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Dear Reviewer #1,  

First, we would like to thank you for the helpful comments and suggestions. Below, we describe the 

changes made and the answers (point-by-point). 

 5 

Referee # 1    

RC1: “Figure 3 – The order of presentation does not match the previous figure or the text. Please re-order 

these plots. Also, the plot are lacking axis labels. I understand this allows the efficient display, but it takes 

some time to understand this. The caption helps the reader understand the layout and why there are not 

labels, but needs a bit more explanation, since there are no values associated with the data points.” 10 

AC1: We have changed the figure layout. To a better understanding we added axis labels to all graphs of 

the figure including the data points values.    

RC2: “I would suggest that the results & discussion section be broken into sub-headings to help the reader. 

The final two paragraphs are more specifically discussion, as it presents more than the emissions results, 

and explains why these data are important to estimate accurately.” 15 

AC2: We divided the topic results & discussion section into three sub-topics: 3.1 Comparing emission 

inventories spatially; 3.2 Assessment of fire inventories with AOT; 3.3 Evaluating the emissions against 

observations. 
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Dear Reviewer,  

First, we would like to thank you for the helpful comments and suggestions. Below, we describe the 

changes made and the answers (point-by-point).  5 

 

Referee # 2    

General comments 

RC1: “To compare the emission inventories, the authors rely on the use of correlation between the 

different datasets. Correlation is a useful metric, but the authors need to be clearer in the manuscript what 10 

type of correlation they have calculated or between what data points i.e. state whether the correlation is 

temporal or spatial. This needs to be improved both in the text (abstract, Sect. 3, conclusions. . .) and in 

the captions for Table 2 and Figure 4. Also, it would be useful if the correlation values were accompanied 

with an estimate of bias (absolute or percentage etc.) so that the reader can judge how the magnitudes of 

the emissions compare quantitatively.” 15 

AC1: The article was revised. We changed all correlations to Linear correlation. Also, we described the 

type of data used to perform linear correlation (daily areal-averaged) and calculate the absolute bias for 

the four inventories to the eight grids.   

RC2: “I believe the most important and useful part of the manuscript is the evaluation of the emissions 

against observations. This section has the potential to inform the reader of the most appropriate emission 20 

inventory to use for this region/time period. However, this section falls slightly short. Firstly, the 

description of the models and the emissions they use is too brief. What is the spatial resolution of the 

models? Are the fire emissions scaled at all? What version of GFAS is used in MACC? Are the emissions 

injected all at the surface in the models? Secondly, no statistics are computed to compare the model and 

observations. It would be useful to have correlation and/or bias values calculated to quantify the 25 

agreement (as for the comparison of emission inventories). It would also be useful to see the difference 

between model and observations mapped as in Fig 5. Finally, what is the reason for the underestimation 

of AOT in Grid 5? Would 3BEM-FRP emissions perform better here? 
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AC2:  The models configurations were further described in section 2.3. There is another complementary 

paper (to be submit) analyzing the differences between model and observation AOD  fields and trying to 

the evaluate the potential role of emission and meteorology combination on models performance 

(compared with other variables). MACC model uses AOD assimilation based on MODIS products in 

order to improve the representation of model AOD field. Therefore, in this case, it is more difficult to 5 

assess either the role of meteorology or emissions inventories on its performance. . CCATT-BRAMS 

does not use assimilation, which allows, to some degree, an evaluation of the influence of meteorological 

and emission aspects. Furthermore, for the SAMBBA experiment, it was not possible to run a designed 

experiment specifically to evaluate the solely impacts of the four emissions inventories on the SAMBBA 

chemistry transport models performance due to computational limitations.   Nevertheless, current results 10 

highlight and quantify divergences among emission inventories currently used worldwide to simulate 

smoke emission. The presented comparison between AOT observed and simulated by the chemistry 

transport models(CTM) it is not the ideal to evaluate the emission inventories, but, at least for CCATT-

BRAMS, it provide a perspective of the CTM current performance on simulating South America smoke 

spatial and temporal variability given the emission inventory used to feed the model.  15 

 

 

RC3: “The results and discussion section should be broken down into sub-sections to improve readability 

of the text. I suggest separate sections on: i) comparing emission inventories spatially; ii) comparing 

emissions temporally; iii) evaluating the emissions against observations. The figures and tables should be 20 

re-arranged accordingly. Also, make sure it is clear which values in the text are shown in which 

figure/table, this is not always the case (see specific comments below).” 

AC3: We broke the results & discussion section into three new topics: 3.1 Comparing emission 

inventories spatially; 3.2 Assessment of fire inventories with AOT; 3.3 Evaluating the emissions against 

observations. 25 

RC4: “There are several typos, grammar mistakes, naming inconsistencies and missing words in the text 

that at times distracted me from the science content of the paper. There were too many errors to point out 
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individually in the specific comments below so the authors should thoroughly proofread the revised 

manuscript and make the necessary corrections prior to re-submission.”  

AC4: All suggestions were accepted and a proofreading performed. 

Specific comments 

1. Abstract, L26-33: Please state clearly what the under/overestimations of the emissions are relative 5 

to i.e. to the other inventories NOT observations. Also, there is no mention of the results of the comparison 

to observed AOT.  

ASC1: The abstract was modified and the results of the comparison to observed AOT are now described. 

Also, we have adapted the abstract to clarify the text.  

2. Introduction (or Sect. 2.1): The positives, negatives and key uncertainties in the biomass burning 10 

emission estimation methods should be discussed and compared either in the introduction or later in Sect. 

2.1 (some points for burnt area given i.e. not near real time, but more could be added). Also, I’m also 

surprised that GFED emissions are not mentioned in the text, since these emissions are widely used in 

models.  

ASC2:      We inserted two paragraphs in Introduction about the uncertainties. Also, we mentioned the 15 

GFED in introduction.   

3. Sect. 2.1.1: How is cloud cover dealt with in the 3BEM and 3BEM-FRP inventories? Are any 

corrections made for missed detections due to cloud (or smoke) cover? Apologies if I missed this 

information. 

ASC3: In 3BEM or 3BEM_FRP, when the fire location is undetected due to cloud cover this fire was not 20 

accounted in biomass burning estimation. However, due to the frequency of observations (mainly in 

GOES and SEVIRI) 3BEM needs only one fire detection in the lifecycle of the event due to filtering 

process. Also, in 3BEM_FRP, if the active fire has no observations in four hours we assume that the fire 

is over. Thus, missed detection due cloud have impact in FRE integration if the cloud persists for more 

than 8 satellite acquisitions. Also, a 10% cloud error could be associated to this phenomenon. We inserted 25 

this explanation in the text.  

