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Dear Dr. Garrett, 1 

We have addressed the comments from Reviewers 1 and 2 and incorporated changes into a revised 2 
manuscript. Please find out point-by-point responses below. The text in black are the replies uploaded 3 
to ACPD.  During incorporation of the actual revisions, we change our minds on a few points.  These 4 
changes are noted in red text, as are indications for where to find the related changes in the manuscript. 5 

 6 

Thank you for considering this manuscript for publication in ACP. 7 

 8 

Thanks, 9 

Natalie Wagenbrenner 10 

 11 

Reply to Reviewer 1 12 

1. Figures 1 and 6-8 will be updated to show a zoomed in version of the butte.  Zooming in on the butte 13 
would be nice for the left panel of Figure 1, however, it’s not really possible for the other three panels, 14 
since the butte is represented by just one or two pixels; therefore, we chose to leave these figures as is.  15 
Additionally, these figures depict the domain extent used in our downscaling simulations and so there is 16 
value in leaving extents in the figures as is. 17 

2. R2 and R26 will be added to Figure 1.  Added in Figure 1, p. 34. 18 

3. The diagnostic model evaluated in this paper, WindNinja, is only designed to downscale the flow. 19 
WindNinja includes physics for modeling the mechanical and thermal effects of the terrain on the flow 20 
field. WindNinja is capable of interpolating other parameters (e.g., temperature and relative humidity) 21 
to a finer grid, but does not provide any additional physics (e.g., conservation of energy) or 22 
parameterizations to simulate terrain effects on these parameters. For these reasons, WindNinja does 23 
not output additional downscaled weather parameters. Additionally, wind varies more spatially than 24 
temperature and RH, so is more important to predict at a high resolution. Wind is known to often be the 25 
driving environmental variable for wildfire spread and behavior. We will clarify these points in the 26 
paper.  Some discussion on this was added in lines 101-104. 27 

4. Yes, it is correct that high winds are often the most important factor for wildfire spread. This point will 28 
be incorporated into the paper. Added in lines 93-94, 384-398, 473-475. 29 

5. HRRR-initialized 1.33 km WRF runs were not considered in this study, but could be considered in the 30 
future.  31 

6. The discussion will be adjusted accordingly to more clearly separate the externally-forced flow and 32 
locally-forced flow discussion.  After reviewing this section, we decided to leave the organization as is. 33 
We currently have sections formally separated into wind speed vs. wind direction and all data vs. 34 
diurnal/externally-forced flows.  The discussion is organized by paragraph (no mixed discussion of 35 
externally-forced/externally-weak flows in a paragraph), but we didn’t feel it was necessary to add 36 
another formal section heading to separate these. 37 
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7. LES was not considered for a couple of reasons. Most importantly, LES is too computationally 38 
intensive to be used in an operational context in an emergency response situation such as wildland fire. 39 
Additionally, there appear to still be many issues regarding LES in complex terrain. For example, as we 40 
understand it, WRF-LES cannot be run in complex terrain with the typical meshing algorithm employed 41 
by WRF; instead some other method, such as IBM must be used. Because of these issues, LES was not 42 
considered. However, we are working with colleagues who have substantial experience with LES that are 43 
investigating LES simulations at Big Southern Butte. We plan to make comparisons between WindNinja, 44 
the next generation WindNinja with a RANS-based solver added, and these LES simulations in the future. 45 

8. The discussion of the slope flow parameterization will be re-worked. We will also include some 46 
background information in the introduction to set the stage for this discussion. More discussion was 47 
added in the introduction in lines 93-98. 48 

9. Yes, the weakness in simulating lee-side recirculation occurs under high wind speeds as well. We will 49 
re-work this discussion to clarify the lee-side flow behavior and difficulty in simulating that behavior. 50 

  51 
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Reply to Reviewer 2 52 

1. FDM will be defined.  Added in line 117. 53 

2. Yes, this reference will be added. Added in line 131. 54 

3. The interpolation assumes neutral atmospheric stability. This information 55 

will be added in the methods.  Added in lines 202-203. 56 

4. We will include additional discussion of the terrain representation NAM and its 57 

inability to resolve the butte.  Added in lines 163-166. 58 

5. Yes, looking at the perturbations to the mean flow could be an interesting addition to our analysis. 59 
We will consider adding this in the revised manuscript. We decided not to add this at this time, but will 60 
consider this method in future evaluation work we have planned. 61 

6. We will consider adding a spatial plot of the bias at the windward and ridgetop locations. We decided 62 
not to add this, but will consider this type of plot in our future evaluation work. 63 

7. We will include discussion of the horizontal resolution and terrain representation in the summary.  64 
Added in lines 462-463. 65 

  66 
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Abstract 78 

Wind predictions in complex terrain are important for a number of applications.  Dynamic 79 

downscaling of numerical weather prediction (NWP) model winds with a high resolution wind 80 

model is one way to obtain a wind forecast that accounts for local terrain effects, such as wind 81 

speed-up over ridges, flow channeling in valleys, flow separation around terrain obstacles, and 82 

flows induced by local surface heating and cooling.  In this paper we investigate the ability of a 83 

mass-consistent wind model for downscaling near-surface wind predictions from four NWP 84 

models in complex terrain.  Model predictions are compared with surface observations from a 85 

tall, isolated mountain.  Downscaling improved near-surface wind forecasts under high-wind 86 

(near-neutral atmospheric stability) conditions.  Results were mixed during upslope and 87 

downslope (non-neutral atmospheric stability) flow periods, although wind direction 88 

predictions generally improved with downscaling.  This work constitutes evaluation of a 89 

diagnostic wind model at unprecedented high spatial resolution in terrain with topographical 90 

ruggedness approaching that of typical landscapes in the western US susceptible to wildland 91 

fire. 92 

 93 

  94 
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1. Introduction 95 

Researchers from multiple disciplines rely on routine forecasts from numerical weather 96 

prediction (NWP) models to drive transport and dispersion models, conduct wind assessments 97 

for wind energy projects, and predict the spread of wildfires.  These applications require fine-98 

scale, near-surface wind predictions in regions where rugged terrain and vegetation have a 99 

significant effect on the local flow field.  Terrain effects such as wind speed-up over ridges, flow 100 

channeling in valleys, flow separation around terrain obstacles, and enhanced surface 101 

roughness alter the flow field over spatial scales finer than those used for routine, operational 102 

