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Abstract. This study explores the inter-decadal variability and trends of surface horizontal visibility at the urban 12 

area of Athens from 1931 to 2013, using the historical archives of the National Observatory of Athens (NOA). A 13 

prominent deterioration of visibility in the city was detected, with the long- term linear trend amounting to -2.8 14 

km decade-1 (p < 0.001), over the entire studied period. This was not accompanied with any significant trend in 15 

relative humidity (RH) or precipitation over the same period. A slight recovery of visibility levels seems to be 16 

established in the recent decade (2004-2013).  It was found that very good visibility (> 20 km) occurred at a 17 

frequency of 34 % before the 1950s, while this percentage drops to just 2 % during the recent decade. The rapid 18 

impairment of the visual air quality in Athens around 1950, points to the increased levels of air pollution from 19 

local and/or regional emission sources, related to high urbanization rates and/or higher rates of anthropogenic 20 

emissions increase on a global scale at that period. A marked seasonal cycle was detected in visibility before 21 

the1950s, which attenuates afterwards. Visibility was found to be negatively/positively correlated with relative 22 

humidity (RH)/wind speed, the correlation being statistically valid at certain periods. Wind regime and mainly 23 

wind direction and corresponding air masses origin was found to highly control visibility levels in Athens. The 24 

comparison between visibility in Athens and at a reference, non urban site, revealed similar negative trends over 25 

the common period of observations, suggesting that apart from the contribution of local sources, visibility in 26 

Athens is highly determined by aerosol loads of regional origin. Satellite derived aerosol optical depth (AOD) 27 

retrievals over Athens since 2000, and surface measurements of PM10 confirmed the relation of visibility with 28 

aerosol loads. 29 
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 30 

1 Introduction 31 

Visibility is defined as the greatest distance at which a black object of suitable dimensions (located on the 32 

ground) can be seen and recognized, when observed against the horizon sky during daylight, (WMO, 1992). 33 

Visibility represents one of the dominant features of the climate and landscape of an area. Although it is highly 34 

affected by atmospheric circulation and the prevailing meteorological conditions, under clear sky conditions it is 35 

mainly determined from the loading of atmospheric aerosols (Davis, 1991; Lee, 1994; van Beelen and van 36 

Delden, 2012; Doyle and Dorling, 2002; Singh and Dey, 2012), therefore, visibility can be a strong indicator of 37 

air quality at an area. Horizontal visibility has been also introduced in formulas for the estimation of atmospheric 38 

turbidity parameters (e.g. in the Ångström atmospheric turbidity coefficients, Eltbaakh et al., 2012). 39 

Aerosols in the atmosphere contribute to light extinction by scattering and absorbing, thus they reduce visibility 40 

(Appel et al., 1985; Chan et al., 1999; Elias et al., 2009; Singh and Dey, 2012). The impact of particulate matter 41 

on visibility depends on its physical (e.g. particle size distribution) and chemical properties (Dayan and Levy, 42 

2005). In particular, visibility is inversely related to light extinction coefficient, which is determined from 43 

scattering and absorption of light by gases and particles, the latter (e.g. sulphate and carbon containing particles) 44 

being the main contributor (Malm, 1999; Hand et al., 2002; Baumer et al., 2008; Deng et al., 2011; Wang et al., 45 

2012). Sulphate and carbon containig particles have a major role in light absorption, while the role of relative 46 

humidity (RH) on visibility is also important (Larson and Cass, 1989; Malm, 1999), as when RH reaches 47 

saturation values, visibility deteriorates due to fog formation and the hygroscopic growth of SO4
2-, NH4

+ and NO3
-  48 

particles (Tang, 1996; Sing and Dey, 2012).  At the local to regional level, wind speed and direction are also very 49 

important factors, as they determine the transport and origin of air pollution. 50 

Although the use of visibility as a viable atmospheric variable has been disputed by many researchers due to the 51 

numerous biases related to observational procedures (Davis, 1991), visibility statistics have been increasingly 52 

used as a surrogate for aerosol loads (Zhao et al., 2011), especially since visibility records span quite long-term 53 

periods. Today, there is a large number of studies that use visibility observations to investigate the spatial and 54 

temporal variation of the optical properties of the atmosphere, mainly in relation to pollutants emissions and 55 

aerosol loads. Studies refer to global, regional and local scales. On a global scale, a decrease of clear sky 56 

visibility over land from 1973 to 2007 is reported by Wang et al. (2009). This is interpreted in terms of aerosol 57 

concentrations and its impact on incident solar irradiance. A significant decrease is observed over Asia, South 58 
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America, Australia and Africa, while over Europe visibility increased after the 1980s, as a result of air pollution 59 

mitigation measures. Vautard et al. (2009) found a significant decrease in the frequency of low visibility days in 60 

Europe after the 1980s, which is spatially and temporally correlated with SO2 emissions. Stjern et al. (2011) 61 

reported that emission reductions from 1983 to 2008 in the heavily industrialized area of central Europe (the 62 

formerly called Black Triangle, BT (named from the triangle of the meeting borders of Germany, Poland, and the 63 

Czech Republic) caused an increase of 15 km in the horizontal visibility, in contrast to the clean area where 64 

visibility increased by only 2.5 km. Doyle and Dorling (2002) observed significant improvement of visibility 65 

after early 1970s at many sites in UK, attributed to changes in the use of fuels, while Van Beelen and van Delden 66 

(2012) found that the proportion of days with high visibility (> 19 km) almost doubled since the early 1980s, in 67 

the Netherlands. These findings for Europe are in line with the so called dimming/brightening periods, referring 68 

to observed decreasing/increasing trends of surface solar radiation (SSR), associated with relevant changes in 69 

anthropogenic emissions (e.g. Streets et al., 2006; Wild, 2009; Cermak et al., 2010; Folini and Wild, 2011; Nabat 70 

et al., 2014). 71 

In contrast to European areas, a tendency towards lower visibility is observed in developing countries (e.g. China, 72 

South Korea, South Taiwan, India), where it is still difficult to control air pollution (Ghim et al., 2005; Che et al., 73 

2007; Wan et al., 2011; Singh and Dey, 2012; Wu et al., 2012). Along this line, Wu et al. (2012) found strong 74 

correlation between AOD and visibility in China over the period 2000-2009, and an overall decreasing trend in 75 

visibility (under sunny conditions) during the last 50 years. Singh and Dey (2012) correlated visibility in Delhi 76 

with aerosol composition and reported a rapid decrease of visibility during 1980-2000, and stabilization 77 

afterwards. 78 

Urban environments are of particular interest, as air pollution from local sources is superimposed on other 79 

regional factors, strongly impacting visibility (Davis, 1991; Eidels-Dubovoi, 2002; Tsai et al., 2003, 2007; Dayan 80 

and Levy, 2005; Chang et al., 2009; Kim, 2015).  81 

The present study explores the historical observations of visibility in Athens, which is the oldest    time series of 82 

visibility in Greece and, to our knowledge, one of the oldest, uninterrupted time series of visibility in the eastern 83 

Mediterranean. The records are retrieved from the historical climatic archives of the National Observatory of 84 

Athens (NOA) and span a period of more than 80 years (1931-2013). In the past, Carapiperis and Karapiperis 85 

(1952) reported on the correlation between the visibility and the blue colour of the Attika sky, while 86 