4. Sect. 3, P7, L19-24: Can you suggest any reasons for the large differences between emissions in 

grid 5? In particular, why are FINN emissions so low relative to the other emissions? There must be active 

fire detections here for the FRP-based inventories to predict emissions? Could the assumed fire size be 

too small in FINN? (Although this seems unlikely if fires in this region are mainly agricultural). 30 
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ASC4: Probably the main cause of low emissions of FINN is associated with MODIS fire detections in 

this area. The fire cycle starts frequently in the middle of the afternoon (after 15:00 local time). In some 

cases, the fire end before the next MODIS acquisition, missing a hotspot. When one uses GOES and 

AVHRR data, such as does 3BEM, we increase the fire emission estimation, however, in this area (in fire 

season) we have a low cloud cover, that could improve the estimation due temporal integration of FRP 5 

methods.      

5. Sect. 3, P7, L25: : :: Is this the correlation between the spatial patterns of the emissions (see general 

comment 1)? Please clarify in the text.  

ASC5: We have changed all correlations to Linear correlation and inserted the type of data used, such as 

daily areal-averaged.    10 

6. Sect. 3, P8, L1: : :: It’s confusing to start referring to the emission inventories as models here. I 

suggest sticking to “emission inventory” so as not to confuse it with the term “models” used when 

discussing chemistry transport models in the final few paragraphs of this section.  

ASC6: We have changed all to emission inventories. 

7. Sect. 3, P8, L1 onwards: (As for general comment 1) what are these correlations calculated 15 

between? Is it the spatial correlation being discussed? What figure table do these correlation values link 

to?  

ASC7: We have changed all correlations to Linear correlation and inserted the type of data used, such as 

daily areal-averaged. The mean correlation are described in table 2.  

8. Sect 3., P8, L2: From Table 3 it looks like total CO emissions from FINN are lower than 3BEM 20 

in 4 out of 8 grids, so this statement doesn’t seem to follow. Which figure/ table are you referring to here? 

Please clarify. (Cannot tell from Fig 4 because there are no values on the axes). 

ASC8: We inserted the values and changed the figure 4. In most grids FINN present lower values, but 

when the bootstrap is performed, the error analysis indicates that in the other grids the difference is more 

accentuated indicating an overall trend of overestimation.  25 

9. Sect. 3, P8, L11: Table 3 shows total CO emissions from GFAS are lower than 3BEM in grid 2. 

Do you mean grid 8? 

ASC9: We corrected the information. 
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10. Sect., P9, L18-19: How is this agreement "good", please quantify or explain. Some peaks in CO 

emission and AOT look anti-correlated on a few of the days. In what way would you expect CO emissions 

to agree with retrieved AOT? 

ASC10: We changed the sentence to: “in the general pattern of temporal evolution we could observe a 

good agreement between CO emission load estimated by the four emission inventories and MODIS 5 

AOT550nm” 

11. Conclusions, P11, L4: “: where 3BEM_FRP and GFAS deliver a better accuracy”. How do you 

show that 3BEM_FRP and GFAS emissions deliver a better accuracy? Is this surmised from the 

comparison between MACC+GFAS and MODIS AOT? 

ASC11: Yes, there is not a clear basis to conclude this, therefore we excluded this sentence.  10 

12. Conclusions: Perhaps I have misunderstood something but the final two sentences do not seem to 

follow on from the previous sentence. 

ASC12: The two sentences were inserted in the sequence of the above paragraph.  

13. Figure 4: This figure is difficult to interpret and needs a clearer/more detailed caption. What does 

each data point represent? What do the grey bars represent? Axes labels and values would aid 15 

interpretation.  

ASC13: We inserted the values and changed the figure 4. Also, we inserted the article with track changes.   
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Abstract. Fires associated with land use and land cover changes release into the atmosphere large amounts of aerosols and 

trace gases. Although there are several inventories of biomass burning emissions covering Brazil, there are still considerable 

uncertainties and differences among these. While most fire emissions inventories still utilize the parameters of vegetation fuel 

load, emission factors and other parameters to estimate the biomass burned and its associated emissions, certain more recent 15 

inventories tend to apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of 

biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model 

(3BEM) and Fire Inventory from NCAR (FINN) are examples of the first, while Brazilian Biomass Burning Emission Model 

with FRP assimilation (3BEM_FRP) and Global Fire Assimilation System (GFAS) are examples of the latter method 

mentioned. In this paper, the output of four biomass burning emission inventories used during the South American Biomass 20 

Burning Analysis (SAMBBA) field campaign are analyzed and intercompared, focusing on eight pre-defined grids. Aerosol 

optical thickness (AOT550nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensor operating onboard Terra andthe Aqua satellites is applied to assess the inventories model simulations 

consistency. Concerning the daily areal-averaged emission load of Carbon Monoxide (CO) to South America (01 Sep 2012 – 

31 Oct 2012), a significant linear correlation (r, p>0.05 level, Student t-test) between 3BEM and FINN, and between 25 

3BEM_FRP and GFAS, were Significant correlation coefficients (r, p>0.05 level, Student t-test) were found between 3BEM 

and FINN, and between 3BEM_FRP and GFAS, with approximately 0.86 and 0.85, respectively. These results indicate that 

emissions estimates in this region derived via similar methods tend to agree with one other, but differ more from the estimates 

derived via the alternative approach. However, the evaluation of MODIS AOT550nm with  linear correlations of the daily areal-

averaged emission load of CO to eight  in specific grids indicate that 3BEM and FINN typically underestimated the smoke 30 

emission loading in the eastern region of Amazon Forest, whilst 3BEM_FRP presents a tendency to overestimate fire emissions 

in the same area. The consistence  of the daily areal-averaged emission load of CO to South America to relationship between 

the 3BEM and FINN fire inventories present a linear correlation coefficient of 0.75-0.92, with a tendency of FINN to 

overestimate the emission of carbon monoxide by 20-30%. Moreover, measure of accuracy of the daily areal-averaged 
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emission load of CO to South America to 3BEM_FRP and GFAS shows a linear correlation coefficient of between 0.7582-

0.8590, with higher values near the arc of deforestation in Amazon Rainforest. However, GFAS has a tendency to present 

higher carbon monoxide emissions in this region, and 3BEM_FRP tends to overestimate the emissions in soybean expansion 

(east of Amazon forest). Furthermore, the evaluation of MODIS AOT550nm Terra and Aqua with the simulated AOT550nm 

from Monitoring Atmospheric Composition and Climate (MACC) from European Centre for Medium-Range Weather 5 

Forecasts (ECMWF) and Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional 

Atmospheric Modelling System (CCATT-BRAMS) operational atmospheric chemistry transport models presented a good 

agreement related with general pattern of the AOT550nm time-series. However, when the fires present a high biomass 

consumption, the aerosol values simulated by the two models underestimates the MODIS measurements. 