NWP forecasting.  103 

 104 

Numerous operational mesoscale NWP model forecast products are available in real-time, such 105 

as those provided by National Centers for Environmental Prediction (NCEP).  Access to these 106 

output products is facilitated by automated archiving and distribution systems such as the 107 

National Operational Model Archive and Distribution System (NOMADS).  These routine 108 

forecast products are highly valuable to researchers and forecasters, for example, as inputs to 109 

drive other models.  In many cases, however, the spatial resolution of the system of interest 110 

(e.g., wildland fire spread) is much finer than that of the NWP model output.   111 

 112 

The model grid horizontal resolution in operational NWP models is limited due, in part, to the 113 

high computational demands of NWP.  Routine gridded forecast products are typically provided 114 

at grid resolutions of 3 km or larger.  The High Resolution Rapid Refresh (HRRR) model produces 115 

3-km output grids and is currently the highest-resolution operational forecast in the U.S. 116 



7 
 

 117 

NWP models have been run successfully with grid resolutions of less than 1 km in complex 118 

terrain for specific cases when modifications were made to the meshing (Lundquist et al. 2010) 119 

or PBL schemes (Ching et al., 2014; Seaman et al., 2012) or when large-eddy simulation (LES) 120 

was used (Chow and Street, 2008).  While successful for specific test cases, these efforts 121 

employ specialized model configurations that have not been incorporated into routine 122 

forecasting frameworks, either because they are not sufficiently robust, have not been 123 

thoroughly tested, or are too computationally intense for routine forecasting.  For example, the 124 

configuration used in Seaman et al. (2012) is applicable for stable nocturnal conditions only.   125 

 126 

Additionally, these modifications require technical expertise in NWP and access to substantial 127 

computing resources, which many consumers of NWP output do not have.  Perhaps, the biggest 128 

limitation to running NWP models on grids with fine horizontal resolution is the computational 129 

demand.  Time-sensitive applications, such as operational wildland fire support, require fast 130 

solution times (e.g., less than 1 hr) on simple hardware (e.g., laptop computers with 1-2 131 

processors).  Thus, there remains a practical need for fast-running tools that can be used to 132 

downscale coarse NWP model winds in complex terrain.   133 

 134 

Dynamic downscaling with a steady-state (diagnostic) wind model is one option for obtaining 135 

near-surface high-resolution winds from routine NWP model output (e.g., Beaucage et al., 136 

2014).  The NWP model provides an initial wind field that accounts for mesoscale dynamics 137 

which is then downscaled by a higher resolution wind model to enforce conservation of mass 138 
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and, in some cases, momentum and energy on the flow field on a higher resolution grid that 139 

better resolves individual terrain features.  Dynamic downscaling can be done in a steady-state 140 

fashion for each time step of the NWP model output.  One advantage of using a steady-state 141 

downscaling approach is that the spatial resolution can be increased with no additional 142 

computational cost associated with an increase in temporal resolution. 143 

 144 

Diagnostic wind models have primarily been evaluated with observations collected over 145 

relatively simple, low elevation hills.  Askervein Hill (Taylor and Teunissen, 1987) and Bolund Hill 146 

(Berg et al., 2011) are the two mostly commonly used datasets for evaluating diagnostic wind 147 

models.  These are both geometrically simple, low-elevation hills compared to the complex 148 

terrain exhibited in many regions of the western U.S. susceptible to wildland fire.  Lack of 149 

evaluations under more complex terrain is due in part to the lack of high-resolution datasets 150 

available in complex terrain.  Recently, Butler et al. (2015) reported high-resolution wind 151 

observations from a tall, isolated mountain (Big Southern Butte) in the western U.S.  Big 152 

Southern Butte is substantially taller and more geometrically complex than both Askervein and 153 

Bolund hills.   154 

 155 

In this work, we investigate the ability of a mass-conserving wind model, WindNinja (Forthofer 156 

et al., 2014a), for dynamically downscaling NWP model winds over Big Southern Butte.  157 

WindNinja is a diagnostic wind model developed for operational wildland fire support. It is 158 

primarily designed to simulated mechanical effects of terrain on the flow, which are most 159 

important under high-wind conditions; however, WindNinja also contains parameterizations for 160 
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local thermal effects, which are more important under periods of weak external forcing.  161 

WindNinja has primarily been evaluated under high-wind conditions, which are thought to be 162 

most important for wildland fire behavior, and so these the thermal parameterizations have not 163 

been thoroughly tested.  WindNinja has previously been evaluated against the Askervein Hill 164 

data (Forthofer et al., 2014a) and found to capture important terrain-induced flow features, 165 

such as ridgetop speed-up, and it has been shown to improve wildfire spread predictions in 166 

complex terrain (Forthofer et al., 2014b).  We focus on downscaling wind in this work because it 167 

is typically more spatially and temporally variable than temperature or relative humidity, and 168 

thus, more important to predict at high spatial resolution.  Wind is also often the driving 169 

environmental variable for wildfire behavior. 170 

 171 

The goals of this work were to (1) investigate the accuracy of NWP model near-surface wind 172 

predictions in complex terrain on spatial scales relevant for processes driven by local surface 173 

winds, such as wildland fire behavior and (2) assess the ability of a mass-consistent wind model 174 

to improve these predictions through dynamic downscaling.  Wind predictions are investigated 175 

from four NWP models operated on different horizontal grid resolutions.  This work constitutes 176 

one of the first evaluations of a diagnostic wind model with data collected over terrain with a 177 

topographical ruggedness approaching that of western U.S. landscapes susceptible to wildland 178 

fire. 179 

 180 

2. Model descriptions and configurations 181 
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WRF is a NWP model that solves the non-hydrostatic, fully compressible Navier-Stokes 182 

equations using finite difference method (FDM) discretization techniques (Skamarock et al., 183 