Kanellopoulou (1979) analysed visibility in Athens for the period 1931-1977 and reported a pronounced decrease 87 

after the 1950s. Since then, there has been no other study addressing changes in visibility, as well as the factors  88 
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behind these changes, during the last 40 years, when significant changes occurred in Athens in terms of urban 89 

expansion, traffic load, 2004 Olympic Games constructions and the economic recession (starting in 2008). The 90 

inter-decadal variability and long-term trends of visibility in Athens are presented in the study. The role of 91 

meteorology and aerosol loads (of local and regional sources) on the variability and trends are investigated and 92 

discussed, while the relationship between visibility and aerosol loadings is investigated, through the analysis of 93 

satellite AOD retrievals over Athens since 2000, but also surface measurements of PM10 in Athens and Finokalia 94 

station (Crete) over shorter periods.  95 

  96 

2 Study area and data 97 

2.1 Study area 98 

Athens, the capital of Greece, concentrates the largest part of the commercial, financial, societal and cultural 99 

activities of the country. The Greater Athens Area (GAA) (Fig. 1) extends beyond the administrative municipal 100 

city limits and covers a surface of 433 km2. The population of GAA is approximately 3.7 million (almost twice 101 

the population of 1961) and accounts for more than one third of the Greek population. The growth of the 102 

population was coupled with the number of vehicles. Specifically, the number of private cars rose from 2 % of 103 

inhabitants in 1964 to 44 % in 2008. The population growth and the increased number of automobiles has caused 104 

traffic problems, increased anthropogenic emissions and degradation of air quality in the city. The complex 105 

topography, consisting of relatively high mountains around GAA (Fig. 1), induces poor ventilation of the city. 106 

Sea/land breezes appear along the axis NE - SW and have a major role in the accumulation of air pollutants 107 

(Kalabokas et al., 1999a, b). 108 

 In order to compare our findings for Athens with a reference, remote site, the visibility records from the 109 

Heraklion airport (HER) in Crete Island, were used (Fig. 1). Heraklion is located about 330 km south of Athens, 110 

while its airport is 5 km east of the city with no significant (or systematic) influence from the urban web.    111 

2.2 Climatic features of Athens  112 

Athens has a temperate climate, with warm and dry summers and more wet and mild winters, typical for eastern 113 

Mediterranean. Table 1 presents monthly and annual normal values along with standard deviations of the daily 114 

mean, maximum and minimum air temperature, precipitation amount and precipitation frequency (PF) (defined 115 
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as the number of days with total precipitation > 1 mm, following WMO), relative humidity and wind speed in 116 

Athens, based on the WMO reference period, 1971-2000. July and August are the warmest and driest months of 117 

the year.  Actually, the periods from May to September and from October to March represent the dry and wet 118 

periods of the year respectively.  Precipitation is sparse in summer (June- August), with the total amount 119 

averaging 20 mm and precipitation frequency averaging 3 days. Athens receives on average approximately 400 120 

mm of rain per year, corresponding to 43 rainy days (Table 1).  121 

 During summer, the area is dominated by anticyclonic circulation that enhances air temperature and intensifies 122 

urban heat island. Athens has been experiencing a significant warming since the mid 1970’s, more pronounced in 123 

summer, which is the additive result of regional warming and gradual intensification of the urban heat island 124 

(Founda, 2011; Founda et al., 2015). Strong northeasterly winds in late summer, known from antiquity as 125 

‘Etesians’, induce a relief on air temperature and air pollution levels in the city.  126 

Figure 2b presents the seasonal variability of air masses origin over Athens according to the sectors defined in 127 

Fig. 2a, based on 10-yr climatology of daily air trajectories. The S (south) sector is linked to transport of air 128 

masses from arid areas of N Africa, frequently associated with dust events that affect the eastern Mediterranea 129 

(Hamonou et al., 1999; Gkikkas et al., 2015), the N (north) sector accounts for Balkans and the main continental 130 

Europe, while the W (west) sector corresponds to SW Europe and the W Mediterranean Basin. Note that air 131 

masses transport from the W sector are significantly blocked by the high altitude mountain chain of Pindus (> 132 

2500 m), that expands from North to South along western Greek mainland. Air masses origin was identified by 133 

applying a 4-day back-trajectory analysis, calculated daily at 12:00 UT with the Hybrid Single-Particle 134 

Lagrangian Integrated Trajectory (HYSPLIT) model (version 4.9) (Draxler et al., 2009).  135 

On an annual basis, air masses from the N and NE sectors dominate, contributing by more than 60 % and 136 

showing profound seasonal variability (maximum in summer). Similar conclusions were obtained based on 137 

surface wind speed and direction measurements reported in Fig. 3. Winds from N-NE directions prevail in Athens 138 

at a frequency of nearly 38 % (Fig. 3). This sector is also associated with the occurrence of high wind speeds, as 139 

shown in the same figure. The second most frequent surface winds correspond to S-SW directions (27%). The 140 

frequency of occurrence of this sector maximizes during the intermediate seasons (spring and autumn) and is 141 

associated with the occurrence of dust events from northern Africa and, in cases of light winds, with sea breezes 142 

from the Saronic Gulf (Fig. 1).   143 

2.3 Overview of air pollution in Athens 144 
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A short introduction on the factors that diachronically control air pollution levels in Athens is presented here, to 145 

facilitate the interpretation of visibility variations in terms of pollutants concentrations. 146 

Air pollution in Athens has been systematically measured since the early 1970s. Road transport, domestic 147 

combustion and industrial activity have been the main sources of air pollution in GAA, throughout the years. 148 

Downward trends of sulfur dioxide, black smoke, carbon monoxide and nitrogen oxides have been reported from 149 

the mid 1980s to the late 1990s, attributed to several anti pollution measures adopted by the state (e.g. 150 

replacement of the old technology gasoline-powered private cars and the reduction of the sulfur content in diesel 151 

oil) (Kalabokas et al., 1999a). Negative trend of NO2, NOx and O3 from the mid 1980s to 2009 is also reported in 152 

several urban stations (Mavroidis and Ilia, 2012). 153 

Measurements of particulate matter (PM) had been only occasionally conducted in Athens before the EU 154 

Directive (1999/30/EC) was launched, revealing increased concentrations of PM10 (Hoek et al., 1997). 155 

Chaloulakou et al. (2003) reported on PM10 and PM2.5 at a single road traffic sampling location from 1999-2000 156 

and underlined the contribution of local emission sources, mostly traffic, on the high levels of PM concentration. 157 

Grivas et al. (2004) highlighted the significant vehicular contributions in PM10 concentrations in Athens during 158 

2001-2004 and quantified the exceedances of the annual limit set by the EU Directive. 159 

Studying the contribution of local sources versus regional and the role of long-range transport over megacities of 160 

the eastern Mediterranean, including GAA, Kanakidou et al. (2011) summarized that a significant number of PM 161 

exceedances registered in Athens, are associated with regional pollution sources or natural dust transport, clearly 162 

highlighting the importance of regional transport processes. Theodosi et al. (2011), compared simultaneous mass 163 

and chemical composition measurements of size segregated particulate matter (PM1, PM2.5 and PM10) at two 164 

urban and a reference, non-urban background site, concluding that, during the warm season there is no significant 165 

(actually < 15 %) difference in PM1 between the urban and reference sites, while on the other hand, local 166 

anthropogenic sources dominate during the cold season. Regarding the coarse fraction, a significant contribution 167 

from soil was found in urban locations throughout the year, contributing significantly (up to 33 %) to the local 168 

PM10 mass. 169 

Regarding columnar aerosol loads and using ground-based AOD measurements in Athens, Gerasopoulos et al. 170 

