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Comments on your paper:

‘Est modus in rebus: ...’

A. Riccio

First remark

You state:
. . . while previously we did not take any particular assumption on pdf (lines 5-6, page
14278)

I wish to point out that your results (equation (10), page 14273) can also be derived
as a particular application of a more general variational principle. Several variants of
this principle are known as maximum entropy principle, minimum cross-entropy, and
other names. The application of this principle clearly point out the connection existing
between the minimization of a given function and the ‘implied’ pdf. In the following, I
will explain my point of view.

Suppose that the i-th model value, xi, is a random variable and is as distributed as
an (unknown) probability distribution function, pi. If we know the first, µ, and second
central moment, σ2

i , of our random variable, what we can say about pi? How infor-
mation about the mean and variance of our process can be coded into a probabilistic
description?

C3330



The answer has been clearly outlined by Jaynes [1]. First, introduce the entropy:

S = −
∑

pi ln pi (1)

Next, maximize the Lagrangian

L(p, λ1, λ2) = −
∑

pi ln pi + λ1

(
1−

∑
pi

)
+ λ2

(
σ2
i −

∑
(xi − µ)2 pi

)
(2)

λ1 and λ2 are the Lagrangian multipliers.

Note that the knowledge of mean and variance is exactly what you postulate: In this
context we do not need to specify any particular form of the pdf neither for the models
nor for the observations. What we need to know however, are biases and variances
(lines 26-28, page 14269).

To find the extremum of L, set ∂L/∂pi = 0. It is easy to shown that we obtain

pi = e−(1+λ1)e−λ2(xi−µ)2 (3)

i.e.
p(xi|µ, σ2

i ) ∝ exp
[
−λ2 (xi − µ)2

]
(4)

The normalization constant and λ2 are easily evaluated if the limits of integration are
±∞; it results in the standard Gaussian pdf

p(xi|µ, σ2
i ) =

1√
2πσ2

i

exp

[
−1

2
(xi − µ)2

σ2
i

]
(5)

This demonstrates that there is a close link between the normal distribution and quan-
tities characterized solely by their mean and variance.
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In the case of m independent model, then equation (5) becomes

p(x1, . . . , xm|µ, σ2
1, . . . , σ

2
m) ∝ exp

[
−1

2

∑

i

(xi − µ)2

σ2
i

]
(6)

If we introduce the sufficient statistics, x̄ =
∑

i xi/σ
2
i and s2 = 1/

∑
i 1/σ2

i , it is not
difficult to ‘invert’ equation (6) and show that

p(µ|x̄, s2) ∝ exp

[
−1

2

(
µ− x̄s2

)2

s2

]
(7)

that is, the expected average of model values can be calculated as the average of the
m {x1, x2, . . . , xm} values, each weighted by a coefficient given by

αi =
1/σ2

i∑
k 1/σ2

k

(8)

which is the same result derived in your equation (10).

In summary, the knowledge of mean and variance (+ the maximum entropy principle)
implies a Gaussian distribution, and they are the sufficient statistics for this kind of
function.

About the justification of this principled approach, Jaynes states: . . . the maximally
non-committal probability distribution is the one with the maximum entropy; hence, of
all possible probability distributions we should choose the one that maximizes S [1].

Again: By applying MAXENT we mean assigning a distribution p1 · · · pm on some
‘hypothesis space’ by the criterion that it shall maximize the information entropy,
S = −∑ pi ln pi, subject to constraints that express properties we wish the distribu-
tion to have, but are not sufficient to determine it [2].
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I’m not surprised at all that you (correctly) recover the same result from the minimiza-
tion of your Lagrangian function. In a certain sense, you are implying a Gaussian
distribution, otherwise it would have introduced additional information.

In a more general context, the maximization of entropy in a variational approach can
be justified in a variety of different ways: arguments ranging from information theory
[3] to logical consistency [4], and several others besides, all lead to the conclusion that
the ‘−∑ pi ln pi’ criterion is highly desirable.

You can also have a look at [5] for a recent application of maximum entropy principle in
a meteorological context.

Second remark

In my opinion pages 14274 (starting from line 17) to page 14276 could be more clearly
written. I suggest:

If the optimal weights are not chosen, what can be said about the statistical properties
of the ensemble mean? What conditions guarantee that the variance of the ensemble
mean is lower than the lowest model’s variance?

It can be demonstrated that models should have similar variances, precisely

σ2
m

σ2
1

≤ m+ 1 (9)

where we assumed that we were able to enumerate models in the ascending order of
their variances, σ2

1 ≤ σ2
2 ≤ . . . ≤ σ2

m. Condition (9) defines the relation between the
maximal and minimal variance of model ensemble dataset. If this condition holds, then
the variance of the ensemble mean is lower than the minimum variance

V (x̄m) ≤ σ2
1

C3333

〈your considerations follow 〉.
Equation (9) shows that it would be preferable to aggregate models whose individual
variances are not very different (i.e. their relative ratio is close to 1). If it could be
guessed that a model has a variance very large and different from the others, than it
should be preferable to exclude it from the ensemble mean.

Of course, when models’ variances are known, there is no need to exclude any model,
since the optimization constraints, given by equations 〈insert the correct equation num-
ber 〉, assure that a small weight is assigned to a model with a large variance, and the
optimal ensemble average variance is always lower than the lowest model variance.
Moreover, if a model were excluded, the optimal variance calculated by m − 1 models
is greater than the optimal variance calculated by m models.

. . . your text follows (from line 14, page 14276).

If you accept this suggestion, then similar following sections should be changed ac-
cordingly.

Third remark

I strongly agree with your comment: These concepts or definitions are most of the time
ignored, or given for granted thus leaving every reader with his own interpretation and
sometime misunderstanding (lines 3-5, page 14270).

I think that a source of confusion (which is usually not underlined in scientific works)
is the difference between models variances and data variances. Model variances
are usually obtained by Monte Carlo techniques or through sensitivity analysis, while
data variances are estimated by comparing the expected model output with reference
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values, e.g. observations.

Your nice paper concentrates several considerations about the effect of models vari-
ances on the ensemble average, but the reader usually confuses these variances with
data variances.

Why these clarification may be critical? Models variances play an important role in
defining the number of ‘potentially accessible states’, i.e. the number of different
states a model is able to predict.

If we consider a model as a nonlinear application, mapping the set of input states onto
the set of output states

M : x 7−→ y

where x and y are both random variables, and assume that y ∼ P(µ, σ2)1, then the
integral of function P over the number of accessible states

∫
P(y|µ, σ2)dy (10)

is known with different names, e.g. evidence in the statistical literature [6], partition
function in statistical mechanics [1], etc..

The value of this integral is of great interest if one would select (or average) models
results, since it is related to the weight to be assigned in an ensemble averaging pro-
cedure.

It is not surprising that the minimization of your Lagrangian assigns a weight propor-
tional to 1/σ2

i , because an unbiased model (i.e. a model correctly reproducing the
corresponding observation in the mean), but unnecessarily powerful (i.e. with a large
variance, so that a large number of different states can be predicted) is penalized with
respect to an unbiased model whose predictions are concentrated around the mean.

1 this notation means that y is a generic random variable with mean µ and variance σ2, but nothing is said about
the form of the function P .
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This is nothing else that a manifestation of the famous Ockham’s razor: ‘entia non sunt
multiplicanda praeter necessitatem’ (entities should not be multiplied beyond neces-
sity). A very delightful discussion about the Ockham’s razor can be found in [7].

I’d like if authors can comment on this.
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