2008).  All of the NWP models investigated in this work use either the Advanced Research WRF 184 

(ARW) or the non-hydrostatic multi-scale model (NMM) core of the WRF model (Table 1).   185 

2.1. Routine Weather Research and Forecasting (WRF-UW) 186 

Routine WRF-ARW forecasts with 4 km horizontal grid resolution were acquired from the 187 

University of Washington Atmospheric Sciences forecast system 188 

(www.atmos.washington.edu/mm5rt/info.html).  These forecasts are referred to as WRF-UW.  189 

The outer domain of WRF-UW has a horizontal grid resolution of 36 km and covers most of the 190 

western US and northeastern Pacific Ocean.  This outer domain is initialized with NCEP Global 191 

Forecast System (GFS) 1-degree runs.  The 36 km grid is nested down to 12 km, 4 km, and an 192 

experimental 1.33 km grid which covers a limited portion of the Pacific Northwest.  The 4 km 193 

grid investigated in this study covers the Pacific Northwest, including Washington, Oregon, 194 

Idaho, and portions of California, Nevada, Utah, Wyoming, and Montana.  Physical 195 

parameterizations employed by WRF-UW include the Noah Land Surface Model (Chen et al., 196 

1996), Thompson microphysics (Thompson et al., 2004), Kain-Fritsch convective scheme (Kain, 197 

2004), Rapid Radiative Transfer Model (RRTM) for longwave radiation (Mlawer et al., 1997), 198 

Duhdia (1989) for shortwave radiation, and the Yonsei University (YSU) boundary layer scheme 199 

(Hong et al., 2006).  WRF-UW is run at 00z and 12z and generates hourly forecasts out to 84 200 

hours.  The computational domain consists of 38 vertical layers.  The first grid layer is 201 

approximately 40 m AGL and the average model top height is approximately 16000 m AGL. 202 
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2.2. Weather Research and Forecasting Reanalysis (WRF-NARR)  203 

WRF-ARW reanalysis runs were performed using the NCEP North American Regional Reanalysis 204 

(NARR) data (Mesinger et al., 2006).  The reanalysis runs are referred to as WRF-NARR.  The 205 

same parameterizations and grid nesting structures used in WRF-UW were also used for the 206 

WRF-NARR simulations, except that the WRF-NARR inner domain had 33 vertical layers and a 207 

horizontal grid resolution of 1.33 km (Table 1).  Analysis nudging (e.g., Stauffer and Seaman, 208 

1994) was used above the boundary layer in the outer domain (36 km horizontal grid 209 

resolution).  Hourly WRF-NARR simulations were run for 15 day periods with 12 hours of model 210 

spin up prior to each simulation.  The first grid layer was approximately 38 m AGL and the 211 

average model top height was approximately 15000 m AGL.  WRF-NARR differs from the other 212 

models used in this study in that it is not a routinely run model.  These were custom simulations 213 

conducted by our group to provide a best-case scenario for the NWP models.  Routine forecasts 214 

are already available for limited domains (e.g., UW provides WRF simulations on a 1.33 km grid 215 

for a small domain in the Pacific Northwest of the US) and are likely to become more widely 216 

available at this grid resolution in the near future. 217 

2.3. North American Mesoscale Model (NAM) 218 

The North American Mesoscale (NAM) model is an operational forecast model run by NCEP for 219 

North America (http://www.emc.ncep.noaa.gov/index.php?branch=NAM).  The NAM model 220 

uses the NMM core of the WRF model.  The NAM CONUS domain investigated in this study has 221 

a horizontal grid resolution of 12 km.  NAM employs the Noah Land Surface model (Chen et al., 222 

1996), Ferrier et al. (2003) for microphysics, Kain (2004) for convection, GFDL (Lacis and 223 
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Hansen, 1974) for longwave and shortwave radiation, and the Mellor-Yamada-Janjic (MJF) 224 

boundary layer scheme (Janjic, 2002).  The NAM model is initialized with 12-hr runs of the NAM 225 

Data Assimilation System.  It is run four times daily at 00z, 06z, 12z, and 18z and generates 226 

hourly forecasts out to 84 hours.  The computational domain consists of 26 vertical layers.  The 227 

first grid layer is approximately 200 m AGL and the average model top height is approximately 228 

15000 m AGL.  NAM forecasts are publicly available in real time from NCEP.  Although the 12-229 

km horizontal resolution used in NAM is not sufficient to resolve the butte, this resolution is 230 

sufficient for resolving the surrounding Snake River Plain and therefore can be used to generate 231 

a domain-average flow for input to WindNinja. 232 

2.4. High Resolution Rapid Refresh (HRRR) 233 

The High Resolution Rapid Refresh (HRRR) system is a nest inside of the NCEP-Rapid Refresh 234 

(RAP) model (13 km horizontal grid resolution; http://ruc.noaa.gov/hrrr/).  HRRR has a 235 

horizontal grid resolution of 3 km and is updated hourly.  HRRR uses the WRF model with the 236 

ARW core and employs the RUC-Smirnova Land Surface Model (Smirnova et al., 1997; Smirnova 237 

et al., 2000), Thompson et al. (2004) microphysics, RRTM longwave radiation (Mlawer et al., 238 

1997), Goddard shortwave radiation (Chou and Suarez, 1994), the MYJ boundary layer scheme 239 

(Janjic, 2002).  HRRR is initialized from 3-km grids with 3-km radar assimilation over a 1-hr 240 

period.  HRRR is currently the highest resolution operational forecast available in real time.  The 241 

computational domain consists of 51 vertical layers.  The first grid layer is approximately 8 m 242 

