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Abstract 
 
Satellite retrievals for column CO2 with better spatial and temporal sampling are expected 
to improve the current surface flux estimates of CO2 via inverse techniques. However, the 
spatial scale mismatch between remotely sensed CO2 and current generation inverse 
models can induce representation errors, which can cause systematic biases in flux 
estimates. This study is focused on estimating these representation errors associated with 
utilization of satellite measurements in global models with a horizontal resolution of 
about 1 degree or less. For this we used simulated CO2 from the high resolution modeling 
framework WRF-VPRM, which links CO2 fluxes from a diagnostic biosphere model to a 
weather forecasting model at 10x10 km2 horizontal resolution. Sub-grid variability of 
column averaged CO2, i.e. the variability not resolved by global models, reached up to 
1.2 ppm with a median value of 0.4 ppm. Statistical analysis of the simulation results 
indicate that orography plays an important role. Using sub-grid variability of orography 
and CO2 fluxes as well as resolved mixing ratio of CO2, a linear model can be formulated 
that could explain about 50 % of the spatial patterns in the systematic (bias) component 
of representation error in column and near-surface CO2 during day- and night-times. 
These findings give hints for a parameterization of representation error which would 
allow for the representation error to taken into account in inverse models or data 
assimilation systems.  

5 

10 

15 

20 

25 

30 

35 

40 

45 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 2



 
1 Introduction 
 
Atmospheric CO2 has been rising since pre-industrial times due to anthropogenic 
emissions from fossil fuel combustion and deforestation, which are considered to be 
major causes of global warming (IPCC, 2007). Climate predictions using coupled carbon 
cycle climate models differ greatly in their feedbacks between the biosphere and climate, 
resulting in vastly differing mixing ratios of CO2 at the end of this century (Friedlingstein 
et al., 2006). This calls for an improved understanding of biospheric CO2 fluxes at 
regional scales. A global network of observations is being used together with modeling 
tools to derive surface-atmosphere exchanges (via inverse techniques) which can help in 
quantifying biosphere-climate feedback and assist in monitoring CO2 trends in the 
context of climate change mitigation. 
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However, past studies show that the current observation network is not sufficient to 
adequately account for uncertainties in surface flux estimates (Gurney et al., 2003). 
Satellite measurements of column-integrated CO2 concentrations with better spatial and 
temporal sampling as well as with adequate precision (~1 ppm) are expected to improve 
this situation (Rayner and O'Brien, 2001; Miller et al., 2007). Passive satellite missions, 
such as the Orbiting Carbon Observatory (OCO) (Crisp et al., 2004), and the Greenhouse 
gases Observatory Satellite (GOSAT) (NIES, 2006) are designed to measure column 
integrated dry air mole fraction under clear sky conditions using reflected sunlight.  
GOSAT is now in orbit, but unfortunately the launch of OCO failed. In addition, active 
sensor missions are under investigation, such as ESA’s Earth Explorer candidate mission 
A-SCOPE, the Advanced Space Carbon and Climate Observation of Planet Earth (ESA, 
2008) and NASA’s mission ASCENDS, the Active Sensing of CO2 Emissions over 
Nights, Days and Seasons , which have the advantage of  also being able to measure 
during the night and thus provide a stronger constraint on respiration fluxes.  
 
The above mentioned satellite measurements are able to provide global coverage of 
column-averaged CO2 dry air mole fraction which can improve current estimates of 
global carbon budgets (via inverse techniques). The footprint sizes of satellite missions 
using passive sensors (measuring reflected sun light) such as OCO and GOSAT are 
approximately 1.3 km and 10.5 km respectively (Crisp et al., 2004; NIES, 2006). Active 
missions such as A-SCOPE using LIDAR technology, have smaller footprint sizes of 
around 0.1 km which allows for better sampling under partially cloudy conditions by 
making use of the cloud gaps (ESA, 2008). However, active missions need some 
averaging for these 0.1 km footprints to improve the signal-to noise. These footprints are 
at least an order of magnitude smaller than the highest resolution global inverse models 
(Peters et al., 2007).  
 