(2011) showed that the greatest contribution (40 %) to the annually averaged AOD, comes from regional sources 171 

(namely the Istanbul metropolitan area, the extended areas of biomass burning around the north coast of the 172 

Black Sea, power plants spread throughout the Balkans and the industrial area in the Po valley). Additional 173 
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important contributors are dust from Africa (23 %), whereas the rest of Europe contributes another 22 %. Gkikkas 174 

et al. (2015) found good correlation between AOD550nm and surface PM10 over the Mediterranean basin during 175 

desert dust episodes (2000-2013) and reported higher intensity but lower frequency of such episodes over the 176 

central and eastern Mediterranean. Additionally, Hatzianastassiou et al. (2009) found that local anthropogenic 177 

emissions in GAA contribute by 15-30 % to the total AOD, as derived from satellite-based AOD measurements.  178 

Vrekoussis et al. (2013) reported on the improvement of air quality in Athens during the period 2008-2013, as a 179 

result of the economic recession and the subsequent cut down on vehicles use and industrial activity. For the 180 

same period, Paraskevopoulou et al. (2014) showed that the massive turn of Athens' population to wood burning 181 

for residential heating purposes gave rise to smog episodes characterized by high PM spikes during night time in 182 

winter. A longer-term (2008-2013) analysis of aerosol chemical composition and sources at a suburban site in 183 

Athens by Paraskevopoulou et al. (2015) revealed that the area of Athens is now generally dominated by aged, 184 

transported aerosols.  185 

2.4 Visibility observations in Athens 186 

The historical climatic records of the National Observatory of Athens (NOA) were used in this study. NOA is 187 

established on the Hill of Nymphs (latitude: 37.97 0N, longitude: 23.71 0E, altitude: 107 m, above sea level), at 188 

the historical center of the city, near Acropolis. The location of the observations on the top of a hill ensures 189 

unobstructed view towards all directions. Visibility observations have been conducted uninterruptedly at NOA at 190 

least 3 times per day, since the late 1920’s. Daily observations of visibility at 14:00 LST (LST = UT + 2hrs), 191 

from 1931 to 2013 were used in the study. The time series is complete, with a very short gap of 6 days occurring 192 

in December 1944, owed to political convulsion in the country at that period.  193 

Visibility data at other stations (e.g. Heraklion, Crete) were extracted from the network of the Hellenic National 194 

Meteorological Service (HNMS) and actually represent visibility observations at the airport station, initiated after 195 

mid the 1950s. Meteorological data for Athens over the period 1931-2013, were also acquired from the historical 196 

archives of NOA. Monthly, seasonal and annual mean values of visibility were derived from the daily 197 

observations at 14:00 LST.  198 

An empirical scale of visibility classes, as recommended by the World Meteorological Organization (WMO), has 199 

been used for visibility observations at NOA (Table 2). Classes are defined based on the greatest distance at 200 

which a predefined object can be seen and recognized with naked eye. The procedure requires that an operator 201 
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scans the horizon for predetermined objects. In the case of Athens, some historical buildings in the city, but also 202 

certain objects of the surrounding landscape, unaltered over the years, (e.g. objects on the mountains or islands of 203 

the Saronic Gulf, Fig. 1), were chosen to represent visibility classes and relevant distance ranges. The procedure 204 

inevitably introduces some kind of subjectivity and bias in the measurements, related to individual eyesight of 205 

different operators. It is assumed however, that the execution of visibility observations by different operators over 206 

the years could have possibly had a compensating effect and an overall reduction of biases. More details about 207 

the possible errors and validity of visibility observations have been thoroughly discussed by Davis, (1991).  208 

The use of the WMO scale introduces a further uncertainty on visibility observations, associated with the 209 

amplitude of visibility ranges corresponding to each visibility class. Information on the use of WMO scale and 210 

relative uncertainties, as well as the procedure followed for averaging daily visibility observations is provided in 211 

Supplementary materials.  212 

2.5 Aerosol data used in the study 213 

Long time series of atmospheric pollution measurements in Athens and the selected reference site would enable 214 

drawing direct relationships between visibility and aerosols and would provide evidence on the character 215 

(regional or local) of atmospheric pollution in Athens and its impact on long-term visibility variations. Given that 216 

such time series are missing, we used shorter time series of aerosol measurements for a direct comparison 217 

between visibility and atmospheric pollution in Athens. 218 

In an effort to explore the relationship of visibility with AOD over Athens, we used the Terra/Modis AOD at 550 219 

nm, available since 2000. NASA’s Terra satellite is sun synchronous and near polar-orbiting, with a circular orbit 220 

of 705 km above sea level. MODIS is capable of scanning 36 spectral bands across a swath 2330 km wide. 221 

MODIS aerosol products were used in order to analyze the temporal and spatial variability of aerosols over the 222 

wide area of interest. In this study, we used daily level-2 collection 5.1 MODIS/Terra AOD at 550 nm. Daily 223 

overpass data for the specific area were extracted at a spatial resolution of 50 x 50 km2. Previous studies have 224 

shown that such special resolution product ensures sufficient daily measurements without losing out to the higher 225 

spatial resolution and hence provide a better opportunity of correctly viewing the atmospheric aerosol load 226 

(Ichoku et al., 2002). The overpass time is 09:35 ± 45 min UT. 227 

Surface PM10 measurements in Athens were also used to verify the relationship between visibility and 228 

particulate pollution from surface measurements. It is well known that desert dust plumes are often transported in 229 
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altitude over the Mediterranean (e.g. Hamonou et al., 1999: Gkikkas et al., 2015) and a portion of surface PM 230 

exceedances in Athens is associated with natural dust transport (Kanakidou et al. (2011).  The analysis was based 231 

on a short data set of PM10 measurements at two stations in Athens (Aristotelous and Maroussi), covering the 232 

period 2008-2012. Aristotelous is an urban street station in the center of the city and Maroussi is a suburban 233 

station, at a distance of about 15 km to the North of NOA. 234 

Finally, a data set of PM10 measurements at a reference station in Crete (Finokalia station), covering the period 235 

2005-2014 was used, for the detection of any trends, representative of regional atmospheric pollution trends. 236 

Finokalia station is located at a distance of less than 50 km East of Heraklion airport.  237 

 238 

3 Results 239 

3.1 Inter-decadal variation of visibility and trends  240 

Figure 4 displays the long-term evolution and variability of the annual visibility in Athens from 1931 to 2013. 241 

The population growth in the city of Athens over the same period is also shown, while the figure also displays the 242 

long-term variability of the relative humidity in Athens (which is discussed below). It is obvious that the annual 243 

visibility in Athens has undergone a very strong and almost continuous decline over the past 80 years, in 244 

coincidence with the increase in population. The long-term linear trend over the whole studied period was found 245 

to be equal to -2.8 km decade-1 (p < 0.001). However, this trend is not constant throughout the entire studied 246 

period. Three sub-periods are visually discerned in Fig. 4 (also confirmed with sensitivity tests): (a) 1931-1948, 247 

(b) 1949-2003 and (c) 2004-2013. Visibility levels are remarkably higher in the first sub-period varying around 248 

25 km. A slight negative trend is observed during this period       (-0.66 km decade-1). In the late 1940s, visibility 249 

experienced a striking and abrupt decrease at the time of population first burst, which was then followed by a 250 

progressive deterioration, at least until the early 2000s. In this second sub-period (1949-2003) visibility decreases 251 

at a rate of -2.33 km decade-1 (p < 0.001). A tendency of stabilization or even recovery seems to be established 252 

during the recent decade 2004-2013, with visibility showing a slight increasing trend (+ 0.07 km yr-1). A detailed 253 

discussion on the observed trends and their linkage with air pollution is presented in section 3.5. 254 