AGL and the average model top height is approximately 16000 m AGL. 243 

2.5. WindNinja 244 
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WindNinja is a mass-conserving diagnostic wind model developed and maintained by the USFS 245 

Missoula Fire Sciences Laboratory (Forthofer et al., 2014a).  The theoretical formulation is 246 

described in detail in Forthofer et al. (2014a).  Here we provide a brief overview of the 247 

modeling framework.  WindNinja uses a variational calculus technique to minimize the change 248 

in an initial wind field while conserving mass locally (within each cell) and globally over the 249 

computational domain.  The numerical solution is obtained using finite element method (FEM) 250 

techniques on a terrain-following mesh consisting of layers of hexahedral cells that grow 251 

vertically with height.   252 

 253 

WindNinja includes a diurnal slope flow parameterization (Forthofer et al., 2009).  The diurnal 254 

slope flow model used in WindNinja is the shooting flow model in Mahrt (1982).  It is a one-255 

dimensional model of buoyancy-driven flow along a slope.  A micrometeorological model 256 

similar to the one used in CALMET (Scire et al., 2000; Scire and Robe, 1997) is used to compute 257 

surface heat flux, Monin-Obukhov length, and boundary layer height.  The slope flow is then 258 

calculated as a function of sensible heat flux, distance to ridgetop or valley bottom, slope 259 

steepness, and surface and entrainment drag parameters.  The slope flow is computed for each 260 

grid cell and added to the initial wind in that grid cell.  Additional details can be found in 261 

Forthofer et al. (2009). 262 

 263 

WindNinja was used to dynamically downscale hourly 10-m wind predictions from the above 264 

NWP models.  The WindNinja computational domain was constructed from 30-m resolution 265 
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Shuttle Radar Topography Mission (SRTM) data (Farr et al., 2007).  The 10-m NWP winds were 266 

bilinearly interpolated to the WindNinja computational domain and used as the initial wind 267 

field.  Layers above and below the 10-m height were fit to a logarithmic profile (neutral 268 

atmospheric stability) based on the micrometeorological model.  The computational domain 269 

consisted of 20 vertical layers.  The first grid layer is 1.92 m AGL and the average model top 270 

height is 931 m AGL. 271 

2.6. Terrain representation 272 

The four NWP models used in this study employ an implementation of the WRF model.  They 273 

use different initial and boundary conditions, incorporate different parameterizations for sub-274 

grid processes, such as land surface fluxes, convection, and PBL evolution, but in terms of 275 

surface wind predictions under the conditions investigated in this study (inland, dry 276 

summertime conditions), the horizontal grid resolution is arguably the most important 277 

difference among the models.  The horizontal grid resolution affects the numerical solution 278 

since fewer terrain features are resolved by coarser grids.  Coarser grids essentially impart a 279 

smoothing effect which distorts the actual geometry of the underlying terrain (Fig. 1).  As 280 

horizontal cell size and terrain complexity increase, the accuracy of the terrain representation 281 

and thus, the accuracy of the near-surface flow solution deteriorate.   282 

 283 
3. Evaluations with field observations 284 

3.1. Observations at Big Southern Butte 285 
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Surface wind data (Butler et al., 2015) collected from an isolated mountain (Big Southern Butte, 286 

hereafter ‘BSB’; 43.395958, -113.02257) in southeast Idaho were used to evaluate surface wind 287 

predictions (Fig. 1).  BSB is a predominantly grass-covered volcanic cinder cone with a 288 

horizontal scale of 5 km and a vertical scale of 800 m and surrounded in all directions by the 289 

relatively flat Snake River Plain.  The portion of the Snake River Plain surrounding BSB slopes 290 

downward gently from the northeast to the southwest. 291 

 292 

Three-meter wind speeds and directions were measured with cup-and-vane anemometers at 293 

53 locations on and around BSB.  The anemometers have a measurement range of 0 to 44 m s-1, 294 

a resolution of 0.19 m s-1 and 1.4°, and are accurate to within ±0.5 m s-1 and ±5°.  The 295 

anemometers measured wind speed and direction every second and logged 30-s averages.  We 296 

averaged these 30-s winds over a 10-min period at the top of each hour (five minutes before 297 

and 5 minutes after the hour).  The 10-min averaging period was chosen to correspond roughly 298 

with the time scale of wind predictions from the NWP forecasts.  The NWP output is valid at a 299 

particular instant in time, but there is always some inherent temporal averaging in the 300 

predictions.  The temporal averaging associated with a given prediction depends on the time-301 

step used in the NWP model and is typically on the order of minutes.  The 10-min averaged 302 

observed data are referred to in the text as ‘hourly’ observations (since they are averaged at 303 

the top of each hour) and are compared directly with the hourly model predictions. 304 

 305 
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Butler et al. (2015) observed the following general flow features at BSB.  During periods of weak 306 

synoptic and mesoscale forcing (hereafter, referred to collectively as ‘external forcing’), the 307 

observed surface winds at BSB were decoupled from the large-scale atmospheric flows, except 308 

for at high-elevation ridgetop locations.  Diurnal slope flows dominated the local surface winds 309 

under periods of weak external forcing.  There were frequent periods of strong external forcing, 310 

during which the diurnal slope winds on BSB were completely overtaken by the larger-scale 311 

winds.  These periods of strong external forcing at BSB were typically characterized by large-312 

scale southwesterly flow aligned with the Snake River Plain, although occasionally there were 313 

also strong early morning winds from the northeast.  Under periods of strong external forcing 314 

wind speeds commonly varied by as much as 15 m s-1 across the domain due to mechanical 315 

effects of the terrain (e.g., speed-up over ridges and lower speeds on leeward slopes).  316 

Additional details regarding the BSB field campaign can be found in Butler et al. (2015).  317 