All remote sensing methods to measure atmospheric CO2 require clear sky conditions, 
thus a small footprint is desirable since it allows sampling during scattered cloud 
conditions. On the other hand, the retrievals may not be representative for average CO2 
concentration in such coarse model grids, and may thus introduce a larger representation 
error (a spatial mismatch of satellite retrievals within larger grid cells). The 
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representation error is expected to depend on the strength and horizontal extent of CO2 
flux variability and on meteorology, both of which influence the variability in 
atmospheric CO2. Previous studies show that the representation error increases with 
decreasing horizontal resolution (Gerbig et al., 2003) and is higher when mesoscale 
circulation is important (Tolk et al., 2008; Ahmadov et al., 2007). Based on 
measurements from airborne platforms during the CO2 Budget and Rectification study 
(COBRA-2000), Gerbig et al. (2003) concluded that transport models require a horizontal 
resolution smaller than 30 km to capture important spatial variability of CO2 in the 
continental boundary layer, which could be attributed to the spatial variability of surface 
fluxes. The representation error corresponding to typical global grid cells can be up to 1 
to 2 ppm, which is an order of magnitude larger than the sampling errors (Gerbig et al., 
2003). The sampling error referred in Gerbig et al., 2003 includes both limitations in 
instrument precision and accuracy and uncertainty caused by unresolved atmospheric variability 
of CO2 within the mixed layer due to turbulent eddies.  Further, topography plays a role in 
representation error. It is reported that representation errors induced by small scale 
orographic features can be as large as 3 ppm at scales of 100 km (Tolk et al., 2008). van 
der Molen and Dolman  (2007), in their case study around Zotino in Central Siberia, 
showed that topographic heterogeneity of 500 m within a spatial scale of  200 km can 
generate horizontal gradients in CO2 concentrations of 30 ppm. Hence it is highly 
important to address representation errors caused by these spatial mismatches, also for 
column-integrated measurements from remote sensing, prior to the quantitative 
assimilation of the information into global modelling systems.  
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There are a number of studies which have estimated the representation error within a 
model grid cell when using satellite column measurements. Based on high resolution CO2 
simulations, taking the difference between the simulated grid cell mean and the sampled 
mean, Corbin et al. (2008) estimated the representation error over North and South 
America and concluded that satellite retrievals cannot be used in current inverse models 
to represent large regions with significant CO2 variability unless transport models are to 
be run at high resolution. Alkhaled et al. (2008) estimated the representation error based 
on statistical methods, using spatial covariance information of CO2 based on model 
simulation of global CO2 distribution at a spatial scale of 2o x 2.5o over the sampled 
regions together with information about the retrieved soundings without the knowledge 
of the true mean value. Representation errors are quantified using a hypothetical transport 
model with a spatial resolution of 1o x 1o and a 3 km2 retrieval footprint. 
 
This study focuses on estimating possible representation errors of column mixing ratios 
from remote sensing in global transport models, and on the causes of the spatial 
variability of CO2 within a grid cell. Spatial variability of CO2 is assessed quantitatively 
based on high resolution simulations for a domain centered over Europe. Using a high 
resolution transport model, coupled to surface-atmosphere fluxes of CO2, allows 
accounting for mesoscale phenomena such as land-sea breeze effects (Ahmadov et al., 
2007).   Such effects can not be represented in a statistical method as deployed by 
Alkhaled et al. (2008). We estimate possible representation error as the sub-grid 
variability of near surface CO2 and column averages of CO2 within typical global model 
grid cells. Hypothetical A-SCOPE track data are used with MODIS cloud pixel 
information to realistically represent satellite observations. In this context it is relevant to 
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see the possibility of a sub-grid parameterization scheme based on resolved variables to 
capture the representation error. Such a parameterization scheme could pave the way to 
describing representation error in coarser models without using high resolution 
simulations.  
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 The outline of this paper is as follows: Section 2 of this paper provides a brief overview 
of the modeling framework which is used to simulate the CO2 fields. Section 3 presents 
the methodology adopted to estimate representation error associated with utilizing 
satellite column measurements in global inversion studies. In section 4, we present 
statistical analyses of sub-grid variability of CO2 fields within grid cells of 100 km x 100 
km size to estimate possible representation errors for retrieved satellite column mixing 
ratios and we investigate correlations of sub-grid variability with resolved variables to 
assess the possibility of parameterization schemes for representation errors in coarser 
models. 
 
2 Modeling Framework 
 
We use the modeling system, WRF-VPRM (Ahmadov et al., 2007), which combines the 
Weather Research and Forecasting model, WRF (http://www.mmm.ucar.edu/wrf/), with a 
diagnostic biosphere model, the Vegetation Photosynthesis and Respiration Model, 
VPRM (Mahadevan et al., 2008). .The coupling of these models is done in such a way 
that VPRM utilizes near surface temperature (T2) and short wave radiation (SNDOWN) 
from WRF in order to compute CO2 fluxes and to provide these to WRF to be transported 
as a passive tracer.  
 
The principal component of our modelling system consists of a mesoscale transport 
model, WRF, using the passive tracer transport option from WRF-CHEM (Grell et al., 
2005) to simulate the distribution of CO2 transported by advection, convection and 
turbulence. Some modifications were made in order to implement simulations of CO2 
transport, which are described in detail in (Ahmadov et al., 2007). An overview of the 
WRF physics/dynamics options used for our simulations is given in Table 1.  
 
