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Abstract. A novel methodology to derive the average diffusivity profile, solutions have been derived in a widé se
wind profile from the Navier-Stokes equations is presentedof studies, reviewed by Zilitinkevich (1970), Monin and Ya-
The development employs the Generalized Integral Transglom (1971) and Grisogono (1995).

form Technique (GITT), which joints series expansions with  Other studies have expanded the solution to include baro-
Integral Transforms. The new approach provides a solutiorclinic and advective conditions (Miles, 1994; Bannon and
described in terms of the quantities that control the wind ve  Salem, 1995). Berger and Grisogono (1998) extended the
tor with height. Parameters, such as divergence and vorticresults obtained by Grisogono (1995) for the barocliniecas
ity, whose magnitudes represent sinoptic patterns are corand a generic vertical eddy diffusivity profile. Tan (2001)
tained in the semi-analytical solution. The results of taw proposed a semi-geostrophic Ekman layer solution for vari-
method applied to the convective boundary layer are showrable eddy diffusivities and baroclinicity. This model it

to agree with wind data measured in Wangara experiment. the solutions presented by Wu and Blumen (1982) and Griso-
gono (1995), finding that the mean wind structure depends on
the inertial acceleration, eddy diffusivity and barodipres-
sure gradient. The study concluded that anti-cyclonic wind
shear accelerates the flow, while cyclonic shear has the-oppo
site effect. Wilson and Flesch (2004) used a three-layer sim
plified model that provided a good comparison to observed

1 Introduction

The Navier-Stokes equations provide the framework for
the interpretation of atmospheric boundary layer flows. How
ever, their analytical solution requires approximationsich . .

. : : . .__wind profiles.
are, in many cases, idealized and distant from the phyS|ca\fV| h q ina the G lized | T
reality. Particularly, the mean wind profile is a solution of n the present study, using the Generalized Integral Trans-

the governing equations whose derivation can be applied to %‘orm :‘va(]:hn,\llqu_e (%ItT-II;), we de;_rlve ta sg;n!-a?halytlcal SO'.U' q
wide variety of natural processes. ion of the Navier-Stokes equation to obtain the mean win

The classical Ekman expression for the mean wind prc)_profile in the atmospheric boundary layer. Such technique

file is, probably, the most famous example of an analyticalis a hybrid numerical-analytical method applied to thettrea
solution of the simplified Navier-Stokes equations (Sarbja

ment and solution of partial differential equatior®z(sik,
1989; Stull, 1988). Such solution needs, however, the gtron 1993; Mikhailov andDzisik, 1984; Cotta, 1993). It provides
non-realistic assumption that the vertical eddy diffusha

a systematic, direct and efficient approximation to the solu
(K) are constant with height. In fact, Grisogono (1995) ar- tion of homogeneous and non-homogeneous, stationary and
gues that “.it is a complicated, nonlinear function of the

non-stationary, linear and non-linear boundary-valuebpro
flow structure and there is no explicit relation between the lems. The technique combines series expansion and an inte-
boundary-layer profiles and’K

gration employing an inverse-transform pair. The PBL is dis
The search for an analytical solution for the mean wind

cretized intoN sub-intervals in such manner that inside each
profiles in the atmospheric boundary layer under more real-

sub-region the eddy diffusivity is the average value (M@xei
istic conditions has been a major focus of mathematical and

t al., 1999), that allows the use of realistic eddy diffitgiv
physical research for a long time. For a given, imposed edd)proﬂles, which depend on the physical characteristics ®f th

energy-containing eddies. The nonlinear terms are written
Correspondence tdGenasio A. Degrazia in terms of kinematical properties of the flow, such as diver-
(degrazia@ccne.ufsm.br) gence and vorticity, allowing the solutions to be interpdet
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in terms of large-scale synoptic conditions. The model re- Where the index refers to the different sublayers consid-
sults are compared to observed wind profiles obtained fronered. With the assumptions above, equations (1a) and (1b)