 255 

3.2 Frequency distribution of visibility ranges 256 
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Figure 5 illustrates the frequency of occurrence of different visibility ranges as described in Table 2 for the three 257 

sub-periods. In the first sub-period, visibility values lie within the range of 10-20 km at a percentage of 36 % and 258 

of 20-50 km at a percentage of 34 %. Very high visibility ( > 50 km) accounts for a considerable percentage (~9 %) 259 

and poor visibility ( <  2 km) corresponds cumulatively to only 2 %. The frequency of visibilities lower to 1 km is 260 

very low (0.4 %), while visibility was found to be lower to 500 m only in 9 cases. Cumulatively, visibility 261 

exceeding 10 km corresponds to approximately 80 % of the cases during this period.  262 

A shift towards lower visibility values is observed during the second sub-period, namely 1949-2003. Specifically, 263 

the most frequent visibility ranges are 4-10 km (38 %) and 10-20 km (34 %). The frequency of visibility > 50 km 264 

is negligible (0.6 %) and the frequency of poor visibility ( < 2 km) amounts cumulatively to 5.6 % , with 0.9 % 265 

corresponding to visibility < 1 km. Visibility lower to 500 m was observed only in 12 cases. Cumulatively, the 266 

percentage of days with visibility exceeding 10 km drops to 45 % during this sub-period. 267 

The frequency distribution changes dramatically during the most recent period (2004-2013). In particular, 268 

although visibility range of 4 -1 0 km remains the most frequent (30%) as in the second sub-period, almost similar 269 

frequency (~28 %) is also observed in the range of 2-4 km, corresponding to a doubling of the percentage of this 270 

category. The frequency of poor visibility (< 2 km) rises to approximately 25 %, with a substantial percentage (5.6 271 

%) accounting for visibility lower to 1 km and 0.46 % lower to 500 m. Cumulativelly, visibility did not exceed 4 272 

km for half of the days of the year during 2004-2013.  The percentage of days with visibility > 10 km is 18%, 273 

while frequency of very good visibility ( > 20 km) amounts to just 2 %. No case of visibility > 50 km was 274 

observed in this sub-period.  275 

3.3 Seasonal variation of visibility 276 

Since visibility is influenced by the prevailing meteorological conditions (Davis 1991; Sloane 1982), it is 277 

expected that it will also exhibit a seasonal variability, depending on the intra annual variability of climatic 278 

conditions at the examined area. Mean monthly values of visibility were calculated for all three sub-periods. 279 

Figure 6 presents the mean monthly values of visibility in Athens over the three sub-periods, normalized with the 280 

value of the month with the highest visibility. In the same plot, the mean monthly values of the relative humidity 281 

(RH), coinciding visibility observations at 14:00 LST over the period 1931-2013, are also shown. It is noteworthy 282 

that RH at NOA does not exhibit any significant trend over the years (as already shown in Fig. 4) and its monthly 283 

distribution is almost unaltered over the years. As it comes out from Fig. 6, visibility shows a distinct seasonal 284 

cycle in all three sub-periods, with better visibility occurring in the warm and dry season of the year. Although 285 
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seasonality is observed in all sub-periods, the pattern is more evident and robust in the first sub-period, with 286 

much higher visibility values (up to 40%) in the warm and dry months compared to cold and wet months. The 287 

pattern of visibility in this period is almost a mirror image of the pattern of RH and reflects the influence of RH 288 

on visibility and the anti-correlation between these two variables. The lowest values of RH correspond to July 289 

and August (mean value of RH ~35%) and this probably results to improvement of visibility. Moreover, strong 290 

northeastern winds (the so called ‘Etesians’) that prevail in eastern Greece during these months enhance 291 

ventilation and induce drier conditions in the city, therefore improving visibility. 292 

In the other two sub-periods, 1949-2003 and 2004-2013, higher visibility values are also observed during the 293 

warm and drier months (Fig. 6), however, the distinct seasonal cycle observed in the first sub-period has changed. 294 

During the second sub-period in particular, seasonality is noticeably attenuated and visibility differences between 295 

the warm and cold period is of the order of 10%. This possibly implies a weakening of the influence of 296 

meteorological conditions as a result of (or in combination with) stronger effect of air pollution on the visual air 297 

quality of the city.  298 

The minimum of visibility is constantly observed in March during all sub-periods.  Indeed, March falls in the 299 

transitional season of the year and thus bears higher values of RH compared to summer months (mean value of 300 

RH at 14.00 LST > 50 % and mean daily value 67 % in March). Additionally, March falls in the growing season, 301 

with enhanced pollen and biogenic aerosol emissions which is a known factor for visibility impairment (e.g. Kim, 302 

2007). Increased frequency of dust outbreaks from northern Africa in spring, influence extensively the area of 303 

eastern Mediterranean (Hamonou et al., 1999; Gerasopoulos et al., 2005, 2011; Gkikkas et al., 2015) and thus 304 

constitute a major factor for visibility impairment during spring months. Léon et al (1999) reported that ~ 40 % of 305 

the days with high aerosol optical depth at 865 nm (AOD865nm >   0.18) over Thessaloniki (Greece) were 306 

associated with African dust transport events, all observed in the period March – July, while Dayan and Levy 307 

(2005) found higher PM10 values and lower visibility levels during spring in Tel Aviv, associated with the 308 

frequent passage of cyclones that cause natural dust outbreaks.  309 

3.4 Visibility and meteorological conditions  310 

The impact of meteorological conditions on visibilty has been investigated by different researchers using 311 

different approaches , as for instance  the classification of synoptic circulation patterns (Sloane, 1982; Davis, 312 

1991; Dayan and Levy, 2005), the application of correction factors on extinction coefficient to account for RH 313 

effect (Che et al., 2007), the estimation of correlation coefficients between visibility and meteorological variables 314 
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(Deng et al., 2011), or simply the comparison of diurnal /seasonal cycles and temporal trends of visibility with 315 

the relevant cycles and trends of meteorological variables (Van Beelen and van Delden, 2012). Sloane (1982) 316 

reported that periods with exceptionally maxima or minima of visual air quality were related (apart from sulphate 317 

emissions) with favourable synoptic circulation patterns. Studying visibility in Tel Aviv (Israel), Dayan and Levy 318 

(2005) reported a strong dependence of visibility levels from meteorological conditions, synoptic weather 319 

patterns and air mass origin, with the highest mean values occurring in summer, related to the persistent nature of 320 

the summer synoptic weather pattern in the eastern Mediterranean. Deng et al. (2011) found that RH and wind 321 

speed were significantly correlated with visibility at an urban area of China, while Ghim et al. (2006) showed a 322 

considerable decrease in visibility in South Korea, despite the observed simultaneous decrease of the relative 323 

humidity levels. The relationship and possible impact of different meteorological parameters such as 324 

precipitation, RH, wind speed and wind direction on visibility in Athens is discussed below. 325 

3.4.1 Visibility and precipitation 326 

Precipitation is associated with scavenging of atmospheric particles (e.g. Remoudaki et al., 1991a; 1991b), 327 

possibly resulting to improvement of visibility. The precipitation frequency in particular, was found to control 328 

seasonal variability of the total atmospheric deposition of lead in western Mediterranean (Remoudaki et al., 329 