The satellite-constrained biosphere model, VPRM is used here to account for CO2 uptake 
and emission for different biomes. It is a diagnostic model which uses MODIS 
(http://modis.gsfc.nasa.gov/) satellite indices, the Enhanced Vegetation Index (EVI), and 
the Land Surface Water Index (LSWI) at 500 m resolution to calculate hourly Net 
Ecosystem Exchange (NEE). NEE is calculated here as a sum of Gross Ecosystem 
Exchange (GEE) and Respiration. GEE is calculated by using EVI and LSWI from 
MODIS, and temperature at 2 m (T2) and shortwave radiation fluxes (SNDOWN), 
provided by WRF. Respiration fluxes are calculated as a linear function of WRF-
simulated temperature (Mahadevan et al., 2008). To represent land cover in VPRM, we 
used SYNMAP data (Jung et al., 2006) with a spatial resolution of 1 km and 8 vegetation 
classes which are suitable for the European domain. The VPRM parameters which 
control the CO2-uptake by photosynthesis and the CO2-emission by respiration for each 
vegetation class have been optimized using  eddy flux measurements for different biomes 
in Europe collected during the CarboEurope IP experiment (for details see (Ahmadov et 
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al., 2007). VPRM captures the spatiotemporal variability of biosphere-atmosphere 
exchange remarkably well, as shown by comparison with various flux measurements sites 
corresponding to different vegetation types for longer periods (Ahmadov et al., 2007; 
Mahadevan et al., 2008). GEE and respiration computed in VPRM is passed on to WRF 
to simulate the distribution of total CO2 concentration. 5 
 
In addition to VPRM biospheric fluxes, anthropogenic and ocean fluxes are included in 
WRF. High resolution fossil fuel emission data from IER (Institut für Energiewirtschaft 
und Rationelle Energieanwendung), University of Stuttgart (http://carboeurope.ier.uni-
stuttgart.de/) are used for the year 2000, at a spatial resolution of 10 km. Temporal 
emission patterns were preserved by shifting the  IER data for 2000 by a few days to 
match the weekdays in 2003. The total mass of the emissions was conserved when 
mapping onto the WRF grid.  To account for ocean fluxes in WRF, the monthly air-sea 
fluxes from Takahashi et al. (2002) are used.  
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Initial and lateral tracer boundary conditions are prescribed from global CO2 
concentration fields based on a simulation by a global atmospheric Tracer transport 
model, TM3 (Heimann et al., 2003), with a spatial resolution of 4° x 5°, and a temporal 
resolution of 3 hours. TM3 is driven by re-analyzed meteorological data from NCEP and 
surface fluxes optimized by atmospheric inversion (Rödenbeck et al., 2003).  As initial 
and lateral meteorological boundary conditions for WRF, analyzed fields from ECMWF 
(http://www.ecmwf.int/) with a horizontal resolution of approximately 35 km and a 6-
hour time step are used. The model setup largely follows the TransCom-continuous 
protocol (Law et al., 2008), allowing for a comparison of the mesoscale simulation with a 
number of measurement sites, but also with a large number of global models used for 
inversion studies. Note however that the anthropogenic and the biospheric fluxes are 
different from the ones used within the TransCom-continuous Experiment.  
 
Mesoscale simulations are carried out for 2 to 30 July 2003 (29 days of data in total), 
with a horizontal resolution of 10 km (hereafter referred to as “fine-scale”), and 30 
vertical levels extending from the surface up to about 100 mbar for a domain centered 
over Europe [Figure 1]. Each day of simulation starts at 18 UTC of the previous day, and 
continues for 30 hours, of which the first 6 hours are used for spin up. These fine-scale 
simulations attempt to reproduce the atmospheric tracer distribution on scales much 
closer to the actual footprint of remote sensing instruments (~0.1-10 km). Model 
validation has been carried out at a number of measurement sites, and also in comparison 
with output from TransCom models which are used for global inversion studies. Table 2 
shows a summary of statistics of the WRF-VPRM simulation compared to measurements, 
along with results from two other models used in the TransCom-continuous Experiment, 
the global model TM3 and the regional model REMO (Chevillard et al., 2002). WRF-
VPRM performs reasonably well in comparison to other models for most of the 
measurement sites, indicated by a high fraction of explained variance (squared correlation 
coefficient, R2), but also, more importantly in the context of this study, a quite realistic 
representation of the variability with relative standard deviations (ratio of modeled to 
observed standard deviation) close to unity for most sites. However note that the 
variability is poorly represented when blending the high resolution fluxes used in WRF 
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(VPRM and IER emissions) with the coarse fluxes used in the TransCom continuous 
experiment (CASA biospheric fluxes and fossil98 emissions at 1°x1° resolution); in this 
case the performance is comparable to REMO also in terms of relative standard 
deviations (not shown in the Table). 
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3 Methodology 
 
3.1 Calculating Representation Error for Satellite-Derived CO2 Columns  
 
Since satellite measurements represent column averages, mass weighted average column 
CO2 mixing ratios are calculated from the modeled CO2 fields. Due to the differences in 
the averaging kernel for different space-borne sensors, no specific averaging kernel was 
used. Column averaging excluded the topmost model level in order to exclude boundary 
effects. The average column CO2 mixing ratio is thus given by:  
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Here mi is the dry grid cell air mass and CO2,i is the mixing ratio at model level i, and nz 
is the number of levels used. 
 

