
Dear Veli-Matti Kerminen, 

We would like to thank both yourself and the referees for the time you have spent considering our 
study and also for your patience with regard to the generous extension we received. Owing to the 
constructive feedback provided by the referees, we believe the revisions and additions have added a 
lot of value to the manuscript. Please find the author responses, list of manuscript changes and the 
annotated, revised manuscript contained below in this document.   

 

Response to referees: 

Below are the authors’ point-by-point responses to each of the referees’ comments. General 
comments are presented before major comments which precede technical corrections/minor 
comments. Our responses follow (bold italic text) the referee comments (standard text). 

 

Anonymous referee 1: 

General comments: 

The authors present a new approach to assess the sensitivities of various parameters to CCN numbers. 
As opposed to numerous previous studies that used a ‘one-at-a-time’ approach, i.e. varying only one 
parameter at once, their use of response surfaces can reveal sensitivities over much wider parameter 
spaces. The focus on surface partitioning and surface tension and it is concluded that careful 
parameterization of these parameters is needed in order to successfully predict CCN under some 
conditions, in agreement with previous studies. The current study represents a model framework and 
the input data are artificially created so that perfect agreement can be achieved. So, therefore it is 
quite simplistic and does not lead to entirely new results. The sensitivity study for the selected 
parameters is more comprehensive and the approach might be promising to be applied to other 
problems in the future. However, not all parameters that have been identified as being important for 
determining the CCN numbers in previous studies have been discussed. Therefore, I think the paper’s 
content and conclusions are somewhat weak and preliminary since only the suitability of the model 
framework, but not many new results are discussed.  

The authors would like to take this opportunity to thank the reviewer for their constructive 
comments that we believe have added to the quality of the manuscript as a whole. The purpose of 
this study was to present a development of a new framework for probing sensitivity of aerosol 
activation to processes which have been studied in isolation over a number of years. The referee is 
absolutely right that there are a number of additional factors affecting CCN activation potential, 
but we focus on surfactant representations since not only is it a useful proof of concept 
demonstration of this framework, but there is still no clear message as to the wider relevance of 
surfactant behaviour. Using bulk to surface partitioning models, such as those presented here, 
previous studies have shown the impact of extreme behaviour, which one might consider as 
partitioning on or off, on the global scale, but suggested further studies would be better constrained 
by a wider parameter space such as provided here. In addition, as the referee points out, there are 
still studies promoting the potential for very low effective surface tension values, even if the 
concentration of surfactant material at activation might never be realised in the atmosphere.  We 
feel demonstrating the use of a new multi-parameter sensitivity approach in helping to resolve the 
wider relevance of such issues is important, but requires incremental demonstrations of its use. We 
fully agree future studies need to tackle the issue of inter-instrument variability and process 
descriptions, but would also warrant much more data on systems for which we know the pure 



component and mixture properties more accurately than ambient systems. We hope our response to 
the detailed points below make this clear, as do recommendations for future work. 

Our responses are presented in bold text following the reviewer’s comments. Any referencing of 
sections, pages or line numbers given in the response pertain to those of the revised manuscript. 

 

Major comments: 

1. Mixing state In several previous studies, it has been emphasized that the mixing state of aerosol 
particles might be one of the most important parameters that determines CCN number in fresh air 
masses. While it has been addressed briefly in the manuscript, it should be discussed more 
thoroughly. Could a measure of mixing state be included in the model framework?  

This a good point, CCN activity may indeed be influenced by the mixing state close to aerosol 
sources, and as such additional text and references have been added to section 3.1. The framework 
developed here could in principle be used for a treatment of externally mixed aerosols, however, the 
choice of mechanistic aerosol-cloud model would be important. In theory, frameworks such as 
PartMC-MOSAIC (Tian et al 2014) could be coupled with our MCMC approach. Furthermore, the 
methodology developed here could be coupled with a with multi-modal cloud parcel model in the 
future. One of the virtues of the framework built in the present study is that many different aerosol 
processes and characteristics can be included in the future for more specific case studies. 

 

2. Previous study on CCN sensitivities In a previous study, Lee et al. (2013) have performed a 
sensitivity study on a global scale of many parameters using a MonteCarlo-based approach. This 
study should be discussed in the light of the results in the current study.  

The Lee et al. (2013) is indeed an interesting study. However, due to numerous differences between 
our study and that performed by Lee et al. we feel that the study is not directly of relevance. 

Firstly, the studies have different goals. The focus of this study is to construct a framework, based 
on inverse modelling methods, for which model input parameters non-measurable at the scale of 
interest (e.g surface tension) can be calibrated against measurements of CCN spectra, and 
ultimately that parametric uncertainty can be evaluated and constrained using MCMC analysis 
(part2). In contrast, the study performed by Lee et al. (2013) is concerned only with sensitivity 
evaluation. In this part 1 study, by testing the validity of the inverse approach through response 
surfaces, we also get a visualisation of the model's parametric sensitivity in terms of Objective 
Function (OF) response surfaces.   

It is well understood that application of inverse modelling methodologies, both for model 
calibration and parametric uncertainty analysis, can result in (near-)identical model predictions for 
non-unique parameter values if the system studied contains parameters that are non-identifiable 
for the definition of calibration data used. In such cases it can be challenging for the applied 
algorithm to converge on optimal parameter values in an attempt to constrain uncertainties. 
Typically, such difficulties are approached by increasing the information content in the calibration 
data (synthetic or real-world measurements) (Vrugt et al 2001). Therefore, we choose CCN spectra 
as calibration data in the present study to maximise the available information content with respect 
to currently known observations - as compared with the single N50 value used in Lee et al. (2013). 
Appropriate definition of calibration data and the importance of information content is now 
discussed at some length in section 5.3 of the revised manuscript as an appropriate definition of 
calibration data is essential for successful application of automatic search algorithms for 
parameter calibration and parametric uncertainty analysis. In section 5.3 we have explored the 



implications of the information content contained within the calibration data for the identifiability 
of parameters investigated depending on the resolution of the calibration data, both with and 
without corruption of the synthetic measurements by a randomly generated natural variability. We 
conclude in the case of uncorrupted calibration data that a typical 5-band CCNC spectrum would 
contain sufficient information content for the presented methodology, but that it is unlikely that the 
use of a single value would facilitate parameter optimisation. When also accounting for natural 
variability, only the high-resolution calibration data, as used in the present study, would suffice for 
correct minimisation of the OF.  

The dissimilarity in the definition of the calibration data between the present study and Lee et al 
(2013) is a natural consequence of another difference between the two studies – the scale. Our 
study is focused on developing a process model framework suitable for further uncertainty analysis 
in closure studies using algorithmic approaches, and we have referenced to similar studies 
accordingly Partridge et al. (2011, 2012). Such a study provides us with the opportunity to 
scrutinise the necessity for complexity, at a level of Köhler theory, offline whilst maintaining 
computational efficiency. Consideration of the impact of bulk atmospheric parameters (e.g. 
emission rates), as seen in Lee et al. (2013), does not fall under the remit of the present study and 
instead we choose to highlight the importance of Köhler model complexity in GCMs for the most 
accurate predictions of CCN.  

To summarise, any sensitivity methodology relies heavily on the choice of calibration data. The 
focus of the present study is the construction of a framework for an inverse modelling approach to 
parametric uncertainty analysis and model calibration for entire CCN spectra at a process level 
rather than a single value on a global scale. Therefore, it is of our opinion that in some sense the 
present study is both more complex and robust in relation to potential model-observation 
evaluation and depth of process treatment. By performing this kind of analysis over a range of 
supersaturations the global climate modelling community can gain a lot from the end results. 

Therefore, owing to the dissimilarities in methodology and purpose of the two studies, and that 
Monte-Carlo methods have not been employed here in part 1, direct comparison of results with 
respect to sensitivity is not possible and thus we have chosen to cite appropriately and not discuss 
Lee et al. (2013) at great length within the manuscript. 

 

3. Uncertainty in cloud formation The authors state correctly that for data sets other than their 
calibration data set as used here, a perfect agreement cannot be expected. Some discussion on how 
accurately CCN numbers should be predicted should be added. For example, all measurements are 
associated with some measurement error. In addition, other factors influence CCN number (e.g. Lee et 
al. (2013). Given all uncertainties in the current abilities to predict cloud formation (meteorology, 
updrafts, emissions, etc), what is the recommendation for a tolerable uncertainty in CCN predictions?  

The reviewer makes an excellent point regarding the treatment of errors and acceptable 
uncertainty. Following a similar request from reviewer 2, additional material has been added to the 
manuscript in section 5.3. Therein we have discussed at length the importance of information 
content for various definitions of the calibration that may arise due to different instrumentation. 
We also account for the natural variability in these considerations. It was concluded that, when 
accounting for natural variability in the analysis, the typical supersaturation resolution of CCN 
counters used in-situ would be challenging to correctly minimise the objective function as done 
when using the high-resolution spectra as seen in the present study. As natural variability in CCN 
measurements is typically on the order of tens of percent this effect will dominate over any 
instrumentation errors introduced, counting errors as deduced from Poisson statistics, for example. 
Thus we choose to focus on natural variability in this study to illustrate this point. 



 

4. Solubility In previous studies, the solubility of organics has been identified as an influential 
parameter (Riipinen et al., 2015). However, this is not even mentioned in the current paper since all 
organics are assumed to be completely dissolved. How would consideration of a range of solubilities 
change the conclusions? 

We agree that solubility may play a role, as will mixing state, gas to particle partitioning, condensed 
phase reactions and mass transfer limitations according to an amorphous condensed phase, 
depending on the RH history of the particle distribution in question. In this framework, the 
solubility would change the single particle hygroscopicity that would need to be constrained by an 
equivalent parameter space to the one presented here.  This would need to be coupled to an 
appropriate gas phase mechanism since the solubility spectrum, such as that presented by Riipinen 
et al (2015), is driven by the specific abundance of compounds within different volatility ranges. We 
would argue then that any treatment of solubility should also be coupled to a model that can treat 
gas to particle partitioning since the most thermodynamically stable state of a framework that does 
not allow partitioning might never be met, affecting the derived parameter sensitivity. Such a model 
framework is beyond the scope of this study, but for sure warrants future investigation. Again, in 
theory this framework could be wrapped around any mechanistic or semi-empirical model, the 
results of this stepwise study demonstrating its use. 

 

5. Surface-active fraction The discussion of previous studies on the effect of surface tension to CCN 
activation is somewhat confusing. For example, studies by Noziere et al are discussed that reveal 
surface tension of ~30 nM on aerosols. This number, however, is not relevant for CCN activation 
unless sufficient material is available to cover the complete particle/’droplet near activation. I suggest 
discussing the cited references more carefully. What fraction of surface-active material is needed to 
cause the effects as seen in the current study? Are these fractions realistic?  

The reviewer has raised a very good point here. This issue is relevant for Köhler frameworks 1 
(traditional Köhler theory) and 2 (redistribution of surfactant concentration and a concentration-
independent fixed surface tension).  

One of the key results of this paper is that the complete partitioning framework (4) produces CCN 
spectra and response surfaces similar to traditional Köhler theory as a consequence that surface 
tension is often very close to that of water at the point of activation and largely insensitive to the 
partitioning parameters used in the Szyszkowski equation. While this result is perhaps well known 
in the communities of the references in question, it is arguably less well known in the cloud physics 
community. Text relating to the references has been reformulated and revised, and the result has 
been discussed more carefully. 

