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Abstract. Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change, but can also have ancillary 

benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation on U.S. air 

quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West 

et al., 2013). The co-benefits for U.S. air quality are quantified via two mechanisms: through reductions in co-emitted air 

pollutants from the same sources, and by slowing climate change and its influence on air quality, following West et al. (2013). 15 

Additionally, we separate the total co-benefits into contributions from domestic GHG mitigation versus mitigation in foreign 

countries. We use the WRF model to dynamically downscale future global climate to the regional scale, the SMOKE program 

to directly process global anthropogenic emissions into the regional domain, and we provide dynamical boundary conditions 

from global simulations to the regional CMAQ model. The total co-benefits of global GHG mitigation from the RCP4.5 

scenario compared with its reference are estimated to be higher in the eastern U.S. (ranging from 0.6-1.0 µg m-3) than the west 20 

(0-0.4 µg m-3) for PM2.5, with an average of 0.47 µg m-3 over U.S.; for O3, the total co-benefits are more uniform at 2-5 ppb 

with U.S. average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions of co-emitted air 

pollutants have a much greater influence on both PM2.5 (96% of the total co-benefits) and O3 (89% of the total) than the second 

co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries 

contributes more to the U.S. O3 reduction (76% of the total) than that from domestic GHG mitigation only (24%), highlighting 25 

the importance of global methane reductions and the intercontinental transport of air pollutants. For PM2.5, the benefits of 

domestic GHG control are greater (74% of total). Since foreign contributions to co-benefits can be substantial, with foreign 

O3 benefits much larger than those from domestic reductions, previous studies that focus on local or regional co-benefits may 

greatly underestimate the total co-benefits of global GHG reductions. We conclude that the U.S. can gain significantly greater 

domestic air quality co-benefits by engaging with other nations to control GHGs. 30 
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1 Introduction 

Climate change and air quality are interrelated problems. First, climate change can affect the formation, destruction and 

transport of major air pollutants, through changes in meteorological variables of temperature, precipitation, air stagnation 

events, etc. (Weaver et al., 2009; Jacob and Winner, 2009; Fiore et al., 2012, 2015). It can also affect natural emissions 

(biogenic, dust, fire and lighting) that influence air quality. Second, air pollutants such as particulate matter (PM) and ozone 5 

(O3) can change the climate by altering the solar and terrestrial radiation balance through direct and indirect effects (Myhre et 

al., 2013). Third, the sources of emissions of greenhouse gases (GHGs) and air pollutants are usually shared, particularly 

through the combustion of fossil fuels, so actions to control one can also influence emissions of the other. Policies to control 

GHG emissions will therefore not only slow climate change in the future, but will also provide co-benefits of improvements 

to air quality and consequently to human health (Bell et al., 2008; Nemet et al., 2010).  10 

Recent studies that model future air quality have focused on single or combined changes in future climate and emissions on 

global and regional air quality, using both global and regional Chemical Transport Models (CTMs) (Weaver et al., 2009; Jacob 

and Winner, 2009; Fiore et al., 2012). Climate change is likely to decrease background O3 over remote places due to the 

elevated humidity, and increase O3 over urban and polluted areas, in part because of higher temperature. Jacob and Winner 

(2009) concluded that future climate change could increase summertime O3 by 1-10 ppb over polluted regions in the U.S. in 15 

scenarios from the Special Report on Emission Scenarios (SRES; Nakicenovic and Swart, 2000). In one study, climate change 

in 2050 under the SRES A1B scenario is projected to increase summertime O3 by 2-5 ppb over large areas in the U.S., 

comparable to the effect of reduced anthropogenic emissions of O3 precursors which reduces O3 by 2-15 ppb, especially in the 

east (Wu et al., 2008). The overall effect of climate change on PM is less clear, as different components of PM may respond 

differently to changes in climate variables (Jacob and Winner, 2009; Tai et al., 2010; Fiore et al., 2012, 2015).  20 

Many studies have also estimated the co-benefits of regional or local GHG mitigation on air quality and human health through 

reductions in co-emitted air pollutants. Cifuentes et al. (2001) found that GHG mitigation through reduced fossil fuel 

combustion could bring significant local air pollution-related health benefits to some megacities. These health benefits have 

been estimated in many studies (Bell et al., 2008), and give co-benefits ranging from $2–196 /tCO2 when monetized, 

comparable to the costs of GHG reductions (Nemet et al., 2010). A few studies also analyze the co-benefits on future air quality 25 

and human health from future regional GHG mitigation scenarios (Thompson et al., 2014; Trail et al., 2015). Thompson et al. 

(2014) studied the co-benefits of different U.S. climate policies on 2030 domestic air quality, and found that when monetized, 

the human health benefits due to the improved air quality can offset 26–1050% of the cost of the carbon polices, depending on 

the policy.  

These co-benefits studies may underestimate the total co-benefits as they only consider local or regional climate policies, 30 

neglecting benefits outside of the region considered, and benefits within those regions from global GHG mitigation. The total 

co-benefits of global mitigation are relevant as meaningful GHG mitigation requires participation from at least several of the 

most highly-emitting nations. We examined the co-benefits of global GHG reductions on both global and regional air quality 
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and human health, using a global atmospheric model (Model for OZone And Related chemical Tracers, version 4, MOZART-

4, hereafter referred to as MZ4) and self-consistent future scenarios (West et al., 2013, referenced hereafter as WEST2013). 

In addition to evaluating co-benefits through reductions in co-emitted air pollutants, WEST2013 was the first study to quantify 

co-benefits through a second mechanism: slowing climate change and its effects on air quality. There are several other 

innovations of WEST2013: we account for global air pollution transport and long-term influences of methane using the global 5 

CTM; we consider realistic scenarios in which air pollutant emissions, demographics, and economic valuation are modeled 

consistently; and we evaluate chronic mortality influences of fine PM (PM2.5, PM with diameter smaller than 2.5 µm) as well 

as O3. WEST2013 concluded that global GHG mitigation could bring significant air quality improvement for both PM2.5 and 

O3, and avoid 2.2±0.8 million premature deaths globally by 2100 due to the improved air quality. When monetized, the global 

average marginal co-benefits of avoided mortality were $50–380/tCO2, higher than the previous estimates (Nemet et al., 2010). 10 

The co-benefits from the first mechanism of reduced co-emitted air pollutants were shown to be much greater than the co-

benefits from the second mechanism via slowing climate change.  