20 

25 

30 

35 

40 

In this context, the term “representation error” refers to possible discrepancies when 
utilizing satellite information in current global models, due to the spatial scale 
mismatches between satellite retrievals and larger model grids. Representation error 
(σc,col) is thus estimated for every time step (hourly) as sub-grid variability (standard 
deviation of fine-scale CO2,col) within the spatial resolution of current global models. The 
spatial scale of 100 km is chosen to represent the lower limit of grid cell size found in 
global models used for inversions. The calculated column averages do not include the 
entire stratosphere, which amounts to a fraction of 10% of the total atmospheric column 
(pressure at model top is 100 mbar). Since horizontal variability of CO2 in the 
stratosphere on scales below 100 km is small (at least not larger than in the troposphere), 
neglecting this part of the column might thus result at maximum in a 10% overestimation 
of the sub-grid variability.  
 
The monthly averaged σc,col (ie, σ־  c,col, specific for a given hour of the day) includes 
random and systematic components of representation errors. It is important to assess 
which component of this representation error is purely random, i.e. noise introduced by 
weather, and which part is systematic in nature (the bias term).  Random, uncorrelated 
errors are expected to decrease when averaging over longer time periods, e.g. for deriving 
monthly fluxes. In order to exclude random errors, daily values of CO2 mixing ratios (at a 
specific time, e.g 14:00 GMT) are averaged for the whole month and subsequently 
estimated sub-grid variability from this averaged concentration (ie, σ (CO⎯  2,col) ). This 
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In addition to σc,col, near-surface CO2 mixing ratios (CO2,sur) at an altitude of about 150 m 
above the surface (the second model level) are also analyzed in terms of sub-grid 
variability σc,sur. A similar analysis is again carried out for a spatial resolution of 200 km 
(not shown). 
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3.2 Using A-SCOPE Track Information Including MODIS Cloud 
Information  
 
In order to realistically represent satellite retrievals with our model simulations, we 
followed the simulated A-SCOPE sampling track. Temporal resolution of the track is 0.5 
seconds, corresponding to a spatial distance between subsequent samples of 3.5 km (F.M 
Bréon, Laboratoire des Sciences du Climat et de l’Environnement, Personal 
Communication). Since satellite retrievals require clear sky conditions, the simulations 
are sampled for the pixels with clear sky. Cloud free conditions are picked up based on 
MODIS cloud pixel information (http://modis-
atmos.gsfc.nasa.gov/MOD35_L2/index.html) at 1 km resolution for the period of 
simulation. 46438 samples of cloud free columns are extracted including 27605 samples 
(60 %) over land.  These samples were aggregated to a spatial scale of 100 km along the 
A-SCOPE track. There is an average of 6.6 cloud free 10 km samples along the A-
SCOPE track within each 100 km grid cell. The representation error for A-SCOPE 
derived CO2 columns (σascope) is calculated as the standard deviations of the difference of 
100 km x 100 km flight track averages using only A-SCOPE samples along the flight 
track, and the 100 km x 100 km averages based on all grid cells (σ [A-SCOPE 100 km 
averages - true 100 km averages]).  
 
4 Results and Discussion 
 
In this section the results based on WRF-VPRM simulations of the distribution of 
atmospheric CO2 in July 2003 are presented. An example of the WRF-VPRM output is 
given in Figure 1, showing simulated (a) CO2,sur and (b) CO2,col on 12 July at 14:00 GMT. 
Strong spatial variability of the boundary layer CO2 can be seen near the coasts (Figure 
1a) due to the 3D-rectification effect (the temporal covariance between sea-land breeze 
transport and biosphere-atmosphere fluxes, both of which are radiation controlled) 
(Ahmadov et al., 2007), which causes respired CO2 to be advected over the ocean by 
synoptic winds or by the land-breeze circulation and to be concentrated in a shallow layer 
due to the lack of vertical mixing over the ocean. There is also strong variability 
associated with frontal activity towards the north-eastern edge of the domain, with strong 
gradients in CO2 associated with the location of a cold front. Such behavior has 
previously been reported (Parazoo et al., 2008), and has been attributed to the 
deformational flow along the fronts. A similar pattern is followed in the CO2 column 
average (Figure 1b) near coasts as well as towards the north-eastern edge of the domain, 
which suggests a strong contribution of boundary layer concentrations to column 
averages. Movies showing the complete simulation can be seen at:  
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Figure 2 shows the monthly averaged σc,sur and σc,col (at 14:00 GMT only) for July 2003. 
Coastal and mountain regions are distinct, with strong sub-grid variability both in near 
surface and in column averages of CO2 concentrations. This is due to relatively strong 
gradients of surface fluxes in these regions.  
 