 

6. Figures Several figures appear blurry and hard to read due to very small font, e.g., Fig. 1 and 3: the 
indices in the legend are hard to distinguish Fig. 4: Avoid putting the legend box across the lines in 
the figure 

We apologise for this – these figures have now been remedied. 

 

Technical corrections/minor comments: 

All minor comments have been addressed, as advised, in the revised manuscript. Thank you for 
taking the time to bring these to our attention. 
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Anonymous referee 2: 

General comments: 

This study presents a methodology to investigate the sensitivity of CCN spectra to different 
parameters using different approaches. The results shown are not entirely new and future work is 
necessary in order to relate them to “real world” characterized by simultaneous measurements of 
aerosol chemical composition and size distribution, supersaturation, CCN spectra, etc. 

The authors would like to take this opportunity to thank the reviewer for their constructive 
comments; we believe that they have added to the quality of the manuscript as a whole. The 
purpose of this study was to present the development of a new framework for probing sensitivity of 
aerosol activation to processes which have been studied in isolation over a number of years. By 
embracing an inverse modelling approach to aerosol-CCN closure, we not only build a framework 
for sensitivity analysis, but also a method of diagnosing both structural and parametric 
uncertainties in model CCN predictions by simultaneously matching input parameters and model 
output. In section 5.3 of the revised manuscript, additional material is presented to highlight the 
importance of calibration data resolution and natural variability in CCN measurements as a 
natural first step towards future work with observational data.Our response is presented in bold 
and italic text following the reviewer’s comments. Any referencing of sections, pages or line 
numbers given in the response pertain to those of the revised manuscript. 

 

Major comments: 

1. The theoretical investigations shown here were performed at a fixed temperature, using literature 
data for three aerosol types: marine, polluted continental and rural. The organic aerosol and surface 
tension were assumed to be the same for all aerosol types. The possible effects of this data are not 
discussed in the manuscript.  

Preliminary testing of temperature was performed and negligible sensitivity was found. We 
therefore chose to exclude it from our analysis. The reviewer raises a good point with regard to the 



organic aerosol data. Unfortunately, as the organic aerosol fraction exhibits such high levels of 
complexity and spatial and temporal variability, in order to be more precise than we have been is 
difficult. By providing generous ranges for our model organic we hope to encompass all 
possibilities that may be realised in the real atmosphere. Indeed, once coupled with the MCMC 
algorithm (part 2) the framework developed in the present study provides a useful tool to constrain 
such parametric uncertainties by exploring all possibilities in the complete parameter space. 

 

2. The manuscript looks like a report, most of the section 4.2 may be moved in a Supplementary 
Material. The results shown in it have to be presented in a more synthetic and comparative manner. It 
is not evident how much the sensitivity to parameters depends on the approach used in a quantitative 
manner. This is also not clear in Table 3 which is not actually discussed. Also, it has to be moved 
from Conclusions to Results.  

We agree that the manuscript could be more concise, therefore the text has been substantially 
reduced and formulated in a more synthetic and concise manner. A supplementary document that 
contains all response surface analysis has now been attached with the manuscript. However, as 
inverse modelling of CCN spectra has not been performed before, we believe that the response 
surface analysis contained in section 5.2 (previously 4.2) is essential to the understanding of how to 
correctly couple the framework to automatic search algorithms, such as MCMC, which will form 
the focus of a part 2 study. Therefore we choose to keep the section in the main text.  

 

3. Such a study may be very interesting if it succeeds in showing the limits/differences due to the 
different approaches used in modelling aerosol activation and quantify the acceptable/relevant 
uncertainties of measured parameters of fundamental importance in these approaches. The latter 
information may be important for planning future field campaigns and for development of 
instruments. 

The reviewer raises a very good point here and we have chosen to add additional material to section 
5.3 to address the issue at hand. Therein we have discussed at length the importance of information 
content for various definitions of the calibration that may arise due to different instrumentation. 
We also account for the natural variability in these considerations. It was concluded that, when 
accounting for natural variability in the analysis, it would be challenging to correctly minimise the 
OF based on the information content of a calibration data set measured by a typical CCN counter. 
However, correct minimisation of the OF was still achieved when corrupting the high resolution 
calibration data set with randomly generated natural variability. As such, this result should serve as 
a recommendation for the development of instrumentation for high resolution measurements of 
CCN spectra in-situ.    

 

Technical corrections/minor comments: 

The term “posedness” is not commonly used, replace or explain it better 

The term posedness has been replaced throughout the manuscript with ‘well-posed’, ‘ill-posed’ or 
similar. 

 

Changes to manuscript: 



In order to increase the quality of the manuscript and satisfy the referees considerable revisions and 
additions have been made to the manuscript. In particular, a lot of text has been rephrased and some 
methodology sections retitled and reordered to improve the readability of the study. In most sections 
content has remained unchanged, however, there have been considerable additions to section 5.3 
which we feel have added a new perspective to the paper. As such, results contained therein have also 
been carried over to the abstract and conclusions. Below are a list of changes made to the figures and 
text, and in the marked up manuscript that follows we have highlighted new text and text that has 
been reworded considerably in yellow. References that have been added during the revision period, 
some at the request of the referees and others independently, have been highlighted in green. We hope 
that the changes the manuscript has undergone are clear from this. 

Figures: 

1. All figures have been updated for aesthetic purposes and as a minor bug was found in the 
setup of the size distributions. Fortunately, the bug had no impact on the results or 
conclusions reached by the study. 
 

2. The environment presented in figure 5 (previously 4) has been changed from rural continental 
to marine average, and mode size has also been included (orange), to link with new findings 
in section 5.3 (previously 4.3). 
 

3. Two additional figures have been added to section 5.3 (previously 4.3), figures 12 and 13. 

 

Text: 

1. New results reached in section 5.3 have been outlined in the first paragraph of the abstract. 
Results detailed previously in the abstract have been made more concise.  
 

2. Contents of the introduction have remained unchanged. However, to improve the readability 
of the introduction, the ordering has changed substantially. 
 

3. The goals of the study (section 1.1) have been rephrased 
 

4. A considerable amount of text has been added to section 5.3 (previously 4.3) and pre-existing 
text reformulated. 
 

5. Conclusions pertaining to results in section 5.3 have now have been added to the conclusions. 
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Abstract.

In this study a novel framework for inverse modelling of CCN spectra is developed using Köhler theory. The framework

is established by using model-generated synthetic measurements as calibration data so as to facilitate a parametric sensitivity

analysis. Assessment of the relative importance of aerosol physicochemical parameters while accounting for bulk-surface

partitioning of surface-active organic species is carried out over a range of atmospherically relevant supersaturations. By5

introducing an Objective Function (OF) that provides a scalar diagnostic metric for deviation of modelled CCN concentrations

from synthetic observations, OF response surfaces are presented as a function of input parameters. Crucially, for the chosen

calibration data, aerosol-CCN spectrum closure is confirmed as a well-posed inverse modelling exercise for a subset of the

parameters explored herein. The response surface analysis indicates that the appointment of appropriate calibration data is

particularly important. To achieve inverse aerosol-CCN closure and constrain parametric uncertainties, it is shown that a high10

resolution CCN spectrum definition of the calibration data is required where single values may be expected to fail.

Using Köhler theory to model CCN concentrations requires knowledge of many physicochemical parameters some of which

are difficult to measure in-situ at the scale of interest and introduce a considerable amount of parametric uncertainty to model

predictions. For all partitioning schemes and environments modelled, model output showed significant sensitivity to perturba-

tions in accumulation mode parameters, surface tension, organic-inorganic mass ratio, insoluble fraction and solution ideality.15

Many response surfaces pertaining to these parameters contain well-defined minima and are therefore good candidates for

calibration using a Monte Carlo Markov Chain (MCMC) approach to constraining parametric uncertainties.

A complete treatment of bulk-surface partitioning is shown to model CCN spectra closely to those calculated using classical

Köhler theory with the surface tension of a pure water drop, as found in previous studies. In addition, model sensitivity

to perturbations in the partitioning parameters was found to be negligible. As a result, this study supports previously held20

recommendations that complex surfactant effects might be neglected and continued use of classical Köhler theory in global

climate models (GCMs) is recommended to avoid additional computational burden. The framework developed is suitable for

application to many additional composition-dependent processes that might impact CCN activation potential. However, the

1



focus of this study is to demonstrate the efficacy of the applied sensitivity analysis to identify important parameters in those

processes and will be extended to facilitate a global sensitivity analysis and inverse aerosol-CCN closure.

1 Introduction

Atmospheric aerosols have an influence on the earth’s radiation balance, and thus the climate and its evolution, through many

feedback effects and processes. Aerosols can act to absorb and scatter solar radiation, the direct effect (McCormick and Ludwig,5

1967). In addition, aerosols larger than some critical size, referred to as the activation size, may also act as Cloud Condensation

Nuclei (CCN) - viable sites for condensational growth of cloud droplets at a given supersaturation. Changes in CCN con-

centrations have the potential to have a influence on both cloud micro- and macro-physics, and consequently global radiative

forcing (IPCC, 2013). At fixed liquid water path, an increase in aerosol concentration serves to increase CCN and cloud droplet

number concentrations (CDNC), thus reducing average droplet size and increasing cloud albedo which is known as the first10

(Twomey) indirect effect (Twomey, 1974). Consequently, the reduced average effective droplet radius restricts the formation

of droplets large enough to precipitate and is hypothesised to increase cloud lifetime, known as the second (Albrecht) indirect

effect (Albrecht, 1989).

Cloud-aerosol interactions represent the largest uncertainty in current global radiative forcing estimates (IPCC, 2013). To

constrain such uncertainties it is necessary to improve our understanding of the dependence of CCN concentrations on the15

physicochemical properties of aerosols. With an increased understanding of the cloud nucleating potential of aerosol particles,

more accurate aerosol representations and droplet activation parametrizations can be implemented in global climate models

(GCM) (Abdul-Razzak et al., 1998; Fountoukis and Nenes, 2005; Quinn et al., 2008). The likelihood of a given aerosol to

act as a CCN is a highly non-linear function of many parameters, including the size and chemistry of the aerosol as well as

the prevailing meteorological conditions (McFiggans et al., 2006). Accurate computation of CCN concentrations with Köhler20

theory is a problem of high dimensionality that is not currently possible online in GCMs due to computational limitations.

It is therefore of critical importance that the community ascertains which parameters and processes CCN concentrations are

most sensitive to. In doing so, processes that are unimportant for determining CCN concentrations can be removed to reduce

computational burden and parameters currently fixed can be held at correct values.