the classical Wangara experiment (Clarke et al., 1971). can be written as:
) ¢ 0%u,, 02u,,
. . —Up — 22Uy = feUn — feVgn + Kon——- Kyn——
2 Semi-analytical model pUn = 5Un = fetn = fevgn + Kan5 5 + Ky 012
0uy,
2.1 Basic equations +Ken— 5 (4a)
2 2
Considering that the turbulent momentum fluxes can be 51} + Cun = futign — fotin + KMLQ;” + Kyna—v;
parameterized by a first order closure (K-theory), the mean 2 2 Ox dy
horizontal wind spatial distribution is given by the Navier LK 0?v,, (4b)
Stokes equation in the following form: 9227
ou ou ) ou with 2z, <z <z,41, 0<z<L,, 0<y<L, and
Uafx—f—vai_fc fcvg a_ I% n:172,...,N.
9 ou o ou Multiplying equation (4b) by (i € C), and adding term
4+ — . ,  (1a) by term to equation (4a), yields
dy Y oy 0 0
ov ov 0 v 2w, o%w, 2w,
—_— — = J¢ — fe — Kzi n n n
u@l‘ +’Uay fug fu+ O ( ax) Kxn 8332 +Kyn a 2 +Kzn 822
0 v 0 Ov ) ¢\ . .
tay (05 ) o (Re5e) - o Sl () s @
with u = u(z,y, 2), v=v(z,y,2), 20 < 2 < z;, wherew,, = u, + vy i, Wyn, = Ugn +Vgnt, 2n < 2 < Znya,
O<az<L, and 0 <y < L. O<ar<Lg O<y<L, andn=1,2,...,N.

The equations above assume stationarity, no mean verti- Equation (5) is a differential equation on the complex vari-
cal motion, and that the molecular dissipation terms are neable functionw,, = u,, + v, i, whose solution provides an

glectable. On the other hand, the flow is allowed to vary expression to the mean wind profile in terms of the flow di-

horizontally. vergence and vorticity.
The geostrophic wind components in the baroclinic case
are approximated by: 2.2 Boundary and interface conditions
Ug = UT Z + Ugo, (2a) The horizontal wind speeds are assumed to be constant
Vg = VT Z + Vg0, (2b) at the lower boundary at = zy, and to be geostrophic at

the upper boundary, the PBL top. Laterally, a horizontal do-
whereug andu, are the surface geostrophic winds com- yain is assumed, with dimensioris x L,. Atthe lateral

ponents andiy and vy are the thermal wind components poundaries, the wind components are given by the imposed

(Sorbjan, 1989). o divergence and vorticity, so that:
The eddy diffusivities in each of the directions are repre-

sented byK,, K, andK,. W,=W, in z=2z and n=1, (6a)
To realistically reproduce the wind profile, it is important Wy, =W, in z=z and n=N, (6b)

to consider the vertical variation of the eddy diffusivitiéds
a conseguence, in the present approach, the planetary-bounand
ary layer (PBL) is discretized int& sublayers (Vilhena and

Barichello, 1991; Moreira et al., 1999; Degrazia et al., 200 W, = ! (*C +6i)y in x=0, (7a)
In each of the sublayers, the eddy diffusivities and horizon
tal wind components assume vertically averaged values. To Wn = (5 +C0) Lo+ 5 (=C+dd) y in w= Ly,
overcome the difficulties that arise from the nonlinear abar (7b)
ter of equations (1a) and (1b), the advective terms areemritt
in terms of the large-scale kinematical properties of theflo ~ w,, = ~ (5 +¢i)xz, In y=0, (7c)
(Bluestein, 1992), namely, divergence and vorticity:
8 ou, 6 ¢ W, = 2(5+(z)x+ (=¢+4di) L, in y=L,.
v =+ vy oy = QlUn = 5V (3a) (7d)
un% + Un% - évn + gun (3b) At the interfaces between neighbor vertical layers, it is
Ox dy 2 2 necessary to assume continuity of both the eddy fluxes and
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horizontal wind components. respectively. Equations (11) and (12) are known, respec-
tively, as the eigenfunctions and eigenvalues associaitbd w
Wy = Wn1, (83)  the Sturm-Liouville problem. From the normalization inte-
6Wn, o 8VV’n+1 gral:
Kznﬁ = Kz(nJrl) 9z (8b) . .
with 2 =z, andn =1,2,...(N — 1). N (Apg) = / / ’ [v ()\pq,x',y')]Qdy’dx’, (13)
0 0
3 Solution the corresponding norms can be obtained:
Equation (5) can be solved using the Generalized Integral 1 ]2 for »—19 (142)
Transform Technique - GITT (Mikhailov an@zisik, 1984; N (B )1/2 VL. P=Ss-
Ozisik, 1993; Cotta, 1993). In this method, the solutiomdu Y
tion is expanded in terms of the eigenfunctions correspond- 1 _ 2 for ¢—1,2 (14b)
ing to the auxiliary problem (Sturm-Liouville), associdte N(%)l/2 L, T