The WEST2013 study is limited by the coarse resolution of the CTM used (2º×2.5º horizontally). Here we investigate the co-

benefits of global GHG mitigation on U.S. air quality at much finer resolution (36km×36km), building on the scenarios in the 

global study. WEST2013 simulated co-benefits in 2030, 2050, and 2100, and we choose here to downscale the results in 2050, 15 

as climate change influences air quality by 2050 and it is within the timeframe of current decision-making for both climate 

change and air quality. We use a comprehensive modeling framework in the downscaling process, including a regional climate 

model to dynamically downscale the global climate to the contiguous United States (CONUS), an emissions processing 

program to directly process the global anthropogenic emissions to the regional scale, and we create dynamical boundary 

conditions (BCs) from the global co-benefits outputs for the regional CTM. We quantify the total co-benefits of global GHG 20 

mitigation on U.S. air quality for both PM2.5 and O3, and then separate the co-benefits from the two mechanisms analyzed by 

WEST2013. We also quantify the co-benefits from domestic GHG mitigation versus the co-benefits from those of foreign 

countries’ reductions. We then present the co-benefits from global and domestic GHG mitigation on nine U.S. regions.  

With regard to previous studies on the effect of climate change on future air quality (e.g. Jacob and Winner, 2009), our work 

differs in our reframing of this impact as a co-benefit of slowing climate change from GHG mitigation, and by analyzing that 25 

co-benefit through realistic future scenarios, following WEST2013. With regard to previous co-benefits studies that have been 

conducted on a regional scale (e.g., Thompson et al., 2014), this research differs by embedding the regional co-benefits study 

in consistent global context, accounting for the effects of changes in global air pollutant emissions and climate change on U.S. 

air quality. 

 30 
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2 Methodology 

Future air quality changes under global and regional GHG mitigation scenarios are simulated using a regional CTM. The 

scenarios modeled here are built on those of WEST2013, who compared the Representative Concentration Pathway 4.5 

(RCP4.5) scenario with its associated reference scenario (REF). Air pollutant emissions in REF are state of the art long-term 

emissions projections created by using the Global Change Assessment Model (GCAM) (Thomson et al., 2011). RCP4.5 was 5 

developed based on REF by applying a global carbon price to all world regions and all sectors including carbon in terrestrial 

systems. As discussed by van Vuuren et al. (2011), the air pollutant emissions for the four RCP scenarios were prepared by 

different groups using different models and assumptions, so they are inconsistent with one another. But by comparing REF 

with RCP4.5, we use a self-consistent pair of scenarios, where the difference is uniquely attributed to a climate policy. 

WEST2013 used both emissions and meteorology from RCP4.5 to simulate future air quality under the RCP4.5 climate policy, 10 

and used emissions from REF and meteorology from RCP8.5 to simulate future air quality assuming no climate policy. Since 

no General Circulation Model (GCM) conducted future climate simulations for the REF scenario, RCP8.5 is used as a proxy 

for the future climate under REF. The differences between these two scenarios give the total co-benefits for future air quality 

under climate policy from RCP4.5. Through one extra simulation with emissions from RCP4.5 together with RCP8.5 

meteorology (e45m85 in Table 1), and by comparing with REF and RCP4.5, WEST2013 separated the total co-benefits into 15 

the two mechanisms: the co-benefits from reductions in co-emitted air pollutants, and co-benefits from slowing climate change 

and its influence on air quality.  

Here we conduct downscaling processes to provide fine-resolution inputs for the regional CTM. We use the Weather Research 

and Forecasting model version 3.4.1 (WRF, Skamarock and Klemp, 2008) to downscale the future global climate from the 

GCM to the regional scale at a horizontal resolution of 36×36 km for the CONUS. We directly process global anthropogenic 20 

emissions to regional scale using the Sparse Matrix Operator Kernel Emissions (SMOKE, v3.5, 

https://www.cmascenter.org/smoke/) program. The outputs from the global MZ4 simulations of WEST2013 (Table 1) are 

downscaled to provide initial condition (IC) and dynamic hourly BCs for the regional CTM. The latest version of the 

Community Multi-scale Air Quality model (CMAQ, v5.0.1, Byun and Schere, 2006) is used as the regional CTM to simulate 

air quality changes over the CONUS domain. WEST2013 simulated five consecutive years for each scenario, and used the last 25 

four years’ average for the data analysis with the first year as a spin-up. Due to the limitations of computational resources, we 

run CMAQ for 40 months consecutively for each scenario, with the first 4 months as spin-up, and analyze the results as three-

year averages.  

2.1 Regional meteorology 

WEST2013 used NOAA Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model AM3 (Donner et al., 2011; 30 

Naik et al., 2013) simulations to provide global meteorology for MZ4. Here we dynamically downscale GFDL AM3, which 

has a horizontal resolution of 2°×2.5°, to 36×36 km over the CONUS using the WRF model. GFDL AM3 meteorology for the 

https://www.cmascenter.org/smoke/
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two RCP scenarios (RCP8.5 and RCP4.5) in 2050 used by WEST2013 is downscaled using a one-way nesting configuration 

for five consecutive years. WRF is initialized at 0000 Coordinated Universal Time (UTC) 1 January 2048 and run for a 12-

month spin-up, then run continuously through 0000 UTC 1 January 2053. A historical period from GFDL AM3 is also 

downscaled with WRF initialized at 0000UTC 1 January 1999 and run for a 12-month spin-up, then run continuously through 

0000 UTC 1 January 2004. The WRF physics options include the Rapid Radiative Transfer Model for global climate models 5 

(Iacono et al., 2008) for longwave and shortwave radiation, WRF single-moment 6-class microphysics scheme (Hong and 

Lim, 2006), the Grell ensemble convective parameterization scheme (Grell and Devenyi, 2002), the Yonsei University 

planetary boundary layer scheme (Hong et al., 2006), and the Noah land surface model (Chen and Dudhia, 2001). The WRF 

configuration also applies spectral nudging. Otte et al. (2012) and Bowden et al. (2012, 2013) demonstrated that using nudging 

in WRF improves the overall accuracy of the simulated climate over the CONUS at 36-km and does not squelch extremes in 10 

temperature and precipitation. In particular, spectral nudging affects the model solution through a nonphysical term in the 

prognostic equations based on the difference between the spectral decomposition of the model solution and the reference 

analysis. Spectral nudging is used to constrain WRF toward synoptic-scale wavelengths resolved by GFDL AM3 exceeding 

1200 km. Nudging is applied equally to potential temperature, wind, and geopotential with a nudging coefficient of 1.0×10-4, 

which is equivalent to a time scale of 2.8 hours. The downscaled meteorology from WRF is used to provide meteorological 15 

inputs to CMAQ.  Hourly WRF outputs are processed using Meteorology-Chemistry Interface Processor (MCIP v4.1; Otte 

and Pleim, 2010) to provide meteorological inputs for CMAQ. 