1 Introduction 10 

Biomass burning is a global phenomenon, and an ancient practice of human occupation, as well as a natural process. It 

consumes large amounts of vegetation across wide areas and modifies Earth surface characteristics. Fires still nowadays play 

a key role in ecosystem services, opening areas for livestock and agriculture, and pest control (Shimabukuro et al., 2013). In 

the last five decades biomass burning has been extensively and persistently used all over the tropics for these purposes, and 

has been involved in widespread deforestation and forest degradation (Crutzen, 1990; Bustamante et al., 2015). Biomass 15 

burning emissions inject a considerable amount of oxidants and aerosols into the atmosphere, modifying atmospheric 

composition and reactivity therefore disturbing the regional climate, water and biogeochemical cycles (Andreae et al., 2002; 

Bowman et al., 2009). Moreover, fire emissions in tropical areas are felt not only regionally but rapidly and strongly affects 

the global scale due to the efficiency of the atmospheric transport processes of trace gases and aerosols emitted along with 

high heat release, reinforced by the intense tropical convective activity associated with high temperature and moist (Kaufman 20 

et al., 1995; Martin et al., 2010). Extensive fires activity also disturbs the environmental system, producing soil depletion, 

damaging flora and fauna, decreasing biodiversity, and even affecting human life (Fearnside, 2000). 

An accurate temporal and spatial estimate of biomass burning emissions is critical to a reliable analysis of the associated 

effects, including at different time scales. Nowadays, efforts to quantify emissions from biomass burning from space-borne 

instruments have increased considerably in scope, but uncertainties on the input data and within the different methodologies 25 

can still lead to lead to errors of up to an order of magnitude for trace gases and aerosol emission totals (Vermote et al., 2009; 

Baldassarre et al., 2015).  

In literature, is possible to find several products of burned area and fire emissions inventories, such as the Global Fire Emissions 

Database (GFED, van der Werf et al., 2010), the Brazilian Biomass Burning Emission Model (3BEM, Longo et al., 2010), the 

Global Fire Assimilation System (GFAS, Kaiser et al., 2009/2012) and the Fire INventory from NCAR (FINN, Wiedinmyer 30 

et al., 2011). Most of the fire emissions inventories utilizes active fire locations and burned area to estimate the trace gases and 

aerosol emissions released into the atmosphere (Mao et al., 2014). However, the temporal and spatial distribution of biomass 
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burning emissions present several sources of errors related to the lack of detection of small fires, for example, prescribed and 

agricultural burning. Also, global burned area products are unsuitable to estimate the burned area of small fires due to 

limitations on its algorithms (Giglio et al., 2006; Giglio et al., 2010; Randerson et al., 2012).  

Thus, mMost methodologies to estimate biomass burning emissions utilize the relationship proposed by Seiler and Crutzen 

(1980), usually called the "bottom-up approach":  5 

𝑀[∈] = 𝐴. 𝐵. 𝛽. 𝐸𝐹[∈]                                                                                                                                                                  (1) 

where 𝑀[∈] is the emission load of species ∈ (g); A is the burned area (in km²); B is the fuel load (kg.km-2); β is the combustion 

completeness (unitless); and 𝐸𝐹[∈] is the emission factor released species ∈ (g.kg-1).  In this method, the burned area is one of 

the parameters necessary to estimate the emission of trace gases and aerosols, usually estimated by Earth Observation (EO) 

satellites, and typically since fires must have already occurred to produce a burned area this is not that well suited to providing 10 

near real-time air quality forecasts in models that includes vegetation fires.  Other factors in Equation 1 can also be difficult to 

determine, for example, the combustion completeness typically depends on the moisture present in the biomass (and thus in 

part on micrometeorology), and the fuel load (average biomass and its fraction above ground) is hardly homogeneous 

(Chuvieco et al., 2004; Yebra et al, 2008; De Santis et al., 2010). 

In the last decade, the development of sensors more targeted at active fire observations has allowed estimation of the radiative 15 

energy flux released by fires or the fire radiative power (FRP, in J.s-1). Continuous acquisition of FRP over a fires duration 

provides fire radiative energy (FRE, in MJ) released by the fire process.The FRP accuracy has been evaluated by Kaufman et 

al. (1998) and Wooster et al. (2003) showing an average error of 16% and 6.5%, respectively. However, the error could be 

larger due the spatial resolution of several sensors, basically, the atmospheric transmittance and the cloud obscuration can 

cause an omission error of 15% and 11% in FRP estimates, respectively (Schroeder et al., 2008).  Also, according to Vermote 20 

et al. (2009), the integration of FRP over the fire cycle and its conversion to burned biomass can cause an error of 21% and 

10%-30%, respectively, varying according to heterogeneity of regional/zonal characteristics. 

Continuous acquisition of FRP over a fires duration provides fire radiative energy (FRE, in MJ) released by the fire process.  

New fire emission methods utilize the FRE to calculate the amount of biomass burned and/or the emission of trace gases and 

aerosols (Wooster et al., 2005; Ichoku and Kaufman, 2005; Ellicot et al., 2009; Freeborn et al., 2011; Kumar et al., 2011): 25 

 

 

𝐹𝑅𝐸𝑔𝑟𝑖𝑑(𝑙𝑜𝑛,𝑙𝑎𝑡)=
1

2
∑ (𝐹𝑅𝑃𝑛 + 𝐹𝑅𝑃𝑛+1). (𝑇𝑛+1 − 𝑇𝑛)𝑛

𝑖=1                                                                                                              (2) 

𝑀[∈] = 𝐹𝑅𝐸𝑔𝑟𝑖𝑑(𝑙𝑜𝑛,𝑙𝑎𝑡)
. 𝛾. 𝐸𝐹[∈]                                                                                                                                                 (3) 

where 𝐹𝑅𝐸𝑔𝑟𝑖𝑑(𝑙𝑜𝑛,𝑙𝑎𝑡)
 provides radiative energy at a geographical location in terms of longitude and latitude of a specific 30 

centered point of a regular grid; T is the time interval between FRP acquisitions; n represents the nth sample; and γ is the FRP-

biomass conversion factor (kg.MJ-1, Wooster et al., 2005; Kaiser et al., 2012). In this method, parameters such as fuel load, 

burning efficiency and the presence of moisture in the soil and in vegetation directly influence the observed energy radiated 
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by the fires and do not have to be separately considered. In this way this method is sometimes referred to as a "top-down" 

approach.  

 

The South American Biomass Burning Analysis (SAMBBA) was an airborne experiment design to characterize the smoke 

physical and chemical properties in Amazonian rainforest and central area of Brazil. The SAMBBA campaign took place in 5 

September 2012. The operational smoke forecasting system built to support SAMBBA flights planning utilized four fire 

emissions inventories that deployed variously the aforementioned bottom up and top down approaches: I) Brazilian Biomass 

Burning Emission Model (3BEM, Longo et al., 2010); II) Brazilian Biomass Burning Emission Model with FRP assimilation 

(3BEM_FRP, Pereira et al., 2009); III) Global Fire Assimilation System (GFAS, Kaiser et al., 2012); and IV) Fire Inventory 

from NCAR (FINN, Wiedinmyer et al., 2011). This study provides an intercomparison and evaluation of these inventories, 10 

with focus on the South American Biomass Burning Analysis (SAMBBA) field campaign experiment. 