The similarity in spatial patterns of σc,col  and σc,sur (Figure 2 a & b) indicates that the CO2 
column values are correlated with surface values. Figure 3 shows the profile distribution 
of monthly averaged (at 14:00 GMT) σc within different bins of vertical model levels. 
Most of the higher values of σc are found to be within the lowest 2 km. σc strongly 
decreases with increasing altitude, showing less influence of surface fluxes at higher 
altitudes. These results are consistent with van der Molen and Dolman (2007) which 
shows that the effect of surface heterogeneity is generally observed in lower atmospheric 
layers. This indicates the dominance of boundary layer concentration variability in 
column averages. These dominances can be significant during synoptic scale events, 
where CO2 column variability is strongly correlated (squared correlation coefficient, R2= 
0.37) to boundary layer concentrations (see Figure 1), but not strongly correlated 
(squared correlation coefficient, R2= 0.12) to concentrations in the free troposphere 
around 4 km (not shown). 
 
The analysis shows that the monthly averaged σc,col for the domain is, on average, 0.4 
ppm, with maximum values around 1.2 ppm and the 90% percentile 0.6 ppm (see Figure 
2). Partitioning the data into ocean and land pixels shows that σc,col is more than twice as 
large over land (0.5 ppm) as compared to over ocean areas (0.2 ppm) as is expected due 
to the stronger magnitude and variability of terrestrial fluxes. This is not negligible 
compared to the targeted accuracy of future satellite retrievals. The monthly bias error, 
σc,col(bias), is smaller than the full error, but shows a similar pattern with maximum values 
around 0.9 ppm for mountain and coastal regions (Figure 4).  
 
4.2 Representation error for Satellite derived CO2 columns 
 
4.2.1 Hypothetical satellite track  
 
Representation errors are quantified here using a hypothetical satellite track going 
through each 100 km x 100 km cell. Following the sampling conditions used by Alkhaled 
et al. (2008) (hereafter referred to as A08), we assumed two spatial distributions of 
satellite retrievals: (1) a full North-South swath (10 pixels from south to north) in each 
grid cell (idealized sampling condition), and (2) a single retrieval at the corner of each 
grid cell (adverse sampling condition). The representation errors of hypothetical satellite-
derived CO2 columns (σhypo) are estimated for these two spatial distributions of satellite 
retrievals within each 100 km x 100 km grid cell. Figure 5 shows the distribution of σhypo 
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for a full North-South swath at the center of each 100 x 100 km grid cell. The σhypo for 
the previously mentioned sampling conditions are estimated and compared with A08 in 
July for the European domain, and are given in Table 3. The larger representation errors 
are seen over land for both sampling conditions, and are about a factor of two larger 
when compared to ocean (see Table 3).  The statistical approach suggested by A08 gives 
much smoother behaviour compared to our results and also neglects land-ocean 
differences in the European domain. Under idealized sampling conditions (10 pixel 
swath), the representation error estimates are nearly an order of magnitude larger than 
those by A08, and under adverse sampling conditions (single corner pixel) our estimates 
are a factor of two larger compared to those provided by A08 (Table 3). 
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This finding is in line with experimental evidence: A08 found agreement between their 
estimates and observation-based estimates from Lin et al. (2004), however the latter were 
a conservative (low-end or lower limit) estimate of subgrid variability. In fact the power 
variogram model used by Lin et al. (2004) underestimated the observed variogram 
estimates by a factor of 3 to 5 at scales smaller than 200 km (see Figure 2 in Lin et al. 
(2004)). This corresponds to about a factor two differences in single pixel representation 
error, which is remarkably similar to the factor found between the high-resolution model 
based estimate and the one provided by A08. This suggests that it is not generally 
possible to extract information about the representation error from coarse model 
simulations as suggested in A08. Such a method is likely to fail in cases of mesoscale 
complexity.  
 
4.2.2 A-SCOPE 100 km averages 
 
σascope is evaluated using the A-SCOPE satellite track information as described in Section 
3.2. When combining all A-SCOPE samples within each 100 km grid cell, the resulting 
representation error σascope is reduced compared to the single pixel error. Note that this is 
due to the fact that several pixels contribute to each A-SCOPE sample, whose error can 
partially cancel out. As for the hypothetical satellite tracks, larger representation errors 
for A-SCOPE are seen over land (0.4 ppm) as compared to over ocean areas (0.3 ppm) 
(Table 3). 
  