with the original problem. The eigenfunction orthogonal-
ity condition is used to determine the expansion coeffisient 3.2 The transform problem
hence originating the integral transform and its inversp: A

plying the integral transform, the partial derivatives @lar The integral transform is given by:

tion to variablesr andy are removed, reducing the problem

to an ordinary second-order differential equation on \deia 1 Lo Ly

z. Therefore, once the transformed problem is solved, the W (Apg: 2) = ﬁ/ /
(Apq) 0 0

inverse formula is used to obtain a solution to the original . . L
problem. The truncation order is selected according to the (& Npgr @',y Wy (2,9, 2) ] dy'da’,  (15)

desired precision. .
With N (Apg) = N (Bp) N (7g)-

3.1 The auxiliary problem AppIyinthhe gperator
W Jo 7 St Y Qg2 y') dy'da’

The auxiliary problem associated with), is: to equation (5) yields:

Kin 82"/} ()\pqa 337y) + Kyn 32¢ (/\pqvxvy) _

— X2 (Mg zy), (9) N )1/2/0 /0 ¥ (Apgy @', y) —5 5 dy'da
rq
with boundary conditions: 1 Lo Ly .
. + 1/2/ / Tl}()\pq,l‘,y)
=0 in =0, and z=L,, (10a) N (Apq) o Jo
=0 in y =0, and Yy = Ly. (10b) |:Kxn azwn Kyn a2Wn:| dy'dx'
Kzn o 12 Kzn O 12
_ The solution to the problem above is (Mikhailov and 5 v Y 1
Ozisik, 1984 Ozisik, 1993): _ (L SN
2Kzn Kzn 2Kzn N (qu)l/Q
1 (Bp, x) = sin (ﬂ;m) for p=1,2,... (11a) Ly Ly
/ / Y (Apg» @',y Wy dy'da’
Y2 (Vg,y) = sin (vqy) for ¢=1,2,.. (11b) o Jo
feWgni 1 Lo b VNN g
= - K N()\ )1/2 0 0 ¢(qu7$7y)dyd$7
By = ]g ?"” for p=1,2,... (12a) (16)
qr [Kyn with w, = w,, (2/, 9/, 2) and)\f,q = ﬂg + 'y,?.
%= T\ K. for ¢=1,2,.. (12b) Each term in equation (16) is solved by a different method.

In the first integral, Lebniz rule is used. The second integra
, , K is solved by using Greén theorem, employing the eigen-
where3, = Tmﬁp andvy, = Kizn% are the positive  yvalue problem (9), along with the boundary conditions (7).
o ) yr / The third integral is directly substituted by definition J15
roots of equationsin <5me) = 0 andsin (Wqu) = 0,  Finally, in the right-hand side, results (11) and (12) aredus
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This procedure yields in the following ordinary differeaiti 4 Eddy diffusivity

equation:
d2Wn PR p— chgnGi
42 (1p + a2n i) Wy, = K., Cn,  (17) The eddy diffusivity vertical profiles employed in this
) ) ) study have been proposed by Degrazia et al. (2000). Such
where the constants are given in Appendix A. eddy diffusivities are based on Taylsrstatistical diffusion

The boundary and interface conditions associated with ttheory in which the shear buoyancy PBL spectra are mod-
transformed problem in direction can be determined ap- eled by means of a linear combination of the convective and
plying definition (15) to equations (6) and (8) given, respec mechanical forcings. Therefore, in the present case, such
tively, by: parameterization allowed reproducing the realistic cdse o
convective boundary layer where shear-generated turtelen

z = Gwo m. #=z and n=1, (183) occurs. The eddy diffusivities for such conditions are give
Wnp=GWgn in z=2z and n=N, (18b)  py the following expression:
W, = W11, (19a)
ow,, oWy, (1 1/3 \1/3 1/3
Ken—, = Kemay—5, (19b) Ko = 011ya | 2% (1;(;;;) + ?;2?4/3] , (24

with z = 2z, andn = 1,2, ...(N — 1).