We compare the downscaled WRF and the global GFDL AM3 simulations (for three-year averages instead of four to be 

consistent with CMAQ outputs below), for 2-m temperature (T2) with 21 years (1979 to 2000) of observation data from the 

32-km North America Regional Reanalysis (NARR, Mesinger et al. 2006), and for precipitation with 41 years (1948 to 1998) 20 

of observation data from the 0.25° × 0.25° Unified US precipitation data product from NOAA Climate Prediction Center 

(Higgins et al. 2000). The large-scale spatial patterns for both T2 and precipitation between WRF and GFDL AM3 are similar 

(Fig. S1). However, the downscaled simulations help resolve important features that influences the average regional climate, 

such as those related to topography. Comparing WRF future projected change centered on 2050 with 2000, we see that the 

three-year average of T2 generally increases over the entire U.S. for both RCP8.5 and RCP4.5 (Fig. S2-S3). Temperature 25 

increases are largest for extreme northeastern latitudes, the Southeast and Southwest U.S. in both scenarios, with U.S. average 

warming of 3.05°C and 2.59°C for RCP8.5 and RCP4.5, respectively. Additionally, precipitation is projected to decrease over 

most of the U.S. in both scenarios with U.S. average decrease of 0.20 and 0.15 mm day-1 in RCP8.5 and RCP4.5. Comparing 

the changes between scenarios (RCP8.5 minus RCP4.5), Fig. 1 illustrates that temperature increases are smaller in RCP4.5 

throughout the CONUS, except in the Northwest. The precipitation difference between scenarios has a larger spatial variability 30 

than the T2. Ignoring other influences of climate change, decreases in precipitation would be expected to decrease PM wet 

scavenging, and increase PM concentration.  
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2.2 Regional emissions 

Similar studies in the past have typically chosen to run SMOKE with the present-day U.S. National Emission Inventory (NEI), 

and then scale the SMOKE outputs into future years, using the mass ratio of projected future to present-day emissions from 

global inventories (e.g., Hogrefe et al., 2004; Nolte et al., 2008; Avise et al., 2009; Chen et al., 2009; Gao et al., 2013). By 

doing this, the traditional method assumes that future spatial distributions of emissions stay the same as the current NEI. 5 

Instead, we use SMOKE to directly process the global emissions in 2000 and in 2050 from REF and RCP4.5 to provide 

temporally- and spatially-resolved CMAQ emission input files. We first regrid the global emissions datasets at 0.5º×0.5º into 

finer resolution (36km×36km), and then apply source-specific temporal and speciation profiles from the NEI to assign temporal 

variations and re-speciate the PM and VOCs species. By regridding the REF and RCP4.5 data, we account better for changes 

in the spatial distribution changes of future emissions projected in the RCPs (Figs. S4-S10), but do not provide additional 10 

spatial detail beyond what is provided by the RCPs at 0.5 degree resolution, whereas the traditional method only considers 

changes in the magnitude of air pollutants in the future, assuming a constant spatial and sectoral distribution. We use constant 

(year 2000) land use and land cover for all simulations in WRF and CMAQ, whereas the spatial distributions of anthropogenic 

emissions change in the RCP scenarios. 

In addition, the RCP datasets report only elemental carbon (EC) and organic carbon (OC), but ignore emissions of other 15 

primary PM species. Here we back-calculate the total PM2.5 and PM coarse (PMC) primary emissions for all sectors from the 

reported EC and OC. We first derive the emission fractions of EC and OC in each sector by cross-comparing the definitions 

of the sectors in IPCC, the Source Clarification Codes (SCC) in the speciation cross-reference file 

(http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0_GSREF_example, accessed 5 September 2013), 

and the NEI PM speciation profile file  20 

(http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0_GSPRO_Example, accessed 5 September 2013) 

(Table S1).  In back-calculating total PM emissions from BC and OC, there are usually more than one sub-category within one 

sector, e.g., the sector “Industries” includes emissions from the sub-category of “1A2_2A_B_C_D_E” (Table S1). When that 

happens, we use the speciation cross-reference file from the sub-category with largest mass fraction in this sector, following 

the methods of Reff et al. (2009) and Xing et al. (2013). Then we calculate the total PM2.5 and PMC in each grid cell by 25 

dividing the reported EC and OC by their emission fractions individually, and average these two. By doing this, we increase 

the total PM2.5 emissions of the RCPs by incorporating the inorganic components of primary PM, such as sulfate and nitrate. 

We check these results by comparing the total 2000 PM2.5 emissions of 4.14 Tg yr-1 in this study (Table 2) with other studies, 

finding that it is comparable to the total of 4.69 Tg yr-1 in 2001 from the U.S. NEI (http://www.epa.gov/ttnchie1/trends/, 

accessed 5 October 2013). Our calculated PM2.5 emission is also lower than the estimated 5.53 Tg yr-1 in 2000 by Xing et al. 30 

(2013), which used an activity data based approach to develop consistent temporally-resolved emissions from 1999 to 2010. 

In Table 2, we list the U.S. anthropogenic emissions for major air pollutants in 2000 and 2050 from REF and RCP4.5. 