2 Data and methodology 

2.1 Inventories description 

2.1.1 Brazilian Biomass Burning Emission Models (3BEM and 3BEM_FRP) 

The Brazilian Biomass Burning Emission Model (3BEM) is a model developed to estimate the daily fire emissions based on 15 

the location of actively burning fire "hotspots" (i.e. areas of combustion detected using active fire/thermal anomaly detection 

algorithms) derived via orbital remote sensing. The 3BEM utilizes the Wildfire Automated Biomass Burning Algorithm 

(WFABBA) applied in Geostationary Operational Environmental Satellite (GOES) constellation data (Prins et al., 1998); the 

MOD14 and MYD14 products of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua 

satellites (Justice et al., 2002); and the fire product developed by the Environmental Satellite Division (DSA) of National 20 

Institute for Space Research (INPE), which uses the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard 

Meteosat Second Generation (MSG), GOES, MODIS and Advanced Very High Resolution Radiometer (AVHRR) onboard 

the National Oceanic and Atmospheric Administration (NOAA) constellation (Setzer and Pereira, 1991).  

The 3BEM version initially developed by Longo et al. (2010), estimates the emitted mass of trace gases and aerosols related 

to each fire detected by remote sensing as described in Equation 1. Therefore, the location of the detected fire hotspots are 25 

cross-tabulated with MODIS Land Cover map to allow the estimation of above-ground biomass density, combustion factor 

and emission factor from literature values (Olson et al., 2000; Andreae and Merlet, 2001; Houghton et al., 2001; Sestini et al., 

2003; Akagi et al., 2011). Also, the model filters all fires located in a 1 km radius to prevent double counting between fire 

products.       

The updated 3BEM includes FRP assimilation (3BEM_FRP, Pereira et al., 2009), and utilizes the same algorithm of the former 30 

3BEM but with burned biomass directly estimated using FRE estimates, as described in Equation 3. The 3BEM_FRP model 
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groups all FRP values estimated by MODIS, GOES and METEOSAT products according to their time acquisition, eliminating 

the low confidence fire pixels (values below 50% for MOD14, MYD14 and METEOSAT products, and flags 4 and 5 for 

WFABBA/GOES product) and minimizing the impact of the MODIS bow-tie effect as described in Freeborn et al. (2011). 

Also, due to the frequency of observations (mainly in GOES and SEVIRI data) 3BEM needs only one fire detection to estimate 

the biomass burned and its associated emissions due to the filtering process (Longo et al., 2010). In 3BEM_FRP if the active 5 

fire has no subsequent observations in next four hours the algorithm assume that the fire event is over. Thus, missed detection 

due cloud have impact in FRE integration if the cloud persists for more than 8 satellite acquisitions. 

Some of these FRP estimates are compromised by sensor saturation over larger fires, particularly GOES over South America 

(Xu et al., 2010). Thus, to not ignoring important episodes of biomass burning by removing GOES saturated pixels, which 

FRP values are not provided, 3BEM_FRP utilizes Eq. (4) to estimate the energy released by fires, based on the premise that 10 

emitted spectral radiance (Mλ) in spectral band centered at 3.9 µm is proportional to FRP (Wooster et al., 2003). 

𝐹𝑅𝑃𝑀𝐼𝑅 =
𝐴𝑔

𝑎
𝜎 ∫ 𝑀(𝜆, 𝑇)𝑑𝜆 −  𝑀𝑏

4.03

3.76
                                                                                                                                      (4) 

where Ag represents the area of GOES pixel (km²); a is a constant fit based in GOES MIR spectral band (W.m-2.sr-1.µm-1.K-4, 

Wooster et al., 2005); σ is the Stefan-Boltzmann constant (5.66 x 10−8 W.m-2.K-4); M is the Planck´s Law (W.m-2.µm-1); λ is 

the wavelength (µm); T represents the temperature (K); and Mb is the radiance emitted by the background (110 MW). Also, in 15 

3BEM_FRP methodology, FRP values estimated by GOES satellites below 1000 MW are corrected by +17% and FRP values 

higher than 1000 MW are corrected by +41% (Xu et al., 2010). This procedure is also applied in SEVIRI data, but due to its 

spatial coverage, we decided not to include this data in the present analysis. Pereira et al. (2009) describes the 3BEM_FRP 

method in detail. 

A clustering process performs the combination of all detected fires from different sensors. In this step, the size of a matrix that 20 

merges FRP data can be defined according to the spatial resolution and grid configuration of the atmospheric model. 

Consequently, the convolution mask η(γ,κ), of size M x N (rows x columns), running over the grid with FRP areal density 

(defined by weighting the FRP values by pixel area) values estimated by different satellites ξ(lon,lat), will result in the grid 

(FRPgrid) containing all clustered fires for a given timestep. 

𝐹𝑅𝑃𝑔𝑟𝑖𝑑(𝑙𝑜𝑛,𝑙𝑎𝑡,𝑡)= ∑ ∑ 𝜂(𝛾, 𝜅)𝜉(𝑙𝑜𝑛 +  𝛾, 𝑙𝑎𝑡 +  𝜅, 𝑡)
𝛽
𝜅=−𝛽

𝛼
𝛾=−𝛼                                                                                                  (5) 25 

where the clustered grid is defined to all points where the mask of M x N size overlaps the image completely (lon ϵ [α, M –α], 

lat ϵ [β, N –β]). Moreover, if in any timestep of FRP integration the interval between two acquisitions is greater than 4 hours 

(ΔT > 14400 s), it is assumed the hypothesis of two or more independent fires, then the algorithm assumes T = 0 and another 

integration will be performed.  

2.1.2 Global Fire Assimilation System (GFAS) 30 

The Global Fire Assimilation System (GFAS, Kaiser et al., 2009/2012) is an approach used to map daily global fire emission 

through FRP observations. Therefore, GFAS also assumes that the electromagnetic radiation emitted by fires is related to the 
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consumption of burned biomass (Wooster et al., 2005). In the present GFAS version, 1.1, FRP values of MOD14 and MYD14 

fire products from Terra and Aqua satellites, respectively, are used to estimate the average of observed FRP areal density 

(FRPad, in W.m-2). GFAS estimates open vegetation fire trace gas and particulate emissions from each fire detected as described 

in Eq. (3).  

The model performs a clustering process of observed FRP (Fi), pixel area (Ai) and view zenith angle (θ) to sensor pixels with 5 

valid observations (i) to estimate the FRPad. The clustering process also takes observations of Fi=0, i.e. no-fire, into account. 

Thus, for each individual grid cell the estimated FRPad could be calculated as:  

𝐹𝑅𝑃𝑎𝑑 =
∑ ∑ 𝐹𝑖𝑘.𝑖𝑘𝜖𝑗 𝑐𝑜𝑠2(𝜃𝑖𝑘

)𝑘

∑ ∑ 𝐴𝑖𝑘.𝑖𝑘𝜖𝑗 𝑐𝑜𝑠2(𝜃𝑖𝑘
)𝑘

 

where ik represents the pixel i of satellite product k (MOD14, MYD14). This formulation implicitly corrects the MODIS bow-

tie effect and partial cloud/ice/snow/water-cover of a grid cell. Observation gaps are subsequently filled with a data assimilation 10 

approach, that currently assumes persistence of the fires. 

