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Changes in the shape of cloud ice water content vertical structure due to aerosol variations, 1 

by Steven T. Massie, Julien Delanoë, Charles G. Bardeen, Jonathan Jiang and Lei Huang 2 

 3 
Reviewer #1 4 
 5 
This study addresses the question of effect of aerosols on the invigoration of deep 6 
tropical clouds. They regard an enhancement of the ice water content (IWC) as an 7 
indicator for the invigoration. While invigoration can certainly increase the IWC, the 8 
IWC was shown to be potentially enhanced also by microphysical effects of the added 9 
aerosols. Fan et al. (2013) showed that larger numbers of smaller ice particles fall 10 
more slowly and therefore enhance the IWC. This has to be added to introduction. 11 
 12 

The revised paper now discusses Fan et al (2013) in the Introduction in a new 13 
paragraph. The paper by Morrison and Grabowski (2011) is also discussed in the new 14 
paragraph added to the revised paper. 15 
 16 
Major comments: 17 
 18 
1. The main response parameters are poorly defined. Please define clearly IWCsum, 19 
IWCreg and IWCshape with equations and allocate for that explanation a figure with 20 
illustration. Please state the units. 21 
  22 
 The revised paper has equations 1-3 which define the IWCsum, 23 
IWCreg and IWCshape profiles. Newly added Figure 4 of the revised paper summarizes 24 
the processing steps. The units are stated for each set of profiles. 25 
 26 
2. The authors conclude that cloud adjacency does not affect much their conclusions. 27 
The data that they show to support that is not very convincing. The obvious way to 28 
show this is to repeat the final results for the various adjacency thresholds, and see 29 
the extent that it affects these results. Sample size should not be an issue for the final 30 
results shown in Figures 8 and 9. 31 
 32 
 The revised paper now includes a new figure (Figure 8) which presents means 33 
from the previous Figures 8 and 9, as a function of the cloud pixel-distance value. New 34 
Figure 8 indicates that cloud-adjacency has a minor effect on the previous Figures 8 and 35 
9 mean values. 36 
 37 
3. It is not clear to me how Figure 1 was constructed. It appears that more profiles 38 
were averaged towards the larger numbers on the abscissa, because they converge 39 
towards ordinate value of zero. How was that done? Were the profiles binned and 40 
averaged in some way? 41 
  42 
 Assuming that the question is in regard to the construction of Figure 5 of the 43 
original paper (Figure 7 in revised paper), the x axis value is the number of profiles that is 44 
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associated with a specific region and season that is associated with the corresponding 1 
derivative on the y axis. When Figure7 is first discussed in the revised paper, we add the 2 
following sentence to clarify the Figure’s construction: “As explained in Section 3 (Step 3 

4 processing), the value of the IWCreg derivative for a 2 km altitude bin is the average of 4 

two derivatives, based upon IWCreg values at the first and second, and first and third, 5 
aerosol bins”. 6 
 7 
4. The authors state that "three AOD bins (i.e. 0.05 - 0.15, 0.15-0.35, 0.35 – 0.45), 8 
were chosen to represent low, medium, and high amounts of AODs". By doing this 9 
the authors ignored the two main properties of aerosol effects on cloud invigoration, 10 
as described in two papers in Science: (Koren et al., 2008; Rosenfeld et al., 2008). 11 
First, the cloud invigoration responds to the logarithm of the aerosols concentrations. 12 
Second, the effect saturates at AOD of 0.25 to 0.3, and may reverse at larger AOD. This 13 
is evident in Figure 3, where there is large difference between the lines of AOD 1 and 2, 14 
but bins 2 and 3 are practically the same. The authors have to expand the introduction 15 
to include the discussion of the aerosols effect, as mentioned here. Furthermore, the 16 
analysis has to be redone with re-binning accordingly. The cases with AOD<0.05 are 17 
the cleanest and thus expected to have the greatest contrast to the polluted cases. 18 
Based on the principle of the logarithmic effect, the difference between AOD<0.05 and 19 
AOD of 0.05 to 0.15 should be larger than what the authors found between bins 1 and 2 20 
in the present version,. Why did the authors exclude AOD<0.05? This should be a bin 21 
on its own, which I expect to be the most informative. In summary, for the paper to be 22 
considered for publication in ACP it has to undergo a major revision. The background 23 
has to be rewritten with a more physical basis, the methodology has to be clarified, 24 
the analyses have to be completely redone with new binning, the effects of adjacency 25 
effect have to be tested on the final results, and the discussion of the results has to 26 
commensurate with the newly written physical background. 27 
 28 

a) The 0.05 is a typo introduced into the original paper (we apologize for this). 29 
The aerosol bins used in the calculations of the original paper, and reported in 30 
the figures of the original paper, are 0.01 - 0.15, 0.15-0.30, 0.30 – 0.45. Figure 31 
3 of the original paper has the correct lower bound (0.01) of the first AOD bin 32 
range. These three sets of AODs are based upon an examination of probability 33 
distribution functions of MODIS AODs such that there are approximately an 34 
equal number of AODs for the three aerosol bin ranges. We tried to have the 35 
statistics of the three AOD bins to be similar. Since the expected errors (see 36 
page 9, lines 5-6, of the revised paper) for MODIS C6 AODs over the Ocean 37 
are -0.02 (-10%) and +0.04 (+10%) and over Land by   (0.05 +15%), a 38 
separate bin range (i.e. 0.01 – 0.05) would apply MODIS data of low 39 
accuracy. 40 

b) Table 1 was added to the revised paper to state the AOD, AAOD, and CO bins 41 
clearly. Reviewer 2 suggested that OMI AAODs and MLS CO data be added 42 
to the study, and we did this in the revised paper.  43 

c) A new paragraph is added to the Introduction of the revised paper which 44 
discusses Koren et al. (2008) and Rosenfeld et al. (2008) in regard to 45 
saturation effects. Inhibition effects are also discussed in a new paragraph, 46 
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with reference to papers by Ramanathan et al. (2005, 2007) who modeled and 1 
observed the stabilizing effects of absorptive aerosol offshore of India. These 2 
four papers form the basis of the added written physical background. 3 

d) Equations 1-3 clarify the methodology (i.e. how the IWCsum, IWCreg and 4 
IWCshape values are calculated). 5 

e) The reviewers’ requested binning (i.e. lower bound is less than 0.05 for the 6 
first bin) is actually the original binning. 7 

f) New Figure 8 illustrates the effects of cloud adjacency on the final results 8 
(original Figures 8 and 9, Figures 11 and 12 in revised paper). Curves of the 9 
means for the All AOD, 2, and 4 pixel-distance AOD fields, are presented in 10 
Figure 8 as requested by the reviewer. This Figure is placed in the text when 11 
Table 2 (previous Table 1 listing of the pdf means) is first discussed. It is 12 
apparent from Figure 8 in the revised paper that the cloud adjacency issue did 13 
not have a large impact upon our particular calculations. 14 

g) Additional text has been added in the Introduction and Discussion in regard to 15 
the added written physical background. Table 4 has been added to the text 16 
which indicates the percent of MODIS observations for which invigoration 17 
and inhibition scenarios are apparent. The saturation scenario in the MODIS 18 
data is present twice as often as the inhibition scenario. 19 

 20 
I did not comment on minor issues, because they likely will not survive the revision, if 21 
done as I expect it to be. 22 
 23 
References: 24 
 25 
Fan J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, H. Yan, 2013: Microphysical 26 
effects determine macrophysical response for aerosol impacts on deep convective 27 
clouds. Proceedings of the National Academy of Sciences, 110(48), E4581-E4590. 28 
 29 
Koren, I., Martins, J. V., Remer, L. A., & Afargan, H. (2008). Smoke invigoration versus 30 
inhibition of clouds over the Amazon. science, 321(5891), 946-949. 31 
 32 
Rosenfeld, D., Lohmann, U., Raga, G. B., O’Dowd, C. D., Kulmala, M., Fuzzi, S., ... 33 
& Andreae, M. O. (2008). Flood or drought: how do aerosols affect precipitation?. 34 
science, 321(5894), 1309-1313. 35 
 36 
 All of these papers are included in the revised paper. 37 
 38 
Interactive comment on Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2015-732, 2016. 39 
  40 



 

4 
 

 1 

Changes in the shape of cloud ice water content vertical structure due to aerosol variations, 2 
by Steven T. Massie, Julien Delanoë, Charles G. Bardeen, Jonathan Jiang and Lei Huang 3 