Significant decreases are seen for most pollutants from 2000 to 2050 for both REF and RCP4.5, except for NH3 which is 

http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0_GSREF_example
http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0_GSPRO_Example
http://www.epa.gov/ttnchie1/trends/
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projected to increase due to agricultural activity (van Vuuren et al., 2011). Comparing RCP4.5 and REF, emissions of PM2.5 

and O3 precursors also decrease, including EC (7.59%) and OC (6.17%), with NOx and NMVOC decreasing by more than 

10%. SO2 has the largest relative decreases between RCP4.5 and REF in 2050 (28.78%). Large spatial variations in emissions 

reductions are also seen over the U.S., with the largest reductions seen on the east and west urban areas of U.S. for most air 

pollutants and smaller reductions in the Great Plains (Figs. S4-S10). 5 

Biogenic emissions are estimated using the Biogenic Emission Inventory System (BEIS v3.14), which responds to the changing 

climate for different scenarios. It is configured to run on-line in CMAQ, and calculates the emissions of 35 chemical species 

including 14 monoterpenes and 1 sesquiterpene. We assume that land use and land cover will stay constant in the future for 

the purpose of estimating biogenic emissions. We also use the BEIS on-line calculation for natural soil NOx emissions. The 

on-line option of lightning is also turned on to calculate the NOx emissions by estimating the number of lightning flashes based 10 

on the modeled convective precipitation, which also changes with climate. We prepare the ocean/land mask for the domain to 

calculate sea salt emissions which can be significant in coastal environments (Kelly et al., 2010). 

2.3 Regional air quality model and dynamical chemical BCs 

The latest CMAQ model (https://www.cmascenter.org/cmaq/index.cfm, accessed 15 June 2012) is used to perform the regional 

air quality simulations with the CB05 chemical mechanism and updated toluene reactions. The model incorporates the newest 15 

aerosol module (AE6), including features of new PM speciation (Reff et al., 2009), oxidative aging of primary organic carbon 

(Simon and Bhave, 2012), and an updated treatment and tracking of crustal species (e.g., Ca2+, K+, Mg2+) and trace metals 

(e.g., Fe, Mn) (Fountoukis and Nenes, 2007). Several other enhancements in v5.0 of CMAQ were discussed by Appel et al. 

(2013) and Nolte et al. (2015), and there are no significant changes for the aerosol module between v5.0 and v5.0.1 

(http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0.1_%28July_2012_release%29_Technica20 

l_Documentation, accessed 15 August 2012). The model is configured with 34 vertical layers, with the lowest level being 34 

m high, to the highest level at 50 hPa. The horizontal resolution is 36 km by 36 km for the CONUS domain. PM2.5 is calculated 

from the CMAQ output as the sum of the species EC, OC, secondary organic aerosol (SOA), non-carbon organic matter 

(NCOM), nitrate (NO3-), sulfate (SO42-), ammonium (NH4+), sodium (Na+), chloride (Cl-), eight crustal and trace metal species, 

and other unspeciated fine PM (OTHER).  25 

The dynamical BCs for this study are provided by the global MZ4 simulations of WEST2013. The hourly boundary values 

from MZ4 are horizontally interpolated from coarser resolution to the regional finer resolution, and also vertically interpolated 

as MZ4 and CMAQ have different vertical layers. Chemical species are mapped between MZ4 and CMAQ v5.0.1, due to the 

different chemical mechanisms used by these two models, following the descriptions of Emmons et al. (2010) and ENVIRON 

(http://www.camx.com/download/support-software.aspx, accessed 19 September 2013). For the chemical species in CMAQ 30 

that do not exist in MZ4, values are set to defaults as suggested by the CMAQ website. 

https://www.cmascenter.org/cmaq/index.cfm
http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0.1_%28July_2012_release%29_Technical_Documentation
http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0.1_%28July_2012_release%29_Technical_Documentation
http://www.camx.com/download/support-software.aspx
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2.4 Scenarios 

We simulate scenarios in CMAQ comparable to WEST2013, except that we carry out one extra scenario to quantify the co-

benefits from domestic versus foreign GHG mitigation (Table 1). S_2000 is conducted to evaluate CMAQ model performance 

and to compare with future scenarios. For this study, we run four scenarios in 2050. The differences between S_RCP45 and 

S_REF are the total co-benefits on U.S. air quality from global GHG mitigation. The emission benefit from the first mechanism 5 

is calculated as the difference between S_Emis and S_REF, for which the change in methane concentration is included as an 

emission benefit, and the meteorology benefit is calculated as S_RCP45 minus S_Emis. By comparing S_Dom (applying GHG 

mitigation from RCP4.5 scenario in the U.S. only) with S_REF, and S_RCP45 with S_Dom, we quantify the co-benefits from 

domestic and foreign GHG mitigation. The co-benefits from foreign reductions are found by simple subtraction (S_RCP45 – 

S_REF) – (S_Dom – S_REF) = S_RCP45 – S_Dom. In estimating the co-benefits of domestic reductions, we account for the 10 

influences of methane and of global climate change as foreign influences (as most methane and GHG emissions are outside of 

the U.S.), and assume that U.S. air pollutant emissions have small effects on global or regional climate, such as through aerosol 

forcing. In each scenario, we fix global methane at concentrations given by the RCPs (Table 1), and account for methane 

changes as a foreign influence, neglecting the fraction of global anthropogenic methane emissions that are from the U.S. (7.4% 

in 2050 REF scenario and 7.0% in 2050 RCP4.5). All scenarios are set up as continuous runs, with S_2000 running from 15 

September, 2000 to December, 2003, with the first four months in 2000 as spin-up. The future scenarios are run from 

September, 2049 to December, 2052 with the months in 2049 as spin-up. Results are presented as the average of three years.  

3 Results 

3.1 CMAQ model evaluation 

The CMAQ model has been broadly used to study regional future air quality (Hogrefe et al., 2004; Tagaris et al., 2007; Nolte 20 

et al., 2008; Lam et al., 2011; Gao et al., 2013) and has been evaluated in many applications (Appel et al., 2010, 2011, 2013; 

Nolte et al., 2015). Here we evaluate the CMAQ v5.0.1 performance by comparing the model outputs from S_2000 with 

observations in 2000 from the Interagency Monitoring of PROtected Visual Environments (IMPROVE; 

http://vista.cira.colostate.edu/improve/, accessed 9 May 2014), the Chemical Speciation Network (CSN; previously known as 

STN, http://www.epa.gov/ttn/amtic/speciepg.html, accessed 9 May 2014), and the Clean Air Status and Trends Network 25 

(CASTNET; http://epa.gov/castnet/javaweb/index.html, accessed 9 May 2014) for total PM2.5 and its components, and the 

EPA Air Quality System (AQS; http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm, accessed 9 May 2014) 

for O3. We pair the model outputs with observations in space and time, and calculate four groups of statistics to evaluate model 

performance: Median Bias (MdnB, µg m-3 for PM2.5 and ppb for O3), Normalized Median Bias (NMdnB, %), Median Error 