The importance of some physical and chemical properties are certainly expected to be greater than others (Nenes et al.,25

2002; Quinn et al., 2008) and at a given supersaturation, a considerable spatial variability in CCN concentrations is observed

in nature (Yum and Hudson, 2002). It may therefore be suspected that the relative importance of various physicochemical

parameters may be environmentally dependent as both the aerosol size distribution and kinetic description of condensational

growth are important in determining CCN concentrations (Lance et al., 2004). For that reason, it is important to consider

multiple environments when carrying out sensitivity analyses such as the one that is conducted in the present study. As such,30

input parameters used in the present study are chosen to reflect aerosol populations of marine average, rural continental and

polluted continental environments.
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The cloud nucleating potential of aerosols is typically modelled using Köhler theory (Köhler, 1936) in which the equilibrium

saturation vapour pressure ratio at the particle surface is related to the wet particle size. An aerosol is deemed to be a CCN if the

peak of the growth curve, the critical supersaturation, is lower than the atmospheric saturation, thus allowing unstable growth

in the presence of sufficient water vapour. The original formulation was derived to describe the growth of a binary mixture

of an inorganic salt with condensing water vapour but has since been expanded upon for numerous applications to account5

for increasing levels of complexity to better represent real-world aerosol systems. These additions include, but are not limited

to: multicomponent aerosols with concentration-dependent organic acid solubility and surface tension (Shulman et al., 1996);

addition of hygroscopic material via condensational growth from trace gases (Laaksonen et al., 1997); theoretical derivation

of an analytical solution for the point of activation in the presence of an insoluble core (Kokkola et al., 2008); inclusion of

the bulk to surface partitioning of surface-active organics (Sorjamaa et al., 2004; Topping, 2010); and the co-condensation of10

Semi-Volatile Oxygenated Organic Aerosol (SV-OOA) material (Topping et al., 2013).

Over the last couple of decades the importance of complex organic aerosols in determining the activation point has been

widely acknowledged (Lohmann et al., 2000; Jacobson et al., 2000; Chung and Seinfeld, 2002; Kanakidou et al., 2005).

The organic fraction consists of thousands of different carbonaceous compounds of varying chemical and physical properties

(Saxena and Hildemann, 1996) and constitutes 20-90% of atmospheric aerosol mass depending on the environment (Saxena15

and Hildemann, 1996; Jacobson et al., 2000; Putaud et al., 2004; Kanakidou et al., 2005; Zhang et al., 2007; Jimenez et al.,

2009). In addition, atmospheric loadings of both primary and secondary organic aerosol have changed since the pre-industrial

period (Tsigaridis et al., 2006), and thus the associated parameter ranges should be explored to investigate the influence this

has had on our climate. Mircea et al. (2002) found that the presence of a water soluble organic carbon (WSOC) fraction

could increase the number of CCN available in polluted regions by as much as 110%. Given this high degree of spatial20

variability, large range in observed organic mass fractions and its chemical complexity, an importance must not only be placed

the sensitivity of modelled CCN concentrations to organic aerosol physicochemical parameters, but also on how that sensitivity

interacts with size distribution parameters. This calls for a more robust sensitivity analysis than typical individual parameter

analyses, particularly when considering complex organics that require additional parameters that increase the dimensionality

of the problem. In particular, sensitivity and modelling studies have reported that the presence of slightly soluble and surface-25

active organic species can alter the point of activation for atmospheric aerosols (Shulman et al., 1996; Li et al., 1998; Sorjamaa

et al., 2004; Henning et al., 2005; Topping, 2010; Topping and McFiggans, 2012). Ekström et al. (2010) concluded that bio-

surfactants have the capacity to possess a greater cloud-nucleating ability than even inorganic salts on account of measured

surface tension values below 30 mNm-1. In addition, humic like substances (HULIS) have been acknowledged as surface-

active (Li et al., 1998; Facchini et al., 1999, 2000); however, more recently it has been accepted that the concentration gradient30

manifested by the bulk to surface partitioning of surfactants must also be accounted for when computing the point of activation

(Sorjamaa et al., 2004; Topping, 2010).

In reality, the transition between aerosol gas and liquid phases is not stepwise, i.e. the density profile is continuous rather than

step-like. To calculate the influence of bulk-surface partitioning organics, Sorjamaa et al. (2004) modified traditional Köhler

theory to recalculate equilibrium curves in terms of bulk and surface quantities for binary and ternary mixtures. From their35
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results, they deduced that surfactants may enhance growth of large droplets in the atmosphere thus decreasing cloud density.

Topping (2010) derived an alternative theoretical basis that is able to model the effects of an unlimited number of surface

active species and concluded that in order to have a comprehensive understanding of this phenomenon, model predictions

must be verified with CCN observations. Prisle et al. (2012) investigated the implications of bulk-surface partitioning for cloud

droplet activation on a global scale using the ECHAM5.5-HAM2 global circulation model and recommended that an approach5

considering surface tension effects alone, and neglecting changes in bulk properties, is erroneous and should not be used. A full

treatment of bulk-surface partitioning was found to predict similar global CDNC results to a treatment neglecting bulk-surface

partitioning altogether. Nevertheless, the topic still requires observational verification on all scales, and a global sensitivity

analysis (GSA) to probe the entirety of the relevant multi-dimensional parameter space, in order to confidently arrive at correct

conclusions. In this study the effects of bulk-surface partitioning on CCN concentrations are analysed using the Köhler model10

developed by Topping (2010).

One method of evaluating predictions made by Köhler theory is to carry out an aerosol-CCN closure study. Closure is

achieved when predicted CCN concentrations are within the uncertainty bounds of observations typically collected from CCN

counters (CCNC) at a given supersaturation. Numerous aerosol-CCN closure studies have been performed to varying degrees

of success (Bigg, 1986; Cantrell et al., 2001; Zhou et al., 2001; Broekhuizen et al., 2006; Bougiatioti et al., 2009; Martin15

et al., 2011). Broekhuizen et al. (2006) found that aerosol-CCN closure is often difficult to achieve and that such difficulty

can be attributed to various sources of error including measurement biases or spatial and temporal variability during airborne

measurements. They also indicate that studies unable to achieve closure were often those in which organic carbon (OC) was

more prevalent in the particle phase and the airmass of interest was close to sources of anthropogenic aerosol. Furthermore,

Facchini et al. (2000) suggested that the inability to achieve closure could be attributed to enhanced CCN activity due to20

accumulation of atmospheric polycarboxylic acids at the particle surface, thus depressing the surface tension as their molecular

structure resembles that of HULIS.

Numerous studies have been conducted to examine the sensitivity of both the activation size and CCN concentrations with re-

spect to relevant physicochemical parameters of the aerosol population (Fitzgerald, 1973; Roberts et al., 2002; Wex et al., 2008;

Ervens et al., 2010). Such studies are instructive but are often restricted to perturbations in a single parameter, a one at a time25

analysis (OAT), also known as a local sensitivity analysis (LSA), thus failing to probe the entirety of the full multi-dimensional

parameter space. Furthermore, aerosol size distributions often possess steep gradients so a slight change in activation diameter

can have a significant impact on CCN concentrations. Sensitivity studies conducted solely on the point of activation are there-

fore insufficient; to confidently arrive at robust conclusions, a sensitivity analysis of CCN concentrations across all relevant

supersaturations - a CCN spectrum - is preferred. One way to improve on existing sensitivity studies is to embrace an inverse30

modelling methodology. The benefit of such a framework is twofold. Firstly, the inverse modelling framework facilitates a

GSA that is able to probe the entire multi-dimensional parameter space. A GSA captures any parameter interactions that can

affect sensitivity estimates (Quinn et al., 2008; Partridge et al., 2011, 2012). Secondly, by introducing an Objective Function

(OF), a sensitivity analysis be carried out across all atmospherically relevant supersaturations simultaneously.
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One of the first applications of inverse modelling to assess the effects of parametric uncertainty in aerosol-cloud interactions

was undertaken by Partridge et al. (2012). They carried out Markov Chain Monte Carlo (MCMC) simulations for inference of

the posterior parameter distribution in a Bayesian framework. In this study, an inverse modelling framework is developed for

the analysis of CCN spectra to facilitate further study using MCMC methods.

An inverse modelling framework not only enables the conditioning of parameter sensitivities on measurements, but also5

provides a method of diagnosing structural inaccuracies within models and simultaneous matching of model input and output.

Such inaccuracies present themselves as statistically significant discrepancies between optimised parameter values and their

corresponding real-world observed values. In addition, the technique also provides a method of parameter estimation for

parameters which are not easily measured in-situ at the scale of interest, surface tension for example. These advantages have

led to the use of inverse modelling as a method of model calibration across a broad range of research subjects (Vrugt et al.,10

2004; Tomassini et al., 2007; Garg and Chaubey, 2010; Partridge et al., 2012; Wikle et al., 2013).

In this study, to the best of the authors’ knowledge, an inverse modelling framework for CCN spectra is developed for the first

time. To diagnose the sensitivity of an entire CCN spectrum to parameter perturbations in a tangible way, an OF is introduced.

The OF provides a scalar metric by which the sensitivity of CCN spectra can be quantified with respect to both individual and

multiple parameter perturbations.15

Before performing a GSA and parameter optimisation procedure using an automated search algorithm, it is deemed judicious

to first confirm that the study is a well-posed (Pollacco and Angulo-Jaramilo, 2009; Cressie et al., 2009). That is to say that the

information content of the measurement data, further referred to as calibration data, is sufficient to constrain input parameters

and thus can be deemed ’identifiable’ by minimisation of the OF. In this study, to calibrate the sensitivity analysis, literature-

obtained best estimate parameter values are used to generate a synthetic calibration data set from the model. Should parameters20

be non-identifiable it may certainly be expected that algorithms employed for model calibration and GSA may fail to converge.

To confirm that inverse of modelling CCN spectra is suitable for the application application of automatic search algorithms,

response surfaces of the OF are invoked in this study as done by Toorman et al. (1992); Šimůnek et al. (1998); Vrugt et al.

(2001); Partridge et al. (2011). Response surfaces are a graphical tool that enable the investigation of the identifiability of

parameters when considering susceptibility of CCN spectra to perturbations in 2D planar subsets of the entire parameter space.25

In particular, surfaces containing single well-defined minimum are preferred as the gradient of minimisation points to the same

point regardless of where in the parameter domain the algorithm is, thus efficient convergence can be expected.

1.1 Goals

The primary goal of this study is to build a framework for inverse modelling of CCN spectra using Köhler theory and to test the

suitability of automatic search algorithms as a tool for model calibration and GSA. In constructing the framework, qualitative30

sensitivity information is presented in the form of OF response surfaces for simultaneous perturbations in two parameters. In

addition to considerations of environmental dependent parameter sensitivities, the role of surface-active organic compounds is

also explored. The specific questions to be investigated in this study are the following:
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1. Is it possible to simultaneously match CCN spectra and correctly calibrate input parameters using an inverse modelling

methodology?

2. Is inverse modelling of CCN spectra for a GSA using an MCMC algorithm feasible?

3. Qualitatively, how susceptible are CCN concentrations, across a range of atmospherically relevant supersaturations, to

simultaneous perturbations in aerosol size distribution and physicochemical parameters?5

4. Does the bulk-surface partitioning of surface-active organics play an important role in CCN activity over an atmospher-

ically relevant range of supersaturations, and how sensitive are the associated parameters?