3.3 The inverse transform
_ _ _ _ wherec; = aza, (2mk) Y with o, = 0.5 + 0.05 (Cham-
_ From the GITT fo_rmallsm, the solution to equation (5) is pagne et al., 1977; Sorbjan, 1989) and— 1, 4 ) § for uv
given by the expansion: 1/3
andw components, respectivelyw, = (u.), (W)

Wy (z,y, 2 ZZ ¢ = 1’/2 W (Apg:2) . (20) s the convective velocity scales, = (u.); (1 - i)al is
p=la=l the local friction velocity, in whichoy = 1.7 (Wyngaard
The solution to equation (17) is given by: et al., 1974);(u.), is the superficial friction velocity;z;
is the convective PBL height; is the height above the
Wy, (M\pg, 2) = Ay exp [r1n 2] + By exp [ra,, 2] surface; ¢, = Z’}? is the adimensional dissipation rate

+Wap Mpar %) (1) fynctions, ¢, = (0. 75)%2 (w?/z;) is the buoyant rate of

ekz . . .
whereA,,, B, 71n, 720, Wy, € C. The constants are given TKE dissipation;¢. = —— is the adimensional molecular
u

in Appendix A. di ti te functi ted with h d
The boundary and interface conditions lead to the determi- issipation ra eg uhc |ons associated with mechanical pro

nation of constantsl,, andB,,. Therefore, for each andg, ductions,, = Z— 1 — 2 ) is the mechanical rate of TKE
z Zi

the resulting system is solved numerically. T : o .
Using the previous results in the equation (20), results dissipation (Hjstrup, 1982);L. is the Monin-Obukov Iezngth

andx = 0.4 is the von Karman constant{ f,,), =

(/\m)z
B 2 2 . A ’ is the reduced frequency of the convective spectral peak,
W (2,9, 2) = Z_; Z_; L.L, st (ﬂ”x) St (7934) where()\,, ), is the peak wavelength of the turbulent velocity
p=ra o spectra. According to Kaimal et al. (1976) and Degrazia and
Wi (Apg:2)s (22)  Anfonssi (1998)(An), = (Am), = 1.5z and
wherew,, (\,q, z) is given by the equation (21). (Am), =182 [1 — exp 42) —0.0003 exp (82)}
Finally, we obtain the components of the average wind, z
w, andu,, from the fact thaw, (z,y, z) — un (2,9, 2) + 'The reduced frequency of the neutral pe@k, ),, with
vn (2,9, 2) i. Inthat case, (fm), = 0.045 ( ( )
Un (x,y,z) = Rw, ('f’yvz)’ (23a) (fm) =0.16 ( )
vn (2,9, 2) = SW, (2,9, 2), (23b) ’

wherelR represents the real partwf,, andSs,, represents the (fm)w :0'35< ) fe = 20 sing is the

imaginary part ow,, . Coriolis parameter.
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5 Result difficult to capture with a simplified model, as stated by Wyn-
gaard (1988): ‘unfortunately, our knowledge of PBL physics

5.1 Analysis parameters does not yet allow us to calculate the wind profile from first
principles ..”. Unmixed wind profiles, such as those ob-

Equation (22) expresses, in terms of many independent paserved at day3, may be attributed to a number of reasons,
rameters, the mean wind profiles. Among these parametersych as local baroclinicity or vertical eddy diffusivity i
are: the size of the horizontal area definedhyandZ,, the  apility. Any of these reasons are, however, case-spedifit, a
thicknessAz of the vertical sublayers over which the PBL cannot be reproduced by a model where thermal wind is as
was divided, the truncation ordep &ndq), and the values sumed to be constant.
of large-scale divergenceand vorticity¢ , which affect the The simulated values for different large-scale synoptic
lateral boundary conditions. conditions (in terms of divergence and vorticity) cover a

The size of the horizontal domain has an appreciable imyange of wind magnitudes, generally in agreement with the
pact on the solution, but only for small areas (Figure 1). Asobservations. Far from the surface, the condition withdut d
L, andL, are successively increased frdmtm to 100 km,  vergence and vorticity is the one which departs mostly from
the solution becomes independent of the domain size fothe measurements. This same condition, on the other hand,
L, = L, > 50 km . It means that the present solution provides the best match to observations at the lowest levels

is meaningful only over horizontal areas as largé@ém.  (inlet). Different combinations of vorticity and diverges

From this point on, the solutions shown were obtained withhave been applied for the comparison. There is no clear dis-