4.3 Dependence of representation error on explanatory variables  
 
Knowledge about the size and the spatial and temporal patterns of the representation error 
is expected to improve inverse modeling of satellite data, but this would involve using a 
high resolution model to estimate the representation error. Our goal is to construct a 
linear model based on a subset of those explanatory variables which explains a significant 
fraction of sub-grid variability, and which can be used in the context of global inverse 
modelling to capture the spatiotemporal patterns. Such a linear model is the simplest 
subgrid parameterization scheme for representation errors in coarser models, only 
accounting for local effects and neglecting any effects from advection of subgrid 
variability.  
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Statistical relationships between the representation error and the following variables are 
explored (not shown): the standard deviation of the fluxes (σf), the mean of the fluxes 
( f ), the absolute mean of the fluxes (| f |), the mean terrain height ( h ), standard 
deviation of the terrain heights (σh) and the mean mixing ratio near the surface ( c ).  c is 
included since it can be expected that variability is associated with the magnitude of the 
mixing ratios. The analysis showed that the representation error is best explained by the 
variables σh, σf and

5 

c  during day-time as well as night-time. Hence a linear model is 
constructed using three variables: σh, σf and c .Table 4 gives the statistical estimation of 
the variability explained by each of these variables. In addition to σc,col, we also 
investigated the same linear model for σc,sur. The explained variability by each of these 
variables differs between day- and night-time, also between column and near-surface 
mixing ratios. The proposed linear model has the same variable structure, but different 
coefficients for the explanatory variables. 
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Figure 6 shows the dependence of σc,col(bias) on each of these variables. Figure 6a shows a 
monotonic increase of σc,col(bias) with increasing σf at the 100 km scale and explains 34% 
of σc,col(bias) during day-time, however the relationship with σf is absent during night-time 
(Figure 6d). It is found in general that σc(bias) is well explained by σf (34% of the total 
column variability and 66% of the surface variability) during day-time; however 
correlations are weaker during night-time (Table 4). This can be explained as follows: the 
fluxes are larger and more spatially variable during daytime than during nighttime. In 
addition, strong vertical mixing during day-time couples the mixing ratios over a deeper 
part of the column to the patterns in surface fluxes, while during night there is less 
vertical mixing, with more advection and drainage flow in the stable nocturnal boundary 
layer, smearing out the signatures from patchy surface fluxes.  
 
 
The effect of heterogeneity in topography on σc,col(bias) can be seen in Figure 6b&e. 
σc,col(bias) increases in response to increase in σh and explains good fraction (51-59%) of 
sub-grid variability of mixing ratios. Nocturnal σc,sur(bias) is more correlated with σh (33%), 
rather than day-time σc,sur(bias) (20%) (see Table 4; not shown the Figure). This shows that 
topography has more influence on representation error of CO2 concentrations in the lower 
boundary layer during night when transport is more dominant than surface flux 
variability.  
 
c  is negatively correlated with σc,col(bias) during day-time (see Table 5) and explains 18% 
of variability, whereas the correlation is absent during night-time (Figure 6c and 6f). In 
contrast to this, the correlation of c  with σc,surl(bias) is absent during day-time, but explains 
16% of nocturnal variability (Table 4). 

40  
The linear model using all three variables explains about 50 % of the spatial patterns in 
the (monthly) bias component of sub-grid variability during day- and night-times (Table 
4). It is found that nocturnal σc,sur is better explained (60% in comparison to 46%) by the 
linear model when including the variable f , however no further improvements for σc,col 
or day-time σc,sur  are found (not shown).  Figure 7 illustrates how well the representation 
error is captured with the proposed linear model. It seems therefore possible to introduce 

45 
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this parameterization of representation error in coarser models so that data assimilation 
systems using coarser transport models can use realistic estimates for representation 
errors that have the appropriate spatial and temporal dependence. Table 5 gives the linear 
model coefficients for each of these explanatory variables. Note that coefficients are 
horizontal scale dependent, and we expect them to also vary between seasons due to 
differences in flux patterns and transport characteristics. 
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The implementation of the proposed parameterization scheme in global models requires 
these three explanatory parameters: σh can be easily calculated from any high resolution 
topographic elevation data, for example USGS GTOPO dataset 
(http://eros.usgs.gov/products/elevation/gtopo30.php). The information on fluxes (σf) can 
be accessed from biosphere models with high spatial resolution, e.g VPRM. c  is 
represented in global model simulations or from the satellite retrievals. However, care has 
to be taken to remove long term trends and seasonal cycles when simulating longer 
periods, otherwise representation error estimates would be falsely influenced by these. 
Such a simple parameterization would likely reduce the impact of representation errors 
significantly, although an inverse modeling study would be required to investigate the 
reduction of the impact on flux retrievals.  
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5 Summary and Outlook 
 
Satellite retrievals of column CO2 provide a global coverage of measurements; these 
often correspond to small footprints of the order of a few kilometers or less. Our analysis 
of high resolution WRF-VPRM fields of CO2 show that when these column retrievals 
representing small spatial scales are used in inverse studies with current global transport 
models with grid sizes of 100 km, the scale mismatches can introduce representation 
errors of up to 1.2 ppm, which is above the targeted precision of most satellite 
measurements. This may lead to a systematic bias in flux estimates when using inverse 
modeling approaches. 
 