2 Theoretical basis and materials

2.1 Multicomponent Köhler theory

The Köhler equation describes the equilibrium saturation vapour pressure ratio s
eq

of a condensible vapour at the surface of a10

wetted particle radius r
p

,

s
eq

= a
w

exp
⇣ 2M

w

�

RT⇢
w

r
p

⌘
(1)

where M
w

is the molecular weight of water, � is the surface tension of the wetted particle, R is the universal gas constant, T

is temperature and r
p

is the particle radius (Köhler, 1936; Seinfeld and Pandis, 2012). The supersaturation S
eq

, as a percent-

age, is given by S
eq

= (s
eq

� 1)⇥ 100%. The peak of the Köhler curve, the critical supersaturation S
c

, defines the ambient15

supersaturation required for CCN activation.

The water activity term a
w

in Eq. (1) can be written in terms of an effective mole fraction xeff

w

,

a
w

= xeff

w

=
n
w

n
w

+neff

s

(2)

where n
w

is the number of moles of water, and neff

s

is the effective number of moles of solute. neff

s

can be calculated from

the internally mixed Water Soluble Organic Carbon (WSOC) and inorganic components, n
i

and n
j

respectively, and their van’t20

Hoff factors i
i

and i
j

,

neff

s

=
pX

i=1

i
i

n
i

�
i

+
qX

j=1

i
j

n
j

(3)

where the indices i and j span the number of organic (p) and inorganic (q) species and �
i

is the effective soluble fraction of the

organic species (Shulman et al., 1996; Sorjamaa et al., 2004). In this study, organics are assumed completely soluble, �
i

= 1.

Theoretically, the mathematical framework can treat a multi-component organic fraction, here however we choose to study25

just one, drop the summation and replace index i with org for clarity. Assuming a dilute solution, van’t Hoff factors can be
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approximated by stoichiometric dissociation factors, ⌫
org

and ⌫
j

, and the solution’s osmotic coefficient � (Kreidenweis et al.,

2005). n
s

can therefore be reformulated as

neff

s

= �

"
⌫
org

n
org

+
qX

j=1

⌫
j

n
j

#
(4)

For an aerosol of dry radius r
d

and insoluble fraction f
insol

, the total number of moles of soluble substance can be re-expressed

in terms of the organic fraction f , individual inorganic component sub-fractions ✏
j

and each components molecular weight5

M
org

and M
j

and density ⇢
org

and ⇢
j

neff

s

=
4

3
�⇡r3

d

(1� f
insol

)

"
f
⌫
org

⇢
org

M
org

+(1� f)
qX

j=1

✏
j

⌫
j

⇢
j

M
j

#
(5)

As a final adjustment f can be expressed in terms of the organic to inorganic ratio ↵

neff

s

=
4

3
�⇡r3

d

(1� f
insol

)

"
↵

1+↵

⌫
org

⇢
org

M
org

+
1

1+↵

qX

j=1

✏
j

⌫
j

⇢
j

M
j

#
(6)

The description of n
s

given in Eq. (6) is used for this study.10

2.2 Bulk-surface partitioning

A brief overview of the theory behind the bulk-surface partitioning Köhler model developed by Topping (2010) and used here

is given in this section. The reader is referred to Topping (2010) for a more detailed description.

The interface between bulk liquid and gas phases is not infinitely thin as Gibbs’ surface thermodynamics would suggest

(Sorjamaa et al., 2004); this surface phase of finite thickness is the region in which surface active organic compounds accumu-15

late. In order to calculate the influence of the increased surface excess on the Kelvin (surface tension) and water activity terms

simultaneously, a surface excess correction to the total molar quantity is required

ns

org

= nt

org

�nb

org

(7)

where ns

org

, nt

org

and nb

org

are the surface excess, total and bulk molar quantities respectively. To separate the total quantity

into bulk and surface quantities a solution of the Gibbs adsorption isotherm is required20

ns

org

dµ
org

+Ad� = 0 (8)

where A is the droplet surface area , µ
org

the chemical potential of the organic and � is the surface tension. The semi-empirical

form of the Szyszkowski equation (Szyszkowksi, 1908) derived by Li and Lu (2001) is used

� = �
w

�RT�woln(1+Ka
org

) (9)
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where �wo, K and a
org

are the saturated surface excess, adsorption equilibrium constant and activity of the organic compound,

respectively, and �
w

is the surface tension of pure water. �wo is defined to be the molar excess of the surfactant in a unit surface

area of the surface region over that in the bulk liquid region assuming the same number of moles of water in the two regions

(Li and Lu, 2001). The superscript wo refers to the position of the dividing interface being defined such that ns

w

= 0 or,

equivalently, �
w

= 0, and is dropped for notational convenience.5

Solving Eq. (9) and (8), and assuming all activities can be represented by their effective bulk mole fractions, Eq. (2), the

bulk mole fraction of the organic compound can be calculated from the roots of the quadratic equation,

(xb

org

)2(A�K �nt

w

K �nt

org

K)+xb

org

(nt

org

K �nt

org

�nt

w

�A�K)+nt

org

= 0 (10)

the solution of which is found using the standard quadratic formula and taking the negative root such that 0< xb

org

< 1 for a

physical solution. Here the eff superscript has also been dropped for notational convenience and all subsequent references to10

such variables are to the effective values unless stated otherwise. Assuming the surface excess of water to be zero, the number

of moles of surfactant in the bulk can be calculated as (Topping, 2010)

nb

org

= nt

w

xb

org

1�xb

org

(11)

following this the water and surfactant activities can be calculated in terms of the bulk mole fraction of the surfactant

a
w

=
n
w

n
w

+n
inorg

+n
w

�
x

b

org

1�x

b

org

� (12)15

a
org

=
n
w

�
x

b

org

1�x

b

org

�

n
w

+n
inorg

+n
w

�
x

b

org

1�x

b

org

� (13)

Equations (12) and (13) can be substituted into Eq. (1) and (9) to account for partitioning of the surfactant in Köhler growth

curve.

With the partitioning described by Eq. (9), (12) and (13), there are four possible partitioning schemes for consideration.

Application of the surface tension model, indicated by �nf , allows surface tension to be modelled as a function of organic20

activity and the empirically derived partitioning parameters, K and �. This is in contrast to using a fixed value indicated by

�f . Superscripts nf and f indicate that the surface tension is not fixed and fixed, respectively. Accounting for the partitioning

of the surfactant concentration to the surface phase is indicated by ap
w

while assuming that the concentration remains solely

in the bulk phase is indicated by anp
w

, where superscripts p and np indicate partitioning and no partitioning, respectively. The

resulting four schemes are:25

1. anp
w

�f
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2. ap
w

�f

3. anp
w

�nf

4. ap
w

�nf

Here 1. and 4. refer to simple Köhler theory and a complete treatment of bulk-surface partitioning, respectively. 2. and 3. refer

to schemes accounting for the partitioning of surfactant concentration to the surface phase and surface tension depression (eq.9)5

independently, respectively.

Modelling of CCN with Köhler theory involves many currently uncertain parameters, especially with respect to the organic

aerosol fraction. In this study, the Köhler parameters probed in the sensitivity analysis are M
org

, ⇢
org

, �, �, � and K and

compositional parameters ↵ and f
insol

. In addition, the log-normal parameters of the second (accumulation) mode, N2, �2
and r̄2, number concentration, geometric standard deviation and mean radius respectively, will also be probed as, in contrast10

to the first (Aitken) mode, a large fraction of accumulation mode particles are expected to be CCN active based on typical

activation diameters. Thus the maximum dimensionality of the sensitivity analysis is 11, depending on the partitioning scheme

used. In addition to the probed parameters, the following parameters are held fixed: T = 285K, ⌫
org

= 1, �
org

= 1, ⌫NaCl = 2,

⌫(NH4)2SO4
= 3 and ⌫NH4NO3 = 2.

To illustrate the impact of the different partitioning schemes on the CCN activation point, Fig. 1 shows an example of critical15

supersaturation as a function of aerosol dry size for a mixture of NaCl and Suwannee River Fulvic Acid (SRFA) mass ratio of

↵= 2. SRFA has been prescribed values for its molecular mass, density and surface tension in solution of 610 gmol-1, 1570

kgm-3 and 55 mNm-1, respectively, based on measurements and results obtained by Dinar et al. (2006) and Taraniuk et al.

(2007). The activation point predicted by classical Köhler theory anp
w

�f (blue) using the surface tension of a pure water droplet

is well replicated by the full partitioning scheme, ap
w

�nf (magenta), for these particular parameters. The point of activation by20

classical Köhler theory anp
w

�f using a fixed surface tension of 55 mNm-1 (black) is well replicated by a partitioning scheme that

accounts for a depleted bulk concentration of SRFA using the same fixed surface tension value ap
w

�f (green). The partitioning

scheme treating surface tension as concentration dependent Eq. (9), anp
w

�nf (red) shows a more complex relationship for the

activation points. For smaller sized dry particles it more closely matches schemes using a depressed fixed surface tension value.

At larger sizes however, it approaches the classical Köhler scheme using fixed surface tension of water; this regime change25

is attributed to a decreased surface:volume ratio for larger particles, thus reducing the influence of surface phenomena. In the

next section coupling of the above models (1-4) to a size distribution, for the computation of CCN spectra, and the model input

parameters are discussed.
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Figure 1. Critical supersaturation S
c

as a function of dry radius r
d

for all partitioning schemes. ap

w

and anp

w

labels indicate whether the

partitioning effects are or are not accounted for in the water activity term a
w

respectively; �f and �nf indicate whether the surface tension

is prescribed a fixed value or modelled using equation 9. Particles are internal mixtures of NaCl and SRFA with organic to inorganic ratio

↵= 2. Complete solubility and ideality are assumed. The partitioning parameters for SRFA are �=0.0025 and K=35942.03.

3 Model input and application

3.1 Physicochemical input parameters

To predict CCN spectra, Köhler theory must be coupled with an aerosol size distribution. Aerosol size distributions are well

represented by a superposition of log-normal distributions (Seinfeld and Pandis, 2012)

n(r) =
mX

i=1

N
ip

2⇡ log�
i

exp

"
� (logr� log r̄

i

)2

2log2�
i

#
(14)5

where N
i

, r̄
i

and �
i

are the log-normal parameters for the i-th mode, number concentration, mean radius and standard deviation,

respectively. In this study, only bi-modal distributions are studied, m= 2.

In this study, in order to analyse parameter sensitivity with respect to environmental aerosol characteristics, three distinct

size distributions are taken from existing literature:

1. Marine average: Average global marine measurements from Heintzenberg et al. (2000).10

2. Polluted continental: summertime air mass measurement from the Melpitz station, Germany (Birmili et al., 2001).

3. Rural continental: SMEAR II station, Hyytiälä, Finland (Tunved et al., 2005).

Average distribution parameters, and their uncertainty ranges, used for input in Eq. (14) are taken from the above references

and are included in table 2. Distributions are generated over 400 logarithmically spaced dry radius bins ranging from 1nm to

1µm and are shown in Fig. 2.15
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Figure 2. The marine average (blue), rural continental (green) and polluted continental (red) dry size distributions calculated using the true

log-normal parameters given in table 2.