In GFAS, the coefficient that converts the FRPad to dry matter combustion rate is based on eight land cover classes, cf. Heil et 

al. (2010); Kaiser et al. (2012). In addition, the emission load of 40 species is calculated using emission factors from Andreae 

and Merlet (2001), subsequent updates and Christian et al. (2003).  Kaiser et al. (2012) describes the inventories method in 

detail. 15 

2.1.3 Fire INventory from NCAR (FINN) 

The Fire INventory from NCAR (FINN, Wiedinmyer et al., 2011) is an approach to estimate daily fire emissions at 1 km 

resolution through satellite observation of active fires. The FINN model produces global estimates of aerosols and trace gases 

of open vegetation fires, as described in Equation 1. The FINN utilizes the MOD14 and MYD14 fire products, processed by 

MODIS Rapid Response (MRR) or by the MODIS Data Processing System (MODAPS) Collection 5. However, since MODIS 20 

observations do not cover the entire globe daily, due to orbital gaps, FINN smears MODIS detections of active fire over two 

days. For each fire located in the equatorial region, is assumed that in the next day the fire will be half of its original size 

(Wiedinmyer et al., 2011). 

Similarly to 3BEM, the FINN model removes multiple detections of same fire pixel prior to estimation of the trace gases and 

aerosols released. In addition, for each active fire, FINN estimates as 1 km² the burned area for most of land use classes, with 25 

exception to grasslands/savannas in which it is assumed the burned area as 0.75 km². To estimate the emission of trace gas and 

aerosol species, emissions factors derived from Andreae and Merlet (2001) and Akagi et al. (2011) are used, as well as the 

MODIS land cover type for 2005 and the MODIS Vegetation Continuous Fields (VCF) product. Wiedinmyer et al. (2011) 

describes the procedures adopted in detail. 



13 

 

2.2 MODIS aerosol optical thickness 

The aerosol optical depth (AOD) product from MODIS sensors aboard Aqua and Terra satellites platforms is used to provide 

a first order assessment of the impacts of the two distinct methods to estimate biomass burning emission, i.e. the bottom-up 

and top-down approaches. In this work, the MODIS Level 2.0 Collection 5.1 (051) data and Level 3 Atmospheric product 

denominated MYD08_D3 (Mean Aerosol Optical Thickness at 550 nm – AOT550nm) is utilized to compare the fire emissions 5 

inventories utilized during the SAMBBA campaign between 01 Sept and 31 Oct 2012. The MODIS Atmosphere daily global 

product estimates roughly 600 statistical datasets at 1 degree resolution and equal-angle grid that comprehends a merge of 

MODIS acquisition over the globe (Kaufman and Tanré, 1998). Figure 1a shows the MODIS MCD12 Land Use and Land 

Cover (LULC) product for South America with LULC classes described in Table 1. During the SAMBBA field campaign, the 

highest biomass burning aerosol loadings were observed over Brazilian territory, mainly over the southeastern edge of the 10 

Amazonian forest (dotted red line, known as Arc of Deforestation) and in the soybean expansion area in the Brazilian Savannah 

(marked as X), as shown in the time-averaged (01 Sep 2012 – 31 Oct 2012) AOD550nm field derived from MODIS sensor 

aboard Aqua satellite (Figure 1b). The high values of AOD related to fires located in eastern of Mato Grosso (mainly in the 

secondary forest) and in transition areas of Amazon rainforest and Brazilian Savannah are noteworthy; soybean expansion 

areas, which present high concentration of fires, have a lower amount of biomass than Amazon rainforest and the high 15 

ventilation favors the transport of smoke to west.  

2.3 Inventories configuration and analysis description 

To evaluate the fire emissions inventories utilized during the SAMBBA experiment, we used the 3BEM preprocessor to 

generate the gridded data in Geographical coordinates with a spatial resolution of 0.1°. The 3BEM preprocessor has as output 

daily emission load of several species, but in this work, we selected to analyze only carbon monoxide (CO) emission fields, 20 

from 1st of September to 31st of October 2012. Moreover, the four inventories are compared over eight sub-domains windows 

with a mark of 10°x10° that typically comprehends different Brazilian states (Figure 2a) and different fire regimes and biomes 

(Figure 2b).  

Two chemistry transport models were selected to applied in real time induring the SAMBBA experiment, the Monitoring 

Atmospheric Composition and Climate (MACC) from European Centre for Medium-Range Weather Forecasts (ECMWF) 25 

with GFAS fire emission inventory (described in section 2.1.2) and the Coupled Aerosol and Tracer Transport model to the 

Brazilian developments on the Regional Atmospheric Modelling System (CCATT-BRAMS) with 3BEM fire emission 

inventory (described in section 2.1.1). These models were selected due to distinct methodology to estimate the biomass burning 

emissions (the first a    

top-down approach, and the second the bottom-up approach). The MACC/ECMWF were applied with a global domain, 1.0° 30 

of horizontal resolution, 20 levels of vertical resolution, assimilation operation mode, forecast frequency of 06 hours, and 

boundary conditions from ECMWF model. The CCATT-BRAMS were applied with South America domain, 0.22° of 
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horizontal resolution, 24 levels of vertical resolution, forecast operation mode, forecast frequency of 03 hours, and boundary 

conditions from Center for Weather Forecasting and Climate Research (CPTEC) model.  

3 Results and discussion 

3.1 Comparing emission inventories spatially 

During the SAMBBA experiment, four inventories were used In this section, we compare the fire emissions inventories used 5 

in near real time within atmospheric-chemistry transport models to support the SAMBBA flight planning (FINN, GFAS, 

3BEM, 3BEM_FRP). Each inventory’s spatial distribution of total CO emission (104 kg.m-2) over South America, from 1st of 

September to 31st of October 2012, is depicted in Figure 3, according to the respective methodologies used to estimate the 

emission loading.  

The intercomparison shown in Figure 3 demonstrates that inventories that utilize the same (i.e. top-down or bottom-up) 10 

methodology show similar spatial patterns in CO emissions (kg.m-2), not only in Amazon basin but across all of South America, 

but differ in their absolute values. The CO emissions estimated by the 3BEM and FINN emission inventories  models (Figure 

3a and 3b, respectively) present higher values than 3BEM_FRP (Figure 3c) and GFAS (Figure 3d) in the regions where the 

main processes of forest logging and subsequent agricultural expansion (GRIDS 3, 4 and 5) occur. The highest emissions in 

3BEM and FINN are located mainly in Rondonia State (GRID3) and in the border of Mato Grosso State (GRID 4), where 15 

most of the SAMBBA flights took place.  