3.2. Evaluation methods 318 

Hourly observations were compared against corresponding hourly predictions from the most 319 

recent model run.  Modeled and observed winds were compared by interpolating the modeled 320 

surface wind variables to the observed surface sensor locations at each site.  The 10-m winds 321 

from the NWP forecasts were interpolated to sensor locations, using bilinear interpolation in 322 

the horizontal dimension and a log profile in the vertical dimension.  A 3-D interpolation 323 

scheme was used to interpolate WindNinja winds to the sensor locations.  This 3-D 324 

interpolation was possible because the WindNinja domain had layers above and below the 325 

surface sensor height (3.0 m AGL).  A 3-D interpolation scheme was not possible for the NWP 326 

domains since there were not any layers below the three meter surface sensor height. 327 
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 328 

Model performance was quantified in terms of the mean bias, root-mean-square error (RMSE), 329 

and standard deviation of the error (SDE): 330 
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 333 

where φ’ is the difference between simulated and observed variables and N is the number of 334 

observations.   335 

3.3. Case selection 336 

We selected a five-day period from July 15-19 2010 for model evaluations. This specific period 337 

was chosen because it included periods of both strong and weak external forcing, conditions 338 

were consistently dry and sunny, and was a period for which we were able to acquire forecasts 339 

from all NWP models selected for investigation in this study.   340 

 341 

The observed data from the five-day period were broken into periods of upslope, downslope, 342 

and externally-driven flow conditions to further investigate model performance under these 343 

particular types of flow regimes.  We used the partitioning schemes described in Butler et al. 344 

(1) 

(2) 

(3) 
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(2015).  Externally-driven events were partitioned out by screening for hours during which wind 345 

speeds at a designated sensor (R2, located 5 km southwest of the butte in flat terrain) exceeded 346 

a predetermined threshold wind speed of 6 m s-1.  This sensor was chosen because it was 347 

located in flat terrain far from the butte and therefore was representative of near-surface 348 

winds that were largely unaffected by the butte itself.  Hours of upslope and downslope flows 349 

(i.e., observations under weak external forcing) were then partitioned out of the remaining 350 

data.  Additional details regarding the partitioning scheme can be found in Butler et al. (2015).  351 

Statistical metrics were computed for these five-day periods. 352 

We also chose one specific hour representative of each flow regime within the 5-day period to 353 

qualitatively investigate model performance for single flow events under the three flow 354 

regimes.  This directly comparison of NWP model predictions, downscaled predictions, and 355 

observations for single events in order to get a visual sense for how the models performed 356 

spatially while avoiding any inadvertent complicating issues that may have arose from temporal 357 

averaging over the flow regimes.   358 

4. Results and discussion 359 

4.1. Overview of the five-day simulations 360 

Fig. 2 shows observed vs. forecasted wind speeds during the five-day period.  The following 361 

generalizations can be made.  The NWP models predicted wind speeds below 5 m s-1 362 

reasonably well on average, although HRRR tended to over predict at speeds below 3 m s-1 (Fig. 363 

2).  There is a lot of scatter about the regression lines, but the regressions follow the line of 364 

agreement fairly well up to observed speeds around 5 m s-1.  Downscaling did not improve wind 365 
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speed predictions much in this range.  NWP forecast accuracy declined for observed speeds 366 

between 5 and 10 m s-1, and accuracy sharply dropped off for observed speeds above 10 m s-1.  367 

This is indicated by the rapid departure of the NWP model regression lines from the line of 368 

agreement (Fig 2).  Downscaling improved wind speed predictions for all NWP forecasts for 369 

observed speeds greater than around 5 m s-1 and the biggest improvements were for observed 370 

speeds greater than 10 m s-1 (Fig. 2).  This is indicated by the relative proximity of the 371 

downscaled regression lines to the line of agreement (Fig. 2).   372 

 373 

Poor model accuracy at higher speeds is largely due to the models under predicting windward 374 

slope and ridgetop wind speeds.  Observed speeds at these locations were often three or four 375 

times higher than speeds in other locations in the study area (e.g., note the spatial variability in 376 

Fig 3).  Butler et al. (2015) showed that the highest observed speeds occurred on upper 377 

elevation windward slopes and ridgetops and the lowest observed speeds occurred on the 378 

leeward side of the butte and in sheltered side drainages on the butte itself.  Downscaling with 379 

WindNinja offers improved predictions at these locations as indicated by Fig. 2 (regression lines 380 

in closer proximity to the line of agreement) and Fig. 3 (spatial variability in predictions more 381 

closely matches that of the observations).  382 

 383 

Additionally, the downscaled NAM wind speeds were as accurate as the downscaled HRRR and 384 

WRF-UW wind speeds (Fig. 2).  This indicates that the NAM forecast was able to capture the 385 
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important large-scale flow features around BSB such that the additional resolution provided by 386 

HRRR and WRF-UW was not essential to resolve additional flow features in the large scale flow 387 

around BSB.   388 

 389 

The accuracy of the NAM forecast at BSB is likely due to the fact that Snake River Plain which 390 

surrounds BSB is relatively flat and extends more than 50 km in all directions from the butte.  391 

Even a 12 km grid resolution would be capable of resolving the Snake River Plain and diurnal 392 

flow patterns within this large, gentle-relief drainage.  Coarse-resolution models would not be 393 

expected to offer this same level of accuracy in areas of more extensive complex terrain, 394 

however.  In areas surrounded by highly complex terrain it may be necessary to acquire NWP 395 

model output on finer grids in order to resolve the regional flow features. 396 

 397 

The NWP forecasts predicted the overall temporal trend in wind speed (Fig. 3), but 398 

underestimated peak wind speeds due to under predictions on ridgetops and windward slopes 399 

as previously discussed, and also occasionally in the flat terrain on the Snake River Plain 400 

surrounding the butte (Fig. 4).   401 

 402 

NWP models with coarser resolution grids predicted less spatial variability in wind speed (Fig. 403 