The mixing state of aerosol particles can play an important role in CCN activation and their optical properties, particularly

close to sources of fresh emissions (Lesins et al., 2002; Broekhuizen et al., 2006). Here a size-independent, internally-mixed

aerosol composition is prescribed for each environment for simplicity; however, the framework is suitable for application to

externally mixed aerosol systems with size-dependent chemistry in future studies. The prescribed composition consists of

inorganic salts, a model organic (MO) surfactant and insoluble black carbon. The composition of the average marine environ-5

ment is taken as an approximate average of measurements recorded during periods of high and low biological activity at the

Mace Head atmospheric research station (O’Dowd et al., 2004). Polluted continental composition is taken from the Melpitz

station, Germany (Poulain et al., 2011). Rural continental from non-volatile mass measurements recorded in Hyytiälä, Finland

(Häkkinen et al., 2012). The relative mass contributions are included in table 1.

The chemical properties of the MO (table 1) used in this study are based on averages calculated from organic acids docu-10

mented in Topping (2010). As stated in section 2.1, the surfactant is assumed to be completely soluble. While the solubility

of organic compounds has been identified to potentially influence CCN activation in some cases, the inclusion of complex

conceptual frameworks such as that developed by Riipinen et al. (2015) is beyond the scope of the present study. However,

the effect of solubility is explored more generally in terms of the insoluble aerosol fraction f
insol

(table 1). The partitioning

parameters for the MO were taken as the average of two strong surfactants, cis-Pinonic and Suwannee River fulvic acids,15

K = 31071 and �= 0.00255 mmolm-2, to best capture the bulk-surface partitioning phenomena. In partitioning schemes that

use a fixed depressed surface tension a value of 55 mNm-1 is prescribed based on results found by Taraniuk et al. (2007) for

humic-like substances. The insoluble black carbon component of the aerosol is modelled as elemental carbon with a density of

2000 kgm-3 and molecular mass of 12.0 gmol-1. The inorganic fraction is modelled as a mixture of salts, including ammonium
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sulphate (NH4)2SO4, sodium chloride NaCl and ammonium nitrate NH4NO3 for each environment, the molecular masses

and densities of which can be found in table 1.

Parameter ranges explored in the sensitivity analysis of this study are taken from literature where possible. Ranges for

compositional, ↵ and f
insol

, and modal distribution parameters are deduced from statistics and measurements contained within

the references discussed above in relation to each environment. The density and molecular mass of the surfactant are perturbed5

between minimum and maximum values of the five compounds studied in Topping (2010), while the partitioning parameters K

and � are perturbed between the values of two strong surfactants, cis-Pinonic and Suwannee River fulvic acid. Surface tension

was allowed to vary between 30 mNm-1 and 72.8 mNm-1 (pure water) to account for particularly strong surfactants such as

bio-surfactants (Ekström et al., 2010). The effect of non-ideal solutions is also explored by analysing spectra sensitivity to

perturbations in � between 0.75 and 1.0.10

3.2 Interpolation methods for CCN spectra modelling

In this section the practicalities of coupling the Köhler model to the size distribution, in order to calculate the number concen-

tration of CCN, NCCN, as a function of the ambient supersaturation, are discussed. For a given supersaturation, the activation

radius r
act

is defined as the dry radius of the aerosol such that

S
c

(r
d

= r
act

) = S
a

(15)15

for a given internally mixed composition. Köhler curves are generated for each dry size class of the size distributions discussed

in section 3.1. In practice, owing to the discrete nature of the size classes, S
a

will be between two critical supersaturations,

Si

c

and Si+1
c

, corresponding to a smaller and larger dry size ri
d

and ri+1
d

, between which r
act

lies. A linear interpolation

is employed to calculate unique values of r
act

for each supersaturation. With r
act

determined, NCCN can be calculated by

integrating the size distribution20

NCCN =

1Z

r

act

n(r)dr (16)

where n(r) is the number concentration size distribution function. It must be noted that r
act

will lie between the lower and

upper bounds of the activated size class q. The practical difficulty this causes is twofold: Firstly, when evaluating equation 16

as a summation, one must either discount the first bin number concentration or take its total number concentration. Secondly,

should two or more r
act

values fall into the same size class, then non-unique calculations of NCCN will occur for different S
a

,25

producing a step-like curve for the CCN spectrum. To circumvent this, fractional interpolation within the first activated size

bin is employed between the upper and lower bounds, ru
q

and rl
q

respectively. Thus, in practice NCCN is calculated as follows

NCCN =Nq

(ru
q

� r
act

)

(ru
q

� rl
q

)
+

400X

i=q+1

N i (17)
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The vector of NCCN values together with their corresponding S
a

values form the CCN spectrum. The importance of intra-bin

interpolation, in relation to the resolution of the size distribution, for successful application of inverse modelling procedure, is

explored fully in section 5.3 below.

4 Inverse modelling materials

Inverse modelling is a methodology often used for finding a set model input parameter values that produce model outputs5

that best represent measurement data. The optimisation procedure is usually performed using a least squares or maximum

likelihood criterion with respect to some objective function (Vrugt et al., 2006). Mathematically, it is formulated as follows. Let

C̃ =  (X,✓) denote the vector of n model predictions, say CCN concentrations C̃ = (c̃1, . . . , c̃n), where  denotes the model

and X and ✓ are the fixed input variables and parameters for optimisation, respectively. Given a vectorial set of observations

C = (c1, . . . , cn), say observed CCN concentrations, then the deviation of model predictions, for a given set of ✓, can be10

calculated as a vector of residual concentrations r(✓)

R= C̃(✓)�C = [(c̃1 � c1), . . . ,(c̃n � c
n

)] = [r1(✓), . . . , rn(✓)] (18)

Thus, inverse modelling seeks to minimise R with respect to ✓. In practice minimising a vector quantity can be challenging.

This challenge can be overcome by introducing an OF - a scalar aggregate of the residuals. The aim now is to minimise this

model-measurement discrepancy metric with respect to input parameter values. A parameter set that returns a zero valued OF15

corresponds to a perfect match between observations and model predictions. Producing a zero valued OF function with real-

world observations is unlikely; however, synthetic modelling studies using model-generated measurements, such as this one,

will result a zero-valued OF for parameter values used to generate the synthetic measurements.

Successful application of an inverse modelling approach to any given problem is reliant on an appropriate definition of both

the calibration data, C = (c1, . . . , cn), and OF. In subsections 4.1 and 4.2 below definitions of these objects are presented.20

4.1 Synthetic calibration data: CCN spectra

Real-world measurement data is normally used as calibration data in model calibration and sensitivity studies. Here, however,

synthetic measurements are numerically-generated from the model by using best estimate parameter values to represent real-

world atmospheric conditions, henceforth referred to as the ’true’ parameter values ✓true or calibration parameters, for input

parameters. These true parameters are documented collectively in table 2. The calibration data is thus denoted C̃(✓true) and is25

a vector of CCN concentrations where each element corresponds to each point on a prescribed supersaturation grid spanning

0.1-1.5% in increments of 0.1%. In choosing a CCN spectrum as the calibration data, the sensitivity analysis that follows

includes information regarding a range of prevalent meteorological conditions that define various clouds types. The additional

information content a CCN spectrum contains versus, say, a single CCN concentration at a fixed supersaturation is considerable,

the importance of which is discussed at length in section 5.3.30
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Figure 3. CCN spectra calculated from true parameter values (table 2) for: a) Marine average, b) rural continental and c) polluted continental

environments. Partitioning schemes are coloured as in Fig.1. Models using a fixed surface tension value are shown by dotted lines while

models using Eq. 9 are presented as line-plots.

All 12 sets of calibration data generated from true parameter values for each partitioning scheme and environment are

presented in Fig. 3. Also included in Fig. 3, for reference, are CCN spectra generated from classical Köhler theory using the

surface tension value of pure water. The differences between calibration data sets for different partitioning schemes arise for

the same reasons as the changes in activation points shown in Fig. 1 and discussed in section 2.2.

4.2 The objective function (OF)5

Care should be taken when choosing the functional form of the OF. The functional description should reflect the characteristics

of measurement errors seen in the relevant observation data set. Common definitions for the OF include the simple least squares

(SLS) or some maximum likelihood estimator. Definitions such as SLS or root mean square error (RMSE) are valid when the

measurement errors are believed to be equal throughout the data set (homoscedastic) and uncorrelated. More generally, a

weighted RMSE definition can be applied10

OF =


1

n

nX

i=1

w
i

[c̃
i

� c
i

]2
�1/2

=


1

n

nX

i=1

w
i

r
i

(✓)2
�1/2

(19)

where w
i

is the weighting of the ith element. In the present study, the main sensitivity analysis carried out in section 5.2 assumes

homoscedsaticity and therefore weightings are set to unity, w
i

= 1 for all i. In section 5.3 the implications of supersaturation

dependent natural variability (heteroscedasticity) in CCN measurements is explored with appropriately defined weightings.

To illustrate how the OF behaves in relation to perturbations in a single parameter, Fig. 4 shows how the rural continental15

CCN spectrum varies according to a perturbation in N2 (upper panel) and the corresponding change in the OF (lower panel).
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Figure 4. Rural continental CCN spectra for partitioning scheme anp

w

�f . In the top panel, the colour mapping indicates modelled CCN

spectra as a function of N2 within uncertainty ranges specified in table 2. In the bottom panel, the colour mapping indicates variation in the

OF between the modelled spectra and the calibration data (dashed black line) for the corresponding calculations with respect to N2.

5 Results and discussion

5.1 One at a time (OAT) parametric sensitivities

Typically, studies provide one at a time (OAT) sensitivity analyses of model outputs, e.g Wex et al. (2008). Although this

methodology can be instructive it is not ideal. By performing an OAT analysis, large volumes of the full multi-dimensional

parameter space remain unexplored and as a consequence the analysis may miss important parameter interactions that could5

result in suppressed or increased sensitivity. A brief OAT analysis of a subset of the parameters considered in this study is

included here as an instructive step in developing the response surface methodology. In addition, the OAT analysis facilitates

the identification of supersaturations at which individual parametric sensitivities are greatest.
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Consider a fractional perturbation P to the true value of parameter i. The sensitivity �C to the ith parameter is thus calculated

as follows

✓perturbed
i

= (1+P )✓true
i

P = 0.1 (20)

�C = C̃(✓true)� C̃(✓perturbed
i

,✓true
j 6=i

) = (r1, . . . , rn) (21)

where ✓perturbed
i

is the perturbed parameter for OAT analysis and the index j runs over all other parameters. By applying5

the same fractional perturbation to each parameter the relative parametric sensitivities can be assessed. Figure 5 shows the

calculated sensitivities for perturbations in N2, r̄2, ↵, ⇢
org

, �, K and � as a function of supersaturation. This is repeated for all

partitioning schemes for the average marine environment.

Figure 5. Sensitivity curves for marine average CCN concentrations as a function of supersaturation. Selected parameters are perturbed

individually by 10% for all partitioning schemes; N2 (black), r̄2 (orange), ↵ (red), ⇢
org

(blue), � (green), K (cyan) and � (magenta). A

vertical, grey dashed line is included at S
a

= 0.4% to indicate a regime change between stratiform and convective cloud types.