(MdnE, µg m-3 and ppb) and Normalized Median Error (NMdnE, %) (Supplementary material). Median metrics are used here 30 

instead of the mean, as for data with non-normal distributions (i.e., PM species) the median gives a better representation of the 

http://vista.cira.colostate.edu/improve/
http://www.epa.gov/ttn/amtic/speciepg.html
http://epa.gov/castnet/javaweb/index.html
http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
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central tendency of the data (Appel et al., 2008). For O3 evaluation, we use both the maximum daily 1-hour (1hr_O3) and 

Maximum Daily 8-hour Average (MDA8), and also calculate these metrics with a cutoff value of 40 ppb for the observed O3 

to evaluate the model’s reliability in predicting ozone values relevant for the NAAQS (USEPA, 2007). Model performance is 

not expected to be perfect as meteorology does not correspond with actual year 2000 meteorology, and emissions are derived 

from global datasets rather than the specific NEI year dataset for the U.S. 5 

For total PM2.5, overall model performance is good and the NMdnE for IMPROVE and CSN are less than 50%, with slight 

differences in performance (Table 3). CMAQ underestimates PM2.5 in these two networks and also its components in all three 

networks (Table S2), except that it overestimates SO42- compared with IMPROVE, and NH4+ with CSN. Compared with other 

components, OC and EC are not well predicted, with higher NMdnB, -63.55% and -37.00% in IMPROVE (OC and EC are 

not measured in the other two networks). In simulating PM2.5 and its species, model performance is better in winter than in 10 

summer (not shown here). The model overestimates surface O3 as indicated by the positive MdnB (ppb) and NMdnB (%). The 

NMdnE for the 1hr-O3 (MDA8-O3) declines from 27.60% (33.35%) to 17.36% (16.95%) after we apply the cutoff value of 40 

ppb. The overprediction is slightly lower for 1hr-O3 than for MDA8-O3, however this difference becomes smaller when we 

consider the cutoff values. By comparing the simulated annual PM2.5 and O3 in 2000 (both are three-year averages) between 

MZ-4 and CMAQ, we see that CMAQ captures urban scale air quality better than MZ-4 (Fig. S11). 15 

3.2 Air quality changes in 2050 

Here we show the seasonal and spatial patterns of future air quality changes centered in 2050 relative to 2000 from REF and 

RCP4.5 (Figs. S12 to S15). The three-year seasonal average of PM2.5 over the entire U.S. decrease in 2050 in both S_REF and 

S_RCP45 compared with S_2000, especially in the Eastern U.S. and California (CA). The seasonal decreases are largest in 

winter, with U.S. averages in S_REF (S_RCP45) of 4.42 (4.88) µg m-3, and lowest in the summer of 1.55 (2.00) µg m-3, with 20 

annual average of 2.76 (3.23) µg m-3. The three-year seasonal average of O3 decrease significantly in summer in both the east 

and west coast, with U.S. average of 6.31 (9.50) ppb in S_REF (S_RCP45). O3 increases over the Northeast and West U.S. in 

winter in both S_REF and S_RCP45, caused by the weakened NO titration as a result of the large NO decrease in the two 

scenarios (Table 2), as also reported by other studies (Gao et al., 2013; Fiore et al., 2015), and as well as the large methane 

increases in RCP8.5 scenario (Gao et al., 2013). The magnitude of the decreases between S_REF and S_2000 is lower than 25 

that between S_RCP45 and S_2000, as the REF scenario did not apply a GHG mitigation policy, and thus has less emission 

reductions. 

We then compare these air quality changes in 2050 with the MZ4 simulations of WEST2013 for both S_REF (Fig. S16) and 

S_RCP45 (Fig. 2), and for S_RCP45 with the ensemble model means from the Atmospheric Chemistry and Climate Model 

Intercomparison Project (ACCMIP, Lamarque et al., 2013) following Fiore et al. (2012), as no ACCMIP models simulated 30 

REF in 2050. For the U.S. annual average PM2.5, the decrease in 2050 for S_RCP45 relative to 2000 in this study  

(3.23 µg m-3) is modestly higher than both the results from MZ4 and the ACCMIP ensemble mean, but within the range of 

ACCMIP models when PM2.5 is calculated as a sum of species. The future O3 changes in our study (5.20 ppb) are clearly in 
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the range of ACCMIP results, and nearly identical to MZ4 (5.13 ppb). Comparisons of the air quality changes in 2050 for 

S_REF relative to 2000 between CMAQ and MZ4 are similar, except that the magnitudes of the changes are smaller than those 

for S_RCP45 (Fig. S16). CMAQ better simulates air quality changes in urban environments at a finer scale compared with 

MZ-4.  

3.3 Total co-benefits for U.S. air quality from global GHG mitigation 5 

Projected three-year average PM2.5 concentrations in 2050 in both scenarios (S_REF and S_RCP45) are higher in the Eastern 

U.S. and the west coast of CA, and lower in the Western U.S. (Fig.3). The total co-benefits for U.S. air quality (S_RCP45 

minus S_REF) show notable decreases of major air pollutants in 2050. The total co-benefits for PM2.5 over the U.S. show a 

significant spatial gradient over the U.S. domain, greatest in the eastern U.S., especially urban areas, as well as CA, ranging 

from 0.4 to 1.0 µg m-3, and least in the Rocky Mountains and Northwest with values below 0.4 µg m-3. The total co-benefits 10 

for PM2.5 averaged over the U.S. is 0.47 µg m-3, with the largest contribution from organic matter (OM, including primary OC, 

SOA and NCOM), accounting for the 45% of the total (0.21 µg m-3), followed by sulfate (0.11 µg m-3) and ammonia (0.05 µg 

m-3) (Fig. S17). The total co-benefits are highest in fall, with U.S. domain average of 0.55 µg m-3, and lowest in spring (0.41 

µg m-3) (Fig. 4). Notice that the region with greatest co-benefits shifts from Central areas in winter and spring to the East in 

summer and fall, with the largest component of OM also shifting from primary OC to SOA (Fig. S18).  15 

Future O3 is presented here as the ozone-season average (from May to October) of MDA8. In general, 2050 O3 concentrations 

in S_REF and S_RCP45 are projected to be high in the Southern U.S., especially over the coastal areas, and higher in the West 

than the East (Fig. 5). The total co-benefits for O3 are fairly uniformly significant over the entire U.S. domain, slightly higher 

in the Northeast and Northwest, and range from 2-5 ppb with a domain average of 3.55 ppb, unlike PM2.5 which is higher over 

urban regions. The uniformity of the total O3 co-benefits suggests that they are strongly influenced by global O3 reductions. 20 

The total co-benefit for PM2.5 from this study (0.47 µg m-3 over U.S.) is lower than WEST2013 (area-weighted three-year 

averages of 0.72 µg m-3 over U.S.), especially over the Northwest and Central of U.S. (Fig. S20). Analyzing the components 

of PM2.5, we find that this difference is mainly caused by OM, with a U.S. annual average of 0.40 µg m-3 in WEST2013 and 

0.21 µg m-3 in this study (Fig. S21). For other components (EC, SO42-, NO3- as reported in MZ4 of WEST2013), the CMAQ 

results are slightly lower than WEST2013 but share a similar spatial pattern (Figs. S22-S25). We expect that the total co-25 

benefits of PM2.5 in this study might be higher than WEST2013, as we account for inorganic primary PM emissions in SMOKE. 