L, =1Ly, =50km. tinction among most of them, as can be seen in Figure 3.
FIGURE 1 However, an analysis based on statistical indices (Appendi

A similar convergence analysis was applied to the sublayeB) reveals that, while the results are very similar for thadvi
thicknessAz and the truncation ordegsandgq, leading to  magnitude (Table 2), the approximation for wind direction
the conclusion thaf\z = 5 m andp = ¢ = 9 are values that  (Table 3) is improved when both the divergence and vorticity
warrant convergence of the mean wind profiles. The modekre positive.
results depend on the horizontal position within the domain  Regarding the vertical profiles for d&p (Figure 3), the
even when no large-scale divergence and vorticity are conanalysis based on statistical indices shows that, when
sidered (Figure 2). The horizontal variation is largereloes ¢ = 0 andd = ¢ = —f., the model overestimates the mean
the domain boundaries, so that there is a good portion of thebserved wind magnitude (small negative valueg &). On
domain, near its center, for which the wind profiles do notthe other hand, the statistical indéX3 shows that the hor-
vary largely in the horizontal. The following analysis con- izontal wind direction is underestimated regardless ahd
siders the vertical profiles at the domain center only. ¢, meaning that the modeled winds are rotated counterclock-

FIGURE 2 wise with respect to the observations. The statisticabinde

FS indicates that, except for the cage= ¢ = 0, the dis-
5.2 Comparison to observational data from the Wan-  persion of the mean wind magnitude underestimated the ex-
gara experiment perimental data. For the wind direction, this same index is
negative in all cases, a consequence of the very small wind

The Wangara experiment was conducted in Hay, Newdirection variability with height in the observed data, {ghi
South Wales, Australia, from July to August, 1967 (Clarke etthe model results indicate a slight wind rotation with heigh
al., 1971). Wind profiles were obtained every hour up to a 2-QOther indices, such a¥ M SE, andF A2 are similar for all
km height, using pilot balloons. A 16-m tower provided mi- cases, and indicative of good agreement between model and
crometeorological surface observations. In the presadyst  observations. Finally, the correlation coefficightvas more
two convective days were chosen for comparison to the provariable, and therefore, serves as a measure of the best agre
posed model: day33 and40 (Table 1). ment in each case.

The wind components at the top of the domain are given FIGURE 3
by a thermal wind approximation (Equations 2), and both TABLE 2

the surface geostrophic winds,( andv,) and the ther- TABLE 3

mal wind magnitudes{y andvy) are given by Wangara ob- Thermal winds were observed only twice a day, at synoptic

served values. times, and those values were interpolated300 L7 . The
TABLE 1 large gradients near the top of the boundary layer arise from

The mean wind magnitudes simulated by the model arehe assumed baroclinicity. For any case, the different mod-
similar to the average magnitudes observed at Wangara (Figeled profiles agree to each other as a consequence of the top
ure 3). Itis important to stress that such agreement coacernboundary conditions. They do not necessarily agree to the
only the vertical overall average, but not the local maximaobserved winds at the boundary layer top as a consequence
and minima observed at d&3, which characterize an un- of the interpolation used to calculate the thermal wind.sThi
mixed wind profile. Indeed, such vertical variability is tpii  limitation has been noticed by Sorbjan (1989%irally, re-
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sults of the Wangara experiment pointed out the difficultiesin the approach taken here no temporal evolution is consid-

and limitations of obtaining accurate measurements of-ther ered. The non-stationary problem can be solved using GITT

mal winds, vertical velocities, and representative sghtia along with Laplace transform applied to the time. Besides,

averaged fluxés the examples here were restrained to the convective case, bu
Similar results were obtained for day (Figure 4). In-  the development allows the use of the same approach for any

deed, the statistical indices (Tables 4 and 5) indicatetigat ~ stability condition. The use of appropriate eddy diffusivi

model reproduced the observations even better than for daprofiles may lead to the determination of wind profiles under