Global variability in updraft velocities has considerable importance for the aerosol indirect effect as it leads to the develop-

ment of different cloud types and a range of supersaturations (West et al., 2014). In Fig. 5 the distinction between stratiform and10

convective cloud types is illustrated by a grey, vertical dashed line at S
a

= 0.4% corresponding to an updraft of approximately

0.5 ms-1 in marine environments (Chuang, 2006). In Fig. 5 there is a local sensitivity maximum for most parameters, for all par-

titioning schemes, around 0.1-0.2% corresponding to stratiform cloud types. Furthermore, sensitivity is at a maximum for many

parameters at humidities close to the convective threshold and higher. Higher humidities are characteristic of deep convective
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systems typically seen in the tropics giving rise to Hadley cell circulation. Therefore, when simulating CCN concentrations in

convective models, such as the CRM-ORG developed by Murphy et al. (2015), with complex organic representations, special

consideration may be required when choosing the physicochemical aerosol input parameters.

It is clear that the surface tension � is the most sensitive Köhler parameter when considering anp
w

�f and ap
w

�f bulk-surface

partitioning schemes. This suggests that constraining uncertainties in � is important for CCN activation. As � shows a high5

degree of sensitivity and is difficult to measure in-situ at the scale of interest, it is likely a good candidate for optimisation using

an inverse methods. For the simple Köhler case, anp
w

�f , this result is in agreement with results obtained by Wex et al. (2008)

which show a strong sensitivity of the critical supersaturation to � perturbations. CCN concentrations are also highly sensitive

to the number concentration of the accumulation mode particles N2 for all partitioning schemes. Large sensitivity to N2 is

expected as a large fraction of the accumulation mode particles have radii greater than that of typical activation radii, even at10

lower supersaturations. CCN concentrations are also sensitive to chemical and compositional parameters ⇢
org

and ↵ but less

so. There is some symmetry in the sensitivity above and below the �C = 0 line for ⇢
org

and ↵, therefore, when considering

simultaneous perturbations to these parameters, it is likely there will be a non-unique set of parameter pairs returning minimal

deviation from the calibration data due to parameter interactions.

For anp
w

�nf and ap
w

�nf partitioning schemes, � is replaced by the partitioning parameters � and K that are used to model15

the surface tension using Eq. (9). For anp
w

�nf there is moderate sensitivity to both partitioning parameters, suggesting that if

these empirically derived parameters are to be used in Köhler modelling they must be known to some degree of accuracy for

meaningful conclusions to be reached. For the full partitioning scheme ap
w

�nf however, there is negligible sensitivity. The lack

of sensitivity for the complete scheme is likely due to the competing effects of reduced surface tension and increased bulk

water activity on the point of activation. It is necessary to analyse these two parameters simultaneously across their uncertainty20

ranges to provide a clearer picture, an instructive tool for such analysis is the response surface.

5.2 Response Surface Analysis

A GSA is preferred over traditional OAT analyses as it provides a comprehensive analysis that spans the entirety of the pa-

rameter space (Pérez et al., 2006) thus arriving at a more extensive and reliable set of results. This is particularly pertinent

when applied to highly non-linear systems such as those found in cloud-aerosol interactions as multidimensional parameter25

interactions can significantly affect individual parameter sensitivities when the entire parameter space is explored (Partridge

et al., 2011, 2012). With the application of an automatic search algorithm an inverse modelling framework can be used to

simultaneously facilitate a GSA and parameter optimisation (Partridge et al., 2012). In this section a graphical tool that pro-

vides qualitative CCN spectra sensitivity information for simultaneous perturbations in two parameters is employed - response

surfaces. These surfaces also provide some indication of the viability of a GSA using, for instance, an MCMC-based automatic30

search algorithm.

Traditionally, in 2D sensitivity analyses the surface illustrates the response in a single model output variable, for example

Quinn et al. (2008) investigated the response in CCN concentration, at fixed superaturations, to perturbations in insoluble

fraction and mean diameter. Here, however, response surfaces are used as a graphical tool used to illustrate the response of the
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OF as a function of the perturbed aerosol physicochemical parameters so as to capture CCN sensitivity information across a

range of supersaturations and cloud types.

Consideration of the behaviour of the OF in 2D planes of the full parameter space is also instructive for testing that aerosol-

CCN closure is an appropriate problem for investigation using inverse methods. While the response surfaces only suggest how

the OF may evolve when traversing the full parameter space, if the surfaces do not show a single well defined minimum then5

it may certainly be expected that inverse parameter optimisation may be unsuccessful (Partridge et al., 2011). Parameters that

have a wide range of values while maintaining minimal deviation in CCN spectra from the calibration data are deemed ’non-

identifiable’ and will be difficult to calibrate based on the current information content of the calibration data. Having many such

parameters may reduce algorithm efficiency and hamper calibration of more important parameters. Response surfaces provide a

way of visually discerning such parameters to be removed from the optimisation procedure. Surfaces possessing a well defined10

minimum are preferred as algorithms tend to iterate more efficiently if the gradient of improvement points toward a single

attractor within search space. Response surfaces containing single attractors and steep gradients suggest that the associated

parameters are both sensitive and viable candidates for calibration. A high degree of sensitivity also implies that it is important

to represent such parameters well in GCMs for accurate predictions of climate evolution. Using response surfaces to visualise

the evolution of an OF across 2D parameter planes has been used effectively in similar highly non-linear atmospheric inverse15

problems (Partridge et al., 2011).

Figure 6a) illustrates how the critical supersaturation S
c

of a dry aerosol with a 75 nm radius and marine average composition,

as modelled using traditional Köhler theory, evolves through the parameter space when subject to simultaneous perturbations

in ↵ and �. It is clear that the sensitivity of the activation point to perturbations in � is greater than that of ↵. In addition,

non-unique values of ↵ can result in the same S
c

value, this result is similar to results obtained by Wex et al. (2007) for a bulk20

parameter of chemical properties. Figure 6b) shows the OF response in relation to the CCN spectrum for the same composition

and parameter perturbations. Blue crosses indicate the coordinates of the true parameter values and thus falls on a point where

the OF is zero.

In what follows, parameter sensitivities for all four partitioning schemes in the marine average environment are analysed

in sections 5.2.1 - 5.2.4 before considering environmental dependencies in section 5.2.5. Attention is given to the marine25

environment as the extensive spatial coverage, high contrasting albedo relative to the surface (Warren et al., 1986, 1988) and

long synoptic lifetime (Brenguier and Wood, 2009) of marine stratocumulus result in a greater climate sensitivity to changes in

CCN concentrations than other environments. All response surfaces calculated can be found in the supplementary information.

Parameters of interest are perturbed across ranges of values that reflect uncertainties found in existing observations that

include both laboratory and in-situ measurements. These ranges are documented in table 2 and discussed in section 3.1. Blue30

crosses indicate the true parameter values, and collectively correspond to the full true parameter set ✓true, and therefore lie on

a point where the OF is zero. Constant value OF contours and a colour mapping are used to visualise the deviation of CCN

spectra from the calibration data. Dark (hot) regions of the parameter plane indicate a high value OF and thus large deviations

of modelled CCN spectra from the calibration data; light (cold) regions indicate low values of the OF and thus small deviations

from calibration data.35
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Figure 6. a) Response surface for the critical supersaturation S
c

of a r
d

= 75nm marine average aerosol for perturbations in ↵ and � across

ranges given in table 2. b) Response surface of the OF for marine average CCN spectra with respect to the same parameter perturbations as

in a). Blue cross indicate the true values of the two parameters.

5.2.1 Classical Köhler theory: anp
w �f

Figure 7a-d) shows response surfaces for four parameter combinations for classical Köhler theory anp
w

�f

ws

in the marine average

environment. This particular formulation of Köhler theory presents 9 parameters for analysis, leading to the calculation of 36

response surfaces, 14 of which possess a well defined minimum. The response surfaces presented in Fig. 7 are chosen to

illustrate the relative sensitivities of size distribution and Köhler theory parameters. The complete set of response surfaces5

(documented in the supplementary information) indicates that �, ↵, f
insol

, �, N2 and r̄2 are the most sensitive parameters. In

Fig. 7d) the response surface for perturbations in ↵ and � does not contain a well defined minimum as seen in Fig. 7a-c) for

other parameters. Interactions between � and ↵ allow ↵ to take any value across its uncertainty range and return a zero OF for

a narrow band of � values close to its true value.

5.2.2 Redistribution of surfactant concentration: ap
w�f10

Response surfaces were recalculated for the inclusion of bulk-surface partitioning effects in the Raoult term ap
w

�f

ws

which

accounts for the reduced bulk concentration of surfactant when calculating the water activity. This allows the effect of bulk-

surface partitioning on the bulk water activity to be isolated from the effects of a concentration dependent model of surface

tension, Eq. (9). To model the effects on the bulk activity the partitioning parameters, � and K, must be introduced. Thus

all 11 parameters are analysed in this setup, totalling 55 response surfaces 11 of which contain a well defined minimum.15

Figure 8 shows response surfaces for this setup. Response surfaces for parameter pairs common to this scheme and classical

Köhler theory showed negligible changes, indicating that the effect concentration partitioning is relatively unimportant for

determining CCN spectra. This result is further highlighted in Fig. 8d), while parameter interactions similar to those seen in
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Figure 7. Response surfaces for anp

w

�f in the marine average environment. Blue crosses indicate the true parameter values ✓true used to

calculate the calibration data. The colour scale represents the value of the OF calculated for the modelled spectra against the calibration data

for parameter values across the uncertainty ranges (table 2).

Fig. 7d) are present, the OF takes a much lower value indicating low sensitivity within the specified uncertainty range. The

lack of sensitivity to the partitioning scheme as well as the partitioning parameters is attributed to its action solely through the

water activity term. The water activity, in its mole fraction form, Eq. (2), is typically close to unity at the point of activation as

n
w

� n
s

and therefore any changes to bulk concentrations of the solute moles n
s

may certainly be expected to have negligible

influence on the mole fraction. This is further reinforced by the black (anp
w

�f

ws

) and green (ap
w

�f

ws

) curves in figures 1 and 3,5

wherein only small changes to the critical supersaturation S
c

and the CCN spectrum, respectively, are seen. This scheme should

not be considered as an accurate representation of what occurs in nature; here a concentration-dependent bulk water activity

has been used whilst a fixed concentration-independent surface tension has been applied. Nevertheless, it remains instructive

to isolate and ascertain the magnitude of the effect of such a phenomenon on CCN activation so that it can be disregarded in

future studies and model and parametrization developments.10

The sensitivity to perturbations in solution ideality is shown in Fig. 8b) and is found to have a similar sensitivity to the

modal radius r̄2. Information on ideality of atmospheric particles is challenging to measure in-situ and given the relatively

high sensitivity of the parameter shown here, it is a particularly good candidate for optimisation using inverse methods if there

is adequate constraint on additional processes. The chemical properties of the surfactant, M
org

and ⇢
org

(see supplementary

information), were found to be relatively insensitive when compared with other parameters for this partitioning scheme and15

classical theory discussed in section 5.2.1. The relative unimportance of these chemical properties is in-line with the general

conclusion reached by Dusek et al. (2006) that chemistry is less important than size. However, in contrast, the sensitivities

of compositional parameters, ↵ and f
insol

, and the ideality of the solution � exhibit similar sensitivities when compared to
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Figure 8. Response surfaces for ap

w

�f in the marine average environment. Blue crosses indicate the true parameter values ✓true used to

calculate the calibration data. The colour scale represents the value of the OF calculated for the modelled spectra against the calibration data

for parameter values across the uncertainty ranges (table 2).

size distribution parameters �2 and r̄2. Dusek et al. (2006) carried out their sensitivity analysis on CCN size distributions at

individual supersaturations of 0.25%, 0.4% and 1.0% thereby missing sensitivity information for all stratiform cloud types

below 0.25% and convective cloud types above 1.0%. Here the analysis has been carried out over a highly resolved range of

atmospheric supersaturations. This difference in methodology is likely the cause of contrasting results as the discrete nature

of their analysis may miss peaks in individual parameter sensitivities such as those seen in Fig. 5, the effect of which are5

quantified and accounted for in the OF methodology developed here.