1991b). Rainy days on the other hand are associated with increased relative humidity, resulting in reduction of 330 

visibility. A plot illustrating the long-term variability of the annual precipitation amount and precipitation 331 

frequency (PF) at NOA from 1931-2013 was created, for the detection of any significant temporal trends which 332 

might have an effect on visibility trends (Fig. 7). According to Fig. 7, no long-term trend is observed in the 333 

annual precipitation amount at NOA from 1931-2013, which could have had an effect on long-term trends of 334 

visibility. Precipitation frequency on the other hand exhibits an overall negative trend over the same period (-1.1 335 

days decade-1), not constant, though.  Actually, PF decreases from the late 1960s to the late 1980s, while it 336 

presents an increasing tendency after 1990 (+1.3 days decade-1).  The correlation coefficient between annual 337 

visibility and PF was found to be positive only during the period from early 1970s to the late 1980s (+ 0.45, p < 338 

0.05). A negative correlation coefficients was found in the post 1990 period (-0.21), not statistically significant.  339 

Subsets of data were also produced for the creation of additional visibility time series, accounting for 340 

precipitation influence. Figure 8 presents visibility variability during the wet (October-March) and dry (May-341 

September) period of the year, along with the annual values. Lower values during the rainy and cold period of the 342 

year are most probably associated with higher values of relative humidity, resulting to reduction of visibility. 343 
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Despite the differences between the time series in Fig. 8, the overall tendency is similar, thus not affecting the 344 

validity of our conclusions as regards long-term visibility impairment in Athens. Additional plots created from 345 

subsets of ‘rain’ and ‘no rain’ days are provided in Supplementary materials (Fig. S4). 346 

3.4.2 Correlation between visibility and other meteorological parameters (RH, wind) 347 

Figure 9 presents the running correlation coefficient (15-yrs window) between visibility and relative humidity, 348 

over the period 1931-2013. As expected, the correlation coefficient between visibility and RH is negative, 349 

indicating the anti-correlation between these two variables. High RH enhances water uptake by airborne particles, 350 

leading to higher light scattering and thus visibility impairment. Actually, when RH exceeds a threshold level 351 

(e.g. > 70%) some inorganic salts, such as ammonium sulfate and nitrate, undergo sudden phase transitions from 352 

solid particles to solution droplets and become disproportionately responsible for visibility impairment, as 353 

compared with other particles that do not uptake water molecules (Malm, 1999). 354 

As it comes out from Fig. 9, the negative correlation between RH and visibility is statistically significant (p < 355 

0.01) almost over the entire studied period. However, a progressive weakening of the correlation coefficient with 356 

time is observed, indicating a less strong correlation between the two variables over the years. Stronger anti-357 

correlation is found until early 1970s, followed by lower (still significant) values till late 1970s. The progressive 358 

weakening of the correlation between RH and visibility in Athens, possibly suggests a progressive weakening or 359 

mask of the influence of RH on visibility, compared to the effect of other factors such as atmospheric pollution 360 

(although the influence of RH is enhanced in the presence of certain hygroscopic particles). On the contrary, the 361 

impact of surface wind speed on visibility seems to be stronger during the recent decades (Fig. 9). Higher wind 362 

speeds in this case (positive correlation) are related to the dispersion of air pollutants and the more efficient city 363 

ventilation. In others cases wind speed is also used as a proxy for long-range transport, but then a negative 364 

correlation would be expected. Lower values of the coefficient in the first decades possibly demonstrate that the 365 

lack of pollutants at that period diminishes the importance of ventilation. The correlation coefficient 366 

progressively increases over the years. The rate of increase is higher after the mid 1980s, when correlation 367 

becomes statistically significant (p < 0.01). Similar values (~ 0.29) of correlation coefficient between light 368 

extinction coefficient and wind speed are reported by Deng et al. (2011) in China.  369 

Apart from wind speed, visibility was also found to be sensitive to wind direction. A distinct variability of 370 

visibility with wind direction is observed in Fig. 10, for all sub-periods. Lower values of visibility are related to 371 

southerly winds, as they either bring dust from Sahara or warmer and more humid air masses from the sea (see 372 
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also Figs 1, 2b). Southeasterly winds are in general weak winds (see Fig. 3), while southwesterly winds are 373 

associated with sea breezes from the Saronic Gulf (Fig. 1). In general, sea breeze and calms favor the 374 

accumulation of pollutants, the formation of secondary aerosols and photochemical smog in Athens (Colbeck et 375 

al., 2002), thus reducing visibility. A number of S/SW events are also associated with strong wind speeds 376 

occurring during Sahara dust outbreaks, which enrich Athens atmosphere with dust particles that decrease 377 

visibility (Figs 2, 3). As it comes out from Fig. 10, the highest visibility occurs under northwesterly winds and 378 

this is robust over the entire studied period. An explanation for this, is that air masses originated from 379 

northwesterly directions are much drier as they have lost water vapor after passing over the high mountainous 380 

basin of Greek mainland (e.g. Pindos mountain), while air pollution is also blocked within the boundary layer by 381 

the mountain chain.  382 

3.5 Air pollution and urbanization relations to visibility  383 

In this section we attempt to interpret the observed inter-decadal variability and trends of visibility in Athens, in 384 

terms of air pollution. As already shown in Fig. 4, the pre-1950 period is characterized by much better visibility 385 

in Athens. From then on, visibility experienced a rapid decrease, followed by a smoother but continuous negative 386 

trend until the early 2000s. The period after 1950 signifies the post World War II epoch but also coincides with 387 

the end of a civil war in Greece (1946-1949), which was followed by an important urbanization wave in Athens 388 

(Maloutas, 2003). This is in line with the growth of Athens' population, as illustrated in Fig. 4. The greatest rate 389 

of population increase is observed between 1950 and 1960, when population in Athens almost doubled. The 390 

population growth was associated with a significant increase of constructions in the city. Apart from the intense 391 

urbanization in Athens, this period is also characterized by the most prominent increase of anthropogenic 392 

emissions on a global and European scale (e.g. Mylona, 1996; van Aardenee et al., 2001), which is discussed 393 

below.  394 

Although in the second sub-period, 1949-2003, visibility was found to be remarkably lower compared to the first 395 

one, a slight recovery of visibility was observed during the recent decade, 2004-2013 (Fig. 4). This improvement 396 

could be related to a number of reasons. The years after 2004 correspond to the post Olympic Games period in 397 

Athens. A number of important transport projects were completed prior to the Olympic Games in Athens in 2004. 398 

Such projects are for instance the construction of the Attika Ring Road (one of the largest in Europe), the 399 

construction of Tramway and the extension of Athens Metro. These projects have contributed to the reduction of 400 

the number of vehicles in the city, resulting to less traffic problems and lower air pollution levels. Another 401 
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possible contributing factor concerns the possible impact of the Greek economic recession (2008-2013) on air 402 

quality in Greece, and Athens in particular. Recent studies provide some evidence for this. For instance, 403 

Vrekoussis et al. (2013) found strong correlation between different economic metrics and air pollutants after 404 

2007, suggesting that the economic recession has resulted in proportionally reduced levels of air pollutants in the 405 

two biggest cities in Greece. This is further supported by other recent research studies that report a significant 406 

reduction in energy consumption after 2008, related to the rapid economic degradation (Santamouris et al., 2013).  407 

But how far are these changes in visibility in Athens due to local factors or can be considered representative of a 408 

more extensive area? To answer this question and also evaluate our findings as regards the urban influence, the 409 