Anonymous Referee #2 4 
Received and published: 16 February 2016 5 
 6 
This paper is generally well written. After addressing my major concern below, the 7 
results of this paper would undoubtedly motivate worthwhile future research efforts in 8 
this field. 9 
 10 
My major concern is that this study uses only MODIS AOT to analyze vertical structure 11 
changes of ice clouds under various AOT amounts. It is noted that MODIS can not 12 
distinguish aerosol types. While aerosols could perturb the vertical profiles of clouds 13 
via cloud particle size change and latent heat release, and thus invigorate convection 14 
(Rosenfeld, 2008), absorptive aerosols could result in less solar radiation at the surface 15 
and more stable vertical temperature profile and thus inhibit cloud development (see 16 
work by Ramanathan 2005, 2007). I noted in most cases different aerosol types are 17 
mixed, which may explain why only very small changes of cloud vertical structure were 18 
found by this study. My suggestions is to expand the database to include OMI absorp- 19 
tive aerosols, or perhaps Aura MLS CO (the newest version 4) and thus the cases for 20 
absorbing aerosols can be identified and distinguished. 21 
 22 
 We agree that analysis that compares the effects of both absorptive aerosol (OMI 23 
AAOD and 215 hPa MLS CO, an absorptive aerosol proxy) and MODIS AODs (which 24 
include both scattering and absorptive aerosol) is an important task. 25 

 In the revised paper additional text and figures have been added to include 26 
calculations in which absorptive aerosol (OMI AAOD and MLS V4 CO at 215 hPa) data 27 
is used in the same manner as the MOIS AODs. 28 

As discussed in the revised paper, the calculations (see Figure 15 and Figure 13) 29 
are supportive of the assertion that absorptive aerosol tends to inhibit cloud development. 30 
Figures 15 and 13 graphically illustrate differences between the effects of absorbing 31 
aerosols (from OMI and MLS) and all aerosols (from MODIS). This is especially 32 
apparent in comparing the positive MODIS AOD means and negative MLS CO means. 33 
 34 
Minor comments: 35 
 36 
(1) Figure 1. The reason for conducting the study in 12 different regions should be 37 
explained more clearly. For example, the regions can be defined by cloud dynamics, 38 
which varies from region to region. 39 
 40 
 Text on page 109 has been revised to indicate that topographical and surface 41 
heating characteristics vary from region to region.  42 
 The 12 regions were selected to cover the tropics, selected to separate ocean from 43 
land, and selected to include as many IWC profiles as possible in order to reinforce the 44 
statistics.  45 
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 1 
(2) Figure 5, and also page 12 Line 7. You mentioned the largest derivatives are over 2 
India, why?  3 
  4 
 As stated in the text, the variance in the derivatives (new Figure 7) increases as 5 
the number of profiles decreases. India has the smallest area of the 12 regions. We 6 
believe that this is why India primarily has the largest spread in the derivatives. 7 
 Text has been added (page 15 of revised paper) to also mention the fact that India 8 
is subject to complicated monsoon dynamics, and the “elevated heat pump” physics of 9 
William Lau likely also is of importance. Absorptive aerosol above the Tibetan plateau is 10 
attributed to provide an elevated heating source which leads to enhanced circulation that 11 
will draw air from the surface upwards along the southern flank of the Himalayas. India 12 
likely is subject to some of the most complicated aerosol-cloud interactions as anyplace 13 
in the world. 14 
 15 
Also, how derivatives in the 12 regions differ? 16 
 17 
 Text on page 17 (revised paper) discusses the spatial variations (revised paper 18 
lines 5-8, page 17) and seasonal variations (revised paper lines 24-29, page 17) of the 19 
derivatives. 20 
 21 
(3) I also suggest the authors to analyze the vertical velocity field in each of the 12 22 
regions using MERRA data, which could provide additional information. 23 
 24 
 We agree that additional calculations in regard to the cloud dynamic variables is 25 
an important task. For completeness, such a study should examine several dynamic 26 
variables: the vertical velocity field, wind shear, relative humidity, and CAPE, on a 27 
region by region basis. 28 
 A concern we do have in such a study is that models and observations need not 29 
necessarily agree in spatial and temporal agreement in regard to the location and timing 30 
of cloud development. This task is deserving of careful analysis but we feel it is 31 
substantially outside the scope of the present study which in its revised form is already 32 
long in length. 33 
 34 
Interactive comment on Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2015-732, 2016. 35 
 36 

  37 
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 12 

Abstract 13 

Changes in the shape of cloud ice water content (IWC) vertical structure due to aerosol 14 

variations in Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical 15 

depths (AODs), Ozone Monitoring Instrument (OMI) absorptive aerosol optical depths 16 

(AAODs), and Microwave Limb Sounder (MLS) CO (an absorptive aerosol proxy) at 215 17 

hPa, are calculated in the Tropics during 2007-2010 based upon an analysis of DARDAR 18 

ice water content (IWC) profiles for deep convective clouds. DARDAR profiles are a joint 19 

retrieval of CloudSat-CALIPSO data. Our analysisAnalysis is performed for 12 separate 20 

regions over land and ocean, and carried out applying Moderate-Resolution Imaging 21 

Spectroradiometer (MODIS) aerosol optical depth ( AOD) fields that attempt to correct for 22 

3D cloud adjacency effects. The 3D cloud adjacency effects have a small impact upon our 23 

particular calculations of aerosol-cloud indirect effects.  IWC profiles are averaged for 24 
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three AOD bins individually for the 12 regions. The IWC average profiles are also 1 

normalized to unity at 5 km altitude in order to study changes in the shape of the average 2 

IWC profiles as AOD increases.  Derivatives of the IWC average profiles, and derivatives 3 

of the IWC shape profiles, in percent change per 0.1 change in MODIS AOD units, are 4 

calculated separately for each region. Means of altitude-specific probability distribution 5 

functions, which include both ocean and land IWC shape regional derivatives, are modest, 6 

near 5%, and positive to the 2 level between 11 and 15 km altitude. Similar analyses is 7 

carried out for three AAOD and three CO bins. On average, the vertical profiles of the 8 

means of the derivatives based upon the profile shapes over land and ocean are smaller for 9 

the profiles binned according to AAOD and CO values, than for the MODIS AODs, which 10 

include both scattering and absorptive aerosol. This difference in character supports the 11 

assertion that absorptive aerosol can inhibit cloud development.   12 

 13 

1 Introduction 14 

Uncertainty in aerosol effects upon clouds remains the largest of the global climate forcing 15 

uncertainties (Stocker et al., 2013). Tao et al. (2012) discuss the various types of aerosol 16 

indirect effects (e.g. effects on cloud droplets and ice particles, reflectance, cloud heights, 17 

lifetime, coverage, and precipitation). Though various aerosol indirect effects have been 18 

identified, there remains much quantitative uncertainty.  19 

By the cloud invigoration mechanism (Rosenfeld et al., 2008), an increase in aerosol is 20 

expected to modify the manner in which vertical and horizontal cloud structure develops 21 

in deep convective clouds. The cloud invigoration mechanism is of fundamental 22 

importance in regard to aerosol indirect effects upon deep convective clouds. It is expected 23 

that the vertical ice water content (IWC), particle radii, and heating rate profiles of a deep 24 

convective cloud differsdiffer under low and high aerosol optical depths (AODs) due to 25 

different initial cloud condensation nuclei (CCN) values in the lower portion of the cloud. 26 

A change in the CCN concentration alters the formation rate and size of liquid droplets, 27 

allowing more water to be transported above the freezing level, which leads to a perturbed 28 
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vertical profile of latent heat release, and subsequent invigoration of cloud development. 1 

This invigoration effect will occur throughout the cloud, changing IWC vertical structure. 2 

The literature of observed and modeled aerosol indirect effects, however, is characterized 3 

by a variety of conclusions with differences in even the sign of the effects. For example, 4 

Koren et al. (2010) analyzed Moderate-Resolution Imaging Spectroradiometer (MODIS) 5 

AOD and cloud top pressure data for July – August 2007 over the Atlantic west of 6 

equatorial Africa for low and high clouds. For high clouds near 370 hPa (i.e. 7 km altitude, 7 

see Figure 6 of Koren et al., 2010), cloud top pressure changed by -7% / 0.1 AOD (i.e. 8 

cloud top heights increased as AOD increased). In this paper we use % change per 0.1 9 

AOD units in order to compare the calculations from several studies. Assuming that the 10 

cloud top position is dependent upon the location of cloud vertical optical depths near unity, 11 

a decrease in cloud top pressure corresponds to moving the optical depth profile upwards 12 

in altitude. IWC is then +7% / 0.1 AOD larger at the position of the higher cloud top. In 13 

contrast, Wall, Zipser, and Liu (2014) studied congestus (4-8 km altitude range), analyzing 14 

14 years of Tropical Rainfall Measuring Mission (TRMM) radar precipitation features, and 15 

6 years of CloudSat radar reflectivity data. Aerosol Index (AI) data (i.e. AI is the product 16 

of MODIS AOD and the MODIS AngstromÅngström exponent) were collocated with the 17 

TRMM and CloudSat data. TRMM echo-top heights increased with increasing AI over the 18 

Amazon and Africa, and decreased over the equatorial Atlantic and southwest United 19 