Compared to estimates based on variogram analysis of coarse models (Alkhaled et al., 
2008), representation errors for a full swath of 10 km width of a hypothetical satellite 
(idealized sampling condition)  were found to be nearly an order of magnitude larger. 
This clearly shows the necessity of using high resolution simulations to assess variability 
on scales not resolved by global models.  The analysis with A-SCOPE track data together 
with MODIS cloud pixel information shows a larger representation error (0.39 ppm) over 
land compared to other regions. 
 
Furthermore, we attempted to model sub-grid scale variability (or representation error) as 
a linear function of local, grid-resolved variables. A linear model is constructed 
separately for day- and night-times as well as for column and near-surface, which has the 
same variable structure (σh, σf and c ), but different coefficients for the explanatory 
variables. The proposed linear model (using all three variables) could explain about 50 % 
of the spatial patterns in the bias component of sub-grid variability during day- and night-
times. These findings suggest a parameterization which would enable a substantial 
fraction of the representation error to be taken into account more quantitatively. 
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Future steps are to implement this parameterization in an inverse modeling system and to 
assess, using pseudo-data experiments, to what degree biases in retrieved fluxes due to 
representation errors can be avoided. A further refinement of the method will be to treat 
the subgrid variance as a tracer itself, allowing for advection of subgrid variance within 
the coarse transport models similar to the study by Galmarini et al. (2008), with the 
difference that the focus is not on micro-scale, but rather on mesoscale variability. This 
would probably allow to better describing the representation error over the ocean near the 
coasts, which with the current linear (local) model cannot be described. When including 
such a realistic description of the representation error into a data assimilation system that 
uses remotely-sensed column CO2, we expect that the retrieved information, such as 
regional carbon budgets and uncertainties thereof, will improve significantly.  
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Table 1. An overview of the WRF physics/dynamics options used 
 
 

 

Vertical coordinates Terrain-following hydrostatic pressure vertical coordinate 

 

Basic equations Non-hydrostatic, compressible 

Grid type Arakawa-C grid 

Time integration 3rd order Runge-Kutta split-explicit 

Spatial integration 3rd and 5th order differencing for vertical and horizontal 

advection respectively; both for momentum and scalars 

Domain configuration 1 domain with horizontal resolution of 10 km; 

size 2500x2300 km;  31 vertical levels; 

Time step 60 sec 

Physics schemes Radiation - Rapid Radiative Transfer Model (RRTM) 

Long wave and Dudhia; 

Microphysics - WSM 3-class simple ice scheme; 

Cumulus - Kain-Fritsch (new Eta) scheme (only for the 

coarse domain!) 

PBL – YSU; Surface layer – Monin-Obukhov 

Land-surface – NOAH LSM 
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Table 2. Statistics for the comparison of WRF-VPRM simulations to measurements, 
along with results from two transport models used in the TransCom Continuous 
experiment. 
 
Squared correlation coefficient, R2 5 
 Model [Horizontal Resolution] 

 
 Station WRF-VPRM 

[10x10 km2] 
REMO 
[0.50x0.50] 

TM3_vfg 
[1.8750x1.8750] 
 

 Heidelberg 0.29 0.48 0.37 
 Hegyhatsal 48m 0.44 0.35 0.28 
 Hegyhatsal 115 0.41 0.48 0.25 
 Schauinsland 0.16 0.07 0.06 
 Mace Head 0.24 0.48 0.29 
 Monte Cimone 0.38 0.13 0.17 

Ratio of modeled to measured standard deviation 
 Model [Horizontal Resolution] 

 
 Station WRF-VPRM 

[10x10 km2] 
REMO 
[0.50x0.50] 

TM3_vfg 
[1.8750x1.8750] 
 

 Heidelberg 0.95 2.72 1.03 
 Hegyhatsal 48m 1.21 2.75 1.64 
 Hegyhatsal 115 1.19 1.61 1.28 
 Schauinsland 0.99 0.92 0.82 
 Mace Head 0.6 1.02 0.79 
 Monte Cimone 1.82 0.65 0.79 
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Table 3. The possible representation error when using A-SCOPE and hypothetical 
satellite tracks for different sampling conditions. The values given in square brackets 
indicate (monthly bias component). All values are in ppm. 
 