A possible explanation may be that different chemical mechanisms and deposition processes are adopted for organic aerosols 

in MZ4 and CMAQ, which may make a shorter atmospheric lifetime for PM in CMAQ than that in MZ4. The differences of 

the meteorology (e.g., the precipitation and temperature) between the downscaled WRF and the GFDL could also contribute 

to this difference. Total co-benefit of O3 from this study (3.55 ppb over U.S.) is comparable to WEST2013 (3.71 ppb) in both 30 

the magnitude and spatial distribution (Fig. S25).  
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3.4 Co-benefits from the two mechanisms 

We quantify the co-benefits of global GHG mitigation on PM2.5 and O3 through the two mechanisms: reduced co-emitted air 

pollutants (S_Emis—S_REF) and slowing climate change and its effect on air quality (S_RCP45—S_Emis). The reduction of 

co-emitted air pollutants has a much greater effect than slowing climate change for PM2.5, accounting for 96% of the U.S. 

average PM2.5 decrease. The emission benefit for PM2.5 over the U.S. domain is 0.45 µg m-3, greatest near urban areas where 5 

emissions are reduced (Fig. 6), with the largest contribution from OM (0.172 µg m-3 over the U.S.), followed by sulfate (0.107 

µg m-3) and ammonia (0.048 µg m-3). In Fig. S18, the OM decrease is caused mainly by primary organic carbon (POC, 0.074 

µg m-3 decreases), followed by biogenic SOA (ORGB, 0.057 µg m-3) and non-carbon organic matter (NCOM, 0.048 µg m-3). 

The POC and NCOM decreases are caused mainly by emission reductions, while the SOA decrease is caused mainly by 

changing climate (Fig. S19). Slowing climate change only accounts for 4% of the U.S. average total PM2.5 decreases (0.02 µg 10 

m-3). It also has different signs of effect over the U.S., reducing PM2.5 in the Southern U.S. but increasing in the North.  

For O3, the emission benefit is also larger than the climate benefit, accounting for 89% of the total O3 decreases averaged over 

the U.S. The emission benefit for O3 over the U.S. domain is 3.16 ppb, and much more uniform over the U.S., slightly higher 

over Northeast and Northwest. Slowing climate change accounts for 0.39 ppb O3 decreases, 11% of the total and mainly in the 

Great Plains and the East, where temperatures are cooler under RCP4.5 compared with RCP8.5 (Fig. 1). The dominance of the 15 

emission co-benefit over the climate co-benefit for both PM2.5 and O3 is consistent with WEST2013.   

3.5 Co-benefits from domestic and foreign GHG mitigation  

We also investigate the co-benefits from domestic GHG mitigation by comparing S_Dom with S_REF, versus foreign GHG 

reductions by comparing S_RCP45 with S_Dom (Fig. 7). For PM2.5, domestic GHG mitigation accounts for 74%  

(0.35 µg m-3) of the total PM2.5 decrease over the whole U.S., with the greatest effect over the East and CA, where emissions 20 

of PM2.5 and its precursors are greatly reduced (Figs. S3-S9). The benefits from foreign GHG reductions on the U.S. PM2.5 

change are only obvious in the Southern U.S., influenced by emission reductions in Mexico and global climate change. We 

conclude that domestic GHG mitigation has a greater influence on U.S. PM2.5 than reductions in foreign countries, but that 

foreign reductions also make a noticeable contribution, accounting for 26% of total PM2.5 decreases over the U.S., and a greater 

fraction, 40% in the South, South West, and East N Central regions. Note that the uncertainty in the foreign co-benefits is 25 

much larger than for the domestic reductions (Table S3). Longer simulations would be needed to reduce this uncertainty.  

For O3, foreign countries’ GHG mitigation has a much larger influence on the U.S., accounting for 76% (2.69 ppb) of the total 

O3 decrease, compared with 24% from domestic GHG mitigation (Fig. 7). The U.S. experiences greater O3 decreases in the 

North than the South, which is likely influenced in part by the air quality improvement in Western Canada as a result of slowing 

deforestation due to the climate policy in RCP4.5 (West et al., 2013). This large influence of foreign reductions for O3 30 

highlights the importance of global methane reductions in RCP4.5 (anthropogenic emissions of 330 Tg yr-1 in 2050 in RCP45, 

compared to 432 Tg yr-1 in REF), particularly in Asia and intercontinental transport.  
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3.6 Regional co-benefits and variability 

We then quantify the co-benefits over nine U.S. climate regions defined by the National Oceanic and Atmospheric 

Administration (Fig. S26), and their domestic and foreign components. The Central, Southeast, Northeast and South regions 

have the largest total co-benefits for PM2.5 (regional annual means of 0.78, 0.75, 0.62 and 0.62 µg m-3), and the Northwest has 

the lowest total co-benefits (0.16 µg m-3) (Fig. 8). Domestic GHG mitigation has the largest effect over these same regions and 5 

lowest effects over Northwest and West North Central, with means of 0.13 µg m-3. Foreign co-benefits are greatest over the 

South, Southwest, Central and Southeast, and lowest over Northwest (Table S3). As a fraction of the total co-benefits, the 

domestic co-benefit is highest in the Northeast, East North Central and Central accounting for more than 80% of the total, 

while foreign co-benefits are highest over Southwest, South and West North Central, accounting for about 40% of the total.  