States. Differences in CloudSat maximum reflectivity means of clean and dirty congestus 20 

were statistically significant at the 99% level below 4 km over the Amazon, and at 4-5 km 21 

over Africa, but not at higher altitudes. 22 

It is important to note that changes in particle radius due to changes in aerosol also result 23 

in IWC profile perturbations, even in the absence of convective invigoration. Morrison and 24 

Grabowski (2011) used a two-dimensional cloud-system resolving model to investigate 25 

aerosol indirect effects for pristine, polluted, and highly polluted conditions during a 6 day 26 

period of active monsoon conditions. The ensemble calculations indicated a small 27 

weakening of convection, higher cloud top heights and anvil ice mixing ratios for the 28 

polluted cases. Smaller ice particle sizes and smaller fall velocities perturbed the IWC 29 

profiles. Fan et al. (2013) used the NCAR WRF model, coupled to a spectral-bin 30 
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microphysics code, to simulate deep convective clouds (DCC) for one month for three 1 

different regions over the tropical western Pacific (i.e. the TWP-International Cloud 2 

Experiment), southern China, and over the U.S. southern Great Plains ARM site. They 3 

found “that although the widely accepted theory of DCC invigoration due to aerosol’s 4 

thermodynamic effect (additional latent heat release from freezing of greater amount of 5 

cloud water) may work during the growing stage, it is microphysical effect influenced by 6 

aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud 7 

thickness at the mature and dissipation stages by inducing larger amounts of smaller but 8 

longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic 9 

invigoration is absent”. 10 

Increases in AOD will invigorate for small AODs, though inhibit convection at larger 11 

AODs, since larger AODs decrease the amount of sunlight which reaches the surface. 12 

Based upon application of a pseudo-adiabatic parcel model, Rosenfeld et al. (2008) 13 

estimated that maximum release of convective energy occurs for AODs near 0.3. The 14 

contrasting influences of cloud microphysics and radiative processes, and their influence 15 

on cloud fraction were parameterized in analytic equations by Koren et al. (2008), and 16 

validated by an analysis of MODIS AODs, cloud fractions, and cloud top pressure observed 17 

over the Amazon in the dry season. The upper panel of Figure 2 of Koren et al. (2008) 18 

indicates that cloud top pressures are lowest (i.e. cloud top heights are highest) for AODs 19 

near 0.4. 20 

 It is also possible that absorptive AOD can inhibit cloud development. Ramanathan et al. 21 

(2005) used model simulations to study the influence of absorptive aerosol offshore of 22 

India. The model aerosol perturbed temperature profile vertical gradients in the first several 23 

kilometers near the surface, yielding a stabilizing influence upon cloud development. 24 

Ramanathan et al. (2007) deployed small aerial aircraft over the Maldives in 2006 to 25 

measure aerosol characteristics during time periods with and without enhanced aerosol 26 

amounts. Heating rate calculations indicated that the enhanced aerosol produced a vertical 27 

temperature profile that was more stable, and therefore likely inhibited cloud development. 28 
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According to theory, buoyancy increases by the release of latent heat, and decreases when 1 

condensate loading (i.e. the weight of liquid or ice in a fluid parcel) increases (see Eqns 2 

2.50 – 2.53 of Houze, 2014). Lebo and Seinfeld (2011) state that “the aerosol-induced 3 

effect is controlled by the balance between latent heating and the increase in condensed 4 

water aloft, each having opposing effects on buoyancy.” Since changes in buoyancy can 5 

be positive or negative, depending upon specific situations in which latent heating or 6 

condensate perturbations dominant, changes in cloud structure IWC likely could be 7 

positive or negative as AOD increases. 8 

Lebo and Seinfeld (2011) modeled aerosol effects on deep convection by applying the 9 

Weather Research and Forecasting (WRF) model as a cloud resolving model, with separate 10 

bulk and bin microphysics schemes. Figure 6 of Lebo and Seinfeld (2011) presents domain 11 

averaged liquid and IWC profiles at 2, 4, and 6 hours for “Clean”, “Semi-Polluted”, and 12 

“Polluted” scenarios, with cloud condensation nuclei (CCN) values of 100, 200, and 500 13 

cm-3, respectively. The three IWC profiles for the three CCN values are equal to each other 14 

at 5 (6) km altitude for the bulk (bin) microphysics schemes, respectively, and then diverge 15 

at higher altitudes. This diverging characteristic indicates that the shape of the IWC profile 16 

changes as AOD changes. This Figure motivates us to calculate IWC average profiles for 17 

individual regions in the Tropics, and IWC shape profiles, for several AOD bins. The IWC 18 

shape profiles are obtained by normalizing the IWC average profiles to unity at 5 km 19 

altitude.  20 

There are noticeable differences in the bulk and bin microphysics model calculations in 21 

Figure 6 of Lebo and Seinfeld (2011). The bulk scheme IWC profiles differ by – 5% at the 22 

IWC peak near 6 km altitude, indicating a decrease in IWC as aerosol increases, while the 23 

bin microphysics IWC profiles differ by 120% at the IWC peak near 9 km altitude, 24 

indicating a large increase in IWC as aerosol increases. Figure 1 of Rosenfeld et al. (2008), 25 

which graphs 500 nm AOD as a function of CCN, can be used to estimate AODs that 26 

correspond to the model CCN values. The difference in AOD between the Clean and 27 

Polluted CCN values is approximately 0.094. The 120% increase in IWC therefore 28 

translates to an increase in IWC of 127% per 0.1 AOD. Lebo and Seinfeld (2011) attribute 29 
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the bulk and bin microphysics model differences to differences in vertical motion and 1 

particle size (sedimentation) characteristics of the two microphysical schemes.  2 

Storer and van den Heever (2013) modeled deep convective clouds by running the Regional 3 

Atmospheric Modeling System (RAMS) (Cotton et al., 2003) in a 2D radiative-convective 4 

equilibrium framework. Six CCN loadings between 100 and 3200 cm-3 were applied in 5 

separate calculations. After a 60 day initialization, model output was sampled every 5 min 6 

during a 10 day period. They note that early storm updrafts were influenced by increased 7 

latent heating, while more mature updrafts were largely influenced by increased drag from 8 

condensate loading.  Differences in buoyancy curves for “polluted” and “clean” aerosol 9 

cases (see Figure 8 of Storer and van den Heever, 2013) indicate that latent heating effects 10 

were numerically smaller, by an order of magnitude, than those due to condensate loading. 11 

The number of cloud-top counts, averaged over 10 days, shifted toward higher and medium 12 

cloud tops and fewer low cloud tops (see Figure 1 of Storer and van den Heever, 2013). 13 

The freezing level was near 4.4 km, with low, medium, and high cloud tops defined for 14 

altitudes less than 4.4 km, 4.4- - 10 km, and altitudes greater than 10 km, respectively. On 15 

a percentage basis, medium and high cloud top heights increased by approximately 3% and 16 

5%, respectively, between the 100 and 400 cm-3 CCN values. The 100 cm-3 and 400 cm-3 17 

CCN values are closest in value to those used in the Lebo and Seinfeld (2011) calculations 18 

discussed above. 19 

Changes in the shape of cloud ice water content vertical structure, and changes in ice water 20 

content (IWC) vertical profiles, due to aerosol variations in Moderate Resolution Imaging 21 

Spectroradiometer (MODIS) aerosol optical depths (AODs), Ozone Monitoring Instrument 22 

(OMI) absorptive aerosol optical depths (AAODs), and Microwave Limb Sounder (MLS) 23 

CO (an absorptive aerosol proxy) at 215 hPa, are calculated in this paper for the Tropics 24 

over land and oceansocean during 2007-2010 based upon an analysis of DARDAR IWC 25 

profiles of deep convective clouds. DARDAR profiles (Delanoë and Hogan, 2008; Delanoë 26 

and Hogan, 2010) are a joint radar-lidar retrieval using CloudSat radar reflectivity and 27 

CALIOP lidar observations at 532 nm. We carry out our calculations over several years 28 

(2007-2010), individual regions and seasons, in order to build up statistics. Section 2 29 

discusses the data used in our study, Section 3 discusses ourthe Methodology which is 30 
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applied in a similar manner to the AOD, AAOD and CO data, and results are presented in 1 

Section 4. A discussion of the results and conclusions are presented in Section 5. 2 

 3 

2 Data 4 

Ice water content vertical profiles are from the v2.1.0 DARDAR (raDAR/liDAR) data 5 

archive (http://www.icare.univ-lille1.fr/drupal/archive/) of the ICARE Thematic Center. 6 

The DARDAR cloud product is derived using the Varcloud algorithm (Delanoë and Hogan 7 

2008) and utilizes CloudSat reflectivity, and CALIOP lidar backscatter at 532 nm to jointly 8 

retrieve the properties of ice clouds (e.g. IWC, visible extinction, effective cloud particle 9 

radius). There is one DARDAR profile, with a vertical resolution of 60 m, for every 10 

