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Overall Comments and Recommendation:

In this paper, the authors have developed what they feel is a model for subgrid turbu-
lence in a mesoscale atmospheric model. According to my understanding of the model, a
coarse-grained turbulence model is first averaged, then used to drive a Lagrangian stochas-
tic dispersion model which is said to represent the effects of subgrid scale turbulence. The
authors note that this is a first step, and thus there is only one-way coupling, or in other
words the Lagrangian particles are not used to send energy back to the larger scales. As
viewed by the authors, the novel aspect of the paper is that, in contrast to previous work,
no assumption is made about the shape of the probability distribution function for the
subgrid scales.

Based on the description given of the modeling methods, I have some major concerns
with the theory behind the work, which are addressed below. As such, I recommend
major revisions before considering the manuscript for publication. I have also given some
minor suggestions mostly regarding formatting that would be helpful if there is a future
review. I have not provided an exhaustive list of minor revisions given the degree of revision
suggested below.

Major Comments:

1. The methods described in this paper are not a “sub-grid turbulence model”. This is
simply a RANS Lagrangian particle dispersion model. Essentially, the authors average out
the grid-scale turbulent motions, and instead use the mean fields to drive the Lagrangian
dispersion model (at least, this seems to be how it is described in the text). Thus, the
mean field is the ‘resolved’ component and the Lagrangian evolution equation is used to
add in the ‘fluctuating’ component, or in other words the authors are using a Reynolds
decomposition:

w; = (u;) + uj. (1)

where (u;) is an ensemble average, and v} is the fluctuation from that average. If I am under-
standing the paper correctly, the authors then prescribe (u;) using the Eulerian simulations,
and v} is (indirectly) determined using the Lagrangian stochastic evolution equation.

In order for this to be considered a “subgrid scale” model, the following decomposition
would be used



u; = U + u;', (2)

where now @; is the filtered component (filtered at the grid scale), and u/ is the unresolved
or subfilter component, which would be determined by solving the evolution equation in
terms of the subfilter component:

du; = apdt — a1 (uz - ’le) dt + bdW, (3)

where dW is an increment in a Weiner process, and coefficients ag, a1, and b are determined
such that Eq. 3 satisfies the Navier-Stokes Equations. For examples of determining the
coefficients see Weil et al. (2004), Shotorban and Mashayek (2006), or Vinkovic et al.
(2006). These examples are applied to traditional LES applications, but the principles are
the same as in the present manuscript. Thus, the turbulence calculated at the grid-scale
is retained, and modeling is reduced to specifying only the subgrid scale turbulence. Why
filter out valuable resolved turbulence by averaging? The point of subgrid scale modeling
is to retain as much information as possible, such that modeling is simplified in that we
only have to model the smaller, more ‘universal’ scales.

2. The authors state that the novelty of the proposed modeling methodology is that (Lines
77-78) “The method we suggest differs from these previous works: no assumption is made
on the pdf shape.” This is not true. By using a Langevin-based equation for the particle
motions that is forced by a Weiner process, the authors are effectively specifying the shape of
the pdf. Although Sects. 2.2 and 2.4 of Pope (1994) (for example) states that these methods
do not assume a pdf, the form used by the author does assume a pdf. Particularly, it is
assumed that the pdf is Gaussian with variance of o2 = %’oclf (where of course K is the
turbulent kinetic energy). The authors can verify this for themselves. Take the Lagrangian
evolution equation, simulate some particles, and calculate the pdf. I have attached some
sample MATLAB code to do this in an appendix of this review. For simplicity I have
assumed that ¢ and K are constant, and that there is no mean drift (i.e., Vp = (U) = 0).
Means could be included, but they should only shift the pdf and not affect its shape. We
should find that an ensemble of particles should have a velocity pdf of
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where again o2 = %‘oclf is the prescribed velocity variance. As a side note, this is not exactly

true for the authors’ equation for W given the arbitrary way that they have included
buoyancy (i.e., it is random and thus will generate erroneous additional variance). If it
was correctly modeled, it should create a skewed velocity distribution and thus none of the
analysis above or in the manuscript is valid. See Cassiani et al. (2015) and the references
therein for examples.



The output of the MATLAB code verifies this (shown below). In essence, it seems that it’s
not necessary to simulate all the Lagrangian trajectories. Simply use the above equation
to get the pdf. If the velocity is of interest, substitute o at any point (interpolated) and
use the pdf along with a uniform random number generator to draw a random wu.
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3. In the (unnumbered) equations following line 348 (note that line numbers are messed up
here, there are more than 5 lines between labels 335 and 340), why is an additional noise
term added to the position evolution equation (X)? This is unconventional. Typically,
the stochastic noise comes in through the velocity. By adding additional noise to the
position statistics will not agree with the velocity statistics. By definition, a particle moves
according to its velocity (see for example: Pope, 1994, Eq. 17).

4. Did the numerical solutions produce the so-called “rogue trajectories” (e.g., Yee and
Wilson, 2007; Postma et al., 2012; Wilson, 2013), and if so, what was done to deal with
them? And how might this affect results, particularly the energy spectra?

5. One problem with validating these subgrid models is that we often don’t know what the
correct answer is, and many times using no model is better than using a bad model. My
opinion is that a more careful validation should be performed before making claims that
the model is performing well. Based on the exercises presented, I do not feel such claims
could be made. If the authors wish to test the model more closely, perhaps an a priori
test, or even a toy problem may be a better means of testing the model.




Overall: With all of the above said, I'm not sure exactly what I would do to resolve all
of these issues. Here is one suggestion. First, the authors should resolve the issues with
the modeling and make it a true subgrid scale model. Then this could turn into a more
applied study that is less about modeling methods and focuses more on the BLLAST
experiment. I don’t know all the measurements available from the BLLAST experiment
(it is not well described in the paper), but perhaps you could force the LES with some
larger-scale data and compare to some local measurements. Compare the two and discuss
the successes/challenges.

Minor Comments:

1. Please number the equations.

2. Anytime an equation is added, it seems to mess up the line number count that follows.



Appendix: Example MATLAB Code

clear

C0=4; %Kolmogorov’s "universal" constant
C1=0.5+0.75xC0; %Pope’s modified constant
eps=0.1; S%turbulence dissipation rate
K=1; %turbulent kinetic energy

N=100000; %number of particles to be simulated
T=10; %length of simulation
dt=0.1; %time step

%initialize particle velocities using a normal distribution with unit
$variance. NOTE: the initial values shouldn’t matter provided T is
%$large enough (particles should ’forget’).

u=randn (1, N) ;

$march the velocity in time

for t=1l:ceil (T/dt)
u=u-Cl*eps/K*u*dt+sqgrt (COxeps+dt) rrandn (1, N) ;

end

%$calculate the PDF from Lagrangian velocities
[P,U]l=hist (u,15);

dx=U(2)-U(1);

P=P/sum (dx+*P);%$normalize so PDF integrates to unity

%$"exact" Eulerian PDF
sigma2=K+«CQ/Cl/2;
Gauss=1/sqrt (2«pixsigma2) xexp (-U." 2/ (2«sigma2)) ;

plot it

figure;hold on;

bar (U, P)

plot (U, Gauss,’'—-xr’)

xlabel ('U")

ylabel (' PDF')

legend (’ Lagrangian PDF’,’Eulerian PDEFE’)
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