5.2.3 Surface tension considerations: anp
w �nf

Here the effects of a concentration-dependent surface tension, Eq. (9), are accounted for while concentration partitioning is not

accounted for in evaluating the bulk water activity - anp
w

�nf . In this partitioning scheme the partitioning parameters, � and K,

replace surface tension so the analysis covers 10 parameters and thus 45 parameters planes, 21 of which possess a well defined10

minimum.

Response surfaces for this partitioning scheme are shown in Fig. 9. Figure 9d) illustrates that the CCN spectrum shows a

higher degree of sensitivity to changes in � and K than in the ap
w

�f case, confirming results from the OAT analysis. This

result is expected on account of their action through the surface tension - the Köhler parameter commonly found to be one

of the most sensitive in determining S
c

(Wex et al., 2008). This effect manifests itself as an increased CCN activity and can15

be readily seen in Fig. 3 (red) for all environments when compared with simple Köhler theory using surface tension for water
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Figure 9. Response surfaces for anp

w

�nf in the marine average environment. Blue crosses indicate the true parameter values ✓true used to

calculate the calibration data. The colour scale represents the value of the OF calculated for the modelled spectra against the calibration data

for parameter values across the uncertainty ranges (table 2).

(blue). In addition, the parameter plane for the partitioning parameter Fig. 9d) also shows a strong interaction between the two

parameters that can result in non-unique optimised parameter values for a zero OF. This suggests that the chosen calibration

data may not contain the necessary information to correctly calibrate K and � for this partitioning scheme.

5.2.4 The complete partitioning scheme: ap
w�nf

Here the full partitioning framework is considered. The surface tension is calculated using the partitioning parameters � and5

K as in section 5.2.3, therefore there are the same number of parameters and surfaces for consideration. 10 response surfaces

show a well defined minimum.

Figure 10 contains response surfaces for this comprehensive partitioning scheme. There are clearly strong similarities be-

tween Fig. 10c-d) and Fig. 8c-d) and the partitioning parameters seem to be relatively insensitive when compared to size

distribution parameters. This is explained by the dependence of surface tension on the organic activities as well the partitioning10

parameters. For the anp
w

�nf scheme there is substantial depression of surface tension through � and K and therefore significant

sensitivity, here however the dependence on the organic activity pushes the value of surface tension back towards that of water

at the point of activation. This is also clear from the calibration data plotted in Fig. 3 (pink and blue) for a single point in the

parameter space.
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Figure 10. Response surfaces for ap

w

�nf in the marine average environment. Blue crosses indicate the true parameter values ✓true used to

calculate the calibration data. The colour scale represents the value of the OF calculated for the modelled spectra against the calibration data

for parameter values across the uncertainty ranges (table 2).

The ability of simple Köhler theory, when the surface tension of water is used, to approximately replicate the CCN con-

centrations generated from the full partitioning treatment is in agreement with existing literature (Prisle et al., 2012, 2010;

Sorjamaa et al., 2004).

For the full partitioning scheme considered here, the relative sensitivity of each parameter, and both their linear and non-

linear interactions, are summarised in table 3. Parameters that are indicated to have high or very high sensitivities are good5

candidates for a future study using automated search algorithms to provide a quantitative GSA and parameter optimisation with

respect to appropriate definition of calibration data (section 5.3).

5.2.5 Environmental considerations

Sensitivities of the organic chemical parameters were not found to vary a significant amount between environments and there-

fore we have not included response surfaces for all environments in sections 5.2.1-5.2.4. In Fig. 11a-c) the response surfaces10

for N2 and ↵ perturbations are shown for all three environments. In panels A (marine average) and B (rural continental) very

similar parameter interactions are evident - a zero value OF is returned across the entire range of uncertainty in ↵, suggesting

↵ is insensitive and thus cannot be calibrated to a unique value based on the information content of the CCN spectrum alone

for these environments. In panel C (polluted continental), a higher degree of sensitivity to ↵ is clear from a steeper gradient

parallel to its axis. The increased sensitivity allows the uncertainty to be constrained subject to interactions with N2 in more15

polluted environments. However, this constrained uncertainty in ↵ has come at the cost of a less well defined N2. It should be
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noted however, that despite this challenging outlook, response surfaces provide only a glimpse of the full parameter space and

a well defined minimum may exist where a third, or several parameters, push CCN spectra into a different sensitivity regime.

To perform a rigorous analysis, automatic search algorithms must be employed using a selection of parameters believed to be

identifiable from a thorough response surface analysis as presented here.

Figure 11. N2 vs. ↵ response surfaces of the OF for the ap

w

�nf partitioning scheme in the a) marine average, b) rural continental and c)

polluted continental environments. Blue crosses indicate true parameter values.

5.3 Information content and CCN observations as calibration data5

For a single parameter to be considered identifiable, only one response surface showing a well-defined minimum is required.

However, if the parameter does not exhibit well defined minima in several parameter pairs, and in particular if these surfaces are

relatively flat, then automatic search algorithms will likely struggle to converge on unique parameters values. Response surfaces

that are flat with respect to perturbations in a particular parameter indicate that such a parameter is insensitive and thus accurate

calibration is unnecessary for the model under consideration. Insensitive parameters can be removed from the optimisation10

procedure and replaced with a fixed value. In GCMs parameters such as surface tension and the hygroscopicity parameter 

(Petters and Kreidenweis, 2007) are often implemented as fixed values. However, CCN and cloud droplet concentrations are

know to be sensitive to these parameters. For example, Ervens et al. (2010) showed that different assumptions regarding the

value of  can result in upto a twofold difference in CCN concentrations. Studies seeking to calibrate parameters which are not

measurable in-situ at the scale of interest must take care when defining calibration data so as to include as much information15

content as possible. Response surfaces in sections 5.2.1-5.2.4 and the supplementary information show that using CCN spectra

alone as calibration data will likely not be sufficient for calibration of all parameters considered in the present study. Therefore,

it is recommended that further studies are conducted to identify the appropriate in-situ measurements required and thus inform

the experimentalist community accordingly. One way to help abate this issue is to define the calibration data set such that it

contains a greater information content. For example, additional information content can be introduced through further temporal20

and spatial measurements or higher resolution calibration data.

Figure 12a) shows that without interpolation CCN spectra exhibit a ’stepping’ in CCN concentrations as multiple activation

sizes, corresponding to continuous intervals on the supersaturation axis, fall between the limits of the same size class. Thus
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a considerable amount of information content has been added to the calibration data by providing unique values of CCN

concentrations at different supersaturations. Stepped CCN spectra result in multiple local minima in response surfaces Fig. 12b

and d). Convergence of automatic search algorithms in parameter spaces containing multiple local minima proves challenging,

therefore smoothing of the calibration data is crucial to the methodology presented.

Figure 12. a) marine average calibration data generated from an aerosol size distribution of 30 sizes bins (magenta) and 200 sizes bins (cyan)

with (dotted line) and without (solid line) intra-bin interpolation. The corresponding OF response surface for b) 30 bins and no interpolation;

c) 30 bins with interpolation; d) 200 bins and no interpolation; e) 200 bins with interpolation.

In the absence of direct measurements of CCN spectra for real world calibration data sets, model predictions of the activation5

point could be used to derive pseudo-synthetic CCN spectra from aerosol size distributions measured by differential mobility

analysers (DMA). DMA instrumentation can vary substantially in size resolution. Figures 12a,b and d) show that decreasing

the number of size classes nDMA from 200 to 30 reduces the information content in the calibration data considerably and
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produces rougher OF response surfaces as result. However, it is encouraging that the topography of the OF response surfaces

for these calibration data sets do not depend on nDMA when interpolating, Fig. 12c) and e). That is to say, derived parametric

sensitivities are independent of nDMA despite increased the CCN concentrations at lower resolutions, Fig. 12a), that arise due

to increased bin-width.

Figure 13. a) Multiple definitions of calibration data (cal dat). Curves and data points in black correspond to uncorrupted definitions; high

resolution synthetic CCN spectrum (solid line), supersaturation bands corresponding to CCNC measurements from the MASE-II campaign

(circles) and two single value definitions at 0.1 and 0.3% (crosses). Magenta: calibration data corrupted with randomly generated error

assuming a standard deviation of 10% of the uncorrupted values. b)-e) OF response surfaces corresponding to the uncorrupted single values

0.3% and 0.1%, MASE-II supersaturation bands and synthetic CCN spectrum definitions of calibration data.f)-i) response surfaces as in b-e)

but with the corruption of calibration data.

The importance of information content is particularly evident when considering the resolution and range supersaturations5

spanned by the calibration data. Multiple definitions of calibration data are shown in Fig. 13a) both with and without corruption

by randomly generated synthetic natural variability: single-values at 0.1 and 0.3% corresponding to supersaturations typically
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used in analyses such as Aerosol Comparisons between Observations and Models (AEROCOM) (Ghan et al., 2016); a typical

five-band CCN spectrum representative of data collected in the second marine stratus/stratocumulus experiment (MASE-II)

campaign (Lu et al., 2009) and a high resolution CCN spectrum such as that used in the present study. Figure 13b-e) show

response surfaces that highlight the relevance of resolution for calibration of the mode size and organic to inorganic mass ratio.

Panel b) indicates that at a supersaturation of 0.3% sensitivity to mode size is negligible, as seen in the OAT analysis Fig. 5, the5

parameter is non-identifiable and attempts to constrain its parametric uncertainty will fail. In panel c) single valued calibration

data at a supersaturation of 0.1% shows increased sensitivity to the mode size and that it may be possible to reduce parametric

uncertainty through MCMC analysis. However, the parameter remains non-identifiable within a narrower range. Therefore,

when using single valued calibration data such as seen in Lee et al. (2013), care must be taken as parametric sensitivities

are expected to be dependent on the cloud base supersaturations in GCMs which, in reality, are subject to considerable sub-10

grid scale variability (West et al., 2014). By increasing the range and resolution of the calibration data Fig. 13d-e) additional

information content is introduced that allows the mode size to be identified on the response surface. Surfaces corresponding

to calibration data defined from a CCNC measured spectrum shows little difference when compared with the high-resolution

case as sufficient information content for identifying the mode radius is contained at lower supersaturations. The dependence

of parameter identifiability on calibration data range and resolution indicates that constraint of parametric uncertainty using15

algorithmic approaches may be expected to fail when using single valued definitions opposed to spectral definitions. Such a

result provides motivation for and highlights the virtue of a response surface pre-analysis to arrive at an appropriate definition

of calibration data and selection of parameters to optimise.