Athens visibility record is compared with visibility at a reference, non urban station. From the available stations 410 

in Greece disposing long-term visibility observations, we chose the station at Heraklion airport (HER) in Crete 411 

Island. Actually, both sites, NOA and HER, are most of the year exposed to air masses of similar origin (from 412 

northeasterly directions), travelling over the Aegean Sea, in contrast to other sites of the country that are strongly 413 

affected by the mountainous volumes of the Greek mainland. Visibility observations at HER are available since 414 

the mid 1950s. Figure 11 presents the long-term variation of the annual visibility at HER along with annual 415 

visibility at NOA. Linear trends of the two time series for their common period (1956-2009) are also shown in the 416 

figure. The time series were found significantly correlated (correlation coefficient > 0.88, p < 0.05). 417 

As it comes out from Fig. 11, visibility levels at urban NOA are constantly lower by a few km (~ 7 km) compared 418 

to the background station, HER. It is remarkable that during the first two decades of parallel observations, both 419 

curves show significant covariance, easily realized from the peaks in 1959, 1966 and 1970 and the minima in 420 

1963 and 1973, suggesting the impact of large scale phenomena (for instance, volcanic eruptions in 1963) in the 421 

modulation of visibility levels. A prominent feature in Fig. 11 is that the background visibility at the reference 422 

site has been also on a downward route since the mid 1950s, in accordance to the observed decreasing trend of 423 

the visibility in Athens. As already stated, the beginning of the 1950s signifies a period with an outstanding 424 

increase of emissions in Europe. European SO2 emissions in particular, increased almost at a constant rate during 425 

the first half of the 20th century, while they experienced a quite abrupt increase in the 1950s and almost doubled 426 

their values between 1950 and 1960 (van Aardenne et al., 2001; Mylona, 1996). Figure 11 includes the rates of 427 

SO2 increase per decade in Europe (in Tg S decade-1), as reported by van Aardenne et al. (2001). Constant 428 

increasing rates (2 Tg S decade-1) are observed untill 1950, when the rate of increase reached 6 Tg S decade-1 429 

between 1950-1970. A decline of the increasing rate is then observed, while in the 1990s European sulfur 430 

emissions stabilize. Stabilization of emissions is followed by a continuous decline after 1990. Stjern et al. (2011) 431 
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reported a prominent decrease of SOx emissions and sulphate in aerosols in both eastern and western Europe from 432 

1990-2007, but with higher rates of decrease in eastern Europe.  433 

A very important finding in Fig. 11 is the similar slopes in the linear trends of the annual visibility at the 434 

background and urban stations, over their common period of observations (-2.2 km decade-1 and -2.4 km decade-435 

1, respectively). This feature implies that, apart from the absolutely lower values of visibility in the urban web of 436 

Athens, the inter-decadal variability of visibility in the city and the extended area is significantly modulated by 437 

large scale processes that control regional visibility, such as long-range pollution transport and/or changes of 438 

atmospheric circulation.  Many studies have identified the eastern Mediterranean as a crossroad of aerosols of 439 

different origins, sizes and chemical composition (Lelieveld et al., 2002; Hatzianastassiou et al., 2009; Kanakidou 440 

et al., 2011; Gerasopoulos et al., 2011), which inevitably affect optical properties of the atmosphere. Kanakidou 441 

et al. (2011) found that even in the large urban regions of the eastern Mediterranean, particulate matter has a 442 

significant contribution by distant anthropogenic pollution sources in the region but also by long-range transport 443 

of African dust.  444 

After the early 1990s, the time series diverge, with background visibility partly recovering, and visibility in 445 

Athens keeping declining at the same pace until 2003 (Fig. 11). Recovering of visibility at other Greek areas 446 

around the 1990s is also found by Lianou et al. (unpublished data) which is also in line with the observed 447 

visibility improvement in other European areas, related to emissions reduction (Wang et al., 2009; Vautard et al., 448 

2009). This last feature suggests that during this period, local emissions might have a dominant role in the 449 

determination of visibility in Athens.  450 

3.6 Visibility in Athens and AOD 451 

The realtionship of visibility with AOD over Athens was also explored using satellite data since 2000 (see 452 

Section 2.5). The AOD time series showed a significant (-2.4% per year) decrease from 2000 up to 2010 and a 453 

further decrease of (-7.4% per year) for the 2010-2014 period (Fig.12). 454 

To investigate the relationship between visibility and AOD changes, the two parameters are plotted together after 455 

data binning. Visibility and AOD measurements have been used as follows: Visibility at 12:00 UT was used 456 

according to the indices defined in Table 2 and plotted against average AOD from synchronous satellite 457 

overpasses. The mean AOD and its standard deviation are presented in Fig. 13. The AOD values are related with 458 

the visibility data using as the distance in km the middle point of each visibility bin (range). Only summertime 459 
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(June-August) MODIS AOD have been used, to keep visibility values unaffected from other atmospheric 460 

parameters like low clouds, rain or relative humidity. It is observed that for average AOD values for Athens (0.25 461 

using the mean June-August AOD at 550nm from our MODIS AOD dataset or 0.23 at 500 nm as reported by 462 

Gerasopoulos et al., 2011) visibility varies in the range of 4 km to 10 km. For cleaner conditions (W-NW-N, 0.12 463 

- 0.17 at 500 nm, Gerasopoulos et al., 2011) visibility can go as high as 20 km, while very low visibility (< 0.5 464 

km) is generally associated to the highest aerosol loads, with AOD > 0.3 (e.g. in the case of dust events, long-465 

range transport of urban/industrial pollutants and stagnant conditions). 466 

3.7 Visibility in relation to PM10 467 

An additional analysis was conducted to verify the relationship between visibility and particulate pollution from 468 

surface measurements using a short data set of PM10 in Athens as described in Section 2.5. Figure 14 presents 469 

visibility variation as a function of PM10 levels measured at Aristotelous (urban) and Maroussi (suburban) 470 

stations. Four different classes of PM10 levels were used, as shown in Fig. 14. The frequency of occurrence of 471 

each class is also shown in the figure. Despite the different locations and characteristics of the two stations, the 472 

observed frequencies are very similar in all classes of PM10 levels, with higher frequency corresponding to the 473 

class of 30 -60 μg m-3 at both stations. The frequency of PM10 > 90 μg m-3 at Aristotelous is double compared to 474 

the respective frequency at Maroussi. Independently of the location, the same strong relationship is observed 475 

between visibility reported at NOA and PM10 levels at both stations, revealing a prominent decrease of visibility 476 

with increasing PM10 levels, in agreement with our conclusions. Average visibility at NOA ranged between 8 and 477 

9 km under low PM10 levels (< 30 μg m-3), but is reduced to less than 3 km under severe episodes of particulate 478 

pollution (PM10 > 90 μg m-3). The correlation coefficient between daily measurements of PM10 levels and daily 479 

visibility at NOA was found equal to -0.38 (p < 0.05) and -0.36 (p < 0.05) for Aristotelous and Maroussi sites 480 

respectively.   481 

Figure 15 displays the variation of the mean annual values of PM10 at the reference station of Finokalia (Crete) 482 

over the 10-yr period (2005-2014), along with standard deviations. A decreasing tendency in PM10 levels is 483 

observed, which is also consistent with the slight recovery of visibility levels in Athens over the same period.  484 

