Figure 1. Terrain representation (m ASL) in WindNinja, WRF-NARR, HRRR, and WRF-UW for the Big Southern Butte.  Crosses indicate 664 

surface sensor locations.  Maps are projected in the Universal Transverse Mercator (UTM) zone 12 coordinate system. Axis labels are 665 

eastings and northings in m.  Profiles in gray are the average elevations for rows and columns in the panel.  NAM (12 km) terrain is 666 

represented by just four cells and is not shown here. 667 
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 669 

Figure 2. Observed vs. predicted wind speeds for the 5-day evaluation period at Big Southern 670 

Butte.  Dashed black line is the line of agreement.  Colored lines are linear regressions 671 

(quadratic fit); dashed lines are NWP models and solid lines are NWP forecasts downscaled with 672 

WindNinja.  Shading indicates 95% confidence intervals. 673 

 674 
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 675 
Figure 3. Observed (black) and predicted (colored) winds speeds at all sensors for 15 July 2010–19 July 2010 at Big Southern Butte.  676 

Top panels are WindNinja predictions. Bottom panels are NWP predictions. 677 
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Figure 4. Observed (black line) and predicted (colored lines) wind speeds for sensor R2 located 679 

5 km southwest of Big Southern Butte on the Snake River Plain and sensor R26 located on a 680 

ridgetop.  Dashed colored lines are NWP models and solid colored lines are WindNinja. 681 
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 682 

Figure 5. Root-mean-square error in wind speed (left) and wind direction (right) at Big Southern 683 

Butte for the five-day evaluation period (N = 4149), and downslope (N = 1593), upslope (N = 684 

717), and externally -driven (N = 966) periods within the five-day period.  Sample size, N = 685 

number of hours x number of sensor locations.686 
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 687 

Figure 6. Predicted and observed winds for an externally-forced flow event at Big Southern Butte. 688 

  689 
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 690 

Figure 7. Predicted and observed winds for a downslope flow event at Big Southern Butte. 691 
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 693 

Figure 8. Predicted and observed winds for an upslope flow event at Big Southern Butte.694 
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