CloudSat radar profile and therefore an along -track horizontal resolution of 1.7 km. 11 

Cloudsat (Stephens et al, 2002) and the CALIOP lidar (on the CALIPSO satellite, Winker 12 

et al., 2010) were launched in tandem in 2006 as part of the A-Train. We analyze data from 13 

all months of 2007 through 2010. 14 

The DARDAR retrieval algorithm is discussed in Delanoë and Hogan (2008), Delanoë and 15 

Hogan (2010) and in ICARE archive documentation (http://www.icare.univ-16 

lille1.fr/drupal/projects_data/dardar/docs/varcloud algorithm_description-v1.0.pdf). The 17 

applied optimal estimation technique (see Rodgers, 2000 for a general discussion) 18 

incorporates up to date aircraft particle size distribution and habit information to formulate 19 

forward model look-up tables. The lidar forward model uses a fast radiative transfer code 20 

(Hogan 2006). The combination of 95 GHz CloudSat radar and 532 nm CALIOP lidar 21 

observations provide information on both small and larger ice particles, since CloudSat and 22 

CALIOP are sensitive to larger and smaller particles, respectively. Since the lidar is subject 23 

to strong attenuation, the radar measurement takes over for thick ice clouds. The radar-24 

lidar overlap region allows one to retrieve simultaneously size and concentration 25 

information. For this reason the combination of the two measurements improves the 26 

retrieval of cloud properties compared to single instrument retrievals. The DARDAR data 27 

focuses upon ice particles, so our analysis is restricted to altitudes above 5 km. 28 
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Deng et al. (2013) found reasonable agreement between CloudSat-CALIPSO (2C-ICE) and 1 

DARDAR retrieval products. IWC values from 2B-CWC-RO, 2C-ICE, and DARDAR 2 

generally are in good agreement, while 2B-CWC-RVOD radii were 40% larger than the 3 

2C-ICE and DARDAR radii. 4 

One stated concern in aerosol-indirect effect studies is that it is difficult to measure aerosol 5 

optical depths near clouds using nadir view satellite instruments. A cloud away from an 6 

observation point scatters light from the cloud towards the nadir observation point, which 7 

is then scattered towards the satellite sensor. Varnai and Marshak (2009) quantified how 8 

MODIS reflectance is enhanced as a function of distance to the nearest cloud. The 9 

reflectance is enhanced by ~10% when clouds are 5 km away from clear sky footprints at 10 

a wavelength of 0.68 m. Zhang et al. (2005) compared AERONET and MODIS MOD04 11 

AODs. They demonstrate that MODIS AODs are enhanced at cloud edges, with differences 12 

between MODIS and AERONET AODs increasing as the cloud fraction increases, while 13 

the AERONET values stay relatively constant. We address this concern in our calculations 14 

by using the latest V6 MODIS aerosol data that include a parameter indicating the average 15 

pixel distance from a measured AOD to the nearest cloud feature. 16 

MODIS version 6 MYD04 data files are used to specify daily aerosol optical depth fields. 17 

In particular, we utilize the “Optical_Depth_Land_and_Ocean” AOD values at 0.55 m, 18 

which are specified at 10 km horizontal spatial resolution. We process the 10 km AODs 19 

into daily data files at 1x1 longitude-latitude resolution for 25 S to 25 N. As discussed 20 

by Levy et al. (2013), the Collection 6 (henceforth C6) aerosol retrieval algorithms have 21 

made several improvements compared to the C5 data. The C6 22 

“Average_Cloud_Pixel_Distance_Land_Ocean” variable specifies the number of pixel 23 

units from an AOD to the nearest cloud pixel. Pixel unit distances are on the order of 0.5 24 

km. We use this variable to calculate separate 1x1 AOD fields for several “cloud 25 

screening” cases. For the first case, all AODs are used within a 1x1grid box if the AOD 26 

is between 10-3 and 3. Another set uses all AODs that are e.g. 2 or more pixel units from 27 

MODIS clouds. Daily 1x1 fields of AODs for 2, 4, and 6 pixel units, and the “all AOD” 28 

case, are calculated separately for 25 S to 25 N. As discussed in the next section, the 29 

AOD fields are used in separate calculations, for each pixel-distance case, to assess the 30 



 

14 
 

sensitivity of the calculations to 3D cloud adjacency effects. The AODs used in our 1 

processing are for quality flag 3 (i.e. only the best quality data is used). 2 

Levy et al. (2014) discusses the differences in C6 and C5 Aqua MODIS AODs. C6 AODs 3 

increase by 0.05 over the tropical ocean and the Amazon, decrease by -0.05 over the 4 

southern oceans and northern mid-latitudes, and increase by 0.02 on a global basis. C6 5 

AODs over the land increased by 0.10 over East Asia, vegetation, Africa, Eastern United 6 

States, and decreased over the Western United States, South Africa, and semi-arid regions. 7 

The correlations of MODIS and AERONET AODs change slightly from 0.928 to 0.937 for 8 

the C5 and C6 data, respectively. Expected errors for C6 AODs over the Ocean are -0.02 9 

(-10%) and +0.04 (+10%) and over the Land by    (0.05 +15%). 10 

The OMI OMAEROe data are contained in gridded (level 3) hdf files with a resolution of 11 

¼º x ¼º (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeroe_v003.shtml). 12 

These data files utilize for each grid cell the level 2 data that has the shortest sun to sensor 13 

path length. The data are derived from a multi-wavelength aerosol retrieval algorithm 14 

(Veihelmann et al., 2007; Veihelmann and Veeefkind, 2009) that uses 14 bands and a look 15 

up reflectance table, calculated for four aerosol model types (desert dust, biomass burning, 16 

volcanic, and weakly absorbing aerosol), size distributions, and aerosol layer altitudes. The 17 

level 2 data are calculated by minimizing the differences between observed and model 18 

reflectance values. 19 

MLS CO (http://disc.sci.gsfc.nasa.gov/uui/datasets/GES_DISC_ML2CO_V004) at 215 20 

hPa is an aerosol proxy (Jiang et al. 2008; Jiang et al. 2009). CO is a byproduct of 21 

incomplete combustion of biofuels and fossil fuel, and is associated with soot (which 22 

absorbs light). CO is retrieved from microwave radiances in two bands of the 240 GHz 23 

radiometer (Livesey et al. 2008). Level 2 version 4.2 profiles have a vertical resolution of 24 

3.5 – 5 km in the upper troposphere. We grid CO measurements at 215 hPa into daily 1ºx1º 25 

data files. As discussed in Livesey et al. (2015), 215 hPa is the highest pressure (lowest 26 

altitude) for which data applications are recommended. The 215 hPa data has a precision 27 

of 19 ppbv and a systematic uncertainty of ± 30 ppbv (± 30%) 28 

 29 
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3 Methodology 1 

Figure 1 presents the various regions in the Tropics for which we calculate average IWC 2 

profiles. The 12 regions are either over land or ocean since cloud dynamics differs over 3 

land and ocean (Houze, 2014)), cloud dynamics likely varies from region to region due to 4 

various topographical and surface heating characteristics, and cloud activity peaks at 5 

different local times on a regional basis (Liu and Zipser, 2008). We focus on the Tropics 6 

in this study to avoid mid-latitude complications due to frontal dynamics. The 12 regions 7 

cover most of the Tropics, yet are limited in longitude, i.e. limitedand include as many 8 

IWC profiles as possible in local times oforder to reinforce the A-train 9 

observationsstatistics. 10 

The general distribution of MODIS AOD, OMI AAOD, and MLS CO, averaged over all 11 

seasons between 2007 and 2010, is presented in Figure 2. The largest AODs originate from 12 

land regions over Africa, South America, Southeast Asia, and Indonesia. There are few 13 

0.55 m AODs over North Africa. This is due to the large surface albedo of desert sands, 14 

for which it is difficult for MODIS to detect suspended aerosols. AODs, AAODs, and CO 15 

values are generally larger over land than ocean. Large AODs, AOODs, and CO are 16 

observed offshore of Africa due to transport of mainland aerosol to the adjacent ocean 17 

areas. Absorptive aerosol is prevalent over South American and Africa due to the 18 

prevalence of biomass burning in these regions. 19 

An example of the IWC structure of a deep convective cloud, observed near 111 W and 20 

8 N on July 10, 2007, is presented in Figure 23. DARDAR IWC, with original units of Kg 21 

/ m3 is rescaled for graph clarity purposes. 240 individual profiles were measured in this 22 

deep convective cloud. In general, IWC increases in value from the top of the cloud 23 

downwards, reaches a maximum value, then decreases somewhat. For this cloudy region, 24 

latitude and height variations in IWC are apparent, since the heights of the top of the cloud 25 

and the maximum IWC values vary as a function of latitude.  26 

Based upon the original DARDAR data files, we proceed in several steps, processing both 27 

day and night profiles. We first process the DARDAR data into daily files of IWC profiles. 28 