33. In this case, the condition without divergence and vor- stable conditions as well.

ticity showed the largest departure from the observations f

wind magnitude both at upper and lower levels. Again, the

best representation offered by the model for both wind mag-Appendix A

nitude and direction occurred with positive values of diver

gence and vorticity. Furthermore, the solutions with niegat Constants

vorticity provided the worst approximation for wind direc-

tion. A similar analysis of the statistical indices as thait®

for day33 can be made for dajo (Tables 4 and 5). 5

FIGURE 4 a1 = A0+ o, Ala
TABLE 4 ST o (Ala)
TABLE 5 PR S S (Alb)
In both days33 and40, the best approximations to the ob- K. 2K.,
served profiles were obtained for positive vorticity andediv
gence, consistent with the occurrence of anti-cyclonigdar 2 Kl — cos (p 7T)> (1 —cos (g ) ﬂ
scale flow at the period. Indeed, the synoptic surface pressu B \/m B, Yq ’
charts (Clarke et al., 1971) indicate the presence of a high- (A2)
pressure system at the region, for both da/and40. Such
consistency is further evidence that the model is able to re-
produce the wind field realistically. C, =Cs5+ Cg, (A3a)
Cy = —2 Ban {01 r,cslam (A3b)
6 Conclusions V6DaLy Kan Yq
1 —cos(gm)
In the present study, a novel approach was used to obtain —C2 < v, ) ] ’ (A3c)
the average wind profile from the Navier-Stokes equations. 1 ,
The method is based on the Generalized Integral Transform  C1 = 3 (=C+61i)B,[L —cos(pm)], (A3d)
Technique (GITT), applied to the convective boundary layer 1 ,
discretized in sublayers. Such discretization allows gisin Cy = 5 (6 + (i) Ly Bycos(pm), (A3e)
eddy diffusivities that vary vertically. GITT is a proce@ur 9 K cos (p )
that combines series development and integral transforms, Cg = yn {04 L,——— (A3f)
leading to a final solution (Equation 22) that contains the ViLaLy Ken Pp
physical parameters determining the wind variability with _c 1 —cos(pm) (A30)
height. Large-scale kinematical flow properties, such as di > B, ’ 9
vergence and vorticity are included in the solution, thitoug 1 ,
the boundary conditions and the nonlinear advective tefmso ~ Ca = —5 (0 +¢9) 7, [1 — cos (¢ )], (A3h)
the original equations. 1 , .
The results obtained are comparable to those found inthe ~ Cs = 3 (=C+d14) Ly vy cos(gm). (A3i)
literature (Wilson and Flesch, 2004; Stull, 1988). Further
more, the model provided a good comparison to observed 1/4 0 )
data from Wangara experiment. The best approximations 7in = (a%n + agn) [cos (”) + ¢ sin (”)] , (Ad)

were obtained considering values of divergence and vortic-
ity consistent with the synoptic charts from the experiment
The main aim of this study is to establish an alternative 14 )
method to determine the mean wind profiles. The method has 72n = (ozfn + agn) {c (2" + 7r>
been shown in detail, as well as its validation in comparison
to observed data. From this point, it can be used for a further +1i sin (92" + 7T) } ., (A5)

examination of a more generalized problem. As an example,
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ay, # 0eag, # 0, 0, = arctan (%l); 0, # g + K,

A1n
k=0,1.

1 N JeWgnG

Wop (MApg:2) = —5——5—~ n n
P o) (a%ﬁaén){(o‘? romD T,

+ (aln — Q2 'L) Cn:| s (AG)

Appendix B

Statistical Indices

Following Hanna (1989) the statistical indices used in this

study are defined as:

2
NMSE = M (Normalized Mean Square Error)
o “p
(Bla)
Co—Cy _ .
FB = % (Fractional Bias) (B1b)
0,5 (Co+Cp)
(00 —0p) : .
FS =2—+- (Standard Fractional Bias) (Blc)
(00 +0p)
c,—GC,) (Cp,—C, _ .
R= ( ) (@~ G) (Correlation Coefficient)
(000p)
(B1d)
Co
FA2=0,5< ron <2 (Factor of 2) (Ble)
p

whereC is the analyzed amount and the subscoignd p
refer to observed and predicted quantities, respectitiedy,
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Fig. 1. Simulated vertical profiles af) wind magnitude ant) wind direction, for different domain sizes, as indicated in legend. Ihlews
the wind magnitude vertical profile for the loweist m in detail.