3).  This is because there were fewer grid cells covering the domain, and thus fewer prediction 404 

points around the butte.  The spatial variability in the downscaled wind speed predictions more 405 
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closely matched that of the observed data, although the highest speeds were still under 406 

predicted (Fig. 3).  Although downscaling generally improved the spatial variability of the 407 

predictions, there were cases where NWP errors clearly propagated into the downscaled 408 

simulations.  For example, HRRR frequently over predicted morning wind speeds associated 409 

with down-drainage flow on the Snake River Plain; this error was amplified in the downscaled 410 

simulations, especially at the ridgetop locations (e.g., Fig. 3-4, 15-17 July).   411 

 412 

The mean bias, RMSE, and SDE for wind speed and wind direction were smaller in nearly all 413 

cases for the downscaled simulations than for the NWP forecasts during the five-day period 414 

(Table 2).  Mean biases in wind speed were all slightly negative and NAM and WRF-UW had the 415 

largest mean biases.  The RMSE and SDE in wind speed were largest for HRRR.  Although mean 416 

bias, RMSE, and SDE in wind direction for the downscaled forecasts were smaller or equal to 417 

those for the NWP forecasts, the differences were small, with a maximum reduction in mean 418 

bias in wind direction of just 4°.   419 

 420 

It is difficult to draw too many conclusions from the spatially and temporally averaged 5-day 421 

statistics, however, since this period included a range of meteorological conditions (e.g., high-422 

wind events from different directions, upslope flow, downslope flow) each of which could have 423 

been predicted with a different level of skill by the models.  Qualitatively, however, the 5-day 424 

results demonstrate that the spatial variability in the downscaled winds better matches that of 425 
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the observed winds at BSB (Fig. 3) and, although the reductions were small in some cases, 426 

nearly all statistical metrics also improved with downscaling.  The analysis is broken down by 427 

flow regime in the next section for more insight into model performance.  428 

4.2. Performance under Upslope, downslope, and externally-forced flows 429 

Local solar heating and cooling was a primary driver of the flow during the slope flow regime at 430 

BSB (Butler et al. 2015), with local thermal effects equal to or exceeding the local mechanical 431 

effects of the terrain on the flow.  Because there is weak external forcing (i.e., input wind 432 

speeds to WindNinja are low), the downscaling is largely driven by the diurnal slope flow 433 

parameterization in WindNinja during the slope flow regimes.   434 

 435 

During upslope flow, the diurnal slope flow parameterization increases speeds on the windward 436 

slopes and reduces speeds (or reverses flow and increases speeds, depending on the strength 437 

of the slope flow relative to the prevailing flow) on lee slopes due to the opposing effects of the 438 

prevailing wind and the thermal slope flow.  The parameterization has the opposite effect 439 

during downslope flow; windward slope speeds are reduced (or possibly increased if downslope 440 

flow is strong enough to reverse the prevailing flow) and lee side speeds are enhanced. 441 

4.2.1 Wind speed 442 

The biggest improvements in wind speed predictions from downscaling occurred during 443 

externally-driven flow events (Fig. 5).  This is not surprising since the highest spatial variability in 444 

the observed wind speeds occurred during high-wind events due to mechanically-induced 445 
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effects of the terrain, with higher speeds on ridges and windward slopes and lower speeds in 446 

sheltered side drainages and on the lee side of the butte (Fig. 6-8).  Since WindNinja is designed 447 

primarily to simulate the mechanical effects of the terrain on the flow, it is during these high-448 

wind events that the downscaling has the most opportunity to improve predictions across the 449 

domain.  This has important implications for wildfire applications since high-wind events are 450 

often associated with increased fire behavior. 451 

 452 

The NWP models tended to under predict wind speeds on the windward slopes, ridgetops, and 453 

surrounding flat terrain, and over predict on the lee side of the butte during high wind events 454 

(e.g., Fig. 6).  The largest NWP errors in wind speed during high wind events were on the 455 

ridgetops, where speed-up occurred and the NWP under predicted speeds.  These largest wind 456 

speed errors were reduced by downscaling (e.g., Fig. 6).  Downscaling reduced NWP wind speed 457 

errors in most regions on the butte, although the general trend of under predicting wind speeds 458 

on the windward side and over predicting on the lee side did not change (e.g., Fig. 6). 459 

 460 

There were consistent improvements in predicted wind speeds from downscaling during the 461 

upslope regime, although the improvements were smaller than for the externally-driven regime 462 

(Fig. 5).  Wind speeds were lower during the slope flow regimes than during the externally-463 

forced regime (Fig. 6-8), and thus, smaller improvements were possible with downscaling.  464 

There was some speed-up predicted on the windward side of the butte during the 465 

representative upslope case which appeared to match the observed wind field (Fig. 8).   466 
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 467 

Results were mixed for the downslope regime, as wind speeds improved with downscaling for 468 

WRF-UW and NAM, but not for WRF-NARR or HRRR (Fig. 5).  The poor wind speed predictions 469 

from HRRR during the downslope regime is partly due to the fact that HRRR tended to over 470 

predict early morning winds associated with down drainage flows on the Snake River Plain.  471 

These errors were amplified by the downscaling, especially at ridgetop locations (Fig. 4).  In 472 

reality, the high-elevation ridgetop locations tended to be decoupled from lower-level surface 473 

winds during the slope flow regimes due to flow stratification.  WindNinja assumes neutral 474 

atmospheric stability, however, so this stratification is not handled.  A parameterization for 475 

non-neutral atmospheric conditions is currently being tested in Windninja.  476 

 477 

The diurnal slope flow parameterization in WindNinja resulted in lower speeds on the 478 

windward side and higher speeds on the lee side of the butte for the representative downslope 479 

case (Fig. 7).  These downscaled speeds better matched those of the observed wind field, 480 

although speeds were still under predicted for ridgetops and a few other locations around the 481 

butte (Fig. 7).  The high observed speeds at the ridgetop locations are not likely due to thermal 482 

slope flow effects, but could be from the influence of gradient-level winds above the nocturnal 483 

boundary layer.  These ridgetop locations are high enough in elevation (800 m above the 484 

surrounding plain) that they likely protruded out of the nocturnal boundary layer and were 485 

exposed to the decoupled gradient-level winds.  Butler et al. (2015) noted that ridgetop winds 486 

did not exhibit a diurnal pattern and tended to be decoupled from winds at other locations on 487 
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and around the butte.  Lack of diurnal winds at the summit of the butte is also confirmed by 488 