(i.e. IWCdaily). An original profile is retained if the profile has IWC greater than 5 x 10-5 29 
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Kg / m3 and less than 0.05 Kg / m3 (i.e. near the high end of the retrieval) and if the IWC 1 

values are contiguous for two or more kilometers in vertical extent. This Step 1 processing 2 

is helpful due to the large data volume (i.e. 1.9 TB, 8.2 x 106 profiles for the Tropics) of 3 

the original DARDAR data files. This Step and subsequent processing steps are 4 

summarized in Figure 4. 5 

The Step 2 processing of the DARDAR and AOD data produces yearly files of deep 6 

convective cloud structure for 2007 – 2010. Step 1 profiles are used if the vertical depth of 7 

the profile is at least 5 km above 5 km altitude. Step 1 IWC profiles are collocated with the 8 

daily MODIS AOD files to calculate IWCsum profile sums, binned according to AOD, 9 

longitude, latitude, aerosol to cloud pixel distance, season, and altitude.  10 

   IWCsum( AOD,  longitude, latitude, pixel distance, season, altitude) =  IWCdaily     (1) 11 

There are three MODIS AOD bins, 72 longitude and 11 latitude bins at 5 resolution, four 12 

cloud-screening cases (for “all AOD”, 2, 4, and 6 pixel-distance cases), four seasons, and 13 

131 altitude steps in 0.1 km increments from 5 to 18 km altitude. IWCsum units are in Kg 14 

/ m3 .The three AOD bins stated in Table 1 (i.e. 0.0501 - 0.15, 0.15- - 0.3530, 0.3530 – 15 

0.45),) were chosen to represent low, medium, and high amounts of AODs. Calculation (as 16 

indicated by inspection of MODIS AOD probability distribution functions of AODs, 17 

PDFs). The MODIS AOD PDFs (not shown) indicatedindicate that there are relatively few 18 

MODIS AODs greater than 0.45. AAOD and CO bins are also specified in Table 1. The 19 

bin ranges were selected from examination of e.g. x=MODIS AOD versus y=OMI AAOD 20 

scatter diagrams, which indicated the range of OMI AAOD corresponding to each MODIS 21 

AOD bin range. The AOD versus AAOD and AOD versus CO scatter diagrams places the 22 

AOD, AAOD, and CO calculations on an approximate equal footing. 23 

The third Step of the processing sorts the IWCsum data into IWCreg regional averages, 24 

binned according to AOD, region, aerosol to cloud pixel distance, season, and altitude.  25 

   IWCreg( AOD, region, pixel distance, season, altitude) =  26 

       IWCsum (AOD, longitude, latitude, pixel distance, season, altitude)                    (2) 27 
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This calculation averages data into seven altitude bins of 2 km vertical extentextending 1 

from 5 to 18 km altitude. IWCreg units are in Kg / m3. The reason for the vertical binning 2 

is to promote as much statistical significance as possible from the averaging process. The 3 

number of IWC profiles in a single region and altitude bin varies from less than 103 to 4 

greater than 9 x 104 since AODs are generally smaller over the oceans and the regions vary 5 

in spatial extent. 6 

We also calculate the shapenormalized IWC profiles (i.e. IWCshape ofprofiles) based upon 7 

the IWCreg profiles by dividing the IWCreg profile by the IWCreg value in the 5 to 7 km 8 

bin range.  9 

     IWCshape(AOD, region, pixel distance, season, altitude) =  10 

            IWCreg(AOD, region, pixel distance, season, altitude)  /  11 

            IWCreg(AOD, region, pixel distance, season, altitude from 5 to 7 km)               (3) 12 

The IWCshape array, in dimensionless units, has the same binning as the IWCreg array. 13 

The IWCshape profile is of course 1.0 for the 5- - 7 km bin, and deviates from unity at 14 

higher altitudes, indicating how the shape of the IWC structure progressively changes 15 

above 7 km altitude. As noted above, the calculation of the IWCshape profiles is motivated 16 

by the profiles displayed in Figure 6 of Lebo and Seinfeld (2011) since modeled IWC 17 

profiles for the three model CCN values diverge at altitudes greater than 5 altitude. 18 

Another reason to look at the shape of IWC structure is that observational sampling of a 19 

cloudy region for the three AOD bins is not a precisely “controlled” process. A cloudy 20 

region has a 3D IWC structure with 3D variations in IWC. The CloudSat and CALIPSO 21 

sampling of 3D IWC structures (i.e. a vertical 2D slice through the cloudy region, with a 22 

corresponding set of 1x1 MODIS AODs) is random. One random sampling of a cloudy 23 

region could be weighted by more observations with lower IWC values, and another 24 

random sampling could be weighted by higher IWC values. If the sampling of a 3D cloudy 25 

regionregions, with respect to low and high regions of IWC, is not consistently similar for 26 

the three bins of AOD, then a sampling issue arises. By looking at the shape of the vertical 27 

IWC structure one can attempt to mitigate this sampling issue, by putting the IWCreg 28 
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average profiles for the three AOD bins on a normalized footing. It is reasonable to assume 1 

that this sampling issue becomes less of a concern when the number of profiles infor a 2 

given region and season increases.  3 

In Step 4 of the processing, derivatives are calculated two ways. IWCreg / AOD 4 

derivatives (henceforth, IWCreg derivatives) are first calculated for each region, season, 5 

and pixel-distance AOD field at each of the seven altitude bins. The value of the IWCreg 6 

derivative is the average of two derivatives, based upon IWCreg values at the first and 7 

second, and first and third, aerosol bins.  8 

     IWCreg / AOD (region, season, pixel distance, altitude) 9 

         = 0.5 { ( IWCreg(2,…)  - IWCreg(1,…) ) / ( AOD(2) – AOD(1) ) + 10 

                     ( IWCreg(3,…)  - IWCreg(1,…) ) / ( AOD(3) – AOD(1) )  }                 (4) 11 

where numbers (e.g. (2)) refer to the AOD bin of Table 1, and … refers to the region, 12 

season, pixel distance, and altitude bins. This average derivative is then transformed, for 13 

graphical and other purposes, into percent change in IWC per 0.1 AOD units.  In by 14 

dividing the second calculation,derivative by the average IWCreg value. IWCshape / 15 

AOD derivatives are(henceforth, IWCshape derivatives) are then calculated for the seven 16 

altitude bins in similar fashion.  17 

Equations (1) – (4) are applied to the IWC profiles using OMI AAOD and MLS CO values, 18 

separately, in place of the MODIS AOD data. The transformed AAOD and CO derivatives 19 

are in % per 0.02 AAOD and % per 100 ppbv units, respectively. The AAOD and CO 20 

derivatives are binned according to region, season, pixel distance, and altitude, in the same 21 

way as for the AOD derivatives. 22 

In Step 5 of the processing, we place the IWCreg derivatives for the various regions and 23 

seasons into probability distribution functions (PDFs) at each of the seven altitude bins. 24 

PDFs are constructed separately from the AOD, AAOD, and CO derivatives. Derivatives 25 

are included in the PDF if the number of IWC profiles in a derivative is greater than 103. 26 

(The 103 threshold was empirically determined based upon visual examination of 27 
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individual IWCreg profiles). We calculate the means of the PDFs, standard deviations from 1 

the means, and 95% (2) confidence levels of the means of the PDFs. In a similar manner, 2 

the IWCshape derivatives are used to calculate the means of PDFs and 95% confidence 3 

limits of the means of the PDFs. As discussed below, we examine and compare the means 4 

of the two sets ofvarious PDFs. 5 

Finally, an additional separate processing goes back to Step 2 and assigns MODIS AODs 6 

at a given 1ºx1º grid box to the AOD at that position using a randomly chosen day during 7 

the year of interest. Ideally, random AODs should yield means of the PDF of the derivatives 8 

that are close to zero, since the IWCreg / AOD and IWCshape / AOD derivatives are 9 

reversed in sign if low and high values of AOD are interchanged. We compare the PDF 10 

means of this separate processing with those of the previous paragraph. 11 

 12 

4 Results 13 

Figure 35 illustrates the average vertical structure of IWCreg over Africa during summer 14 

(June-July-August) and over the southeast Pacific during winter (December-January-15 

February). The mark at 5 km specifies the average between 5 and 7 km altitude, etc. The 16 

IWCreg values over Africa increase as AOD increases for nearly every altitude level. In 17 

contrast, the IWCreg curves over the southeast Pacific increase from the first to second bin 18 

for the 5 to 9 km range, while decreasing for the first and third aerosol bins. These curves 19 

illustrate that derivatives for specific regions and seasons can be either positive or negative.   20 

These curves also indicate that calculations of derivatives need to be confined to specific 21 

regions. There are height differences at which a specific IWC value is observed, e.g. 0.3 g 22 

/ m3 occurs at 11 km over the SE Pacific and at 10.5 km over Africa for the 0.01 – 0.15 23 