In real world CCN measurements substantial natural variability is present and dominates instrumentation errors. To represent

natural variability in the calibration data the i-th data point is corrupted by a normally distributed error with a standard deviation20

�
i

= 0.1⇥ c̃
i

(✓true). For a robust treatment of heteroscedastic errors associated with CCN spectra, residual weightings w
i

in

the OF (eq.19) can not be taken to be unity, instead they are calculated as w
i

= 1/�
i

in a similar approach to that presented

by Partridge et al. (2012). Such a treatment provides preliminary insights into the feasibility of achieving aerosol-CCN closure

when confronting the model with real world CCN observations using the inverse framework. Response surfaces given in Fig.

13f-i) repeat those in calculated in panels b-e) but with the inclusion of natural variability and appropriate weightings. Here25

the OF can no longer be minimised to zero as the model can not be considered ’perfect’ in relation to the corrupted calibration

data. Panels f-h) that correspond to single value and CCNC-like definitions of calibration data indicate that simultaneous

minimisation of the OF and parameter calibration is not possible. That is to say that inverse closure is not possible. If a

response surface analysis were to be bypassed, the inability to achieve inverse closure using MCMC or similar may lead one

to conclude that structural uncertainties may exist in the model. However, for the high resolution case, panel i), inverse closure30

is possible for the parameters considered. Therefore, failure to attain inverse closure with respect to panels f-h) should not

be attributed to model structural uncertainties but rather insufficient information content at such resolutions. Thus continued

study using MCMC and calibration data defined by corrupted synthetic measurements or a functional fitting of CCNC-obtained

spectra is recommended. The reliance of the success of inverse closure on calibration data resolution should also serve as a
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recommendation for the development of instrumentation, for in-situ deployment, which has a higher resolution than existing

CCNCs.

When adding information content in a synthetic study such as the one performed here, it is important to be mindful that

such information content could be retrieved from field observations as the end goal is to compare with an observational data

set rather than synthetic measurements. In this study the information content is solely composed of the deviation of model5

predictions for a single calibration data set. If, in future studies, parameter search algorithms do not converge in an efficient

manner additional information content can be supplied from in-flight temporal CCN measurements taken by counters at fixed

supersaturations, or from the interstitial fraction of the the aerosol size distribution.

6 Conclusions

A methodology that is able to scrutinize the sensitivity of Köhler theory to perturbations in physicochemical parameters across a10

range of atmospherically relevant supersaturations has been constructed. The response surface analysis provides a visualisation

of pairwise parameter sensitivity while simultaneously confirming aerosol-CCN spectrum closure as a well-posed inverse

problem for appropriately defined calibration data. Across all partitioning schemes and environments a total of 543 response

surfaces were calculated.

In agreement with Djikaev and Ruckenstein (2014), the response surface analysis here confirms that the density and molecu-15

lar weight of the surfactant have only a small effect on aerosol activation. In further agreement, Wex et al. (2007) parametrised

their Köhler model with a bulk chemical parameter that contained the density, molecular weight and effective dissociation of

the organic substance, and found it to take a constant value over a range of values for those properties, resulting in a constant

activation point.

For all partitioning cases, model sensitivity to surface tension, solution ideality and compositional fractions is on the order20

of that of the size distribution parameters. This is in contradiction to conclusions reached by Dusek et al. (2006) and certainly

warrants further investigation. The ability of this novel framework to probe sensitivity over a range of atmospherically relevant

supersaturation is likely the source of this difference as considerations in Dusek et al. (2006) are at fixed supersaturations. As

response surfaces have shown relative similarities in model sensitivity to these parameters, an inverse modelling study using

MCMC with high resolution calibration data that accounts for natural variability appears to be feasible, and therefore will form25

the focus of a second study to better quantify parametric sensitivities and constrain parametric uncertainties in a full GSA.

Nozière et al. (2014) used state of the art extraction techniques (Baduel et al., 2012) that allowed them to observe surface

tension values as low as 30 mNm-1 in aerosols when allowing for equilibration times. Here, however, it has been deduced

that due competing partitioning effects - surface tension depression and redistribution of surfactant concentration - result

in values of surface tension close to that of water at the point of CCN activation. This result supports conclusions reached30

by Prisle et al. (2012) for global simulations CDNC. Therefore, the full treatment of bulk-surface partitioning returns CCN

spectra almost identical to those calculated using simple Köhler theory with a surface tension value of water. Furthermore,

the measurements recorded by Nozière et al. (2014) suggest the bulk-surface framework employed here may not be correct
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model for the behaviour of all surfactants and concentrations such as those they reported. This warrants further theoretical

and/or experimental investigations. It should be noted that care should be taken when choosing values for surface tension

in future aerosol-CCN closure studies based on the framework built here; CCN counter residence times, for example, are

not long enough to facilitate surfactant equilibration times such as that reported by Nozière et al. (2014), therefore a closure

study will likely prove unsuccessful or, at best, successful for the wrong reasons. Similarly, it has been suggested that lack5

of control of the saturation ratio of all semi-volatiles in such instruments might influence retrieved single particle properties

(Topping and McFiggans, 2012). With respect to future use of the four partitioning schemes employed here, while treatment

of surface tension depression or water activity alone lacks a physically justified basis, we should not necessarily continue to

use a simple Köhler theory with the surface tension of water or, at additional computational demand, the full treatment blindly,

as neither formulations have seen adequate verification from experimental data relating to surfactants. This is complicated by10

the possibility of additional composition dependent processes not only related to surfactant behaviour. Nonetheless, in order

to increase current understanding of the role that bulk-surface partitioning plays in cloud nucleation, development of more

sophisticated instrumentation, such as that of Baduel et al. (2012), must be a priority. In particular, CCN counters that operate

on a highly resolved range of atmospheric supersaturations and have residence times to sufficiently capture equilibrium of

surfactants are required. In addition, the use of single particle levitation techniques such as those used by Lienhard et al. (2015)15

might provide additional insights into the role of surface tension should they be able to access complex mixed aerosol.

Ervens et al. (2005) examined several chemical and compositional effects simultaneously and found compensating parame-

ters resulted in a decreased sensitivity of total cloud droplet numbers when compared to studies treating the effects individual.

Therefore, to have a good understanding of these effects global sensitivity analyses (GSA) are required. Response surfaces have

here shown that several parameters may be identifiable in the complete parameter space and also that there are many interact-20

ing parameter pairs. Interacting parameters indicate the model under consideration can be simplified by reducing interacting

parameters in single parameter as performed for  by Kreidenweis et al. (2005). Therefore the inverse modelling framework

developed here will be revisited in a future study. By implementing a Monte Carlo Markov Chain (MCMC) algorithm in a

similar manner as performed by Partridge et al. (2012), a statistically conditioned parameter optimisation and GSA can be con-

ducted. The applicability of the algorithm will be first benchmarked against synthetic measurement data, i.e. calibration data25

used in this study, before being applied to real world measurements taken from the European Integrated project on Aerosol

Cloud Climate and Air Quality interactions (EUCAARI) (Paramonov et al., 2015). While the response surface analysis here

suggests that a proper treatment of bulk-surface partitioning produces CCN concentrations similar to those of the classic Köh-

ler theory, thus questioning its use in already computationally demanding global modelling, it only provides insight into 2D

planes of the full parameter space. Using an MCMC simulation this preliminary conclusion can be readdressed using a more30

rigorous approach that also provides a greater understanding of the entire parametric landscape.

At this stage, results show that there are many parameter interactions present in CCN modelling. In addition, it is also clear

that log-normal distribution parameters, compositional fractions, surface tension and solution ideality are all parameters that

exhibit high sensitivity and as a community we must seek to reduce uncertainties in these parameters for effective global climate

modelling. Herein it has been demonstrated that inverse modelling of CCN spectra may indeed be an effective methodology35
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for constraining these uncertainties under an appropriate definition for the calibration data. Both the resolution and range of

the calibration data are important not only for diagnosing parametric sensitivities, but also for simultaneous minimisation

of the OF and correct parameter calibration, i.e. ascertaining the feasibility of inverse closure. In particular, a future study

using an MCMC approach to GSA and inverse modelling seems promising when employing uncorrupted CCNC-like synthetic

calibration data. However, the end goal is to confront the model with real world observations. By corrupting the synthetic5

calibration data to represent natural variability, it is shown that a high resolution definition of the calibration data is required for

successful aerosol-CCN inverse closure with respect to some parameters. As such, this result should serve as a recommendation

for the development of instrumentation that can be used in-situ to measure CCN spectra at higher resolution. In the absence of

such instrumentation, functional fitting of CCN spectra obtained from current instrumentation will be required.
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Mass fractions

Component ⇢ [kgm�3] M [gmol�1] Marine average Polluted continental Rural continental

Model organic 1350 260 0.18 0.40 0.60

BC 2000 12 0.30 0.075 0.10

(NH4)2SO4 1770 132 0.00 0.2625 0.15

NaCl 2160 58.44 0.52 0.00 0.00

NH4NO3 1720 80.55 0.00 0.2625 0.15

Table 1: Density, molecular weight and mass fraction of each aerosol component in all environments. The mass fractions included here are used

to derive true parameter values for f
insol

and ↵ in table 2.

Environment Marine Average Polluted Continental Rural Continental

Parameter Min True Max Min True Max Min True Max

⇢
org

[kgm-3] 750 1350 1630 750 1350 1630 750 1350 1630

M
org

[gmol-1] 105 260 730 105 260 730 105 260 730

� 0.75 1.0 1.0 0.75 1.0 1.0 0.75 1.0 1.0

� [mNm-1] 30.0 55.0 72.8 30.0 55.0 72.8 30.0 55.0 72.8

↵ 0.06 0.26 0.46 0.12 0.76 3.10 1.50 2.00 2.50

f
insol

0.10 0.30 0.50 0.03 0.075 0.12 0.05 0.10 0.15

K 26200 31071 35942 26200 31071 35942 26200 31071 35942

� [mmolm-2] 0.0025 0.00255 0.0026 0.0025 0.00255 0.0026 0.0025 0.00255 0.0026

N1[cm
�3] - 265.00 - - 4900.00 - - 1010.00 -

�1 - 1.45 - - 1.55 - - 1.71 -

r̄1[nm] - 21.00 - - 33.00 - - 23.70 -

N2[cm
�3] 60.00 165.00 250.00 730.00 1200.00 1600.00 215.00 451.00 690.00

�2 1.40 1.50 1.60 1.50 1.55 1.62 1.40 1.58 1.75

r̄2[nm] 70.00 82.50 100.00 75.00 93.50 105.00 75.00 89.80 105.00

Table 2: True parameter values used for calibration data for all environments and their corresponding parameter ranges used for perturbations in the

response surface analysis.
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Parameter Relative sensitivity Linear interactions Non-linear interactions

N2 Very high ↵, � f
insol

�2 Medium - -

r̄2 High - -

↵ High N2,� ⇢
org

, f
insol

f
insol

High - N2, ⇢
org

, ↵, �

K Low � -

� Low K -

� High N2, ↵ f
insol

⇢
org

Medium - ↵, f
insol

M
org

Low - -

� Very high �2 M
org

, ⇢
org

, ↵, f
insol

, �

Table 3: Summary of qualitative sensitivities and parameter interactions observed in response surfaces for all

parameters used in the the complete partitioning scheme a

p

w

�

nf for the marine environment. The surface

tension � for classical Köhler theory a

np

w

�

f is also included at the bottom of the table.
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