Representation error All Land Ocean (Alkhaled et al., 

2008), EU 
domain* 
 

Hypothetical Satellite 
(Single corner pixel) 
 

0.59 
[0.22] 

 

0.72 
[0.28] 

 

0.35 
[0.09] 

 

0.30-0.40 

Hypothetical Satellite 
(North-South Swath ) 

0.38 
[0.16] 

 

0.46 
[0.20] 

 

0.24 
[0.05] 

 

0.04-0.06 

ASCOPE  0.34 
[0.12] 

 

0.39 
[0.15] 

0.30 
[0.08] 
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*extracted from (Alkhaled et al., 2008), Fig 2c and 2d for our domain.  
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Table 4. The statistical estimation (squared correlation coefficient) of the bias component 
of the representation error (σc(bias)) explained by each variable and the proposed linear 
model.  
 

Day-time Night-time 
 

Explanatory 
Variables 

Column 
σc,col 

Surface 
σc,sur 

Column 
σc,col 

Surface 
σc,sur 

 
σf 

[μ.moles/m2s-1] 
 

0.34 0.66 
 

0.09 
 

0.13 

σh 
[m] 

 

0.51 
 

0.20 
 

0.59 
 

0.33 
 

c  
[ppm] 

 

0.18 
 

0.09 
 

0.02 
 

0.16 
 

Linear model with 
σf,  σh & c  

0.63 
 

0.67 
 

0.63 
 

0.46 
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Table 5. Coefficients of the linear model for the monthly bias component of the 
representation error (σc(bias)). The standard errors of the coefficients are given in curly 
brackets. 
 

Day-time Night-time 
 

 

Column 
σc,col 
x 10-2 

Surface 
σc,sur 
x 10-2 

Column 
σc,col 
x 10-2 

Surface 
σc,sur 
x 10-2 

 
Resolution 
[km x km] 

100 
 

200 100 200 100 200 100 200 
 

σf 
[μ.moles/m2s-1] 

 

1.2 
{0.15} 

1.7 
{0.32} 

26.5 
{1.03} 

 

34.1 
{2.00} 

-0.01 
{0.60} 

0.81 
{1.35} 

 12.6 
{10.17} 

28.6 
{18.91} 

σh 
[m] 

 

0.04 
{0.00} 

0.04 
{0.00} 

0.07 
{0.02} 

0.05 
{0.03} 

0.05 
{0.00} 

 

0.05 
{0.00} 

0.50 
{0.03} 

0.40 
{0.05} 

c  
[ppm] 

 

-0.47 
{0.07} 

-0.40 
{0.16} 

0.38 
{0.47} 

 

0.10 
{1.02} 

-0.58 
{0.09} 

 

-0.91 
{0.23} 

16.2 
{1.50} 

17.4 
{3.26} 

Intercept 
[ppm] 

 

8.5 
{0.58} 

11.6 
{1.58} 

19.3 
{4.16} 

 

26.7 
{9.85} 

10.9 
{0.77} 

17.1 
{2.04} 

-27 
{13.05}

-18 
{28.64} 
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Figure1. WRF-VPRM simulations of CO2 mixing ratios (a) for an altitude of about 150 
m above ground (2nd model level), CO2,sur and (b)mass weighted average CO2 column,  
CO2,col during 12th July at 14:00 GMT  with horizontal resolutions of 10 km for a domain 
centered over Europe. An offset of 365 ppm is to be added to get total CO2 in ppm. Note 
the scale change between near surface and column CO2. 
 
Figure 2. The monthly averaged subgrid variability of CO2 concentrations for: (a) near-
surface, σc,sur and (b) column average, σc,col, for July 2003, using 14:00 GMT only. All 
values are in ppm. 
 
Figure 3. Box and whisker plot for different altitudes (from ground) ranges of the sub-
grid concentration variability (σc) for July 2003 (14:00GMT only) . Boxes indicate the 
central 50%, the bar across the box is the median value, and whiskers indicate the range 
of the central 95% of data points. Individual data points are shown outside the central 
95%. 
 
Figure 4. The monthly averaged subgrid variability of temporally aggregated CO2 
column averages (bias) [ppm] for July 2003, using 14:00 GMT only.  
 
Figure 5.  The subgrid variability of column averages of CO2 concentrations [ppm] based 
on hypothetical north-south swath at the center of each 100 km grid cell for July 2003 
(monthly averaged at 14:00 GMT).  
 
Figure 6. Distribution of the bias component of column CO2 sub-grid variability 
(σc,col(bias)) on (a, d) σf, (b, e) σh, (c, f) c  for July 2003 [(a)-(c):14:00GMT only, (d)-(f): 
02:00GMT only]. Boxes indicate the central 50%, the bar across the box the median, and 
whiskers the central 95%. Individual data points are shown outside the central 95%. 
 
Figure 7.  The linear model (bias) estimates of representation error (X-axis) compared to 
the values from the WRF-VPRM simulations (Y-axis) for (a,c)column averages, σc,col(bias) 
and (b,d)near-surface, σc,sur(bias) for July 2003 [(a)-(b):14:00GMT only, (c)-(d): 
02:00GMT only]. The 1:1 line is shown in blue. 
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