AOD bin. Global calculations which lump together profiles from different regions mix 24 

IWC profiles of different height characteristics, due to regional differences in e.g. cloud 25 

type and/or weather conditions. If the number of regional profiles varies from region to 26 

region for a specific AOD bin, and these profiles have different average height 27 

characteristics, then the derivatives calculated using the globally lumped profiles are prone 28 
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to error (since differences in the average regional profiles are related to both AOD effects 1 

and regional differences due to cloud type and/or weather conditions). 2 

The impact of cloud adjacency effects upon the AOD fields is illustrated in Figure 46. 3 

Daily MODIS C6 AOD data fields were averaged for 25º S to 25º N for “all AOD”, 2, 4, 4 

and 6 pixel-distance cases.  On the x axis the AODs correspond to the case when all AODs 5 

in the 1x1 grid box are used to define the AOD field. On the y axis is the ratio of the 6 

AODs for a particular pixel-distance to the “all AOD” case. The ratios for all of the curves 7 

are smallest for the smaller AODs, and increase to larger values as the AODs increase. The 8 

AODs are approximately 2% smaller for the 2 pixel-distance case compared to the “all 9 

AOD” case. As more and more AODs are tossed out of the screening process, the AOD 10 

averages become progressively smaller than the “all AOD” case, up to 8% for the 6 pixel-11 

distance case. Unfortunately, the number of nonzero 1x1 grid box AODs decreases for 12 

the 4 and 6 pixel-distance cases. Use of the 2 pixel-distance field is more practical than the 13 

other cases. Since each AOD bin range in our Step 2 binning processing covers a large 14 

range in AOD, a 2% effect likely places an “all AOD” and e.g. “2 cloud pixel distance” 15 

AOD into the same AOD bin range. It is therefore expected that correction for the cloud 16 

adjacency effect, using the three AOD bin ranges mentioned above in Section 3, will be of 17 

second order in our particular calculations. 18 

In Figure 57 the statistical distribution of AOD, AAOD, and CO IWCreg derivatives for 19 

individual regions and seasons, are displayed separately over land and ocean. The x axis 20 

indicates the number of individual profiles associated with the derivative, with IWCreg 21 

derivatives on the y axis. of a specific region and season, with IWCreg derivatives on the 22 

y axis. As explained in Section 3 (Step 4 processing), the value of the IWCreg derivative 23 

for a 2 km altitude bin is the average of two derivatives, based upon IWCreg values at the 24 

first and second, and first and third, aerosol bins. The absolute magnitude of the derivatives 25 

over land or ocean decrease as the number of profiles increases. The largest derivatives are 26 

those over mainland India, which are assigned the square symbol in Figure 5. The India 27 

land region has the smallest area of our 12 regions.  28 
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 The largest derivatives in the AOD, AAOD, and CO panels are those over mainland India, 1 

which are assigned the square symbol in Figure 7. The India land region has the smallest 2 

area of our 12 regions, yet is subject to complicated monsoon dynamics, and with the 3 

presence of absorptive aerosols over the Tibetan Plateau, likely subject to the absorptive 4 

aerosol “elevated heat pump” mechanism (Lau et al. 2006). Absorptive aerosol above the 5 

Tibetan plateau is attributed to provide an elevated heating source which leads to enhanced 6 

circulation that will draw air from the surface upwards along the southern flank of the 7 

Himalayas. India likely is subject to some of the most complicated aerosol-cloud 8 

interactions as anyplace in the world. 9 

In calculations presented below, we present analyses in which the largest derivatives are 10 

included, and excluded, from the calculations. Derivatives are not used in the exclusionary 11 

calculations if the number of profiles in the average are less than 1000 and/or if the 12 

derivatives are greater than 100% per 0.10 AOD, 100% per 0.02 AAOD, or 100% per 100 13 

ppbv CO. 14 

Table 12 presents means of the PDFs for the IWCreg derivatives over land and ocean for 15 

the 2 km altitude bins, expressed as a function of the pixel-distance value. The means are 16 

calculated assigning equal weight to each region (i.e. the calculations are not weighted by 17 

the number of profiles observed in each region). The number of statistically significant 18 

derivatives (i.e. number of separate regions and seasons) that went into the PDF decreases 19 

as the cloud pixel-distance value increases (since the number of AODs in the daily 1x1 20 

grid boxes decreases as the pixel-distance value increases). This is most apparent for the 4 21 

pixel-distanced AOD fields. The PDF means in Table 2 are larger over land than the ocean, 22 

with fairly small modulation in these means due to pixel-distance choice.  23 

Figure 8 illustrates how the means of curves presented later in the text (i.e. Figures 11 and 24 

12) are sensitive to the pixel-distance value. The means in Figure 8 differ from those in 25 

Table 2 since the derivatives, used to calculate the curves in Figures 11 and 12, are those 26 

less than 100 % per 0.1 AOD, while all derivatives are included in the Table 2 calculations. 27 

The “All AOD” case (i.e. “ALL in Figure 8) and the Screen 2 (i.e. pixel-distance 2 AOD 28 

field) set of means are similar in Figure 8.  29 
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Overall, it is apparent that the 3D cloud adjacency effect has a fairly small impact upon the 1 

means of the PDFs in our calculations. For this reason, we henceforth focus on results for 2 

the “all AOD” case in order to maximize the number of derivatives used in our calculations. 3 

The means of the IWCreg derivative PDFs for the “all AOD” case are presented in Figure 4 

6.9 separately for land and ocean data. The 95% confidence (2) limits of the means are 5 

given by the horizontal lines. Over the ocean, the left panel of Figure 69 indicates that the 6 

means are consistent with the zero % per 0.1 AOD line, as the zero % line falls between 7 

the 95% confidence limits of the means. Over land the means are between 10 and 20 8 

percent for the 9 to 13 km range, also consistent with the 0% line. 9 

Table 23 presents means of the PDFs for the IWCreg and IWCshape derivatives over land 10 

and ocean for the 2km2 km altitude bins, for the “all AOD” case. As before (see Table 12) 11 

the PDF IWCs derivative means over the land are larger than those over the ocean, and the 12 

values increase with altitude. In addition, the Rnd columns Rnd refer to calculations in 13 

which a random day is calculated for each specific day, injecting a random AOD field into 14 

the calculations. If AODs are randomly selected from the MODIS AODs, then the final 15 

means of the PDFs of the IWCshape derivatives are small, though nonzero. We interpret 16 

the nonzero values near 2% as evidence that the means of the cloud dynamic variables (e.g. 17 

surface humidity, CAPE, surface temperature, etc) are different for the various AOD bins. 18 

The fact that the differences in the IWCshape and Rnd columns are positive (especially for 19 

the observations over land) indicates, however, that the cloud invigoration effect is nonzero 20 

and positive. 21 

Examination of individual derivatives over the ocean and land for the various altitude 22 

ranges indicates that most regions have positive and negative derivatives. This is consistent 23 

with our statements above in the Introduction that buoyancy is perturbed by both positive 24 

(latent heat) and negative (condensate loading) influences. There are more positive ocean 25 

IWCreg derivatives north than south of the equator, with the largest annually averaged 26 

derivatives over the Northwest and Northeast Pacific, and smallest derivatives over the 27 

South Atlantic. Largest annually averaged land derivatives are found over India, South 28 

America, and Africa, with smallest derivatives over Australia.  29 
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The means of the IWCshape derivative PDFs for the “all AOD” case are presented in Figure 1 

710. Over the ocean and land the means are near 5% and 10% - 20% per 0.1 AOD for the 2 

9 to 13 km range, respectively. The derivatives are positive to the 2 level for the 9 -11 3 

and 13-15 km altitude ranges over land (i.e. mean - 95% confidence limit of the mean value 4 

is positive for these two altitude ranges).  5 

As remarked above, in regard to Figure 57, the India averages have a much smaller number 6 

of profiles than that for other regions, since the geographical extent of this region is the 7 

smallest of the 12 regions. The IWCshape curves, from inspection, are noiser than those of 8 

the other regions and the derivatives are substantially larger than those for the other regions. 9 

For this reason, it is appropriate to present calculations in which the India land derivatives, 10 

and those from other regions are excluded., if the number of profiles in an average is less 11 

than 1000 and the derivative is greater than 100 % per 0.10 AOD. Figure 811 presents 12 

calculations, similar to Figure 79, except that the India landlarge derivatives are excluded 13 

from the calculation. Over the ocean and land the means are near 5% and 4% per 0.1 AOD, 14 

respectively, for the 9 - 13 km range.   15 

Curves similar to Figure 811 (not shown), were calculated for each Season of the year. 16 

Over land the Winter and Spring curves of the IWCshape means have altitude structure 17 

similar to Figure 811 in that the means steadily increase as altitude increases. The Fall land 18 

means, however, are all near zero. Over the oceans the means are positive above 11 km 19 

altitude for all four seasons. The land and ocean seasonal means, however, are not 20 

statistically significant to the 2 level. 21 

An alternative way to calculate the means in Figure 8 is to weight the averaging process by 22 

the number of profiles in each region. This calculation, which includes India derivatives 23 