Cardozo et al. (2014) analyzed the fires pattern in Rondonia between 2000 and 2011 and identified that most fires result in 

relatively small "burn scars" on the landscape, with areas 20 to 80 hectares (64% of cases). In addition, only 6.5% of all burned 

areas in Rondonia are associated with recently deforested areas. This could indicate that 3BEM and FINN are overestimating 

the CO emission load due to an erroneous location of fires in areas of forest instead of livestock and permanent crops, which 20 

have lower above ground biomass. Furthermore, 3BEM_FRP and GFAS inventories do not display a similar pattern to 3BEM 

and FINN because their emissions are directly related to FRP, with a weaker dependency on land cover type. Thus, areas with 

low above ground biomass will provide low values of FRE due the observed characteristics of the fire activity, and thus low 

values of CO.        

The spatial distribution of the emission inventories suggests that fires in the region are strongly related to deforestation activity 25 

and therefore to the general economy, with a strong trend in recent years of fires in secondary forest (Cardozo et al., 2014). In 

Figure 3c, higher emission loads are located in the east of Brazil (GRID 5), mainly in the Cerrado biome, a vegetal formation 

composed of savanna and other typically low density vegetation formations, which include trees of 15 meters height (as shown 

in Figure 1a). This region is now economically used, constituting a new agricultural frontier of Brazil (with more than 100 

million hectares suitable for modern mechanized crop agriculture, mainly soybean). In this area, the four fire inventories differ 30 

considerably. The 'top down' inventories that use the FRP approach show much higher emission loads compared to 3BEM and 

FINN.  
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The difference in South America daily areal-averaged emission of CO (kg.m-2) between 1st of September and 31st of October 

2012 was quantified via linear correlation coefficient analysis (all significant at p < 0.05) (Figure 4). The highest linear 

correlations coefficients were found between 3BEM and FINN with 0.86, between 3BEM_FRP and GFAS with 0.85, and 

between GFAS and FINN with 0.84. These high linear correlations indicate that inventories produced using similar emissions 

methods tend to agree with each other. The third correlation reflects that both inventories use the same active fire observations 5 

(MODIS), albeit with different data processing. We highlight that all were significant at p>0.05 level, Student t-test. To analyze 

the measures of accuracy of regression between fire inventories we used the bootstrap technique (Efron, 1982). In this 

technique, a population of 1.0x104 reconstructs the regression and provides the parameters to create the confidence interval 

and error analysis of model estimation. 

The bootstrap regression among the daily areal-averaged CO values to 3BEM and FINN emission inventoriesmodels present 10 

a linear correlation between 0.75-0.92 with a tendency of FINN to overestimate, relative to 3BEM, the emission load of CO 

in 20-30% (Figure 4). This apparent FINN overestimation is seen in the majority of grids, with the exception of grids 2, 5 and 

7 (Figure 5a). In areas where FINN emissions are lower than 3BEM emissions, vegetation is mainly composed of Brazilian 

Cerrado (grids 2 and 5), and by Pantanal wetlands biome and croplands/livestock (grid 7) with predominant vegetation are 

Savannah and grassland, however, the presence of Deciduous and Semi deciduous Forest are also found. Since, 3BEM and 15 

FINN presents similar methodology to estimate the emission load of species released by wildfires, the parameters used in 

Equation 1, such as above ground biomass, are likely to be associated with the relatively high estimation in CO values. 

The intercomparison analysis of the daily areal-averaged CO values to 3BEM and GFAS inventories shows a linear correlation 

coefficient between 0.75-0.85 with higher values over the Arc of Deforestation, in the Amazon Rainforest (Figure 1a). 

However, GFAS has a tendency to present higher CO emissions (by 10-20%) in grids 2 5 and 58, and to underestimate by 20-20 

30% in grids 3 and 4 (Figure 5b) when compared to 3BEM. In these areas, the vegetation is dominated by the Amazon biome, 

along with a small area of Cerrado (located in the south of the grids), with presence of Evergreen Broadleaf forest, Tropical 

Degraded Forest, and Cropland/livestock areas. Moreover, the daily areal-averaged CO values to FRP-based emissions 

estimation method utilized by GFAS presents a considerable difference in the region of soybean expansion in grid 5. 

Similar to GFAS, the relationship among the daily areal-averaged CO values to 3BEM and 3BEM_FRP shows a linear 25 

correlation coefficient between 0.65-0.75. However, 3BEM_FRP has a tendency to overestimate the CO values by 60-85% in 

grid 5, and to underestimate by 10-15% in grids 3 and 4 (Figure 5c). The 3BEM_FRP model presented an elevated emission 

of CO in grid 5, possibly due the GOES viewing zenith angle (high viewing angles results in the erroneous values of infrared 

brightness and present a large pixel area, Roberts et al., 2005; Vermote et al., 2009; Peterson et al., 2013). In addition, in grid 

5, cloud absence may influence in the FRP cycle occasioning an overestimation due the large number of acquisitions in high 30 

view angles. The relationship between the daily areal-averaged CO values to 3BEM_FRP and GFAS shows a linear correlation 

between 0.82-0.90. Accordingly, the 3BEM_FRP model has a tendency to present higher emission load of CO than GFAS, 

mainly in some areas of deforestation arc and in grid 5 that could reach 100% (Figure 5d). The high values are associated with 

assimilation of GOES FRP in 3BEM_FRP, while GFAS utilizes only MODIS FRP data.      
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The fieldwork measurements acquired during the SAMBBA campaign indicate that the near-real time air smoke forecasts 

based on traditional inventories, such as 3BEM used by Coupled Aerosol and Tracer Transport model to the Brazilian 

developments on the Regional Atmospheric Modelling System (CCATT-BRAMS), typically underestimated smoke loading 

in the central to east region of Amazon Forest (near Mato Grosso and Tocantins States) as described in Rosario et al. (2013). 

In addition, the emission inventoriesmodels tended to overestimate the smoke loading in the Northwest part of Rondonia 5 

(indicated in Figure 2a). However, during the SAMBBA campaign were identified lower values of CO emissions, showing an 

overestimation of emission load in this region. In general, all fire emission inventories inventories models present a good 

agreement, with most regressions significant at p>0.05 level, Student t-test (Table 2, non-significant regression marked in red). 

The only regression that presented low values of linear correlation coefficients are located in Grid 5 with values lower than 

0.30. Moreover, regression between 3BEMxFINN present the highest correlation in most of the grids. Also, the absolute bias 10 

analysis indicate a high variability in daily areal-averaged emission load of CO between the four fire inventories.   

 

3.2 Assessment of Fire inventories with AOT  

Figure 6 shows the daily emission estimates from each of the emission inventoriesmodels used in SAMBBA campaign 

integrated over the eight grids and the Lat-Lonareal-averaged  average values of AOT550nm for 01st September 2012 to 31st 15 

October 2012. During the SAMBBA campaign, the grids located in arc of deforestation and in Mato Grosso state presented 

the highest values of averaged AOT550nm. Commonly, the 'top down' inventories that use FRP to estimate the emission of CO 

present a similar pattern, as do the 'bottom up' emission inventoriesmodels that utilizes the relationship between the burned 

area, fuel load and the combustion completeness. This is evident in Figure 6a, which 3BEM_FRP and GFAS has lower values 

during all periods, with daily emission loads of CO between 20-500 kg.m-2 and average value of 93 kg.m-2. In addition, 3BEM 20 

and FINN emission inventoriesmodels presented a high variability during the analyzed period, with the daily areal-averaged 

estimation of CO emission load that could reach values greater than 3000 kg.m-2.  The linear correlation coefficient of 

3BEM_FRP x GFAS and 3BEM x FINN are 0.85 and 0.76, respectively, with a tendency of GFAS and 3BEM to present 

higher estimation of CO emission load. In the grid1, the total emission load of CO in 3BEM and FINN to 01st September 2012 

to 31st October 2012 are, respectively, 61.660 and 52.971 kg.m-2 (Table 3), an estimation 4-10 times more than GFAS and 25 

3BEM_FRP. 