For O3, the Northeast, East North Central, and Northwest have the highest total co-benefits, (regional means of 4.61, 4.25, 10 

4.15 ppb; Fig. 9 and Table S3), although the total co-benefits for O3 are fairly uniform over the U.S (Fig. 5). The Southeast 

has the lowest total co-benefits, with 2.67 ppb for the regional mean. Domestic co-benefits are higher over the Central, 

Northeast and Southeast, with regional means of 1.25, 1.16 and 1.14 ppb, and lowest over Northwest (0.4 ppb). In general, 

foreign mitigation contributes more in the west than the east, most likely influenced by intercontinental transport from Asia. 

It is highest in the Northwest, West North Central and Northeast, with regional means of 3.75, 3.45 and 3.45 ppb. The fraction 15 

of co-benefits from foreign mitigation is larger than 60% in most regions, highest over the Northwest (90%), and lowest over 

the Southeast (57%). 

We also evaluate the variability in co-benefits for the three years simulated (Table S3). Over the U.S., the coefficient of 

variation (CV) for the total co-benefits for PM2.5 (7%) is much lower than that of the total co-benefits for O3 (37%), which is 

controlled by the intercontinental transport and global CH4. The Southeast has the highest CV (29%) for the total co-benefits 20 

of PM2.5, while other regions are lower than 15%, lowest in the East North Central and Northeast (3%). Southwest and South 

have the highest CV (70%, 69%) for the total co-benefits of O3, and lowest in Northwest (21%). For regions with higher 

variability, longer simulations would be desirable to better quantify the annual average co-benefits. 

4 Discussion 

The co-benefits we present here are specific to the reference (REF) and mitigation (RCP4.5) scenarios we choose, and results 25 

would differ for other baseline and mitigation scenarios. The estimated co-benefits also depend on participation of many 

nations in the mitigation policies, and delaying participation will likely change the co-benefits. However, we expect that the 

general features of these results are generalizable to other scenarios. 

The total co-benefits for O3 when downscaled are comparable to the global study in both magnitude and spatial pattern, but 

the downscaled simulations capture some local features better than the global model, such the effects of topography and urban 30 

areas. For PM2.5, significant differences are seen from the downscaling due to the fine resolution and different chemical 
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mechanisms between the global and the regional model. The resolution we are using for this study (36km by 36 km) is fine 

enough for us to analyze the co-benefits at a state level, but insufficient to fully resolve urban areas. Finer resolution simulations 

(such as 12 km by 12 km) with CMAQ or other CTMs can be carried out to better quantify the co-benefits over urban areas.  

For this study, uncertainties and errors may exist under the assumptions and choices we make for each model. For example, 

Uncertainties in the input meteorology and emissions data inventory have a significant influence on the CMAQ results. Also 5 

we see that the co-benefits of PM2.5 have large contributions from OC and SOA over the Central and East U.S. (Fig. 4, Fig. 

S18). However, our model evaluations show that CMAQ greatly underestimates the total OC (primary OC and SOA) 

concentration compared with surface observations. New gas-phase and aqueous-phase oxidation pathways for SOA formation 

are found to play significant roles in producing organic aerosols (Lin et al., 2014; Pye and Pouliot, 2012; Pye et al., 2013), 

which are missing in the CMAQ version used in this study. We use BEIS model to estimate the biogenic VOC (BVOC) 10 

emissions, but studies have shown that the BVOCs from the Model of Emissions of Gases and Aerosols from Nature (MEGAN) 

are higher than those from BEIS by a factor 2 (Pouliot, 2008; Pouliot and Pierce, 2009), which highlights the uncertainty in 

representing these emissions and simulating both PM2.5 and O3 (Hogrefe et al., 2011).  

We assume constant land use in the GCM, WRF and CMAQ when simulating the global and regional climate and estimating 

the biogenic emissions, which could introduce errors in our results (Unger, 2014; Heald and Spracklen, 2015). When we 15 

process the global anthropogenic emissions with SMOKE, we back-calculate the total PM2.5 and PMC from OC and BC, which 

introduces inorganic PM emissions and may make our results for co-benefits of PM2.5 higher. By doing this, we account for 

missing emissions but also increase the total uncertainties in the emission inventory. Spectral nudging is adopted in this study 

to restrain WRF from drifting from the GCM, which has been shown to be better for some meteorological variables, but  

analysis nudging better for others (Bowden et al., 2012, 2013; Liu et al., 2012; Otte et al., 2012). Moreover, only one model is 20 

used during downscaling for regional climate (WRF) and air quality (CMAQ) modelling, and the mean of a model ensemble 

can be used to reduce model error. Simulations are based on three-year averages, due to computational limitations, but these 

three years may reflect meteorological variability and not only climate change. This uncertainty may be greater for the total 

co-benefits of O3, for which we see greater year-to-year variations than for PM2.5. CMAQ simulations could be performed over 

more years to reduce the influence of the interannual climate variability. In separating domestic and foreign co-benefits, we 25 

assume that global and regional climate will be controlled by foreign GHGs emissions, and not influenced by GHG mitigation 

in the U.S., which introduces a small error into our results. We similarly attribute the global methane change as a foreign 

influence, as U.S. methane emissions are a small fraction (6-10%) of global emissions.   

5 Conclusions 

Climate polices to control GHG emissions will not only have the benefit of slowing climate change, but can also have co-30 

benefits of improved air quality. Previous co-benefits studies focus mostly on local or regional GHG reductions. As a result, 

these studies omit air quality benefits outside of the domain considered, and neglect benefits from global GHG mitigation. In 
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this study we adopt a systematic approach to quantify the co-benefits from both the global and regional GHG mitigation on 

regional air quality over U.S. at fine resolution in 2050, building on the global co-benefits study from West et al. (2013). The 

co-benefits of global GHG mitigation on U.S. air quality are discussed through two mechanisms: reduced co-emitted air 

pollutants and slowing climate change and its influence on air quality. We also quantify the co-benefits from domestic GHG 

mitigation versus foreign countries’ reduction.  5 

We find that there are significant benefits for both PM2.5 and O3 over U.S. by 2050 from the global GHG mitigation in RCP4.5. 