(but gives them little weight), again yields means between 5% and 4% per 0.1 AOD over 24 

ocean and land, respectively. 25 

Finally, Figure 9As discussed in the Introduction, AODs are expected to invigorate 26 

convection for low AODs, with saturation apparent at larger AODs. These saturation 27 

effects start to occur for AODs near 0.30 and 0.40 as calculated by Rosenfeld et al. (2008) 28 

and Koren et al. (2008), respectively. These saturation onset AODs correspond to the third 29 
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AOD range (0.35 – 0.45) of our calculations. To quantify the percent of observations which 1 

are consistent with this saturation scenario, we calculated for each region, season, and 2 

altitude, IWC(i,j) differences 3 

IWC(i,j) = IWCshape(i) – IWCshape(j)                                                          (5) 4 

where i or j refers to the aerosol bins 1,2,3 (i.e. the three MODIS aerosol bins in Table 1), 5 

respectively. If the first difference IWC(2,1) was positive, and the difference IWC(3,2) 6 

was negative or less than the absolute value of the first difference, then this indicated 7 

saturation. With regards to inhibition, this scenario corresponds to the case in which the 8 

IWC(2,1) and IWC(3,2) values are both negative. Table 4 presents the percentages for 9 

which these two scenarios appeared in our calculations based upon the MODIS data. The 10 

saturation scenario occurred approximately twice as often as the inhibition scenario. These 11 

percentages are for “ideal” outcomes in which both IWC values are used to identify one 12 

scenario or the other. 13 

Figure 12 displays the means of PDFs specified by combining the land and ocean 14 

IWCshape derivatives, excluding the India landlargest derivatives, to obtain a Tropical 15 

average. The means of the shape derivatives are near 5% per 0.1 AOD (as expected from 16 

Figure 811), and positive to the 2 level in the 11 to 15 km altitude range. Also displayed 17 

in Figure 912 are means calculated using the IWCreg derivatives, again excluding the India 18 

landlargest derivatives. The means are positive above 9 km altitude, but not statistically 19 

significant at the 2 level. The mean of the IWCreg derivatives in the 5-7 km altitude range 20 

is nonzero (i.e. 0.04) but very small. 21 

Another way to look at the derivatives is by graphing PDFs of the derivatives. Figure 13 22 

presents PDFs of the IWCshape derivatives for the AOD, AAOD, and CO data. Derivatives 23 

over the ocean and land regions (excluding the largest derivatives) were aggregated for the 24 

7 – 13 altitude range. All PDFs have a main gaussian-like distribution, with several smaller 25 

contributions outside of the primary distribution. Averages of the PDFs are indicated at the 26 

top of the panels. The arithmetic means of the PDFs are less for the AAOD and CO data 27 

than for the AOD data, with positive means for the AOD data, and negative means 28 
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especially for the CO data. These results are supportive of the assertion that absorptive 1 

aerosol tends to inhibit cloud development. 2 

Figure 14 presents average IWCreg derivatives for AOD, AAOD, and CO data over ocean 3 

and land for all regions, excluding the largest derivatives. For legibility purposes, 1 4 

confidence limits of the determination of the means are given by the horizontal lines. The 5 

CO means over land and ocean are negative for the 7 – 15 km altitude range. 6 

Finally, Figure 15 is similar to Figure 14 except that average shape derivatives are 7 

presented. The AAOD and CO shape derivative means are less than the AOD means both 8 

over ocean and land for the 9 – 15 km altitude range. These results are supportive of the 9 

assertion that absorptive aerosol tends to inhibit cloud development. It is notable in both 10 

Figures 14 and 15 that the size of the mean derivatives are fairly small, with values mostly 11 

between -15 and 5%.  12 

 13 

5 Discussion 14 

The calculations above are supportive of a small positive signed cloud invigoration effect. 15 

IWC increases slightly on average for deep convective clouds above the freezing level as 16 

AODs increase. The Figure 7 means of the IWCshape PDF, based upon all Tropical regions, 17 

indicates mean IWCshape derivatives over the ocean and land are near 5% and 10-20% per 18 

0.1 AOD in the 9 -13 km altitude range, respectively. The derivatives are positive to the 19 

2 level for the 9-11 and 13-15 km altitude ranges over land. If the largest derivatives (see 20 

Figure 5, those over India), are excluded from the processing (since the India derivatives 21 

are very much larger than the other derivatives, and many less cloudy scenes are observed 22 

over India due to the comparatively smaller geographical size of India), then the IWCshape 23 

land mean derivative is near 4% (see Figure 8).  24 

The Tropical average means (Figure 912), calculated using combined ocean and land 25 

IWCshape derivatives (excluding mainland Indiathe largest derivatives) are near 5% per 26 

0.1 AOD above 9 km altitude, and positive to the 2 level in the 11 – 15 km range. The 27 
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5% per 0.1 AOD value is similar to the observed previously determined 7% per 0.1 AOD 1 

value observed over the equatorial Atlantic region (corresponding to the cloud top pressure 2 

data of Figure 6 from Koren et al., 2010), and similar to the 3% – 5% increase in medium 3 

and high cloud tops calculated by Storer and van den Heever (2013), but substantially less 4 

than the ~127% / 0.1 AOD change in the IWC profile indicated by the bin microphysics 5 

calculations presented in Figure 6 of Lebo and Seinfeld (2011). 6 

As discussed above, the IWCreg average profiles are calculated without normalization at 7 

5 km altitude. The IWCreg means (excluding India)in Figure 12 are positive above 9 km 8 

but not statistically significant at the 2 level. The lack of statistical significance is similar 9 

to the conclusions of Wall, Zipser, and Liu (2014).  One is struck by the fact that our study 10 

and that of Wall, Zipser, and Liu (2014) both yield smallinconclusive aerosol indirect 11 

effects when many years of data are processed.  12 

Generally, Figure 57 imparts an important lesson – the scatter in the measured derivatives 13 

decreases for a region whenas the number of observed profiles in the regionvarious regions 14 

increases. We interpret Figure 57 as follows. Changes in IWC vertical structure are due to 15 

both aerosol and cloud dynamic influences. For a specific region, a relatively small number 16 

of profiles will not likely sample the PDFs of all variables (aerosol and cloud dynamic 17 

variables such as surface and 500 hPa relative humidity, CAPE, wind shear, etc) as 18 

completely as for the case in which a larger number of profiles are considered. Differences 19 

in the average IWCreg profiles at different AODs can be due to differences in cloud 20 

dynamic differences, to a greater extent than to the AOD difference, depending upon 21 

circumstance, if the number of observed profiles is relatively small. A negative (or large 22 

positive) derivative could be due to a change in cloud dynamic influences and not the AOD 23 

change. In addition, the CloudSat/CALIPSO observational 2D “curtains” slice through a 24 

cloudy region. If the sampling of the 3D cloudy regions with respect to low and high 25 

regions of IWC is not consistently similar for the e.g. three bins of AOD, then a sampling 26 

issue arises. This sampling consideration becomes less of an issue when the number of 27 

observed profiles increases. 28 
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 Interest in the cloud invigoration process is of course important due to its consequences in 1 

regard to the radiative effects of aerosol indirect effects – perturbations in cloud vertical 2 

structure due to changes in aerosol translate into perturbations in the radiative effects of 3 

clouds upon climate. Understanding the effects of aerosols upon cloud structure is a 4 

necessary step towards understanding the radiative effects. Global calculations which 5 

average regional and seasonal perturbations of cloud structure over many years are of 6 

interest since they yield a grand ensemble average that fully samples the PDFs of the 7 

aerosol and cloud dynamic variables.  8 

It is apparent from our calculations that both invigoration processes (Rosenfield et al. 2008, 9 

Koren et al. 2008) and inhibition processes (Ramanathan et al., 2005; Ramanathan et al., 10 

2007) are expressed in our long term derivatives which indicate that IWC can both increase 11 

or decrease as AOD increases. Changes in MODIS IWCshape profiles did indicate 12 

saturation effects as discussed by Koren et al. (2008). Saturation effects, in which an 13 

increase in IWC is followed by a  small increase or decrease in IWC, was present 32% of 14 

the time (the average of the 1st and 2nd columns of Table 4). The means of the PDFs 15 

presented in Figure 13, and the means of the IWCshape derivatives presented in Figure 15 16 

are also supportive of the assertion that absorptive aerosol can inhibit cloud development. 17 

Inhibition effects were present 17% of the time (the average of 3rd and 4th columns of Table 18 