National Oceanic and Atmospheric Administration Field Research Division (NOAA-FRD) mesonet 489 

station data collected at the top of BSB (described in Butler et al., 2015; 490 

http://www.noaa.inel.gov/projects/INLMet/INLMet.htm). 491 

 492 

Under predictions on the lower slopes and on the plain surrounding the butte could be due to 493 

overly weak slope flows being generated by the slope flow parameterization in WindNinja (Fig. 494 

7-8).  Overly weak slope flows could be caused by a number of things: improper 495 

parameterization of surface or entrainment drag parameters, poor estimation of the depth of 496 

the slope flow, or deficiencies in the micrometeorological model used.  The slope flow 497 

parameterization is being evaluated in a companion paper. 498 

4.2.2  Wind direction 499 

The biggest improvement in wind direction predictions from downscaling occurred during the 500 

downslope regime (Fig. 5).  Wind direction improved with downscaling for all NWP models 501 

during periods of downslope flow.  This indicates that the diurnal slope flow model helped to 502 

orient winds downslope.  This is confirmed by inspection of the vector plots for the 503 

representative downslope case which show the downscaled winds oriented downslope on the 504 

southwest and northeast faces of the butte (Fig. 7).  Downscaling reduced speeds on the 505 

northwest (windward) side of the butte, but did not predict strong enough downslope flow in 506 

this region to reverse the flow from the prevailing northwest direction (Fig. 7).  This again 507 

suggests that perhaps the diurnal slope flow algorithm is predicting overly weak slope flows. 508 
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 509 

Wind direction predictions during the upslope regime also improved with downscaling for all 510 

NWP models except HRRR (Fig. 5).  Downscaled winds for the representative upslope case were 511 

oriented upslope on the southwest (lee side) of the butte and matched the observed winds in 512 

this region well (Fig. 8).  This is an improvement over the NWP wind directions on the lee side of 513 

the butte. 514 

 515 

There was no improvement in wind direction predictions with downscaling during the 516 

externally-driven regime (Fig. 5).  Looking at the vector plots during the representative 517 

externally-driven event (Fig. 6), it is clear why this would be.  The representative event was a 518 

high-wind event from the southwest.  Wind directions are well predicted on the windward side 519 

of the butte, but not on the leeward side, where the observed field indicates some recirculation 520 

in the flow field (Fig. 6).  The prevailing southwesterly flow is captured by the NWP model, but 521 

the lee side recirculation is not.  WindNinja does not predict the lee side recirculation, and thus, 522 

the downscaling does not improve directions on the lee side of the butte (Fig. 7).  This is an 523 

expected result, as WindNinja has been shown to have difficulties simulating flows on the lee 524 

side of terrain features due to the fact that it does not account for conservation of momentum 525 

in the flow solution (Forthofer et al., 2014a).  526 

5. Summary 527 

The horizontal grid resolutions of NWP models investigated in this study were too coarse to 528 

resolve the BSB terrain.  Results showed that the NWP models captured the important large-529 
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scale flow features around BSB under most conditions, but were not capable of predicting the 530 

high spatial variability (scale of 100s of meters) in the observed winds on and around the butte 531 

induced by mechanical effects of the terrain and local surface heating and cooling.  Thus, 532 

surface winds from the NWP models investigated in this study would not be sufficient for 533 

forecasting wind speeds on and around the butte at the spatial scales relevant for processes 534 

driven by local surface winds, such as wildland fire spread. 535 

 536 

Wind predictions generally improved for all NWP models by downscaling with WindNinja.  The 537 

biggest improvements occurred under high-wind events (near-neutral atmospheric stability) 538 

when observed wind speeds were greater than 10 m s-1.  This finding has important 539 

implications for fire applications since increased wildfire behavior is often associated with high 540 

winds.  Downscaled NAM wind speeds were as accurate as downscaled WRF-UW and HRRR 541 

wind speeds, indicating that a NWP model with 12 km grid resolution was sufficient for 542 

capturing the large-scale flow features around BSB.  543 

 544 

WindNinja did not predict the observed lee-side flow recirculation at BSB that occurred during 545 

externally-forced high wind events.  Previous work has shown that WindNinja has difficulties 546 

simulating lee-side flows (Forthofer et al., 2014a).  This is partly due to lack of a momentum 547 

equation in the WindNinja flow solution as discussed in Forthofer et al. (2014a).  Work is 548 

currently underway to incorporate an optional momentum solver in WindNinja which is 549 

anticipated to improve flow predictions on the lee-side of terrain obstacles. 550 
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 551 

Results indicated that WindNinja predicted overly weak slope flows compared to observations.  552 

Weak slope flow could be caused by several different issues within the diurnal slope flow 553 

parameterization in WindNinja: improper parameterization of surface or entrainment drag 554 

parameters, poor estimation of the depth of the slope flow, or deficiencies in the 555 

micrometeorological model.  These issues will be explored in future work. 556 

 557 

This work constitutes evaluation of a diagnostic wind model at unprecedented high spatial 558 

resolution and terrain complexity.  While extensive evaluations have been performed with data 559 

collected in less rugged terrain (e.g., Askervein Hill and Bolund Hill, relatively low elevation hills 560 

with simple geometry), to our knowledge, this study is the first to evaluate a diagnostic wind 561 

model with data collected in terrain with topographical ruggedness approaching that of typical 562 

landscapes in the western US susceptible to wildland fire.  This work demonstrates that NWP 563 

model wind forecasts can be improved in complex terrain, especially under high-wind events, 564 

through dynamic downscaling via a mass-conserving wind model.  These improvements should 565 

propagate on to more realistic predictions from other model applications which are sensitive to 566 

surface wind fields, such as wildland fire behavior, local-scale transport and dispersion, and 567 

wind energy applications. 568 
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Tables 662 