Figure 6b shows the areal-averaged time series of CO and AOT550nm in grid2, with the four emission inventoriesmodels 

presented showing similar patterns with high emission values on 09th September 2012 and between 20th-30th October 2012. 

The linear correlation coefficient of 3BEM_FRP x GFAS and 3BEM x FINN are 0.78 and 0.75 with a tendency of 3BEM 

(55.234 kg.m-2) and 3BEM_FRP (29.059 kg.m-2) to present higher estimation of CO emission load in this region.  Also, in the 30 

general pattern of temporal evolution we could observe a good agreement between CO emission load estimated by the four 

emission inventoriesmodels and MODIS AOT550nm. However, the grid3 presented distinct CO distributions to the four emission 

inventoriesmodels (Figure 6c). In September, FINN and 3BEM presented highest values when compared with 3BEM_FRP 

and GFAS during all period. However, 3BEM_FRP shows higher values than GFAS in September and otherwise in October. 
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The linear correlation coefficient of 3BEM_FRPxGFAS and 3BEMxFINN are 0.87 and 0.94, respectively, with a tendency of 

FINN and 3BEM_FRP to present higher estimation of CO emission load. The relationship between GFASxFINN presents a 

linear correlation coefficient of 0.91. However, the total emission load of CO estimated by FINN (163.552 kg.m-2) is 3 times 

more than GFAS (54.891 kg.m-2). 

In Grid4, all inventories showed a good agreement with linear correlations coefficients greater than 0.90. However, during the 5 

period from 3rd of September to 10th of September, 3BEM_FRP presented six episodes with higher emission loads, undetected 

in the other inventories (Figure 6d). The outlier values in 3BEM_FRP are likely to be related to GOES FRP acquisitions, which 

suggests inconsistencies in GOES data acquisition due to viewing angle and errors in data processing. The grid5 presented the 

lowest linear correlation coefficient between 3BEM and FINN emission inventoriesmodels during the SAMBBA campaign 

with 0.30. In this grid, FINN presents a low estimation of CO emission load when compared with the other emission 10 

inventoriesmodels (as demonstrate in Table 3). In this region, FRP methods showed more emission than the bottom up 

methods. The 3BEM_FRP model overestimated in more than 100% the emission values compared to GFAS (Figure 6e), 

however, the linear correlation between these emission inventoriesmodels is 0.84. In the other grids, the fire-related emission 

of CO provided by the four emission inventoriesmodels show a considerable consistency, with few differences in absolute 

values, indicating a good agreement across these other regions of South America (Figures 6f-6h). 15 

 

3.3 Evaluating the emissions against observations   

 

During the SAMBBA campaign, operational atmospheric chemistry transport models were applied in real time: I) the 

Monitoring Atmospheric Composition and Climate (MACC/) from European Centre for Medium-Range Weather Forecasts 20 

(ECMWF) with GFAS; and II) CCATT-BRAMS with 3BEM. Figure 7 shows the simulated AOT550nm from MACC/ECMWF 

(red line), CCATT-BRAMS (blue line), and estimated by Terra (green line) and Aqua (black line) to the eight grids. Although 

3BEM present the highest emission load in Grid1 and Grid2, the CCATT-BRAMS simulation underestimate the MODIS 

AOT550nm. In these grids, the MACC/ECMWF model presents a better consistency with the satellite measurements. One 

potential reason for the underestimation of CCATT-BRAMS is related to background aerosol unrelated to the fires directly 25 

being observed and that is not included in this model, causing low values of simulated AOT550nm for these grids. Also, 

MACC/ECMWF assimilates MODIS aerosol optical depth observations, and even with low CO emission values in Grids 1 

and 2 the aerosol simulation present a good agreement with observation data. Over the Grid5, the CCATT-BRAMS AOT 

underestimation is likely to be associated with biomass burning emission issues, since major contribution to AOT in that region 

come from smoke particles. 3BEM, which was used to feed CCATT-BRAMS, and FINN emission inventories, both bottom 30 

up based, presented much lower emission in Grid5 than FRP based inventories.   

The assessment of MACC/ECMWF and CCATT-BRAMS models against MODIS AOT550mm reveals a good agreement in 

terms of the general pattern of the temporal evolution. As shown in the AOT550mm time series, both methods appear to be able 

to estimate the influence of aerosols released by fires rather well. However, when the intensity of the biomass burning is too 
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high, the values simulated by MACC/ECMWF and CCATT-BRAMS for the grids 4-8 appear underestimated, possibly due to 

the influence of smoke on the FRP measurements, lack of fire observations, clouds, above ground biomass data and fire size. 

Moreover, it is possibly to identify an overestimation in Grid3, mainly due to out of date land use and land cover map that 

insert fires over forest areas even if the area was burned/deforested in past years, and a very noticeable underestimation in 

Grid5, as demonstrated in the inventories. 5 

4 Conclusions 

Full characterization of the emissions of trace gases and aerosols are often essential for assessing the atmospheric impacts of 

fire and for constructing fire inventories. These inventories generally rely on data from environmental satellites, and provide 

useful information for weather, climate and air quality models. In this study, we analyzed data from the four biomass burning 

emissions inventories used during the SAMBBA airborne atmospheric sampling and remote sensing campaign that took place 10 

in Rondonia (Brazil) between 1 September 2012 and 31 October 2012. Each inventory utilizes distinct methodology, with 

3BEM and FINN deriving the emission of trace gases and aerosols through a 'bottom up' combination of burned area and fuel 

load metrics based on vegetation maps and field-location specific coefficients, whilst 3BEM_FRP and GFAS estimate biomass 

burned more directly from 'top down' FRP measurements made by the EO satellite instruments. 