The total co-benefits for PM2.5 are higher in the east than the west, with an average of 0.47 µg m-3 over U.S. For O3, the total 

co-benefits are fairly uniform across the U.S. at 2-5 ppb, with U.S. average of 3.55 ppb. The co-benefits from reductions of 

co-emitted air pollutants have a greater influence on both PM2.5 (accounting for 96% of total decreases) and O3 (89% of the 

total decreases) than the second mechanism via slowing climate change, consistent with West et al. (2013).  10 

Foreign countries’ GHG reductions have a much greater influence on the U.S. O3 reduction (76% of the total), compared with 

that from domestic GHG mitigation only (24%), highlighting the importance of global methane reductions and the 

intercontinental transport of air pollutants. For PM2.5, the benefits of foreign GHG control are less than domestic, but still a 

considerable portion of the total (26%). We conclude that the U.S. can gain significantly greater domestic air quality co-

benefits by engaging with other nations for GHG control to combat climate change, especially for O3. This also applies to 15 

other nations which can be expected to have ancillary air quality benefits from foreign countries’ GHG mitigation. We also 

conclude that previous studies that estimate co-benefits for one nation or region (e.g., Thomson et al., 2014), may significantly 

underestimate the full co-benefits when many countries reduce GHGs together, particularly for O3. 
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Table 1. List of CMAQv5.0.1 simulations in this study. Hourly BCs are from the MOZART-4 (MZ4) simulations of 

WEST2013. We fix the methane (CH4) background concentrations in CMAQ consistent with the RCP scenarios and 

WEST2013. 

Years Scenario Emissions Meteorology BCs CH4 

2000 S_2000 2000 2000 MZ4
 
2000 1766 ppbv 

 

 

2050 

 

S_REF REF RCP8.5 MZ4 REF 2267 ppbv 

S_RCP45 RCP4.5 RCP4.5 MZ4 RCP4.5 1833 ppbv 

S_Emis RCP4.5 RCP8.5 MZ4 e45m85b 1833 ppbv 

S_Dom RCP4.5 for U.S.,  

REF for Can, Mexa 

RCP8.5 MZ4 REF 2267 ppbv 

athe part of Canada and Mexico in the domain.  
bglobal simulation using RCP4.5 emissions together with RCP8.5 meteorology in 2050. 
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Table 2. Anthropogenic emissions in the U.S. for major air pollutants in 2000 and 2050 from REF and RCP4.5 (Tg yr-1), and 

the relative differences (Relative Diff) between RCP4.5 and REF in 2050 ((RCP4.5 - REF)/REF×100).   

 2000 2050 REF 2050 RCP4.5 Relative Diff (%) 

SO2 14.84 2.46 1.75 -28.78 

NH3 3.34 4.56 4.30 -5.56 

NOx 19.57 4.40 3.92 -10.93 

CO 92.74 11.42 11.25 -1.48 

NMVOC 15.23 8.07 7.16 -11.21 

EC 0.42 0.22 0.21 -7.59 

OC 0.71 0.35 0.33 -6.17 

PM2.51 4.14 1.87 1.57 -15.80 

PMC2 11.02 5.50 4.63 -15.80 
1,2PM2.5 & PMC are the total emissions back-calculated based on the EC & OC.   
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Table 3. Evaluation of the S_2000 simulation (average of three years modeled) with surface observations in 2000 for PM2.5 

(µg m-3) and O3 (ppb). 

  Pollutants MdnB NMdnB (%) MdnE NMdnE(%) 

IMPROVE PM2.5 -0.89 -23.31 1.88 49.46 

CSN PM2.5 -2.85 -27.44 4.29 41.30 

AQS 1hr_O3 8.97 18.40 13.25 27.60 

AQS 1hr_O3_40a 2.79 4.76 9.89 17.36 

AQS MDA8_O3 11.87 28.01 14.13 33.35 

AQS MDA8_O3_40a 3.95 7.37 9.09 16.95 
a1hr_O3_40 and MDA8_O3_40: Observations below 40 ppb are excluded from the comparison.  
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Fig. 1. Changes in (a) 2-m temperature (°C) and (b) precipitation (mm day-1) centered on 2050 between RCP8.5 and RCP4.5 

(RCP8.5—RCP4.5).   
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Fig. 2. Comparison of annual U.S. average concentration changes for RCP4.5 in 2050 relative to 2000, for this study (black 

triangle), MZ4 from WEST2013 (red circle), and the ensemble mean (blue diamond) and multi-model range from ACCMIP 

(blue lines), for (a) PM2.5, and (b) O3. In panel a, the total PM2.5 reported by the ACCMIP models is shown on the left, and the 

PM2.5 estimated as a sum of species BC+OA+SOA+SO4+NO3+NH4+0.25*SeaSalt+0.1*Dust following Fiore et al. (2012) and 

Silva et al. (2013) shown on the right. Values shown are the average of three years for CMAQ and MZ4, and 5 to 10 years for 

ACCMIP for three models (LMDzORINCA, GFDL-AM3 and GISS-E2-R) that report O3 and two models (GFDL-AM3 and 

GISS-E2-R) that report PM2.5.   
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Fig. 3. The three-year average PM2.5 (µg m-3) distributions in 2050 from (a) S_REF, (b) S_RCP45, and (c) the total co-benefits 

(shown as the difference between S_RCP45 and S_REF). Blue colors in panel (c) indicate an air quality improvement.  
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Fig. 4. Seasonal distributions of total co-benefits for PM2.5 (µg m-3) for (a) winter, (b) spring, (c) summer and (d) fall.  
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Fig. 5. The three-year ozone-season average (May to October) of MDA8 O3 (ppb) from (a) S_ REF, (b) S_ RCP45, and (c) the 

total co-benefits (shown as the difference between S_RCP45 and S_REF). Blue colors in panel (c) indicate an air quality 

improvement. 
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Fig. 6. Benefits of reduced co-emitted air pollutants (a, b; S_Emis—S_REF) versus slowing climate change (c, d; S_RCP45—

S_Emis) for PM2.5 (a, c) and ozone season MDA8 surface O3 (b, d). Blue colors indicate an air quality improvement. The 

numbers on the plots are the three-year average of air quality changes over the U.S.   
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Fig. 7. Benefits of domestic (a, b; S_Dom—S_REF) versus foreign (c, d) GHG reductions for PM2.5 (a, c; S_RCP45—S_Dom) 

and ozone season MDA8 surface O3 (b, d). Blue colors indicate an air quality improvement. The numbers on the plots are the 

three-year average of air quality changes over the U.S.   
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Fig. 8. Mean values of domestic (blue) and foreign co-benefits (red) for U.S. average (a) annual PM2.5, and (b) ozone season 

MDA8 O3. The numbers below each bar are the percentage (%) of the foreign co-benefit.  
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