 485 

4 Discussion and Conclusions  486 
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The present work analyses for first time the historical record of visibility in Athens (NOA) from 1931 to 2013 487 

and explores its long-term variability and trends. An attempt was made to interpret the temporal variations of 488 

visibility in terms of relevant changes of atmospheric properties (related to local or regional processes) and/or 489 

meteorological conditions. Since this is the longest record of visibility observations in Greece and one of the 490 

oldest in the broader area of the eastern Mediterranean, the analysis provided valuable information on the 491 

atmospheric properties of the area in the past, when air pollution records were missing.  492 

 The study period was divided into sub-periods corresponding to different visibility trends in the time series, each 493 

sub-period being affected by different factors.  494 

The role of meteorology on visibility was investigated in different ways. Visibility in Athens was found to reveal 495 

a distinct seasonal cycle, with higher visibility corresponding to the warm and dry months of the year (namely 496 

from May to September) and lower to the colder and wet months. Seasonality is more evident in the first sub-497 

period, when visibility in summer is up to 40% larger compared to winter. After the 1950s, the seasonal cycle 498 

attenuates and the differences in visibility between summer and winter months were found to be much less 499 

pronounced (of the order of 10%, Fig. 6). Lower visibility values were observed in March in all sub-periods, 500 

resulting from the combination of enhanced pollen and biogenic aerosols emissions, but also to increased dust 501 

outbreaks from northern Africa and relatively higher RH levels. 502 

As expected, visibility was found to be negatively correlated with RH, but correlation is stronger in the first sub-503 

period and attenuates over the years. On the contrary, a positive correlation between visibility and wind speed 504 

was detected which is statistically significant (p < 0.01) only during recent decades. Actually, stronger winds 505 

seem to improve visibility as they induce a cleanup of the atmosphere from air pollutants.  506 

 Visibility was found to be very sensitive to wind direction, reflecting the influence of air masses origin.  Lower 507 

visibility levels are constantly observed under southerly winds (Fig. 10). Such winds correspond to sea breeze 508 

circulation associated with increased humidity levels but also to accumulation of air pollutants in the city and 509 

formation of secondary air pollutants. In addition, some S/SW events are associated with strong wind speeds 510 

(Fig. 3) occurring during Sahara dust outbreaks. These events enrich Athens with airborne particles, thus 511 

decreasing visibility. 512 

The study demonstrated that visibility in Athens has undergone a prominent impairment since the early 1930s. 513 

The overall trend of annual visibility averages amounts to -2.8 km decade-1.  The impressively higher levels of 514 

visibility in Athens before the 1950s (also characterized by strong seasonality) reflect the transparency of the 515 
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atmosphere at that period, inherent to poorer aerosol loads from anthropogenic emissions (urban and/or regional). 516 

The dramatic decrease of the visual air quality in the 1950s coincides with a number of events (end of wars, rapid 517 

urbanization, increased emissions on local and regional scale) and points to the prominent role of aerosol loads in 518 

the atmosphere of Athens. Air pollution has gradually incurred a severe visual pollution in the city, with visibility 519 

lower to 4 km observed during more than half of the year in the recent decade, 2004-2013. The significant 520 

decrease of visibility in Athens was not accompanied with analogous significant trends in RH or precipitation 521 

(Figs 4, 7).   522 

The comparison of the annual visibility in Athens with visibility at a reference, non urban site (HER) in Crete, 523 

revealed some very interesting features. First, visibility in Athens was found to be constantly lower compared to 524 

HER, possibly suggesting the impact of local anthropogenic emissions in the urban web. However, both time 525 

series revealed similar and significant negative trends over their common period of observations (after the mid 526 

1950s), pointing to the major contribution of long and regional range transport of natural and anthropogenic 527 

pollution sources in the GAA urban area. Visibility deterioration after the mid 1950s is also reported in most 528 

European areas, followed by stabilization and/or improvement around the 1980s or later (Vautard et al., 2009; 529 

van Beelen and van Delden, 2012; Stjern et al., 2011). An improvement of visibility at HER around the 1990s 530 

was not associated with analogous improvement of visibility in Athens, where visibility deterioration continued 531 

until the early 2000s (Fig. 11). At that period, negative trends of main gaseous air pollutants are reported in 532 

Athens (Kalabokas et al., 1999a). However, the direct effect of such pollutants on light extinction is negligible 533 

compared to suspended particles and particularly to fine particles (< 1μm).  534 

As already stated in Section 2.3, the contribution of both local and distant emission sources in PM concentrations 535 

in Athens is suggested by a number of studies (e.g. Kanakidou et al., 2011; Gerasopoulos et al., 2011). Mainly 536 

local emission sources (e.g. traffic) have been found to contribute to PM10 concentration (Chaloulakou et al., 537 

2003; Grivas et al., 2004), while local anthropogenic sources seem to control PM1 concentration only during the 538 

cold months of the year (Theodosi et al., 2011). Using satellite-based AOD measurements, Hatzianastassiou et al. 539 

(2009) found that local anthropogenic emissions in GAA contribute up to 30% to the total AOD.  540 

A strong anticorrelation was found between visibility at NOA and PM10 levels, measured at two different stations 541 

(urban and suburban) in Athens over the period 2008-2012 (Fig. 14).  The relationship between AOD and 542 

visibility in Athens was examined in the study (Figs 12, 13). Illustrating the relationship between AOD, which 543 

consist in a vertically integrated parameter, and visibility, a horizontally integrated parameter, requires various 544 

assumptions. Using satellite based AOD and visibility observations for GAA, when assuming a vertically 545 
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constant extinction coefficient and a mixing layer that contains all aerosol load we end up describing the 546 

theoretical relationship (Koschmieder, 1924): Vis = k / AOD, where k is a function of the mixing layer height. 547 

The 82-years long time series of visibility in Athens unfolded for first time information on the atmospheric 548 

conditions in the area, for periods when atmospheric pollution measurements are missing. Although the analysis 549 

is subject to several limitations and assumptions, mainly related to methods of visibility observations, the results 550 

are robust and statistically significant, as the outstanding degradation of the visual air quality in the city over the 551 

years.  552 

The observed stabilization (or even slight improvement) of visibility in Athens in the very recent years could 553 

possibly be related to reduced local anthropogenic emissions as a result of important transport infrastructures 554 

(executed in view of Olympic Games) but also of the economic crisis in Greece. Although this last argument is 555 

already supported by some recent research studies (e.g. Vrekoussis et al., 2013; Santamouris et al., 2013), the 556 

impact of the economic crisis on local emissions seems to be more complicated and drawing out conclusions 557 

remains tentative. Besides, in the same period regional atmospheric pollution presents a decreasing tendency, as 558 

reflected in the negative trend of PM10 levels measured at the background station of Finokalia in Crete (Fig. 15) 559 

which is also consistent with the recent recovery of visibility in Athens.  560 
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 744 

Table 1: Mean monthly and yearly values with standard deviations of basic climatic elements in Athens (NOA), 745 

calculated from the WMO climatic period (1971-2000). (**) 746 

Month  

 

Tmean 

 (0C) 

Tmax 

(0C) 

Tmin 

(0C) 

RH (%) Rainfall 

(mm) 

Number of 

rainy days 

(> 1 mm) 

Wind 

Speed    

(m s-1) 