Table 1. Model specifications.   663 
Model Horizontal 

grid 
resolution 

Number 
vertical 
layers 

First layer 
heighta 
(m AGL) 

Top 
heighta  
(m AGL) 

Numerical 
core 

Run 
frequency 

NAM 12 km 26 200 15000 NMM 00z, 06z, 
12z, 18z 

WRF-UW 4 km 38 40 16000 ARW 00z, 12z 
HRRR 3 km 51 8 16000 ARW hourly 
WRF-NARR 1.33 km 33 38 15000 ARW NA 
WindNinja 138 m 20 1.92 931 NA NA 

aApproximate average height AGL. 664 

 665 
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Table 2. Model mean bias, root-mean-square error (RMSE), and standard deviation of errors (SDE) for surface wind speeds and 666 
directions during the 5-day evaluation period at Big Southern Butte.  Downscaled values are in parentheses. Smaller values are in 667 
bold. The 5-day period includes the Downslope, Upslope, and Externally-driven time periods.  668 
Time period Statistic NAM WRF-UW HRRR WRF-NARR 
  Wind Speed (m s-1) 
5-day Bias -0.84 (-0.67) -1.17 (-0.95) -0.40 (-0.14) -0.31 (-0.08) 
 RMSE 2.31 (2.04) 2.39 (2.07) 2.52 (2.47) 2.33(2.21) 
 SDE 2.15 (1.92) 2.08 (1.83) 2.49 (2.47) 2.31 (2.21) 
Downslope Bias -1.07 (-0.76) -1.15 (-0.74) -0.09 (0.48) -0.48 (0.12) 
 RMSE 2.08 (1.92) 2.03 (1.83) 2.36 (2.66) 2.19 (2.28) 
 SDE 1.79 (1.77) 1.67 (1.68) 2.36 (2.62) 2.14 (2.28) 
Upslope Bias -0.81 (-0.74) -1.11 (-0.98) -0.81 (-0.75) 0.06 (0.05) 
 RMSE 1.73 (1.62) 2.02 (1.86) 1.93 (1.81) 1.86 (1.86) 
 SDE 1.52 (1.44) 1.69 (1.58) 1.76 (1.64) 1.86 (1.86) 
Externally-driven Bias -0.57 (-0.62) -1.28 (-1.32) -0.94 (-1.03) -0.22 (-0.33) 
 RMSE 3.06 (2.48) 3.21 (2.58) 3.17 (2.59) 2.92 (2.39) 
 SDE 3.00 (2.40) 2.94 (2.22) 3.02 (2.38) 2.92 (2.37) 
  Wind Direction (°) 
5-day Bias 59 (56) 57 (53) 64 (60) 57 (54) 
 RMSE 76 (72) 74 (71) 80 (76) 73 (71) 
 SDE 47 (46) 47 (46) 47 (46) 46 (46) 
Downslope Bias 67 (60) 61 (56) 76 (67) 66 (61) 
 RMSE 83 (77) 78 (72) 88 (81) 81 (75) 
 SDE 49 (47) 48 (46) 46 (46) 47 (45) 
Upslope Bias 55 (52) 58 (54) 56 (56) 52 (49) 
 RMSE 70 (67) 74 (71) 72 (72) 68 (65) 
 SDE 44 (42) 46 (45) 45 (46) 44 (42) 
Externally-driven Bias 48 (49) 45 (46) 51 (50) 44 (46) 
 RMSE 64 (65) 63 (65) 68 (67) 62 (65) 
 SDE 43 (44) 44 (47) 45 (44) 43 (46) 

669 
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Figures 670 

 671 
 672 
Figure 1. Terrain representation (m ASL) in WindNinja, WRF-NARR, HRRR, and WRF-UW for the Big Southern Butte.  Crosses indicate 673 

surface sensor locations.  Maps are projected in the Universal Transverse Mercator (UTM) zone 12 coordinate system. Axis labels are 674 

eastings and northings in m.  Profiles in gray are the average elevations for rows and columns in the panel.  NAM (12 km) terrain is 675 

represented by just four cells and is not shown here. 676 
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 677 

 678 

Figure 2. Observed vs. predicted wind speeds for the 5-day evaluation period at Big Southern 679 

Butte.  Dashed black line is the line of agreement.  Colored lines are linear regressions 680 

(quadratic fit); dashed lines are NWP models and solid lines are NWP forecasts downscaled with 681 

WindNinja.  Shading indicates 95% confidence intervals. 682 

 683 



Target Journal: Journal of Applied Meteorology and Climatology 
 

39 
 

 684 
Figure 3. Observed (black) and predicted (colored) winds speeds at all sensors for 15 July 2010–19 July 2010 at Big Southern Butte.  685 

Top panels are WindNinja predictions. Bottom panels are NWP predictions. 686 
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 687 

Figure 4. Observed (black line) and predicted (colored lines) wind speeds for sensor R2 located 688 

5 km southwest of Big Southern Butte on the Snake River Plain and sensor R26 located on a 689 

ridgetop.  Dashed colored lines are NWP models and solid colored lines are WindNinja. 690 
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 691 

Figure 5. Root-mean-square error in wind speed (left) and wind direction (right) at Big Southern 692 

Butte for the five-day evaluation period (N = 4149), and downslope (N = 1593), upslope (N = 693 

717), and externally -driven (N = 966) periods within the five-day period.  Sample size, N = 694 

number of hours x number of sensor locations.695 
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 696 

Figure 6. Predicted and observed winds for an externally-forced flow event at Big Southern Butte. 697 

  698 
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 699 

Figure 7. Predicted and observed winds for a downslope flow event at Big Southern Butte. 700 

  701 
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 702 

Figure 8. Predicted and observed winds for an upslope flow event at Big Southern Butte703 
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