1200 T T T X=0'1Lx y=0.
x=0.1L, y=0.
x=0.5L, y=0.
a) x=0.5L, y=0.
1000 | x=0.8L, y=0.
800 - 1200
_ 1000 |- b |
£ L
v o 800 | .
T
600 B
400
400 |- -
200 . 200 ]
1 0 A
75 90 105 120
0 | 1 1 X X 0
Direction (*)

Fig. 2. Simulated vertical profiles od) wind magnitude andb) wind direction, for different positions within the domain, as indicated in
legend. Inlet shows the wind magnitude vertical profile for the lowést. in detail.

U] (mV/s)



10

L. Buligon et al: Mean wind profile in the ABL

=0 -0 ——
1200 5=—f =0
Z_
(o C
1 5=0.51, {=—1.5f
000 3=—1.5(0 {=—0.5(C wrvenes
Wangara =
800
1200 7 T T
£ 600 1000 |- H b) |
N I 5
goof fi i f .
400 i .
600 - i . .
i 3
4 o H i
200 00 i
200 b4 1
Y
0 PR " L
30 60 90 120 150 180

|U| (m/s) Direction (0)

Fig. 3. Simulated vertical profiles af) wind magnitude anth) wind direction for Wangara da33, and different values of wind divergence
and vorticity, as indicated in legend. Inlet shows the wind magnitude vepticéile for the lowest60 m in detail. Squares represent data

from the Wangara experiment for dag. At Wangara,f. = —8.2 x 107° s™1.
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and vorticity, as indicated in legend. Inlet shows the wind magnitude vepioéle for the lowest0 m in detail. Squares represent data

from the Wangara experiment for ddg. At Wangara,f, = —8.2 x 107° s~ 1.
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Table 1. Meteorological Parameters for the experiment of Wangara.

Day Hour —L(m) zi(m) wus(m/s) wugo(m/s) wgo(m/s)
33  15:00 2.8 1200 0.155 —5.32 —0.77
40 15:00 10 1200 0.14 1.7 —2.55
Table 2. Statistical indices evaluating the wind magnitude profiles shown in Figure 3.
Wind Speedm/s) NMSE FB FS R FA2
0=¢=0 0.021 —-0.107 —0.183 0.685 1.000
0=—fe;¢=0 0.007  0.004 0.110  0.719 1.000
0=0;¢=25f 0.009 0.032 0.067  0.688 1.000
§=—fo;C=—fe 0.008 —0.024 0.071 0.711 1.000
0=0.5f; ¢ =—1.5f 0.009 0.010 0.039  0.650 1.000
0 =—-15f; ¢(=-0.5f. 0.009 0.040 0.193  0.702 1.000
Table 3. Statistical indices evaluating the wind direction profiles shown in Figure 3.
Direction (°) NMSE FB FS R FA2
0=¢=0 0.029 0.151 —0.583 —0.526 1.000
0=—fe;¢=0 0.023 0.129 —0.535 —0.579 1.000
§=0; ¢ =25f. 0.123 0.318 —1.121 —0.309 1.000
8=—fo; C=—fe 0.010 0.068 —0.446 —0.599 1.000
0=0.5fc; ¢ =—-1.5fc 0.235 0437 —-1.301 —0.172 1.000
0 =-15f; (=-0.5f. 0.014 0.090 -0470 —0.619 1.000
Table 4. Statistical indices evaluating the wind magnitude profiles shown in Figure 4.
Wind Speedm/s) NMSE FB FS R FA2
0=¢=0 0.042 —0.187 —0.179 0.952 1.000
0=—f;;¢=0 0.007 —0.028 —0.038 0.941 1.000
0=0;¢(=1,5f 0.008 —0.047 —0.095 0.954 1.000
0=—fc; ¢ =—fe 0.011 —-0.071 —0.038 0.946 1.000
0=-01f; C=fe 0.012 —0.083 —0.107 0.960 1.000
0 =-15f; ¢(=-0.5f. 0.010 0.022 —0.001 0.914 1.000
Table 5. Statistical indices evaluating the wind direction profiles shown in Figure 4.
Direction (°) NMSE FB FS R FA2
0=¢=0 0.004 0.052 0.005 0.493 1.000
0=—fe;¢=0 0.002 0.040 0.101  0.604 1.000
0=0;¢=15f 0.011 0.091 —0.364 0.288 1.000
0=—fc; ¢ =—fe 0.001 0.013 0.340 0.850 1.000
0=-01fc; ¢ = fe 0.008 0.078 —0.249 0.346 1.000
0=-15f; ¢(=-0.5f 0.001 0.023 0244 0.763 1.000
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