4). The saturation scenario for MODIS data occurred approximately twice as often as the 19 

inhibition scenario. 20 

Cloud adjacency (i.e. 3D radiative transfer) issues are real, but the impact in our particular 21 

calculations is a second order effect. The 3D cloud adjacency effects appear not to be a 22 

major impediment in regard to calculation of aerosol-cloud indirect effects, if the AOD bin 23 

ramgesranges are fairly wide compared to the size of the 3D effect (see Figure 46). The 24 

variations in the IWCreg land derivatives in Table 12 for the “all AOD”, 2, and 4 pixel-25 

unit cases is much smaller than the altitude variations in the derivatives. We place an AOD 26 

into one of three AOD bin ranges. An e.g. 2% AOD correction (see Figure 46) due to cloud 27 

adjacency effects does not likely move the AOD from one bin range to another.  As 28 

remarked above, the number of 1x1 AODs decrease as the pixel-distance unit increases, 29 

and with. With the “all AOD” and 2 pixel-distance AODs giving similar derivatives over 30 
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land in the right-hand portion of Table 12, and with the similarity in the curves presented 1 

in Figure 8 for the three screening cases, the necessity to apply the pixel-distance correction 2 

is debatable. 3 

In conclusion, the literature of observed and modeled aerosol-cloud indirect effects is 4 

characterized by a range of results of different signed outcomes, including this study. This 5 

is due to the fact that numerous variables and many other physical considerations can 6 

influence whether a positive or negative effect is measured. For example,In Figure 15 there 7 

is a stark contrast between the positive AOD derivatives above 9 km altitude, and the 8 

negative CO derivatives. A portion of the contrasting positive and negative results reported 9 

in the literature is likely due to whether or not absorptive aerosol is known to stabilize the 10 

lowermost several kilometers of temperature profiles, and thus could impact cloud 11 

development. In our study we consider all MODIS AODs equally, without attention to the 12 

typeabsent or present in a particular set of aerosol (be it predominantly scattering or 13 

absorptive in nature). We will address this issue in follow-on calculations, and also extend 14 

our calculations to include dynamic variables in the analysesobservations. 15 
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Table 1. AOD, AAOD, and 215 hPa CO bins used in this study 1 

_______________________________________________________________ 2 

Bin  AOD   OMI AAOD  MLS CO     3 

________________________________________________________________        4 

1  0.01 – 0.15  0.001 - 0.01  10 – 80 ppbv 5 

2  0.15 – 0.30  0.01 – 0.04  80 - 120 6 

3  0.30 – 0.45  0.04 – 0.10  120 - 150 7 

_________________________________________________________________  8 
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Table 2. Average IWCreg derivatives over ocean and land (in % / 0.1 AOD units) expressed 1 

as a function of average pixel-distance values used to derive the AOD fields. 2 

_______________________________________________________________ 3 

Altitude  Ocean     Land 4 

 (km)  0 2 4 pixels  0 2 4 pixels 5 

________________________________________________________________ 6 

13-15  4.4  5.1 -3.8   2.8  1.7   1.7  7 

    (47    42    27)     (31    31    28) 8 

11-13  0.6 -0.3  2.8             23.1 23.5 15.8 9 

    (53    53       46)      (36    36    34)    10 

9 -11  -0.9 -0.2 -0.5   18.0 18.0 19.1 11 

     (54    54    48)      (36    36    36) 12 

7 – 9  -1.7 -0.2  0.5    6.45  6.8  6.6 13 

     (54    55     48)      (36    36    36) 14 

5 – 7  0.4  0.9 1.9   1.7 1.6 1.6 15 

    (54    54   48)     (36   36    36) 16 

_________________________________________________________________ 17 

2-pixels is for AOD to cloud pixel-distances  2  18 

Numbers in ( ) are the number of regional and seasonal derivatives used to define the 19 

averages.  20 
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Table 23. Average IWCreg and IWCshape derivatives over ocean and land (expressed in 1 

% change in IWC / 0.1 AOD units) 2 

____________________________________________________________________ 3 

Altitude         Ocean      Land 4 

 (km)  IWCreg         Shape   IWCreg         Shape 5 

      IWCshape   Rnd    IWCshape     Rnd 6 

_____________________________________________________________________ 7 

13-15  4.4      7.4  2.0  2.8  4.6  1.6 8 

11-13   0.6      5.3  2.8  23.1  23.8  1.2 9 

9 -11  -0.9      5.4  2.12  18.0  14.5  0.1 10 

7 – 9  -1.7      -0.2  1.2  6.5  3.0  -0.7 11 

5 – 7  0.4      0.0  0.0  1.7  0.0  0.0 12 

_____________________________________________________________________ 13 

Rnd – same as IWCshape, with random MODIS AOD values used in the calculation.  14 
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Table 4. Percent of the observations indicating saturation and inhibition effects as MODIS 1 

AODs increase.   2 

____________________________________________________________________ 3 

Altitude         Saturation           Inhibition 4 

 (km)  Ocean        Land   Ocean   Land      5 

       6 

_____________________________________________________________________ 7 

13-15  44      27   22  13   8 

11-13  41       50   26  11   9 

9 -11  30      50   26  11   10 

7 – 9  33      44   18  39    11 

_____________________________________________________________________ 12 

  13 
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 1 

Figure 1. Geographical Tropical regions over land and ocean.  2 
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  2 
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 1 

Figure 2. Average MODIS AOD, OMI AAOD, and MLS CO at 215 hPa for 2007-2010.  2 



 

41 
 

 1 

Figure 3. DARDAR IWC structure of a tropical cloudy region observed on July 10, 2007.  2 
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 1 

 2 

Figure 34. Summary of the processing steps.  3 
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 1 

Figure 5. Average IWCreg vertical profiles over SE Pacific during December-January-2 

February and over Africa during June-July-August for MODIS aerosol bins with lower bin 3 

limits of 0.01, 0.15, and 0.30. Data has been averaged into 2 km bins of vertical altitude.  4 
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 1 

Figure 46. Curves of 1 x 1 MODIS V6 AOD averages, calculated with and without cloud 2 

pixel-distance screening. X axis AOD values are calculated using all MODIS AOD data, 3 

and Y axis AODs are calculated by averaging AODs such that  the AODs in the 1 x 1 4 

geographical area are at  2, 4, and 6 pixel-distances from clouds. Data from 2007 – 2010, 5 

for 25º S – 25º N, is used.  6 
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 1 

Figure 57. Statistical distribution of IWCreg derivatives between 5 and 15 km altitude for 2 

individual regions and seasons as a function of the number of profiles used to define each 3 

derivative. Derivatives over mainland India are assigned a square symbol.   4 
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Figure 6.1 

 2 

Figure 8.  Curves of means of IWCreg and IWCshape PDFs illustrating the sensitivity to 3 

the cloud-pixel distance AOD fields. “ALL” refers to the “All AOD” case, and corresponds 4 

to curves presented later in the text (i.e. Figures 11 and 12).  5 
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 1 

Figure 9. Vertical profiles of the means of the PDFs of IWCreg derivatives for individual 2 

regions and seasons based upon DARDAR IWC profiles, and MODIS AOD data for the 3 

“all AOD” case. Mean 95% confidence (2) limits are indicated by the horizontal lines. 4 

The symbol at 5 km denotes the average for the 5-7 km altitude range.  5 
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 1 

Figure 710. Vertical profiles of the means of the IWCshape regional and seasonal 2 

derivatives. MODIS “all AOD” data are used. Mean 95% confidence (2) limits are 3 

indicated by the horizontal lines.  4 
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 1 

Figure 811. Same as Figure 79 except that India land IWCshape derivatives less than 100 % 2 

per 0.1 AOD are excluded from the averaging process.  3 
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 1 

Figure 912. Means of PDFs of IWCreg and IWCshape derivatives over ocean and land, 2 

excluding India land derivatives greater than 100 % per 0.1 AOD. Mean 95% confidence 3 

limits, given by the horizontal lines, indicate that IWCshape means are positive to the 2 4 

level for the 11–15 km altitude range. 5 

  6 
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 1 

Figure 13. Histograms of IWCshape derivatives for AOD, AAOD, and CO bins, when the 2 

derivatives are less than 100 % per 0.10 AOD, 100 % per 0.02 AAOD, and 100% per 100 3 

ppbv CO, respectively. Means of the distributions are indicated by the numbers in each 4 

panel’s title. Averages pertain to the 7 – 15 km altitude range.  5 



 

57 
 

 1 

Figure 14. Average IWCreg derivatives over ocean and land for AOD, AAOD, and CO. 2 

Derivatives were used when they were less than 100 % per 0.10 AOD, 100 % per 0.02 3 

AAOD, and 100% per 100 ppbv CO. Confidence limits (1) of the determination of the 4 

means are indicated by the horizontal bars.  5 
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 1 

Figure 15. Average IWCshape derivatives over ocean and land for AOD, AAOD, and CO. 2 

Derivatives were used when they were less than 100 % per 0.10 AOD, 100 % per 0.02 3 

AAOD, and 100% per 100 ppbv CO. Confidence limits (1) of the determination of the 4 

means are indicated by the horizontal bars.  5 


