Atmos. Chem. Phys. Discuss., 9, C7536–C7537, 2009 www.atmos-chem-phys-discuss.net/9/C7536/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribute 3.0 License.

ACPD

9, C7536-C7537, 2009

Interactive Comment

Interactive comment on "Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model" by M. Kahnert

M. Kocifaj (Referee)

kocifaj@savba.sk

Received and published: 27 November 2009

General comments This is a novel and worthy piece of simulation work which addresses problems with radiative forcing of light absorbing carbon particles. The methodology used is well acceptable and the author has made a good attempt to put the work in context. The mathematical workings are clear and concise.

Here is a set of minor comments: 1. The author evaluates the radiative forcing using the Eq. (7). Is the diffuse radiation explicitly incorporated into FïĄň? 2. The simpler version of the code by Xu & Gustafson enables to calculate the optical properties of a particle in a fixed orientation. If so, the formulation at page 7, line 8, column 2

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

needs to be corrected. 3. As for the representativeness of the results: how these can change with particle's morphology? Is the chosen morphology typical for LAC? 4. The range of size parameter in Figs. 6-7 doesn't fit with size classes [0.02,0.1) "Amm, [0.1,1.0) "Amm, [1.0,2.5) "Amm and [2.5,10.0) "Amm. Note that x=0.15 corresponds to the particle diameter about 0.02 "Amm, so the particles with x<0.15 become smaller than a monomer. 5. The cubical fit (Eq. 3) is well-founded for cross sections of strongly absorbing particles (refers e.g. to well-known book of Bohren & Huffman). Is there some reason for using such a fit for asymmetry parameter too?

In spite of these minor comments, I strongly recommend the paper for publication in ACP after the comments will be answered.

Interactive comment on Atmos. Chem. Phys. Discuss., 9, 25443, 2009.

ACPD

9, C7536-C7537, 2009

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