The evaluation of the emission inventoriesemissions models focused on eight pre-defined grids, (Figure 2) and demonstrates 15 

that inventories that utilize the same methodology, such as 3BEM and FINN on the one hand ('bottom up') and GFAS and 

3BEM_FRP on the other ('top down'), show similar patterns in emission spatial distribution, not only in the deforestation arc 

but also throughout South America. However, they can differ in their absolute values. As such, each inventory particular 

characteristics, with 3BEM and FINN showed higher emissions of CO values in the Amazon forest logging area, where most 

of the SAMBBA campaign flights occurred. Furthermore, these emission inventoriesmodels typically underestimated the 20 

smoke loading in the southeast region of Amazon Forest and in the northwest of Rondonia, where 3BEM_FRP and GFAS 

present higher values of emission load of COdeliver a better accuracy. The best overall linear correlations coefficients were 

found between 3BEM and FINN, with approximately 0.86 and 3BEM_FRP and GFAS, with approximately 0.85, which 

indicate that similar emissions methods tend to agree with each other. Furthermore, the evaluation between the 3BEM and 

FINN fire inventories present a linear correlation coefficient between 0.75-0.92, with total emission of CO estimated by FINN 25 

greater than 3BEM in grids 3,4,6 and 8. Moreover, 3BEM_FRP and GFAS shows a linear correlation coefficient between 

0.65-0.95, with total emission of CO estimated by GFAS greater than 3BEM_FRP in grids 1, 6 and 8. 

During the SAMBBA campaign, the assessment of simulated AOT550nm from MACC/ECMWF and CCATT-BRAMS 

operational atmospheric chemistry transport models with MODIS AOT550nm Terra and Aqua measurements show a good 

agreement related with general pattern of the time-series. Also, MACC/ECMWF and CCATT-BRAMS models are capable to 30 

simulate the aerosols released by fires. However, when the intensity of the biomass burning is too high, the aerosol values 

simulated by the two models underestimates the MODIS measurements. Furthermore, the evaluation between the 3BEM and 



19 

 

FINN fire inventories present a correlation coefficient between 0.75-0.92, with total emission of CO estimated by FINN greater 

than 3BEM in grids 3,4,6 and8. Moreover, 3BEM_FRP and GFAS shows a correlation coefficient of between 0.65-0.95, with 

total emission of CO estimated by GFAS greater than 3BEM_FRP in grids 1, 6 and 8. 
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Table 1. LULC classes based on Global Land Cover Characterization (GLCC). 

1 Crop / Mixed farming 11 Semi-desert 

2 Short grassland 12 Ice cap/glacier 

3 Evergreen needleleaf tree 13 Bog or marsh 

4 Deciduous needleleaf tree 14 Inland water 

5 Deciduous broadleaf tree 15 Ocean 

6 Evergreen broadleaf tree 16 Evergreen shrub 

7 Tall grass 17 Deciduous shrub 

8 Desert 18 Mixed Woodland 

9 Tundra 19 Forest/Field mosaic 

10 Irrigated Crop 20 Water and Land mixture 

 

Table 2. Linear Correlation coefficients (r) between 3BEM, 3BEM_FRP, FINN and GFAS daily areal-averaged emission 20 

inventories to the eight grids and average absolute bias of CO (in kg.m-2). In the table, the first value indicates the r and the 

second represents the absolute bias ( r / bias).  
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 3BEM_FRP FINN GFAS 

3BEM_G1 0.84 / 933 0.85 / 145 0.82 / 736 

3BEM_FRP_G1  0.67 / -788 0.76 / -197 

FINN_G1   0.82 / 591 

3BEM_G2 0.70 / 436 0.75 / 458 0.79 / 210 

3BEM_FRP_G2  0.61 / 22 0.78 / -226 

FINN_G2   0.82 / -249 

3BEM_G3 0.78 / 1642 0.94 / 1674 0.90 / -136 

3BEM_FRP_G3  0.77 / 32 0.87 / -1778 

FINN_G3   0.91 / -1811 

3BEM_G4 0.81 / -245 0.93 / 996 0.90 / -263 

3BEM_FRP_G4  0.71 / 1241 0.90 / -18 

FINN_G4   0.88 / -1260 

3BEM_G5 0.16 / -6345 0.30 / -793 0.36 / 605 

3BEM_FRP_G5    0.47 / 5552 0.84 / 6950 

FINN_G5   0.80 / 1399 

3BEM_G6 0.46 / 12 0.89 / 68  0.88 / -86 

3BEM_FRP_G6  0.32 / 55 0.65 / -99 

FINN_G6   0.81 / -154 

3BEM_G7 0.68 / -14 0.89 / 151 0.85 / 413 

3BEM_FRP_G7  0.60 / 165 0.79 / 427 

FINN_G7   0.85 / 261 

3BEM_G8 0.63 / -138 0.84 / -251 0.79 / -31 

3BEM_FRP_G8  0.65 / -113 0.65 / 106 

FINN_G8   0.91 / 219 

 

Table 3. Total mean emissions (kg.m-2) of CO in the eight grids shown in Figure 2. 

 
Total Emission of  CO (kg.m-2) 

 3BEM FINN GFAS 3BEM_FRP 

GRID1 61.660 52.971 17.485 5.636 
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GRID2 55.234 42.631 27.706 29.059 

GRID3 155.346 163.552 54.891 56.815 

GRID4 151.720 167.518 91.905 166.423 

GRID5 82.271 45.945 129.866 274.896 

GRID6 35.199 40.412 31.118 29.811 

GRID7 53.072 28.266 43.981 48.541 

GRID8 11.342 13.252 25.674 19.633 

TOTAL 605.844 554.547 422.626 630.814 

 

 

Figure 1. (a) MCD12 Land Use and Land Cover (LULC) for South America with dotted red line representing the Amazonian 

Arc of Deforestation and soybean expansion in Brazilian Cerrado (marked as X); (b) Time-averaged Aqua MODIS aerosol 

optical thickness at 550 nm during 01 Sep 2012 – 31 Oct 2012 over South America.  5 
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Figure 2. South America maps highlighting (a) the Brazilian states of Acre, Amazonas, Mato Grosso, Para, Rondonia and 

Tocantins, where SAMBBA field campaign took place; and (b) the eight sub-domains windows for the biomass burning 

inventories comparison. 5 
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Figure 3. Spatial distribution of total CO emissions (104 kg.m-2) over South America from 1st September to 31st of October 

2012, estimated by (a) 3BEM, (b) FINN, (c) 3BEM_FRP , and (d) GFAS. 
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Figure 4. Linear regression between daily areal-averaged  daily emission load of CO to South America from 3BEM, 

3BEM_FRP, FINN and GFAS examined between 1st September to 31st of October 2012. In the graph, x and y-axis represent 

the CO (kg.m-2) of each fire inventory (i.e. the first line of 3BEM regressions, 3BEM_FRP, GFAS and FINN are x-axis).   
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Figure 5. Difference between fire inventories. A) 3BEM-FINN; B) 3BEM-GFAS; C) 3BEM-3BEM_FRP; d) 3BEM_FRP-

GFAS; e) 3BEM_FRP-FINN; f) FINN-GFAS.  
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Figure 6. Lat-Lon Average time series of Aqua MODIS AOT550nm and 3BEM, 3BEM_FRP , GFAS, and FINN emission load 

of CO time series.  
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Figure 7. Lat-Lon Average time series of Terra/MODIS AOT550nm (in green), Aqua/MODIS AOT550nm (in black), CCATT-

BRAMS simulated AOT550nm (in blue) and MACC/ECMWF (in red) AOT550nm analysis.  Grids are those show in Figure 2. 5 

 

 