January 9.3 ±1.1 13.0 ±1.3 6.6 ±1.1 72.1 ±3.9 42.5 ±31 5.6 ± 3.0 3.1 ± 0.71 

February 9.6 ±1.4 13. 7 ±1.7 6.8 ±1.4 70.2 ±3.5 44.8 ±29 5.6 ± 2.1 3.4 ± 0.50 

March 11.5 ± 1.4 16.1 ± 1.8 8.2 ± 1.3 67.6 ± 4.3 50.2 ± 41 5.4 ± 2.6 3.3 ± 0.72 

April 15.4 ± 1.3 20.5 ± 1.6 11.5 ± 1.1 62.7 ± 4.6 32.7 ± 29 4.2 ± 2.6 2.8 ± 0.51 

May 20.3 ± 1.1 25.7 ± 1.3 16.1 ± 1.1 57.3 ± 4.0 16.7± 16  2.6 ± 1.9 2.9 ± 0.45 

June 25.0 ± 0.9 30.6 ± 1.2 20.4 ± 0.9 51.3 ± 3.7  7.5 ± 10 0.9 ± 1.0 3.1 ± 0.60 

July 27.3 ± 1.1 33.1 ± 1.4 22.7± 1.1  48.5 ± 4.2   6.6 ± 9 0.9 ± 1.1 3.5 ± 0.75 

August 26.8 ± 1.2 33.7 ± 1.4 22.5± 1.2  49.8 ± 5.1  7.2 ± 12 0.9 ± 1.2 3.5 ± 0.58 

September 23.4 ± 1.1 29.2 ± 1.5 19.4 ± 1.0 57.0 ± 4.7  9.4 ± 1 1.3 ± 1.6 2.9 ± 0.47 

October 18.5 ± 1.5 23.5 ± 1.8 15.1± 1.6  66.4 ± 3.7 42.9 ± 40 3.7 ± 2.4 2.9 ± 0.74 

November 14.0 ± 1.3 18.1 ± 1.5 11.1± 1.3  72.7 ± 3.8  59.9 ± 45 7.9 ± 3.8  2.9 ± 0.73 

December 10.8 ± 1.4 14.4 ± 1.8 8.2 ± 1.3 74.0 ± 3.2  62.6 ± 34 9.0 ± 13.4 3.0 ± 0.56 

Year  17.7 ± 0.5 22.6 ± 0.7 14.1 ± 0.5 62.0 ±1.9 389.5± 5 42.9 ± 9.0 3.1 ± 0.36 

 747 
(**) Climatic means were calculated from daily observations at NOA over the period 1971-2000. Daily time series are 748 
almost complete, with sporadic missing data in certain variables. In particular, data availability for the period 1971-200 749 
equals 100 % for Tmax, Tmin and rainfall, 99.9 % for Tmean, 99.8 % for RH and 99.4% for the wind speed.  750 

751 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2015-1025, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 21 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



28 

 

 752 

 753 

Table 2: The WMO empirical scale for visibility observations, used at NOA. 754 

Visibility 

Classes 
1 2 3 4 5 6 7 8 9 

Visibility 

Ranges   

50-

200m 

200-

500m 

500-

1000m 

1-2   

km 

2-4   

km 

4-10 

km 

10-20 

km 

20-50 

km 
>50km 

 755 

 756 
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 760 
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 765 

 766 

 767 

 768 

 769 
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 781 

 782 

Fig.1. Map of the study area in Greece, including the Athens urban station (NOA) and a reference, non-urban 783 

station (HER) at Heraklion airport, Crete. The gray surface represents the boundary of the Greater Athens Area 784 

(GAA). 785 
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Fig. 2a. Main sectors related with air masses origin in Athens. 808 
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 830 

Fig. 2b. Seasonal variability of the relative frequency of air masses origin in Athens on the sectors defined in Fig. 831 

2a, averaged over the period 2005-2014. Category ‘L’ refers to air masses of local origin. 832 
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 843 

 844 

 845 

 846 

Fig. 3. Frequencies of surface wind directions for three wind speed (wsp) categories at NOA, based on hourly 847 

values of the period 1971-2000. For instance, the NE direction occurs cumulatively at a frequency of 17% which 848 

is the sum of 7.9 % (wsp < 5 m s-1), 8.4 % (5 < wsp < 10 m s-1) and 0.7 % (wsp > 10 m s-1). The ‘C’ sector 849 

corresponds to calms (wsp < 0.3 m s-1).  850 
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Fig. 4. Inter-decadal variability of the annual visibility in Athens from 1931 to 2013,  along with linear  trends for 864 

three sub-periods: 1931-1948, 1949-2003 and 2004-2013 (red line). The dashed blue line presents the population 865 

growth in Athens (in millions) since 1930 (Founda, 2011). The long-term variability of the annual relative 866 

humidity (RH) in Athens is also displayed (upper black line). 867 
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Fig. 5.  Frequency distribution of different visibility ranges (Table 2) in Athens for the three sub-periods, 1931-887 

1948, 1949-2003 and 2004-2013.  888 
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Fig. 6. Normalized mean monthly values of visibility in Athens for the three sub-periods, along with mean 904 

monthly values of relative humidity (RH) for each sub-period. Vertical lines represent standard deviations of 905 

mean monthly values of visibility. 906 
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Fig. 7. Variation and long-term linear trends of the annual precipitation amount and frequency (number of days 919 

per year with precipitation > 1 mm) at NOA, over the period 1931-2013. Slopes of linear trends are also shown. 920 
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Fig. 8. Variation of visibility at NOA from 1931-2013 during the dry (May-Sep.), wet (Oct.-Mar.) and all year 942 

(Jan.-Dec.) period.  943 
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 967 

Fig. 9. Running correlation coefficient and confidence levels between visibility and wind speed (up) and 968 

visibility and RH (bottom) in Athens, over the period 1931-2013. A 15-yrs window was used.  969 
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Fig. 10. Variation of visibility with wind direction (sectors) over the three sub-periods 1931-1948, 1949-2003 and 989 

2004-2013. Visibility is normalized by its maximum value at a certain sector for each sub-period. Sector ‘C’ 990 

corresponds to calms (wind speed < 0.3 m s-1). Frequency of each sector approximates closely its climatic value 991 

(Fig. 3) in all sub-periods.  992 
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 1005 

Fig. 11. Inter-decadal variability of the annual visibility at NOA (urban) and HER (background) stations. Bold 1006 

black lines represent the common period of observations (1956-2009) at the two stations along with linear trends 1007 

and slopes. Blue line illustates the rates of increase of SO2 emissions in Europe (in Tg S decade-1), as included in 1008 

van Aardenne et al., 2001.  1009 
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Fig. 12. Variability of deseasonalized monthly AOD550nm from 2000 to 2014 (red), along with linear trends for the 1022 

periods 2000-2009 (blue), 2010-2014 (green). Vertical bars describe the standard deviation of the annual value 1023 

based on the monthly ones and grey horizontal bars the respective year. 1024 
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Fig. 13. MODIS AOD June-August mean values and standard deviations for each visibility index. Shaded areas 1038 

represent visibility ranges (km) for each visibility class (Table 2) and points are plotted at the center of each 1039 

visibility class.  1040 
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 1053 

Fig. 14. Visibility as a function of different classes of PM10 levels at an urban (Aristotelous) and a suburban 1054 

(Maroussi) station in Athens. Measurements refer to the period 2008-2012. Geometric average and geometric 1055 

standard deviations are applied on visibility observations. Frequencies of classes of PM10 levels are also shown 1056 

(grey bars). 1057 
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Fig. 15. Variation of the annual PM10 concentrations at the reference station of Finokalia (Crete) over the period 1078 

2005-2014. Vertical lines represent standard deviations of the annual means.  1079 
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